1
|
Poulton A, Menezes M, Hardy T, Lewis S, Hui L. Clinical outcomes following preimplantation genetic testing for monogenic conditions: a systematic review of observational studies. Am J Obstet Gynecol 2025; 232:150-163. [PMID: 39362513 DOI: 10.1016/j.ajog.2024.09.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
OBJECTIVE We aimed to report a summary of clinical outcomes following preimplantation genetic testing for monogenic conditions, by performing a systematic review of published literature on clinical pregnancy and live birth rates following preimplantation genetic testing due to a monogenic indication. Additionally, we aimed to undertake a subgroup analysis of clinical outcomes of concurrent monogenic and aneuploidy screening. DATA SOURCES Three electronic databases (MEDLINE, EMBASE, and PubMed) were searched from inception to May 2024. STUDY ELIGIBILITY CRITERIA Quantitative data audits, observational studies, and case series reporting clinical outcomes for individuals undergoing preimplantation genetic testing for a monogenic indication were included. Only studies using blastocyst biopsies with polymerase chain reaction-based or genome-wide haplotyping methods for molecular analysis were eligible to reflect current laboratory practice. METHODS Quality assessment was performed following data extraction using an adaptation of the Joanna Briggs critical appraisal tool for case series. Results were extracted, and pooled mean clinical pregnancy rates and birth rates were calculated with 95% confidence intervals (95% CI). We compared outcomes between those with and without concurrent preimplantation genetic testing for aneuploidy. RESULTS Our search identified 1372 publications; 51 were eligible for inclusion. Pooled data on 5305 cycles and 5229 embryo transfers yielded 1806 clinical pregnancies and 1577 births. This translated to clinical pregnancy and birth rates of 34.0% [95% CI: 32.8%-35.3%] and 29.7% [95% CI: 28.5%-31.0%] per cycle and 24.8% [95% CI: 23.6%-26.0%] and 21.7% [95% CI: 20.8%-23.1%] per embryo transfer. In studies with concurrent aneuploidy screening, clinical pregnancy and birth rates were 43.3% [95% CI: 40.2%-46.5%] and 37.6% [95% CI: 34.6%-40.8%] per cycle and 37.0% [95% CI: 33.9%-40.3%] and 31.8% [95% CI: 28.8%-35.0%] per embryo transfer. Studies without aneuploidy screening reported clinical pregnancy and birth rates of 32.5% [95% CI: 31.0%-34.1%] and 28.1% [95% CI: 26.6%-29.7%] per cycle and 21.2% [95% CI: 19.8%-22.6%] and 18.6% [95% CI: 17.3%-20.0%] per embryo transfer. CONCLUSION This systematic review reveals promising clinical outcome figures for this indication group. Additionally, synthesizing the published scientific literature on clinical outcomes from preimplantation genetic testing for monogenic conditions provides a rigorous, noncommercial evidence base for counseling.
Collapse
Affiliation(s)
- Alice Poulton
- Genetics, Monash IVF Group Ltd, Clayton, VIC, Australia; Department of Obstetrics, Gynaecology and Newborn health, University of Melbourne, Parkville, VIC, Australia; Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Melody Menezes
- Genetics, Monash IVF Group Ltd, Clayton, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; Victorian Clinical Genetics Service, Parkville, VIC, Australia
| | - Tristan Hardy
- Genetics, Monash IVF Group Ltd, Clayton, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Sharon Lewis
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia; Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Lisa Hui
- Department of Obstetrics, Gynaecology and Newborn health, University of Melbourne, Parkville, VIC, Australia; Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia; The Northern Hospital, Epping, VIC, Australia
| |
Collapse
|
2
|
Zhao W, Song Y, Huang C, Xu S, Luo Q, Yao R, Sun N, Liang B, Fei J, Gao F, Huang J, Qu S. Development of preimplantation genetic testing for monogenic reference materials using next-generation sequencing. BMC Med Genomics 2024; 17:33. [PMID: 38262988 PMCID: PMC10807056 DOI: 10.1186/s12920-024-01803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Preimplantation genetic testing for monogenic disorders (PGT-M) has been used for over 20 years to detect many serious genetic conditions. However, there is still a lack of reference materials (RMs) to validate the test performance during the development and quality control of PGT-M. METHOD Sixteen thalassemia cell lines from four thalassemia families were selected to establish the RMs. Each family consisted of parents with heterozygous mutations for α- and/or β-thalassemia and two children, at least one of whom carried a homozygous thalassemia mutation (proband). The RM panel consisted of 12 DNA samples (parents and probands in 4 families) and 4 simulated embryos (cell lines constructed from blood samples from the four nonproband children). Four accredited genetics laboratories that offer verification of thalassemia samples were invited to evaluate the performance of the RM panel. Furthermore, the stability of the RMs was determined by testing after freeze‒thaw cycles and long-term storage. RESULTS PGT-M reference materials containing 12 genome DNA (gDNA) reference materials and 4 simulated embryo reference materials for thalassemia testing were successfully established. Next-generation sequencing was performed on the samples. The genotypes and haplotypes of all 16 PGT-M reference materials were concordant across the four labs, which used various testing workflows. These well-characterized PGT-M reference materials retained their stability even after 3 years of storage. CONCLUSION The establishment of PGT-M reference materials for thalassemia will help with the standardization and accuracy of PGT-M in clinical use.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Obstetrics, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health, Shenzhen, Guangdong, China
| | | | - Chuanfeng Huang
- Division of Physical and Chemical Testing, Division of in Vitro Diagnostic Reagents, National Institutes for food and drug Control (NIFDC), Beijing, China
| | - Shan Xu
- BGI-Shenzhen, Guangdong, Shenzhen, China
| | - Qi Luo
- Department of Obstetrics, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health, Shenzhen, Guangdong, China
| | - Runsi Yao
- Department of Obstetrics, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health, Shenzhen, Guangdong, China
| | - Nan Sun
- Division of Physical and Chemical Testing, Division of in Vitro Diagnostic Reagents, National Institutes for food and drug Control (NIFDC), Beijing, China
| | - Bo Liang
- Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Microbial Metabolism, Shanghai, China
- Basecare Medical Device Co., Ltd, Jiangsu, China
| | - Jia Fei
- Peking Jabrehoo Med Tech Co., Ltd, Beijing, China
| | | | - Jie Huang
- Division of Physical and Chemical Testing, Division of in Vitro Diagnostic Reagents, National Institutes for food and drug Control (NIFDC), Beijing, China.
| | - Shoufang Qu
- Division of Physical and Chemical Testing, Division of in Vitro Diagnostic Reagents, National Institutes for food and drug Control (NIFDC), Beijing, China.
| |
Collapse
|
3
|
Scriven PN. Insights into the utility of preimplantation genetic testing from data collected by the HFEA. J Assist Reprod Genet 2021; 38:3065-3068. [PMID: 34846628 DOI: 10.1007/s10815-021-02369-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
|
4
|
Cai Y, Ding M, Zhang Y, Sun Y, Lin F, Diao Z, Zhou J. A mathematical model for predicting the number of transferable blastocysts in next-generation sequencing-based preimplantation genetic testing. Arch Gynecol Obstet 2021; 305:241-249. [PMID: 34218301 DOI: 10.1007/s00404-021-06050-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the clinical factors that could be used predict the number of transferable blastocysts in preimplantation genetic testing (PGT) cycles based on next-generation sequencing (NGS) and formed form a mathematical model to predict the chance likelihood of obtaining one transferable blastocyst, which is helpful for genetic counseling. METHODS This retrospective study enrolled couples undergoing PGT cycles for chromosomal structural rearrangement (PGT-SR, n = 363, 202 with reciprocal translocation carriers, 131 with Robertsonian translocation carriers, 30 with inversion carriers), monogenic diseases (PGT-M, n = 47), and for Aneuploidies (PGT-A, n = 132) from January 2015 to October 2018. Stepwise multiple linear regression analysis was used to identify the factors relevant for obtaining at least one transferable blastocyst. The factors that predict the number of biopsied blastocysts were further analyzed. RESULTS The transferable blastocyst rates were 29.94, 41.99, 49.09, 41.42, and 44.37% in the reciprocal translocation carrier, Robertsonian translocation carrier, inversion carrier, PGT-M, and PGT-A cycles, respectively. The number of transferable blastocysts in these cycles were 0.3004 × the number of biopsied blastocysts (NBB) - 0.0031, 0.4063 × NBB + 0.0460, 0.5762 × NBB - 0.3128, 0.3611 × NBB + 0.1910, and 0.4831 × NBB - 0.0970, respectively. Furthermore, the number of MII oocytes and female age were clinical predictors of NBB in reciprocal translocation and PGT-A couples, while the number of MII oocytes was the only clinical predictor in Robertsonian translocation carriers, inversion carriers, and PGT-M couples. CONCLUSIONS The number of biopsied blastocysts was the only clinical predictor of the ability to obtain a transferable blastocyst in PGT cycles; therefore, for clinical practice, theoretically the minimum numbers of biopsied blastocysts is 4 in reciprocal translocation carrier and 3 in couples undergoing PGT for other reasons. The number of MII oocytes and female age were clinical predictors of the number of biopsied blastocysts. With the mathematical models in our study as a reference, in clinical practice, clinicians will be able to conduct a more targeted genetic consultation for different kinds of PGT patients.
