1
|
Muzaffar A, Tajudin AA, Syahir A. A cutting-edge solution to a Gordian knot? Aptamers targeting cancer stem cell markers for strategic cancer therapy. Drug Discov Today 2025; 30:104365. [PMID: 40288486 DOI: 10.1016/j.drudis.2025.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Cancer stem cells (CSCs) are key drivers of tumor proliferation and serve as a basis for therapeutic resistance, metastasis, and recurrence. The erratic efficacy of conventional therapeutic approaches is limited because of their inability to exterminate CSCs. This has spurred the development of novel cancer treatment paradigms that target specifically these cells. Importantly, CSCs are identified and classified based on the differential expression of biomarkers, facilitating their precise isolation and tailored therapeutic interventions. Numerous promising approaches have been developed to target CSC markers, paving the way to precision medicine in cancer treatment. Aptamers are molecularly targeting agents comprising single-strand oligonucleotides arranged in a unique fashion that allows them to bind their targets, including cancer biomarkers, with high specificity and affinity. Given their programmable nature, they can be chemically modified and integrated with various diagnostic components, including nanoparticles (NPs), drugs, and therapeutic RNAs, thereby enhancing their applicability in disease treatment. In this review, we shed light on various aptamer designs that show potential to target putative CSC markers and to efficiently deliver therapeutic moieties.
Collapse
Affiliation(s)
- Aneesa Muzaffar
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Asilah Ahmad Tajudin
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Fouzder C, Mukhuty A, Chattopadhyay D, Das S, Hira SK, Kundu R. Silencing Nrf2 in cisplatin resistant non-small cell lung cancer cells augments sensitivity towards EGFR inhibitor. Toxicol In Vitro 2024; 101:105921. [PMID: 39179137 DOI: 10.1016/j.tiv.2024.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Recently, non-small cell lung cancer (NSCLC) has been the prime concern of cancer clinicians due to its high mortality rate worldwide. Cisplatin, a platinum derivative, has been used as a therapeutic option for treating metastatic NSCLC for several years. However, acquired, or intrinsic drug resistance to Cisplatin is the major obstacle to the successful treatment outcome of patients. Dysregulation of Nrf2 (nuclear factor erythroid 2-related factor 2) and EGFR (epidermal growth factor receptor) signaling have been associated with cellular proliferation, cancer initiation, progression and confer drug resistance to several therapeutic agents including Cisplatin in various cancers. To dissect the molecular mechanism of EGFR activation in resistant cells, we developed Cisplatin-resistant (CisR) human NSCLC cell lines (A549 and NCIH460) with increasing doses of Cisplatin treatment over a 3-month period. CisR cells demonstrated increased proliferative capacity, clonogenic survivability and drug efflux activity compared to the untreated parental (PT) cells. These resistant cells also showed higher levels of Nrf2 and EGFR expression. Here, we found that Nrf2 upregulates both basal and inducible expression of EGFR in these CisR cells at the transcriptional level. Moreover, genetic inhibition of Nrf2 with siRNA in CisR cells showed increased sensitivity towards the EGFR tyrosine kinase inhibitor (TKIs), AG1478. Our study, therefore suggests the use of Nrf2 inhibitors in combinatorial therapy with EGFR TKIs for the treatment of resistant NSCLC.
Collapse
Affiliation(s)
- Chandrani Fouzder
- Cell Signaling Laboratory, Department of Zoology, Siksha-Bhavana, Visva-Bharati (A Central University), Santiniketan 731 235, India
| | - Alpana Mukhuty
- Cell Signaling Laboratory, Department of Zoology, Siksha-Bhavana, Visva-Bharati (A Central University), Santiniketan 731 235, India
| | - Dipanjan Chattopadhyay
- Cellular and Molecular Endocrinology Laboratory, Department of Zoology, Siksha-Bhavana, Visva-Bharati (A Central University), Santiniketan 731 235, India
| | - Snehasis Das
- Cellular and Molecular Endocrinology Laboratory, Department of Zoology, Siksha-Bhavana, Visva-Bharati (A Central University), Santiniketan 731 235, India
| | - Sumit Kumar Hira
- Cellular Immunology Laboratory, Department of Zoology, The University of Burdwan, India
| | - Rakesh Kundu
- Cell Signaling Laboratory, Department of Zoology, Siksha-Bhavana, Visva-Bharati (A Central University), Santiniketan 731 235, India.