Collapse
Affiliation(s)
- Yunni Cai
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Min Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, People's Republic of China
| | - YuTing Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Yanxin Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Fei Lin
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Zhenyu Diao
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Jianjun Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Deng Y, Ou Z, Li R, Chen Z, Liang P, Sun L. Affected-embryo-based SNP haplotyping with NGS for the preimplantation genetic testing of Marfan syndrome. Syst Biol Reprod Med 2021; 67:298-306. [PMID: 34053377 DOI: 10.1080/19396368.2021.1926574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Marfan syndrome (MFS), an autosomal dominant heritable disease of the connective tissue, is characterized by broad clinical manifestations in the musculoskeletal, cardiovascular, pulmonary, and ocular systems. In this study, a male patient with MFS caused by a heterozygous mutation NM_000138.5(FBN1):c.6037 + 2 T > C in the fibrillin 1 gene (FBN1) underwent preimplantation genetic testing (PGT) by using affected-embryo-based single nucleotide polymorphism (SNP) haplotyping. Multiple displacement amplification was used for whole genome amplification of biopsied trophectoderm cells after controlled ovarian stimulation. Sanger sequencing and next-generation sequencing (NGS) were used to detect the state of FBN1 mutation. A total of 14 blastocysts formed after intracytoplasmic sperm injection were biopsied. After NGS, 60 informative polymorphic SNP markers located upstream and downstream of the FBN1 gene and its pathogenic mutation site were linked to individual alleles. Sanger sequencing further confirmed that 8 blastocysts carried the mutation NM_000138.5(FBN1):c.6037 + 2 T > C, while 6 did not. Four of the non-carriers were euploid verified by copy number variation results. A female infant without MFS was born at 37 weeks gestation after a subsequent frozen embryo transfer. In conclusion, the successful case indicates that SNP haplotyping using sibling embryos as a reference is applicable to PGT in monogenetic diseases.Abbreviations MFS: Marfan syndrome; PGT: preimplantation genetic testing; FBN1: fibrillin 1 gene; NGS: next-generation sequencing; SNP: single nucleotide polymorphism.
Collapse
Affiliation(s)
- Yu Deng
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhanhui Ou
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ru Li
- Center of Prenatal Diagnosis, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhiheng Chen
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peiling Liang
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Sun
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
De Rycke M, Berckmoes V. Preimplantation Genetic Testing for Monogenic Disorders. Genes (Basel) 2020; 11:E871. [PMID: 32752000 PMCID: PMC7463885 DOI: 10.3390/genes11080871] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
Preimplantation genetic testing (PGT) has evolved into a well-established alternative to invasive prenatal diagnosis, even though genetic testing of single or few cells is quite challenging. PGT-M is in theory available for any monogenic disorder for which the disease-causing locus has been unequivocally identified. In practice, the list of indications for which PGT is allowed may vary substantially from country to country, depending on PGT regulation. Technically, the switch from multiplex PCR to robust generic workflows with whole genome amplification followed by SNP array or NGS represents a major improvement of the last decade: the waiting time for the couples has been substantially reduced since the customized preclinical workup can be omitted and the workload for the laboratories has decreased. Another evolution is that the generic methods now allow for concurrent analysis of PGT-M and PGT-A. As innovative algorithms are being developed and the cost of sequencing continues to decline, the field of PGT moves forward to a sequencing-based, all-in-one solution for PGT-M, PGT-SR, and PGT-A. This will generate a vast amount of complex genetic data entailing new challenges for genetic counseling. In this review, we summarize the state-of-the-art for PGT-M and reflect on its future.
Collapse
Affiliation(s)
- Martine De Rycke
- Center for Medical Genetics, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium;
| | | |
Collapse
|
7
|
Vali S, Mukhtar S, Nandi A, Wilson K, Oakley L, El-Toukhy T, Oteng-Ntim E. Cumulative outcome of pre-implantation genetic diagnosis for sickle cell disease: a 5-year review. Br J Haematol 2020; 191:875-879. [PMID: 32621537 DOI: 10.1111/bjh.16930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/26/2022]
Abstract
To review the cumulative outcome of pre-implantation genetic diagnosis (PGD) cycles performed for prevention of sickle cell disease (SCD). Couples referred for PGD for SCD between April 2012 and October 2017 were included. Ovarian stimulation was performed using a short gonadotrophin-releasing hormone (GnRH) antagonist protocol and follicle-stimulating hormone injections. The GnRH agonist was used to trigger oocyte maturation. Oocytes were fertilised using intracytoplasmic sperm injection. Trophectoderm biopsy was performed on day 5 or 6 followed by vitrification. Genetic testing was done using pre-implantation genetic haplotyping. A total of 60 couples started 70 fresh PGD cycles (mean 1·2 cycles/couple) and underwent a total of 74 frozen-embryo-transfer (FET) cycles (mean 1·3 FET/couple). The mean (SD) female age was 33 (4·4) years and the mean (SD) anti-müllerian hormone level was 22·9 (2·8) pmol/l. The cumulative live-birth rate was 54%/PGD cycle started and 63%/couple embarking on PGD. The rate of multiple births was 8%. The cumulative outcome of PGD treatment for prevention of SCD transmission is high and PGD treatment should be offered to all at-risk couples.
Collapse
Affiliation(s)
- Saaliha Vali
- Department of Obstetrics and Gynaecology, Assisted Conception Unit, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Sunbal Mukhtar
- Department of Obstetrics and Gynaecology, Assisted Conception Unit, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Anupa Nandi
- Department of Obstetrics and Gynaecology, Assisted Conception Unit, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Kieren Wilson
- Department of Obstetrics and Gynaecology, Assisted Conception Unit, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Laura Oakley
- London School of Hygiene and Tropical Medicine, London, UK
| | - Tarek El-Toukhy
- Department of Obstetrics and Gynaecology, Assisted Conception Unit, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Eugene Oteng-Ntim
- Department of Obstetrics and Gynaecology, Assisted Conception Unit, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Yeager S, Mehta S, Sodhi M, Shah B. Can preimplantation genetic diagnosis be used for monogenic endocrine diseases? J Pediatr Endocrinol Metab 2019; 32:1305-1310. [PMID: 31490775 DOI: 10.1515/jpem-2019-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/22/2019] [Indexed: 11/15/2022]
Abstract
Context Preimplantation genetic diagnosis (PGD) is currently used for over 400 monogenic diseases. Some endocrine conditions that occur due to monogenic defects are either life-threatening or can cause severe morbidities; thus, PGD may be an option to avoid the occurrence of such diseases. Evidence acquisition An initial search in PubMed/Medline search was done to identify monogenic endocrine conditions using appropriate search terms. Eleven articles (1999-2018) reported 15 cases using PGD for monogenic endocrine diseases performed at major reproductive centers. Clinical and outcome data of these cases were reviewed with respect to the number of PGD cycles, successful pregnancy rates, live births and their genetic status. Evidence synthesis Fifteen couples underwent 32 PGD cycles (one to nine per couple), of which 17 resulted in a pregnancy. Seven couples underwent a single PGD cycle. Four couples had successful pregnancies each resulting in live births, one couple had an unsuccessful pregnancy, one needed medical termination of pregnancy and the outcome data were not reported in one. The remaining eight couples underwent multiple PGD cycles (two to nine per couple) and all had successful pregnancies in at least one cycle resulting in 16 live births. Of the total live births, 60% were genetically unaffected and 40% were carriers of the autosomal recessive gene mutation. Conclusions PGD may be a potential tool for preventing the inheritance of severe monogenic endocrine diseases in future generations. Currently, the use of PGD in endocrine disorders is rare but provides a promising option on a case-by-case basis, provided the optimal resources are available.
Collapse
Affiliation(s)
| | - Shilpa Mehta
- Division of Pediatric Endocrinology, Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Misha Sodhi
- Division of Pediatric Endocrinology, Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Bina Shah
- Division of Pediatric Endocrinology, Department of Pediatrics, New York University School of Medicine, New York, NY, USA, Phone: +212-562-3793
| |
Collapse
|
9
|
Zhao M, Lian M, Cheah FSH, Tan ASC, Agarwal A, Chong SS. Identification of Novel Microsatellite Markers Flanking the SMN1 and SMN2 Duplicated Region and Inclusion Into a Single-Tube Tridecaplex Panel for Haplotype-Based Preimplantation Genetic Testing of Spinal Muscular Atrophy. Front Genet 2019; 10:1105. [PMID: 31781167 PMCID: PMC6851269 DOI: 10.3389/fgene.2019.01105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Preimplantation genetic testing for the monogenic disorder (PGT-M) spinal muscular atrophy (SMA) is significantly improved by supplementation of SMN1 deletion detection with marker-based linkage analysis. To expand the availability of informative markers for PGT-M of SMA, we identified novel non-duplicated and highly polymorphic microsatellite markers closely flanking the SMN1 and SMN2 duplicated region. Six of the novel markers within 0.5 Mb of the 1.7 Mb duplicated region containing SMN1 and SMN2 (SMA6863, SMA6873, SMA6877, SMA7093, SMA7115, and SMA7120) and seven established markers (D5S1417, D5S1413, D5S1370, D5S1408, D5S610, D5S1999, and D5S637), all with predicted high heterozygosity values, were selected and optimized in a tridecaplex PCR panel, and their polymorphism indices were determined in two populations. Observed marker heterozygosities in the Chinese and Caucasian populations ranged from 0.54 to 0.86, and 98.4% of genotyped individuals (185 of 188) were heterozygous for ≥2 markers on either side of SMN1. The marker panel was evaluated for disease haplotype phasing using single cells from two parent–child trios after whole-genome amplification, and applied to a clinical IVF (in vitro fertilization) PGT-M cycle in an at-risk couple, in parallel with SMN1 deletion detection. Both direct and indirect test methods determined that none of five tested embryos were at risk for SMA, with haplotype analysis further identifying one embryo as unaffected and four as carriers. Fresh transfer of the unaffected embryo did not lead to implantation, but subsequent frozen-thaw transfer of a carrier embryo produced a pregnancy, with fetal genotype confirmed by amniocentesis, and a live birth at term.
Collapse
Affiliation(s)
- Mingjue Zhao
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mulias Lian
- Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Felicia S H Cheah
- Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Arnold S C Tan
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Anupriya Agarwal
- Clinic for Human Reproduction, Department of Obstetrics and Gynecology, National University Hospital, Singapore, Singapore
| | - Samuel S Chong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore.,Molecular Diagnosis Center and Clinical Cytogenetics Service, Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
10
|
Ji X, Zhang Z, Shi J, He B. Clinical application of NGS-based SNP haplotyping for the preimplantation genetic diagnosis of primary open angle glaucoma. Syst Biol Reprod Med 2019; 65:258-263. [PMID: 30977407 DOI: 10.1080/19396368.2019.1590479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingzhe Ji
- Assisted Reproduction Centre, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Zhou Zhang
- Assisted Reproduction Centre, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Juanzi Shi
- Assisted Reproduction Centre, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Bin He
- Prenatal Diagnosis Centre, Northwest Women’s and Children’s Hospital, Xi’an, China
| |
Collapse
|
11
|
Fu Y, Shen X, Wu H, Chen D, Zhou C. Preimplantation Genetic Testing for Monogenic Disease of Spinal Muscular Atrophy by Multiple Displacement Amplification: 11 unaffected livebirths. Int J Med Sci 2019; 16:1313-1319. [PMID: 31588198 PMCID: PMC6775269 DOI: 10.7150/ijms.32319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Preimplantation genetic testing for monogenic disease (PGT-M) has become an effective method for providing couples with the opportunity of a pregnancy with a baby free of spinal muscular atrophy (SMA). Multiple displacement amplification (MDA) overcomes the innate dilemma of very limited genetic material available for PGT-M. Objective: To evaluate the use of MDA, combined with haplotype analysis and mutation amplification, in PGT-M for families with SMA. Methods: MDA was used to amplify the whole genome from single blastomeres or trophectoderm (TE) cells. Exon 7 of the survival motor neuron gene 1 (SMN1) and eleven STRs markers flanking the SMN1 gene were incorporated into singleplex polymerase chain reaction (PCR) assays on MDA products. Results: Sixteen cycles (19 ovum pick-up cycles) of PGT-M were initiated in 12 couples. A total of 141 embryos were tested: 90 embryos were biopsied at the cleavage stage and 51 embryos were biopsied at the blastocyst stage. MDA was successful on 94.44% (85/90) of the single blastomeres and on 92.16% (47/51) of the TE cells. And the PCR efficiency were 98.4% (561/570) and 100% (182/182), respectively. In addition, the average allele drop-out (ADO) rates were 13.3% (60/392) and 9.8% (11/112), respectively. The results for SMN1 exon 7 were all matched with haplotype analysis, which allowed an accurate diagnosis of 93.62% (132/141) embryos. Twelve families had unaffected embryos available for transfer and a total of 38 embryos were transferred in 20 embryo transfer cycles. Eight transfers were successful, resulting in a clinical pregnancy rate of 40% (8/20) and an implantation rate of 28.95% (11/38). Finally, 11 healthy babies were born. Among them, 5 SMA carriers were singleton live births and 3 SMA carriers had twin births. Conclusion: Careful handling during the MDA procedure can improve subsequent PCR efficiency and reduce the ADO rate. We suggest that this protocol is reliable for increasing the accuracy of the PGT-M for SMA.
Collapse
Affiliation(s)
- Yu Fu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, 510080.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China, 510080
| | - Xiaoting Shen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, 510080.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China, 510080
| | - Haitao Wu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, 510080.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China, 510080.,Reproductive Medicine Center, Jiangmen Cental Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University
| | - Dongjia Chen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, 510080.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China, 510080
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, 510080.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China, 510080
| |
Collapse
|
12
|
Chen L, Diao Z, Xu Z, Zhou J, Yan G, Sun H. The clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfecta. Syst Biol Reprod Med 2018; 65:75-80. [PMID: 29764212 DOI: 10.1080/19396368.2018.1472315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Linjun Chen
- Reproductive Medical Center, Drum Tower Hospital Affiliated with Nanjing University Medical College, Nanjing, People’s Republic of China
| | - Zhenyu Diao
- Reproductive Medical Center, Drum Tower Hospital Affiliated with Nanjing University Medical College, Nanjing, People’s Republic of China
| | - Zhipeng Xu
- Reproductive Medical Center, Drum Tower Hospital Affiliated with Nanjing University Medical College, Nanjing, People’s Republic of China
| | - Jianjun Zhou
- Reproductive Medical Center, Drum Tower Hospital Affiliated with Nanjing University Medical College, Nanjing, People’s Republic of China
| | - Guijun Yan
- Reproductive Medical Center, Drum Tower Hospital Affiliated with Nanjing University Medical College, Nanjing, People’s Republic of China
| | - Haixiang Sun
- Reproductive Medical Center, Drum Tower Hospital Affiliated with Nanjing University Medical College, Nanjing, People’s Republic of China
| |
Collapse
|
13
|
Chen S, Li S, Zhang J, Zhang L, Chen Y, Wang L, Jin L, Hu Y, Qi X, Huang H, Xu C. Preimplantation Genetic Diagnosis of Multiple Endocrine Neoplasia Type 2A Using Informative Markers Identified by Targeted Sequencing. Thyroid 2018; 28:281-287. [PMID: 29378479 DOI: 10.1089/thy.2017.0200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The revised guidelines for the management of medullary thyroid carcinoma recommend that genetic counseling regarding reproductive options, including preimplantation genetic diagnosis (PGD), be considered for all RET mutation carriers of reproductive age to avoid the transmission of multiple endocrine neoplasia type 2 (MEN2). However, the high complexity and cost of PGD have hindered its widespread use. Thus, it is necessary to establish a simple and relatively inexpensive method to facilitate the PGD of MEN2. PATIENTS AND METHODS A customized Nimblegen EZ sequence capture array was designed to capture the targeted regions, including the RET gene, and 1 Mb range on each side of the RET gene. Targeted, capture-based next-generation sequencing of three members of one family with MEN2A (the couple and the paternal father) was conducted to identify the informative markers. The diagnosis of the embryos was achieved through haplotype analysis based on informative markers and causative mutation. RESULTS Based on the sequencing results, 173 informative markers were detected, which were sufficient for the subsequent use for PGD. Seven informative markers and the causative mutation (RETC634Y) were selected and subjected to Sanger sequencing. Through haplotype analysis, four embryos without inheritance of the mutation haplotype of the RET gene were diagnosed as unaffected. One unaffected embryo was transferred, with one healthy baby born at 38 gestational weeks. CONCLUSIONS Targeted, capture-based next-generation sequencing for identification of informative markers together with Sanger sequencing is an easy and efficient method for the PGD of monogenic diseases such as MEN2.
Collapse
Affiliation(s)
- Songchang Chen
- 1 Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Shuyuan Li
- 1 Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Junyu Zhang
- 1 Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Lanlan Zhang
- 1 Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yiyao Chen
- 1 Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Li Wang
- 1 Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Li Jin
- 1 Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Yuting Hu
- 1 Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Xiaoping Qi
- 3 Department of Oncologic and Urologic Surgery, Nanjing Military Command, Hospital Center for Endocrine and Metabolic Diseases, 117th PLA Hospital, Wenzhou Medical University , Hangzhou, China
| | - Hefeng Huang
- 1 Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Chenming Xu
- 1 Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
14
|
Sharpe A, Avery P, Choudhary M. Reproductive outcome following pre-implantation genetic diagnosis (PGD) in the UK. HUM FERTIL 2017; 21:120-127. [PMID: 28602104 DOI: 10.1080/14647273.2017.1336259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In 2013, the National Health Service Commissioning board centralized the funding in England for up to three cycles of pre-implantation genetic diagnosis (PGD) for couples who have, or are carriers of, a specific genetic disorder. This study presents the historical data of PGD cycles and their clinical outcomes in UK as extrapolated from the national data registry. Retrospective analysis of outcome of cycles undergoing pre-implantation genetic diagnosis in the UK over the past 20 years was performed from the Human Fertilisation and Embryology Authority database (n = 2974). Binary logistic regression was used to determine trends over time and adjusted for maternal age. Briefly, the number of PGD cycles has risen 127-fold from 1991 to 2012 with 3.6-fold increase (360% rise) from 2004 to 2012. A total of one in four embryos following pre-implantation genetic diagnosis did not reach embryo transfer and 92% of these were due to a failure to survive. The live birth rate has risen over 20 years and there has been a steady decline in reported incidence of congenital abnormalities (p < 0.07). PGD has thus emerged as a safe and effective alternative to prenatal diagnosis but with ever evolving technological advances, a robust system of data collection that incorporates techniques used and reporting of mutation-specific clinical outcomes is suggested.
Collapse
Affiliation(s)
- Abigail Sharpe
- a Newcastle Fertility Centre, International Centre for Life , Newcastle upon Tyne , UK
| | - Peter Avery
- b School of Mathematics and Statistics , Newcastle University , Newcastle upon Tyne , UK
| | - Meenakshi Choudhary
- a Newcastle Fertility Centre, International Centre for Life , Newcastle upon Tyne , UK
| |
Collapse
|
15
|
Abstract
INTRODUCTION Preimplantation genetic diagnosis and screening (PGD/PGS) has been applied clinically for >25 years however inherent drawbacks include the necessity to tailor each case to the trait in question, and that technology to detect monogenic and chromosomal disorders respectively is fundamentally different. Areas covered: The area of preimplantation genetics has evolved over the last 25 years, adapting to changes in technology and the need for more efficient, streamlined diagnoses. Karyomapping allows the determination of inheritance from the (grand)parental haplobocks through assembly of inherited chromosomal segments. The output displays homologous chromosomes, crossovers and the genetic status of the embryos by linkage comparison, as well as chromosomal disorders. It also allows for determination of heterozygous SNP calls, avoiding the risks of allele dropout, a common problem with other PGD techniques. Manuscripts documenting the evolution of preimplantation genetics, especially those investigating technologies that would simultaneously detect monogenic and chromosomal disorders, were selected for review. Expert commentary: Karyomapping is currently available for detection of single gene disorders; ~1000 clinics worldwide offer it (via ~20 diagnostic laboratories) and ~2500 cases have been performed. Due an inability to detect post-zygotic trisomy reliably however and confounding problems of embryo mosaicism, karyomapping has yet to be applied clinically for detection of chromosome disorders.