| |
Collapse
|
3
|
Beninato T, Lo Russo G, Leporati R, Roz L, Bertolini G. Circulating tumor cells in lung cancer: Integrating stemness and heterogeneity to improve clinical utility. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 392:1-66. [PMID: 40287216 DOI: 10.1016/bs.ircmb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Circulating tumor cells (CTC), released by primary tumors into the bloodstream, represent a valuable source to inform on cancer heterogeneity, cancer progression, metastatic disease and therapy efficacy without the need of invasive tumor biopsies. However, the extreme rarity and heterogeneity of CTCs, occurring at genotypic, phenotypic and functional levels, poses a major challenge for the study of this population and explains the lack of standardized strategies of CTC isolation. Lung cancer, the leading causes of cancer-related death worldwide, is a paradigmatic example of how CTC heterogeneity can undermine the clinical utility of this biomarker, since contrasting data have been reported using different isolation technologies. Some evidences suggest that only a fraction of CTC, characterized by stem-like feature and partial epithelial-mesenchymal transition (EMT) phenotype, can sustain metastasis initiation. Cancer stem cells (CSCs) have the potential to maintain primary tumors, initiate metastasis and escape both chemotherapy and immunotherapy treatments. Moreover, a close connection has been reported in several tumor types among hybrid phenotype, characterized by retention of epithelial and mesenchymal traits, acquisition of CSC feature and increased metastatic potential. This review focuses on the phenotypic and functional heterogeneity of CTCs and the resulting implications for their isolation and clinical validation, especially in the setting of non-small cell lung cancer (NSCLC). In particular, we discuss the most relevant studies providing evidence for the presence and prognostic/predictive value of CTC subsets characterized by stem-like and hybrid EMT phenotype. Despite technical and conceptual issues, tracking circulating CSCs has the potential to improve the prognostic/predictive value of CTCs in NSCLC setting and could provide novel insights into the comprehension of the metastatic process and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Teresa Beninato
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Lo Russo
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Leporati
- Thoracic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Unit of Epigenomics and Biomarkers of Solid Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Bertolini
- Unit of Epigenomics and Biomarkers of Solid Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
4
|
Rehman A, Panda SK, Tirino V, Del Vecchio V. Cancer Stem Cells: Detection and Characterization from Solid Tumors. Methods Mol Biol 2024; 2835:215-228. [PMID: 39105918 DOI: 10.1007/978-1-0716-3995-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Cancer stem cells (CSCs) have emerged as an attractive research interest due to their prominent role in development of the tumors. CSCs are rare dormant cells that can self-renew and maintain tumor development and heterogeneity. A better understanding of CSCs can improve tumor classification and contribute toward the development of novel therapeutic approaches to fight cancer. Hence, it is of immense importance to comprehend the basic function of CSCs in tumor formation, which can only be possible by devising perfected methodologies to isolate, detect, and characterize them. In this chapter, we outline the key protocols to culture, identify, and isolate CSCs from solid tumors to further advance basic and clinical investigation related to CSCs and their role in tumor biology.
Collapse
Affiliation(s)
- A Rehman
- Department of Experimental Medicine, Histology and Embryology Section, University of Campania "L. Vanvitelli", Naples, Italy
| | - S Kumar Panda
- Department of Experimental Medicine, Histology and Embryology Section, University of Campania "L. Vanvitelli", Naples, Italy
| | - V Tirino
- Department of Experimental Medicine, Histology and Embryology Section, University of Campania "L. Vanvitelli", Naples, Italy
| | - V Del Vecchio
- Department of Experimental Medicine, Histology and Embryology Section, University of Campania "L. Vanvitelli", Naples, Italy.
| |
Collapse
|
5
|
Kulesza J, Paluszkiewicz E, Augustin E. Cellular Effects of Selected Unsymmetrical Bisacridines on the Multicellular Tumor Spheroids of HCT116 Colon and A549 Lung Cancer Cells in Comparison to Monolayer Cultures. Int J Mol Sci 2023; 24:15780. [PMID: 37958764 PMCID: PMC10649579 DOI: 10.3390/ijms242115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Multicellular tumor spheroids are a good tool for testing new anticancer drugs, including those that may target cancer stem cells (CSCs), which are responsible for cancer progression, metastasis, and recurrence. Therefore, we applied this model in our studies of highly active antitumor unsymmetrical bisacridines (UAs). We investigated the cellular response induced by UAs in 2D and 3D cultures of HCT116 colon and A549 lung cancer cells, with an additional focus on their impact on the CSC-like population. We showed that UAs affected the viability of the studied cells, as well as their spherogenic potential in the 2D and 3D cultures. Furthermore, we proved that the most promising UAs (C-2045 and C-2053) induced apoptosis in the HCT116 and A549 spheres to a similar, or even higher, extent than what was found in monolayer conditions. Next, we identified the population of the CSC-like cells in the 2D and 3D cultures of the studied cell lines by determining the levels of CD166, CD133, CD44, and EpCAM markers. We showed that the selected UAs affected the CSC-like population in both of the cell lines, and that A549 was affected more profoundly in 3D than in 2D cultures. Thus, the UAs exhibited high antitumor properties in both the 2D and 3D conditions, which makes them promising candidates for future therapeutic applications.
Collapse
Affiliation(s)
| | | | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (J.K.); (E.P.)
| |
Collapse
|
6
|
Petraroia I, Ghidotti P, Bertolini G, Pontis F, Roz L, Balsamo M, Suatoni P, Pastorino U, Ferretti AM, Sozzi G, Fortunato O. Extracellular vesicles from subjects with COPD modulate cancer initiating cells phenotype through HIF-1α shuttling. Cell Death Dis 2023; 14:681. [PMID: 37838700 PMCID: PMC10576796 DOI: 10.1038/s41419-023-06212-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a risk factor for lung cancer development. COPD induces activation of hypoxia-induced signaling, causing remodeling of surrounding microenvironmental cells also modulating the release and cargo of their extracellular vesicles (EVs). We aimed to evaluate the potential role of circulating EVs from COPD subjects in lung cancer onset. Plasma-EVs were isolated by ultracentrifugation from heavy smoker volunteers with (COPD-EVs) or without (heavy smoker-EVs, HS-EV) COPD and characterized following MISEV guidelines. Immortalized human bronchial epithelial cells (CDK4, hTERT-HBEC3-KT), genetically modified with different oncogenic alterations commonly found in lung cancer (sh-p53, KRASV12), were used to test plasma-EVs pro-tumorigenic activity in vitro. COPD-EVs mainly derived from immune and endothelial cells. COPD-EVs selectively increased the subset of CD133+CXCR4+ metastasis initiating cells (MICs) in HBEC-sh-p53-KRASV12high cells and stimulated 3D growth, migration/invasion, and acquisition of mesenchymal traits. These effects were not observed in HBEC cells bearing single oncogenic mutation (sh-p53 or KRASV12). Mechanistically, hypoxia-inducible factor 1-alpha (HIF-1α) transferred from COPD-EVs triggers CXCR4 pathway activation that in turn mediates MICs expansion and acquisition of pro-tumorigenic effects. Indeed, HIF-1α inhibition or CXCR4 silencing prevented the acquisition of malignant traits induced by COPD-EVs alone. Hypoxia recapitulates the effects observed with COPD-EVs in HBEC-sh-p53-KRASV12high cells. Notably, higher levels of HIF-1α were observed in EVs from COPD subjects who subsequently developed cancer compared to those who remained cancer-free. Our findings support a role of COPD-EVs to promote the expansion of MICs in premalignant epithelial cells through HIF-1α-CXCR4 axis activation thereby potentially sustaining lung cancer progression.
Collapse
Affiliation(s)
- Ilaria Petraroia
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Patrizia Ghidotti
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giulia Bertolini
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.
| | - Francesca Pontis
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Luca Roz
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Melissa Balsamo
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Suatoni
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Gabriella Sozzi
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Orazio Fortunato
- Epigenomics and biomarkers of solid tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
7
|
Murphy C, Gornés Pons G, Keogh A, Ryan L, McCarra L, Jose CM, Kesar S, Nicholson S, Fitzmaurice GJ, Ryan R, Young V, Cuffe S, Finn SP, Gray SG. An Analysis of JADE2 in Non-Small Cell Lung Cancer (NSCLC). Biomedicines 2023; 11:2576. [PMID: 37761019 PMCID: PMC10526426 DOI: 10.3390/biomedicines11092576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 09/29/2023] Open
Abstract
The JADE family comprises three members encoded by individual genes and roles for these proteins have been identified in chromatin remodeling, cell cycle progression, cell regeneration and the DNA damage response. JADE family members, and in particular JADE2 have not been studied in any great detail in cancer. Using a series of standard biological and bioinformatics approaches we investigated JADE2 expression in surgically resected non-small cell lung cancer (NSCLC) for both mRNA and protein to examine for correlations between JADE2 expression and overall survival. Additional correlations were identified using bioinformatic analyses on multiple online datasets. Our analysis demonstrates that JADE2 expression is significantly altered in NSCLC. High expression of JADE2 is associated with a better 5-year overall survival. Links between JADE2 mRNA expression and a number of mutated genes were identified, and associations between JADE2 expression and tumor mutational burden and immune cell infiltration were explored. Potential new drugs that can target JADE2 were identified. The results of this biomarker-driven study suggest that JADE2 may have potential clinical utility in the diagnosis, prognosis and stratification of patients into various therapeutically targetable options.