Collapse
Affiliation(s)
- Rebecca L Gould
- a The Bridge Centre , London , UK.,b School of Biological Sciences , University of Kent , Canterbury , UK
| | - Darren K Griffin
- b School of Biological Sciences , University of Kent , Canterbury , UK
| |
Collapse
|
16
|
Lian M, Zhao M, Lee CG, Chong SS. Single-Tube Dodecaplex PCR Panel of Polymorphic Microsatellite Markers Closely Linked to the DMPK CTG Repeat for Preimplantation Genetic Diagnosis of Myotonic Dystrophy Type 1. Clin Chem 2017; 63:1127-1140. [PMID: 28428361 DOI: 10.1373/clinchem.2017.271528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Preimplantation genetic diagnosis (PGD) of myotonic dystrophy type 1 (DM1) currently uses conventional PCR to detect nonexpanded dystrophia myotonica protein kinase (DMPK) alleles or triplet-primed PCR to detect the CTG-expanded alleles, coupled with analysis of linked microsatellite markers to increase diagnostic accuracy. We aimed to simplify the process of identification and selection of informative linked markers for application to DM1 PGD. METHODS An in silico search was performed to identify all markers within 1-1.5 Mb flanking the DMPK gene. Five previously known (D19S559, APOC2, D19S543, D19S112, and BV209569) and 7 novel (DM45050, DM45178, DM45209, DM45958, DM46513, DM46892, and DM47004.1) markers with potentially high heterozygosity values and polymorphism information content were selected and optimized in a single-tube multiplex PCR panel. RESULTS Analysis of 184 DNA samples of Chinese and Caucasian individuals (91 from unrelated, anonymized cord blood of Chinese babies born at the National University Hospital, Singapore, and 93 Caucasian DNA samples from the Human Variation Panel HD100CAU) confirmed the high polymorphism indices of all markers (polymorphism information content >0.5), with observed heterozygosity values ranging from 0.62-0.93. All individuals were heterozygous for at least 6 markers, with 99.5% of individuals heterozygous for at least 2 markers on either side of the DMPK CTG repeat. The dodecaplex marker assay was successfully validated on 42 single cells and 12 whole genome amplified single cells. CONCLUSIONS The DM1 multiplex PCR panel is suitable for use in DM1 PGD either as a standalone linkage-based assay or as a complement to DMPK CTG repeat expansion-mutation detection.
Collapse
Affiliation(s)
- Mulias Lian
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore
| | | | - Caroline G Lee
- Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore.,Division of Medical Sciences, National Cancer Center, Singapore
| | - Samuel S Chong
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore; .,Departments of Pediatrics and.,Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore
| |
Collapse
|
17
|
Chen L, Diao Z, Xu Z, Zhou J, Yan G, Sun H. The clinical application of NGS-based SNP haplotyping for PGD of Hb H disease. Syst Biol Reprod Med 2017; 63:212-217. [PMID: 28340305 DOI: 10.1080/19396368.2017.1296501] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Linjun Chen
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, People’s Republic of China
| | - Zhenyu Diao
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, People’s Republic of China
| | - Zhipeng Xu
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, People’s Republic of China
| | - Jianjun Zhou
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, People’s Republic of China
| | - Guijun Yan
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, People’s Republic of China
| | - Haixiang Sun
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, People’s Republic of China
| |
Collapse
|
18
|
Pre-implantation genetic diagnosis. Best Pract Res Clin Obstet Gynaecol 2017; 39:74-88. [DOI: 10.1016/j.bpobgyn.2016.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/06/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
|
19
|
Kamps R, Brandão RD, Bosch BJVD, Paulussen ADC, Xanthoulea S, Blok MJ, Romano A. Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. Int J Mol Sci 2017; 18:ijms18020308. [PMID: 28146134 PMCID: PMC5343844 DOI: 10.3390/ijms18020308] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing (NGS) technology has expanded in the last decades with significant improvements in the reliability, sequencing chemistry, pipeline analyses, data interpretation and costs. Such advances make the use of NGS feasible in clinical practice today. This review describes the recent technological developments in NGS applied to the field of oncology. A number of clinical applications are reviewed, i.e., mutation detection in inherited cancer syndromes based on DNA-sequencing, detection of spliceogenic variants based on RNA-sequencing, DNA-sequencing to identify risk modifiers and application for pre-implantation genetic diagnosis, cancer somatic mutation analysis, pharmacogenetics and liquid biopsy. Conclusive remarks, clinical limitations, implications and ethical considerations that relate to the different applications are provided.
Collapse
Affiliation(s)
- Rick Kamps
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Rita D Brandão
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Bianca J van den Bosch
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Aimee D C Paulussen
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Sofia Xanthoulea
- Department of Gynaecology and Obstetrics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Marinus J Blok
- Department of Clinical Genetics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| | - Andrea Romano
- Department of Gynaecology and Obstetrics: GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, 6229HX Maastricht, The Netherlands.
| |
Collapse
|
20
|
Sermon K. Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy. Expert Rev Mol Diagn 2016; 17:71-82. [PMID: 27855520 DOI: 10.1080/14737159.2017.1262261] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Preimplantation genetic diagnosis (PGD) was introduced as an alternative to prenatal diagnosis: embryos cultured in vitro were analysed for a monogenic disease and only disease-free embryos were transferred to the mother, to avoid the termination of pregnancy with an affected foetus. It soon transpired that human embryos show a great deal of acquired chromosomal abnormalities, thought to explain the low success rate of IVF - hence preimplantation genetic testing for aneuploidy (PGT-A) was developed to select euploid embryos for transfer. Areas covered: PGD has followed the tremendous evolution in genetic analysis, with only a slight delay due to adaptations for diagnosis on small samples. Currently, next generation sequencing combining chromosome with single-base pair analysis is on the verge of becoming the golden standard in PGD and PGT-A. Papers highlighting the different steps in the evolution of PGD/PGT-A were selected. Expert commentary: Different methodologies used in PGD/PGT-A with their pros and cons are discussed.
Collapse
Affiliation(s)
- Karen Sermon
- a Research Group Reproduction and Genetics , Vrije Universiteit Brussel , Brussels , Belgium
| |
Collapse
|
21
|
Chen L, Diao Z, Xu Z, Zhou J, Wang W, Li J, Yan G, Sun H. The clinical application of preimplantation genetic diagnosis for the patient affected by congenital contractural arachnodactyly and spinal and bulbar muscular atrophy. J Assist Reprod Genet 2016; 33:1459-1466. [PMID: 27393415 DOI: 10.1007/s10815-016-0760-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/15/2016] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate the usefulness of preimplantation genetic diagnosis (PGD) for the patient affected by congenital contractural arachnodactyly (CCA) and spinal and bulbar muscular atrophy (SBMA). METHODS Multiple displacement amplification (MDA) was performed for whole genome amplification (WGA) of biopsied trophectoderm (TE) cells. Direct mutation detection by sequencing and next-generation sequencing (NGS)-based single nucleotide polymorphism (SNP) haplotyping were used for CCA diagnosis. Direct sequencing of the PCR products and sex determination by amplification of sex-determining region Y (SRY) gene were used for SBMA diagnosis. After PGD, the unaffected blastocyst (B4) was transferred in the following frozen embryo transfer (FET). RESULTS In this PGD cycle, sixteen MII oocytes were inseminated by ICSI with testicular spermatozoa. Four blastocysts (B4, B5, B10, B13) were utilized for TE cell biopsy on day 5 after ICSI. After PGD, B4 was unaffected by CCA and SBMA. B5 was affected by CCA and carried SBMA. B10 was unaffected by CCA and carried SBMA. B13 was affected by CCA and unaffected by SBMA. B4 was the only unaffected blastocyst and transferred into the uterus for the subsequent FET cycle. The accuracy of PGD was confirmed by amniocentesis at 21 weeks of gestation. A healthy boy weighing 2850 g was born by cesarean section at the 38th week of gestation. CONCLUSIONS PGD is a valid screening tool for patienst affected of CCA and SBMA to prevent transmission of these genetic diseases from parents to children.
Collapse
Affiliation(s)
- Linjun Chen
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Zhenyu Diao
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Zhipeng Xu
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Jianjun Zhou
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Wanjun Wang
- Prenatal Diagnosis Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Jie Li
- Prenatal Diagnosis Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China
| | - Guijun Yan
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China.
| | - Haixiang Sun
- Reproductive Medical Center, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
22
|
Zhao M, Chen M, Lee CG, Chong SS. Identification of Novel Microsatellite Markers <1 Mb from the HTT CAG Repeat and Development of a Single-Tube Tridecaplex PCR Panel of Highly Polymorphic Markers for Preimplantation Genetic Diagnosis of Huntington Disease. Clin Chem 2016; 62:1096-105. [PMID: 27335079 DOI: 10.1373/clinchem.2016.255711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Preimplantation genetic diagnosis (PGD) of Huntington disease (HD) generally employs linkage analysis of flanking microsatellite markers to complement direct mutation testing, as well as for exclusion testing. Thus far, only 10 linked markers have been developed for use in HD PGD, with a maximum of 3 markers coamplified successfully. We aimed to develop a single-tube multiplex PCR panel of highly polymorphic markers to simplify HD PGD. METHODS An in silico search was performed to identify all markers within 1 Mb flanking the huntingtin (HTT) gene. Selected markers were optimized in a single-tube PCR panel, and their polymorphism indices were determined in 2 populations. The panel was tested on 63 single cells to validate its utility in PGD. RESULTS We identified 102 markers in silico, of which 56 satisfied the selection criteria. After initial testing, 12 markers with potentially high heterozygosity were optimized into a single-tube PCR panel together with a 13th more distally located marker. Analysis of DNA from 183 Chinese and Caucasian individuals revealed high polymorphism indices for all markers (polymorphism information content >0.5), with observed heterozygosities ranging from 0.5-0.92. All individuals were heterozygous for at least 5 markers, with 99.5% of individuals heterozygous for at least 2 markers upstream and downstream of the HTT CAG repeat. CONCLUSIONS The tridecaplex marker assay amplified reliably from single cells either directly or after whole genome amplification, thus validating its standalone use in HD exclusion PGD or as a complement to HTT CAG repeat expansion-mutation detection.
Collapse
Affiliation(s)
| | | | - Caroline G Lee
- Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Medical Sciences, National Cancer Center, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
| | - Samuel S Chong
- Departments of Pediatrics and Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore; Molecular Diagnosis Center and Clinical Cytogenetics Service, Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore.
| |
Collapse
|
23
|
Quality control standards in PGD and PGS. Reprod Biomed Online 2016; 32:263-70. [DOI: 10.1016/j.rbmo.2015.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
24
|
|
25
|
Preimplantation genetic diagnosis: an update on current technologies and ethical considerations. Reprod Med Biol 2015; 15:69-75. [PMID: 29259423 DOI: 10.1007/s12522-015-0224-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/15/2015] [Indexed: 10/22/2022] Open
Abstract
The aim of reproductive medicine is to support the birth of healthy children. Advances in assisted reproductive technologies and genetic analysis have led to the introduction of preimplantation genetic diagnosis (PGD) for embryos. Indications for PGD have been a major topic in the fields of ethics and law. Concerns vary by nation, religion, population, and segment, and the continued rapid development of new technologies. In contrast to the ethical augment, technology has been developing at an excessively rapid speed. The most significant recent technological development provides the ability to perform whole genome amplification and sequencing of single embryonic cells by microarray or next-generation sequencing methods. As new affordable technologies are introduced, patients are presented with a growing variety of PGD options. Simultaneously, the ethical guidelines for the indications for testing and handling of genetic information must also rapidly correspond to the changes.
Collapse
|
26
|
Destouni A, Poulou M, Kakourou G, Vrettou C, Tzetis M, Traeger-Synodinos J, Kitsiou-Tzeli S. Single-cell high resolution melting analysis: A novel, generic, pre-implantation genetic diagnosis (PGD) method applied to cystic fibrosis (HRMA CF-PGD). J Cyst Fibros 2015; 15:163-70. [PMID: 26493493 DOI: 10.1016/j.jcf.2015.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/15/2015] [Accepted: 09/23/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Institutions offering CF-PGD face the challenge of developing and optimizing single cell genotyping protocols that should cover for the extremely heterogeneous CF mutation spectrum. Here we report the development and successful clinical application of a generic CF-PGD protocol to facilitate direct detection of any CFTR nucleotide variation(s) by HRMA and simultaneous confirmation of diagnosis through haplotype analysis. METHODS A multiplex PCR was optimized supporting co-amplification of any CFTR exon-region, along with 6 closely linked STRs. Single cell genotypes were established through HRM analysis following melting of the 2nd round PCR products and were confirmed by STR haplotype analysis of the 1st PCR products. The protocol was validated pre-clinically, by testing 208 single lymphocytes, isolated from whole blood samples from 4 validation family trios. Fifteen PGD cycles were performed and 103 embryos were biopsied. RESULTS In 15 clinical PGD cycles, genotypes were achieved in 88/93 (94.6%) embryo biopsy samples, of which 57/88 (64.8%) were deemed genetically suitable for embryo transfer. Amplification failed at all loci for 10/103 blastomeres biopsied from poor quality embryos. Six clinical pregnancies were achieved (2 twin, 4 singletons). PGD genotypes were confirmed following conventional amniocentesis or chorionic villus sampling in all achieved pregnancies. CONCLUSIONS The single cell HRMA CF-PGD protocol described herein is a flexible, generic, low cost and robust genotyping method, which facilitates the analysis of any CFTR genotype combination. Single-cell HRMA can be beneficial to other clinical settings, for example the detection of single nucleotide variants in single cells derived from clinical tumor samples.
Collapse
Affiliation(s)
- A Destouni
- Department of Medical Genetics, University of Athens, St Sophia's Children's Hospital, Athens, Greece
| | - M Poulou
- Department of Medical Genetics, University of Athens, St Sophia's Children's Hospital, Athens, Greece.
| | - G Kakourou
- Department of Medical Genetics, University of Athens, St Sophia's Children's Hospital, Athens, Greece
| | - C Vrettou
- Department of Medical Genetics, University of Athens, St Sophia's Children's Hospital, Athens, Greece
| | - M Tzetis
- Department of Medical Genetics, University of Athens, St Sophia's Children's Hospital, Athens, Greece
| | - J Traeger-Synodinos
- Department of Medical Genetics, University of Athens, St Sophia's Children's Hospital, Athens, Greece
| | - S Kitsiou-Tzeli
- Department of Medical Genetics, University of Athens, St Sophia's Children's Hospital, Athens, Greece
| |
Collapse
|
27
|
Girardet A, Viart V, Plaza S, Daina G, De Rycke M, Des Georges M, Fiorentino F, Harton G, Ishmukhametova A, Navarro J, Raynal C, Renwick P, Saguet F, Schwarz M, SenGupta S, Tzetis M, Roux AF, Claustres M. The improvement of the best practice guidelines for preimplantation genetic diagnosis of cystic fibrosis: toward an international consensus. Eur J Hum Genet 2015; 24:469-78. [PMID: 26014425 PMCID: PMC4929885 DOI: 10.1038/ejhg.2015.99] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is one of the most common indications for preimplantation genetic diagnosis (PGD) for single gene disorders, giving couples the opportunity to conceive unaffected children without having to consider termination of pregnancy. However, there are no available standardized protocols, so that each center has to develop its own diagnostic strategies and procedures. Furthermore, reproductive decisions are complicated by the diversity of disease-causing variants in the CFTR (cystic fibrosis transmembrane conductance regulator) gene and the complexity of correlations between genotypes and associated phenotypes, so that attitudes and practices toward the risks for future offspring can vary greatly between countries. On behalf of the EuroGentest Network, eighteen experts in PGD and/or molecular diagnosis of CF from seven countries attended a workshop held in Montpellier, France, on 14 December 2011. Building on the best practice guidelines for amplification-based PGD established by ESHRE (European Society of Human Reproduction and Embryology), the goal of this meeting was to formulate specific guidelines for CF-PGD in order to contribute to a better harmonization of practices across Europe. Different topics were covered including variant nomenclature, inclusion criteria, genetic counseling, PGD strategy and reporting of results. The recommendations are summarized here, and updated information on the clinical significance of CFTR variants and associated phenotypes is presented.
Collapse
Affiliation(s)
- Anne Girardet
- Laboratoire de Génétique Moléculaire, CHU Arnaud de Villeneuve, Montpellier, France.,Faculté de Médecine, Université Montpellier I, Montpellier, France.,Unité INSERM U827, Montpellier, France
| | - Victoria Viart
- Laboratoire de Génétique Moléculaire, CHU Arnaud de Villeneuve, Montpellier, France.,Unité INSERM U827, Montpellier, France
| | - Stéphanie Plaza
- Laboratoire de Génétique Moléculaire, CHU Arnaud de Villeneuve, Montpellier, France.,Unité INSERM U827, Montpellier, France
| | - Gemma Daina
- Unitat de Biologia Cellular i Genetica Medica, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | | | - Marie Des Georges
- Laboratoire de Génétique Moléculaire, CHU Arnaud de Villeneuve, Montpellier, France.,Unité INSERM U827, Montpellier, France
| | | | | | - Aliya Ishmukhametova
- Laboratoire de Génétique Moléculaire, CHU Arnaud de Villeneuve, Montpellier, France.,Unité INSERM U827, Montpellier, France
| | - Joaquima Navarro
- Unitat de Biologia Cellular i Genetica Medica, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Caroline Raynal
- Laboratoire de Génétique Moléculaire, CHU Arnaud de Villeneuve, Montpellier, France.,Unité INSERM U827, Montpellier, France
| | - Pamela Renwick
- Center for Preimplantation Genetic Diagnosis, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London, UK
| | - Florielle Saguet
- Laboratoire de Génétique Moléculaire, CHU Arnaud de Villeneuve, Montpellier, France.,Unité INSERM U827, Montpellier, France
| | | | - Sioban SenGupta
- UCL Center for PGD, Institute for Women's Health, University College London, London, UK
| | - Maria Tzetis
- Department of Medical Genetics, University of Athens, Greece
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU Arnaud de Villeneuve, Montpellier, France.,Unité INSERM U827, Montpellier, France
| | - Mireille Claustres
- Laboratoire de Génétique Moléculaire, CHU Arnaud de Villeneuve, Montpellier, France.,Faculté de Médecine, Université Montpellier I, Montpellier, France.,Unité INSERM U827, Montpellier, France
| |
Collapse
|
28
|
Thornhill AR, Handyside AH, Ottolini C, Natesan SA, Taylor J, Sage K, Harton G, Cliffe K, Affara N, Konstantinidis M, Wells D, Griffin DK. Karyomapping-a comprehensive means of simultaneous monogenic and cytogenetic PGD: comparison with standard approaches in real time for Marfan syndrome. J Assist Reprod Genet 2015; 32:347-56. [PMID: 25561157 PMCID: PMC4363232 DOI: 10.1007/s10815-014-0405-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Affiliation(s)
- Alan R Thornhill
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chow JFC, Yeung WSB, Lau EYL, Lee VCY, Ng EHY, Ho PC. Array comparative genomic hybridization analyses of all blastomeres of a cohort of embryos from young IVF patients revealed significant contribution of mitotic errors to embryo mosaicism at the cleavage stage. Reprod Biol Endocrinol 2014; 12:105. [PMID: 25420429 PMCID: PMC4256731 DOI: 10.1186/1477-7827-12-105] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/01/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Embryos produced by in vitro fertilization (IVF) have a high level of aneuploidy, which is believed to be a major factor affecting the success of human assisted reproduction treatment. The aneuploidy rate of cleavage stage embryos based on 1-2 biopsied blastomeres has been well-reported, however, the true aneuploidy rate of whole embryos remain unclear because of embryo mosaicism. To study the prevalence of mosaicism in top quality IVF embryos, surplus embryos donated from young patients (aged 28-32) in the assisted reproduction program at Queen Mary Hospital, Hong Kong were used. METHODS Thirty-six good quality day 2 embryos were thawed. Out of the 135 blastomeres in these embryos, 121 (89.6%) survived thawing. Twelve of these embryos without lysed blastomeres and which cleaved to at least seven cells after a 24-h culture were dissembled into individual blastomeres, which were analysed by array comparative genomic hybridization and microsatellite marker analysis by fluorescent PCR. RESULTS Out of 12 day-3 embryos, 2 (16.7%) were normal, 3 (25%) were diploid/aneuploidy with <38% abnormality, 4 (33.3%) were diploid/aneuploidy mosaic with > =38% abnormality, and three (25%) were mosaic aneuploids. Conclusive chromosomal data were obtained from a high percentage of blastomeres (92.8%, 90/97). Microsatellite marker analysis performed on blastomeres in aneuploid embryos enabled us to reconstruct the chromosomal status of the blastomeres in each cleavage division. The results showed the occurrence of meiotic errors in 3 (25%) of the studied embryos. There were 16 mitotic errors (18.8%, 16/85) in the 85 mitotic divisions undertaken by the studied embryos. The observed mitotic errors were mainly contributed by endoreduplication (31.3%, 5/16), non-disjunction (25%, 4/16) and anaphase lagging (25%, 4/16). Chromosome breakages occurred in 6 divisions (7.1%, 6/85). CONCLUSIONS Mosaicism occurs in a high percentage of good-quality cleavage stage embryos and mitotic errors contribute significantly to the abnormality.
Collapse
Affiliation(s)
- Judy FC Chow
| | - William SB Yeung
| | - Estella YL Lau
| | - Vivian CY Lee
| | - Ernest HY Ng
| | - Pak-Chung Ho
| |
Collapse
|
30
|
Improved sensitivity to detect recombination using qPCR for Dyskeratosis Congenita PGD. J Assist Reprod Genet 2014; 31:1227-30. [PMID: 25099625 DOI: 10.1007/s10815-014-0298-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/10/2014] [Indexed: 10/24/2022] Open
|
31
|
Natesan SA, Handyside AH, Thornhill AR, Ottolini CS, Sage K, Summers MC, Konstantinidis M, Wells D, Griffin DK. Live birth after PGD with confirmation by a comprehensive approach (karyomapping) for simultaneous detection of monogenic and chromosomal disorders. Reprod Biomed Online 2014; 29:600-5. [PMID: 25154779 DOI: 10.1016/j.rbmo.2014.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/20/2022]
Abstract
Preimplantation genetic diagnosis (PGD) for monogenic disorders has the drawback of time and cost associated with tailoring a specific test for each couple, disorder, or both. The inability of any single assay to detect the monogenic disorder in question and simultaneously the chromosomal complement of the embryo also limits its application as separate tests may need to be carried out on the amplified material. The first clinical use of a novel approach ('karyomapping') was designed to circumvent this problem. In this example, karyomapping was used to confirm the results of an existing PGD case detecting both chromosomal abnormalities and a monogenic disorder (Smith-Lemli-Opitz [SLO] syndrome) simultaneously. The family underwent IVF, ICSI and PGD, and both polar body and cleavage stage biopsy were carried out. Following whole genome amplification, array comparative genomic hybridisation of the polar bodies and minisequencing and STR analysis of single blastomeres were used to diagnose maternal aneuploidies and SLO status, respectively. This was confirmed, by karyomapping. Unlike standard PGD, karyomapping required no a-priori test development. A singleton pregnancy and live birth, unaffected with SLO syndrome and with no chromosome abnormality, ensued. Karyomapping is potentially capable of detecting a wide spectrum of monogenic and chromosome disorders and, in this context, can be considered a comprehensive approach to PGD.
Collapse
Affiliation(s)
| | - Alan H Handyside
- The London Bridge Fertility Gynaecology and Genetics Centre, London, SE1 9RY, UK; School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK; Illumina, CPC4, Capital Park, Fulbourn, Cambridge, CB21 5XE, UK
| | - Alan R Thornhill
- The London Bridge Fertility Gynaecology and Genetics Centre, London, SE1 9RY, UK; School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK; Illumina, CPC4, Capital Park, Fulbourn, Cambridge, CB21 5XE, UK
| | - Christian S Ottolini
- The London Bridge Fertility Gynaecology and Genetics Centre, London, SE1 9RY, UK; School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK
| | - Karen Sage
- The London Bridge Fertility Gynaecology and Genetics Centre, London, SE1 9RY, UK
| | - Michael C Summers
- The London Bridge Fertility Gynaecology and Genetics Centre, London, SE1 9RY, UK; School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK
| | - Michalis Konstantinidis
- Institute of Reproductive Sciences, University of Oxford, Oxford Business Park North, Cowley, Oxford, Oxfordshire, OX4 2HW, UK
| | - Dagan Wells
- Institute of Reproductive Sciences, University of Oxford, Oxford Business Park North, Cowley, Oxford, Oxfordshire, OX4 2HW, UK
| | - Darren K Griffin
- School of Biosciences, University of Kent, CT2 7NJ, Canterbury, UK.
| |
Collapse
|
32
|
Albanova VI, Chikin VV, Epishev RV. Revisited diagnostics of hereditary epidermolysis bullosa. VESTNIK DERMATOLOGII I VENEROLOGII 2014. [DOI: 10.25208/0042-4609-2014-90-3-53-59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Hereditary epidermolysis bullosa is a big group of hereditary diseases with the main manifestations in the form of blisters on the skin and mucous coat after slight mechanical injuries. It is not always possible to diagnose this disease based on the clinical picture. The article discusses current laboratory diagnostics methods for hereditary epidermolysis bullosa including immunofluorescence antigen mapping (IFM), transmission electron microscopy (TEM) and genetic analysis (molecular or DNA diagnostics) as well as their advantages and disadvantages. TEM determines the micro splitting level and nature of ultrafine changes in the area of the dermoepidermal junction; at the same time, such tests need special expensive equipment. Substantial experience is also needed to analyze the resulting submicroscopic images. IFM determines whether expression of the affected protein related to the disease development is reduced or absent; however, invalid (false positive or false negative) results can be obtained in patients with the reduced expression of the affected protein. Genetic analysis plays a key role for prenatal diagnostics. Therefore, to make an exact diagnosis of hereditary epidermolysis bullosa, it is expedient to apply IFM, TEM and genetic analysis. The need to set an exact diagnosis of the disease is related to the fact that the promising treatment methods being currently developed are aimed at treating patients with certain forms of the disease.
Collapse
|
33
|
Girardet A, Ishmukhametova A, Willems M, Coubes C, Hamamah S, Anahory T, Des Georges M, Claustres M. Preimplantation genetic diagnosis for cystic fibrosis: the Montpellier center's 10-year experience. Clin Genet 2014; 87:124-32. [PMID: 24762087 DOI: 10.1111/cge.12411] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 11/28/2022]
Abstract
This study provides an overview of 10 years of experience of preimplantation genetic diagnosis (PGD) for cystic fibrosis (CF) in our center. Owing to the high allelic heterogeneity of CF transmembrane conductance regulator (CFTR) mutations in south of France, we have set up a powerful universal test based on haplotyping eight short tandem repeats (STR) markers together with the major mutation p.Phe508del. Of 142 couples requesting PGD for CF, 76 have been so far enrolled in the genetic work-up, and 53 had 114 PGD cycles performed. Twenty-nine cycles were canceled upon in vitro fertilization (IVF) treatment because of hyper- or hypostimulation. Of the remaining 85 cycles, a total of 493 embryos were biopsied and a genetic diagnosis was obtained in 463 (93.9%), of which 262 (without or with a single CF-causing mutation) were transferable. Twenty-eight clinical pregnancies were established, yielding a pregnancy rate per transfer of 30.8% in the group of seven couples with one member affected with CF, and 38.3% in the group of couples whose both members are carriers of a CF-causing mutation [including six couples with congenital bilateral absence of the vas deferens (CBAVD)]. So far, 25 children were born free of CF and no misdiagnosis was recorded. Our test is applicable to 98% of couples at risk of transmitting CF.
Collapse
Affiliation(s)
- A Girardet
- Laboratoire de Génétique Moléculaire, Université MONTPELLIER 1, Inserm U827, CHRU Montpellier, Institut Universitaire de Recherche Clinique (IURC), Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro. Genet Med 2014; 16:838-45. [PMID: 24810687 PMCID: PMC4225458 DOI: 10.1038/gim.2014.45] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/31/2014] [Indexed: 11/21/2022] Open
Abstract
Purpose: Our aim was to compare the accuracy of family- or disease-specific targeted haplotyping and direct mutation-detection strategies with the accuracy of genome-wide mapping of the parental origin of each chromosome, or karyomapping, by single-nucleotide polymorphism genotyping of the parents, a close relative of known disease status, and the embryo cell(s) used for preimplantation genetic diagnosis of single-gene defects in a single cell or small numbers of cells biopsied from human embryos following in vitro fertilization. Methods: Genomic DNA and whole-genome amplification products from embryo samples, which were previously diagnosed by targeted haplotyping, were genotyped for single-nucleotide polymorphisms genome-wide detection and retrospectively analyzed blind by karyomapping. Results: Single-nucleotide polymorphism genotyping and karyomapping were successful in 213/218 (97.7%) samples from 44 preimplantation genetic diagnosis cycles for 25 single-gene defects with various modes of inheritance distributed widely across the genome. Karyomapping was concordant with targeted haplotyping in 208 (97.7%) samples, and the five nonconcordant samples were all in consanguineous regions with limited or inconsistent haplotyping results. Conclusion: Genome-wide karyomapping is highly accurate and facilitates analysis of the inheritance of almost any single-gene defect, or any combination of loci, at the single-cell level, greatly expanding the range of conditions for which preimplantation genetic diagnosis can be offered clinically without the need for customized test development.
Collapse
|
35
|
Stern HJ. Preimplantation Genetic Diagnosis: Prenatal Testing for Embryos Finally Achieving Its Potential. J Clin Med 2014; 3:280-309. [PMID: 26237262 PMCID: PMC4449675 DOI: 10.3390/jcm3010280] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 12/13/2022] Open
Abstract
Preimplantation genetic diagnosis was developed nearly a quarter-century ago as an alternative form of prenatal diagnosis that is carried out on embryos. Initially offered for diagnosis in couples at-risk for single gene genetic disorders, such as cystic fibrosis, spinal muscular atrophy and Huntington disease, preimplantation genetic diagnosis (PGD) has most frequently been employed in assisted reproduction for detection of chromosome aneuploidy from advancing maternal age or structural chromosome rearrangements. Major improvements have been seen in PGD analysis with movement away from older, less effective technologies, such as fluorescence in situ hybridization (FISH), to newer molecular tools, such as DNA microarrays and next generation sequencing. Improved results have also started to be seen with decreasing use of Day 3 blastomere biopsy in favor of polar body or Day 5 trophectoderm biopsy. Discussions regarding the scientific, ethical, legal and social issues surrounding the use of sequence data from embryo biopsy have begun and must continue to avoid concern regarding eugenic or inappropriate use of this technology.
Collapse
Affiliation(s)
- Harvey J Stern
- Division of Reproductive Genetics, Genetics & IVF Institute, 3015 Williams Drive, Fairfax, VA 22031, USA.
- Departments of Obstetrics and Gynecology, Pediatrics and Human Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
36
|
Dreesen J, Destouni A, Kourlaba G, Degn B, Mette WC, Carvalho F, Moutou C, Sengupta S, Dhanjal S, Renwick P, Davies S, Kanavakis E, Harton G, Traeger-Synodinos J. Evaluation of PCR-based preimplantation genetic diagnosis applied to monogenic diseases: a collaborative ESHRE PGD consortium study. Eur J Hum Genet 2013; 22:1012-8. [PMID: 24301057 DOI: 10.1038/ejhg.2013.277] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 09/16/2013] [Accepted: 10/24/2013] [Indexed: 02/05/2023] Open
Abstract
Preimplantation genetic diagnosis (PGD) for monogenic disorders currently involves polymerase chain reaction (PCR)-based methods, which must be robust, sensitive and highly accurate, precluding misdiagnosis. Twelve adverse misdiagnoses reported to the ESHRE PGD-Consortium are likely an underestimate. This retrospective study, involving six PGD centres, assessed the validity of PCR-based PGD through reanalysis of untransferred embryos from monogenic-PGD cycles. Data were collected on the genotype concordance at PGD and follow-up from 940 untransferred embryos, including details on the parameters of PGD cycles: category of monogenic disease, embryo morphology, embryo biopsy and genotype assay strategy. To determine the validity of PCR-based PGD, the sensitivity (Se), specificity (Sp) and diagnostic accuracy were calculated. Stratified analyses were also conducted to assess the influence of the parameters above on the validity of PCR-based PGD. The analysis of overall data showed that 93.7% of embryos had been correctly classified at the time of PGD, with Se of 99.2% and Sp of 80.9%. The stratified analyses found that diagnostic accuracy is statistically significantly higher when PGD is performed on two cells versus one cell (P=0.001). Se was significantly higher when multiplex protocols versus singleplex protocols were applied (P=0.005), as well as for PGD applied on cells from good compared with poor morphology embryos (P=0.032). Morphology, however, did not affect diagnostic accuracy. Multiplex PCR-based methods on one cell, are as robust as those on two cells regarding false negative rate, which is the most important criteria for clinical PGD applications. Overall, this study demonstrates the validity, robustness and high diagnostic value of PCR-based PGD.
Collapse
Affiliation(s)
- Jos Dreesen
- Departments of Clinical Genetics and School for Oncology and Developmental Biology, GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Aspasia Destouni
- Laboratory of Medical Genetics, University of Athens, St Sophia's Children's Hospital, Athens, Greece
| | - Georgia Kourlaba
- The Stavros Niarchos Foundation-Collaborative Center for Clinical Epidemiology and Outcomes Research (CLEO), First and Second University Department of Pediatrics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Birte Degn
- Fertility Clinic, Department of Obstetrics and Gynaecology, Aarhus University Hospital, Skejby DK-8200 Aarhus N, Denmark
| | - Wulf Christensen Mette
- Fertility Clinic, Department of Obstetrics and Gynaecology, Aarhus University Hospital, Skejby DK-8200 Aarhus N, Denmark
| | - Filipa Carvalho
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Celine Moutou
- Université de Strasbourg FRANCE & HUS - Service de la Biologie de la Reproduction, CMCO, 19, Rue Louis Pasteur, BP120, Schiltigheim, France
| | - Sioban Sengupta
- UCL Centre for PG&D, Institute for Women's Health, London, UK
| | - Seema Dhanjal
- UCL Centre for PG&D, Institute for Women's Health, London, UK
| | - Pamela Renwick
- Guy's & St Thomas' Centre for Preimplantation Genetic Diagnosis and Genetics, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Steven Davies
- Embryogenesis Assisted Conception Unit, Athens, Greece
| | - Emmanouel Kanavakis
- Laboratory of Medical Genetics, University of Athens, St Sophia's Children's Hospital, Athens, Greece
| | - Gary Harton
- Reprogenetics, 3 Regent Street, Suite 301, Livingston, NJ, USA
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, University of Athens, St Sophia's Children's Hospital, Athens, Greece
| |
Collapse
|
37
|
Harper JC, Geraedts J, Borry P, Cornel MC, Dondorp W, Gianaroli L, Harton G, Milachich T, Kääriäinen H, Liebaers I, Morris M, Sequeiros J, Sermon K, Shenfield F, Skirton H, Soini S, Spits C, Veiga A, Vermeesch JR, Viville S, de Wert G, Macek M. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology. Eur J Hum Genet 2013; 21 Suppl 2:S1-21. [PMID: 24225486 PMCID: PMC3831061 DOI: 10.1038/ejhg.2013.219] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide an update of selected topics that have evolved since 2005.
Collapse
Affiliation(s)
- Joyce C Harper
- UCL Centre for PG&D, Institute for Womens Health, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Successful PGD for late infantile neuronal ceroid lipofuscinosis achieved by combined chromosome and TPP1 gene analysis. Reprod Biomed Online 2013; 27:176-83. [DOI: 10.1016/j.rbmo.2013.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 02/16/2013] [Accepted: 04/09/2013] [Indexed: 11/18/2022]
|
39
|
Traeger-Synodinos J. Preimplantation genetic diagnosis, an alternative to conventional prenatal diagnosis of the hemoglobinopathies. Int J Lab Hematol 2013; 35:571-9. [DOI: 10.1111/ijlh.12086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/28/2013] [Indexed: 12/01/2022]
Affiliation(s)
- J. Traeger-Synodinos
- Department of Medical Genetics; National and Kapodistrian University of Athens; St. Sophia's Children's Hospital; Athens Greece
| |
Collapse
|
40
|
Zeevi DA, Renbaum P, Ron-El R, Eldar-Geva T, Raziel A, Brooks B, Strassburger D, Margalioth EJ, Levy-Lahad E, Altarescu G. Preimplantation genetic diagnosis in genomic regions with duplications and pseudogenes: long-range PCR in the single-cell assay. Hum Mutat 2013; 34:792-9. [PMID: 23420578 DOI: 10.1002/humu.22298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/11/2013] [Indexed: 12/28/2022]
Abstract
Long-range PCR is generally employed for the analysis of disease-causing mutations in genes with homologous pseudogene copies. However, long-range PCR is challenging when performed on single cells, as in preimplantation genetic diagnosis (PGD) of monogenic disorders. PGD on single cells requires concurrent analysis of a mutation together with multiple linked polymorphic markers from closely related family members to prevent misdiagnosis. In PGD cases involving childless de novo mutation carriers, linkage cannot be performed based on family members but rather must first be identified in single gametes. This can be an especially difficult task if the mutation to be assayed lies in a duplicated genomic region because gene-specific long-range PCR must be coupled with short-range PCR analysis of genetic markers on single cells. Here, we describe a novel method by which accurate PGD of pseudogene-homologous mutations can be achieved. Essentially, we performed whole genome amplification on single sperm or blastomeres followed by haplotype construction and long-range PCR-based mutation analysis. This original and universal strategy was used to establish allelic association for two different mutations in genes with one or more pseudogene copies (IKBKG and PKD1). The method was also sensitive enough to detect unexpected germline mosaicism in one mutation carrier.
Collapse
Affiliation(s)
- David A Zeevi
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hens K, Dondorp W, Handyside AH, Harper J, Newson AJ, Pennings G, Rehmann-Sutter C, de Wert G. Dynamics and ethics of comprehensive preimplantation genetic testing: a review of the challenges. Hum Reprod Update 2013; 19:366-75. [DOI: 10.1093/humupd/dmt009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
42
|
SenGupta SB, Delhanty JDA. Preimplantation genetic diagnosis: recent triumphs and remaining challenges. Expert Rev Mol Diagn 2012; 12:585-92. [PMID: 22845479 DOI: 10.1586/erm.12.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the last 20 years, preimplantation genetic diagnosis (PGD) has changed from being an experimental procedure to one that is carried out in specialized diagnostic centers worldwide. Genetic awareness and the rapid identification of germline mutations or chromosomal abnormalities enable individuals to know their risk of transmitting a genetic disease before they have children. This has created a demand for PGD from couples who wish to avoid terminations of affected pregnancies. Although PGD is expensive because it requires couples to go through IVF, there is a trend for diagnosis to move towards automation, which will reduce cost and the need for specialized expertise. This will allow diagnosis to be carried out in routine molecular diagnostic laboratories.
Collapse
Affiliation(s)
- Sioban B SenGupta
- University College London Centre for Preimplantation Genetic Diagnosis, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
| | | |
Collapse
|
43
|
Vendrell X, Bautista-Llácer R. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future? Syst Biol Reprod Med 2012; 58:289-300. [DOI: 10.3109/19396368.2012.704126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Preimplantation genetic diagnosis for hereditary cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 732:103-13. [PMID: 22210255 DOI: 10.1007/978-94-007-2492-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
45
|
Lau EC. Preimplantation testing: Transition from genetic to genomic diagnosis. World J Med Genet 2012; 2:9-14. [DOI: 10.5496/wjmg.v2.i2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Preimplantation genetic testing refers to the procedure to determine the genetic status of embryos formed by in vitro fertilization (IVF) prior to initiating a pregnancy. Traditional genetic methods for preimplantation genetic diagnosis (PGD) examine distinct parts of an individual genome, require the development of a custom assay for every patient family, and are time consuming and inefficient. In the last decade technologies for whole-genome amplification (WGA) from single cells have led to innovative strategies for preimplantation testing. Applications of WGA technology can lead to a universal approach that uses single-nucleotide polymorphisms (SNPs) and mutations across the entire genome for the analysis. Single-cell WGA by multiple displacement amplification has enabled a linkage approach to PGD known as “preimplantation genetic haplotyping”, as well as microarray-based techniques for preimplantation diagnosis. The use of microarrays in preimplantation diagnosis has provided genome-wide testing for gains or losses of single chromosomes (aneuploidies) or chromosomal segments. Properly designed randomized controlled trials are, however, needed to determine whether these new technologies improve IVF outcomes by increasing implantation rates and decreasing miscarriage rates. In genotype analysis of single cells, allele dropout occurs frequently at heterozygous loci. Preimplantation testing of multiple cells biopsied from blastocysts, however, can reduce allele dropout rates and increase the accuracy of genotyping, but it allows less time for PGD. Future development of fast SNP microarrays will enable a universal preimplantation testing for aneuploidies, single-gene disorders and unbalanced translocations within the time frame of an IVF cycle.
Collapse
|
46
|
Chang LJ, Chen SU, Tsai YY, Hung CC, Fang MY, Su YN, Yang YS. An update of preimplantation genetic diagnosis in gene diseases, chromosomal translocation, and aneuploidy screening. Clin Exp Reprod Med 2011; 38:126-34. [PMID: 22384431 PMCID: PMC3283069 DOI: 10.5653/cerm.2011.38.3.126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 11/06/2022] Open
Abstract
Preimplantation genetic diagnosis (PGD) is gradually widely used in prevention of gene diseases and chromosomal abnormalities. Much improvement has been achieved in biopsy technique and molecular diagnosis. Blastocyst biopsy can increase diagnostic accuracy and reduce allele dropout. It is cost-effective and currently plays an important role. Whole genome amplification permits subsequent individual detection of multiple gene loci and screening all 23 pairs of chromosomes. For PGD of chromosomal translocation, fluorescence in-situ hybridization (FISH) is traditionally used, but with technical difficulty. Array comparative genomic hybridization (CGH) can detect translocation and 23 pairs of chromosomes that may replace FISH. Single nucleotide polymorphisms array with haplotyping can further distinguish between normal chromosomes and balanced translocation. PGD may shorten time to conceive and reduce miscarriage for patients with chromosomal translocation. PGD has a potential value for mitochondrial diseases. Preimplantation genetic haplotyping has been applied for unknown mutation sites of single gene disease. Preimplantation genetic screening (PGS) using limited FISH probes in the cleavage-stage embryo did not increase live birth rates for patients with advanced maternal age, unexplained recurrent abortions, and repeated implantation failure. Polar body and blastocyst biopsy may circumvent the problem of mosaicism. PGS using blastocyst biopsy and array CGH is encouraging and merit further studies. Cryopreservation of biopsied blastocysts instead of fresh transfer permits sufficient time for transportation and genetic analysis. Cryopreservation of embryos may avoid ovarian hyperstimulation syndrome and possible suboptimal endometrium.
Collapse
Affiliation(s)
- Li-Jung Chang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yi-Yi Tsai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chia-Cheng Hung
- Department of Medical Genetics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Genomics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Mei-Ya Fang
- Department of Medical Genetics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yi-Ning Su
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Genomics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yu-Shih Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
47
|
Shen X, Xu Y, Zhong Y, Zhou C, Zeng Y, Zhuang G, Ding C, Li T. Preimplantation genetic diagnosis for α-and β-double thalassemia. J Assist Reprod Genet 2011; 28:957-64. [PMID: 21667101 PMCID: PMC3220442 DOI: 10.1007/s10815-011-9598-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/31/2011] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To evaluate the use of multiple displacement amplification (MDA) for preimplantation genetic diagnosis (PGD) of α- and β-double thalassemia. METHOD Whole genome of a single cell was directly amplified using MDA and its products were used as templates in fluorescent gap polymerase chain reaction (PCR) analysis of α-thalassemia and in PCR-reverse dot blot analysis, singleplex fluorescent PCR of β-28 and CD17 mutation and HumTH01 for β-thalassemia. RESULTS 1) MDA from single cell could produce enough DNA templates for the detection of both α and β-thalassemia; 2) The established MDA-PGD protocol for α- and β-double thalassemia was successfully applied in PGD of six embryos, among which, three were transferred, but no pregnancy ensued. CONCLUSIONS The use of MDA as a universal step allows for the simultaneous diagnosis of two or more hereditary defects.
Collapse
Affiliation(s)
- Xiaoting Shen
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 People’s Republic of China
| | - Yanwen Xu
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 People’s Republic of China
| | - Yiping Zhong
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 People’s Republic of China
| | - Canquan Zhou
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 People’s Republic of China
| | - Yanhong Zeng
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 People’s Republic of China
| | - Guanglun Zhuang
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 People’s Republic of China
| | - Chenhui Ding
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 People’s Republic of China
| | - Tao Li
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
48
|
Traeger-Synodinos J, Vrettou C, Kanavakis E. Prenatal, noninvasive and preimplantation genetic diagnosis of inherited disorders: hemoglobinopathies. Expert Rev Mol Diagn 2011; 11:299-312. [PMID: 21463239 DOI: 10.1586/erm.11.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Disorders of hemoglobin synthesis have been used as a prototype for the development of most approaches for prenatal diagnosis (PND). PND for hemoglobinopathies based on molecular analysis of trophoblast or amniocyte DNA has accumulated approximately 30 years of experience. Disadvantages with conventional PND include 'invasive' fetal sampling and the need to terminate affected ongoing pregnancies. New developments are directed towards improving both the timing and/or safety of procedures. Preimplantation genetic diagnosis, an established procedure with 20 years of clinical application, avoids the need to terminate affected pregnancies through the identification and selective transfer of unaffected in vitro fertilization embryos. Approaches towards 'noninvasive' PND, through analyzing fetal cells or free fetal DNA present in the circulation of pregnant women, are a focus of ongoing research. Overall, PND, preimplantation genetic diagnosis (and potentially 'noninvasive' PND) represent valuable reproductive options for couples at risk of having a child affected with a severe inherited disease.
Collapse
Affiliation(s)
- Joanne Traeger-Synodinos
- Department of Medical Genetics, National and Kapodistrian University of Athens, St Sophia's Children's Hospital, Athens 11527, Greece.
| | | | | |
Collapse
|
49
|
Preimplantation genetic diagnosis: State of the ART 2011. Hum Genet 2011; 131:175-86. [PMID: 21748341 DOI: 10.1007/s00439-011-1056-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 06/23/2011] [Indexed: 12/17/2022]
|
50
|
Rechitsky S, Pomerantseva E, Pakhalchuk T, Pauling D, Verlinsky O, Kuliev A. First systematic experience of preimplantation genetic diagnosis for de-novo mutations. Reprod Biomed Online 2011; 22:350-61. [PMID: 21324748 DOI: 10.1016/j.rbmo.2011.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 12/24/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Standard preimplantation genetic diagnosis (PGD) cannot be applied for de-novo mutations (DNM), because neither origin nor relevant haplotypes are available for testing in single cells. PGD strategies were developed for 80 families with 38 genetic disorders, determined by 33 dominant, three recessive and two X-linked DNM. All three recessive mutations were of paternal origin, while of 93 dominant mutations, 40 were paternal, 46 maternal and seven detected in affected children. The development of specific PGD strategy for each couple involved DNA analysis of the parents and affected children prior to PGD, including a mutation verification, polymorphic marker evaluation, whole and single sperm testing to establish the normal and mutant haplotypes and PGD by polar body analysis and/or embryo biopsy. Overall, 151 PGD cycles were performed for 80 families, for which a specific PGD design has been established. The application of these protocols resulted in pre-selection and transfer of 219 (1.72 per cycle) DNM-free embryos in 127 (84.1%) PGD cycles, yielding 63 (49.6%) unaffected pregnancies and birth of 59 (46.5%) healthy children, confirmed to be free of DNM. The data show feasibility of PGD for DNM, which may routinely be performed with accuracy of over 99%, using the established PGD strategy.
Collapse
Affiliation(s)
- Svetlana Rechitsky
- Reproductive Genetics Institute, 2825 N Halsted St., Chicago, IL 60657, USA
| | | | | | | | | | | |
Collapse
|