Collapse
Affiliation(s)
- Ciara Murphy
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
| | - Glòria Gornés Pons
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Faculty of Biology, University of Barcelona, 08025 Barcelona, Spain
| | - Anna Keogh
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Lisa Ryan
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Lorraine McCarra
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Chris Maria Jose
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Shagun Kesar
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Siobhan Nicholson
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
| | - Gerard J. Fitzmaurice
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Ronan Ryan
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Vincent Young
- Surgery, Anaesthesia and Critical Care Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (V.Y.)
| | - Sinead Cuffe
- HOPE Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Stephen P. Finn
- Department of Histopathology, Labmed Directorate, St. James’s Hospital, D08 NHY1 Dublin, Ireland (S.P.F.)
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Steven G. Gray
- Thoracic Oncology Research Group, Central Pathology Laboratory, Trinity St. James’s Cancer Institute (TSJCI), St. James’s Hospital, D08 RX0X Dublin, Ireland (A.K.)
- Department of Clinical Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- School of Biological Sciences, Technological University Dublin, D07 XT95 Dublin, Ireland
| |
Collapse
|
8
|
Guo L, Mohanty A, Singhal S, Srivastava S, Nam A, Warden C, Ramisetty S, Yuan YC, Cho H, Wu X, Li A, Vohra M, Saladi SV, Wheeler D, Arvanitis L, Massarelli E, Kulkarni P, Zeng Y, Salgia R. Targeting ITGB4/SOX2-driven lung cancer stem cells using proteasome inhibitors. iScience 2023; 26:107302. [PMID: 37554452 PMCID: PMC10405066 DOI: 10.1016/j.isci.2023.107302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/08/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
This study investigates the role of integrin β4 (ITGB4) and stemness-associated factor SOX2 in platinum resistance in lung squamous cell carcinoma (LUSC). The expression of SOX2 and ITGB4 is found to be high in all LUSC subtypes, but the impact of ITGB4 expression on overall patient survival varies by subtype. Cancer stem cells (CSCs) isolated from LUSC patients were found to be resistant to cisplatin, but knocking down ITGB4 or SOX2 sensitized them to cisplatin. Carfilzomib (CFZ) synergized with cisplatin and suppressed CSC growth by inhibiting ITGB4 and SOX2 expression. Additionally, CFZ was found to inhibit SOX2 expression epigenetically by inhibiting histone acetylation at the SOX2 promoter site. CFZ also suppressed the growth of SOX2-dependent small cell lung cancer cells in vitro and in vivo. The study highlights the unique function of CFZ as a transcriptional suppressor of SOX2, independent of its proteasome inhibitory function.
Collapse
Affiliation(s)
- Linlin Guo
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Atish Mohanty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sharad Singhal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Saumya Srivastava
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Charles Warden
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Sravani Ramisetty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Divison of Translational Bioinformatics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hyejin Cho
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute, City of Hope, Monrovia, CA 91016, USA
| | - Aimin Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Manik Vohra
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Srinivas Vinod Saladi
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deric Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Erminia Massarelli
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Wang Y, Yu Y, Yang W, Wu L, Yang Y, Lu Q, Zhou J. SETD4 Confers Cancer Stem Cell Chemoresistance in Nonsmall Cell Lung Cancer Patients via the Epigenetic Regulation of Cellular Quiescence. Stem Cells Int 2023; 2023:7367854. [PMID: 37274024 PMCID: PMC10239305 DOI: 10.1155/2023/7367854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Increasing evidence indicates that quiescent cancer stem cells (CSCs) are a root cause of chemoresistance. SET domain-containing protein 4 (SETD4) epigenetically regulates cell quiescence in breast cancer stem cells (BCSCs), and SETD4-positive BCSCs are chemoradioresistant. However, the role of SETD4 in chemoresistance, tumor progression, and prognosis in nonsmall cell lung cancer (NSCLC) patients is unclear. Here, SETD4-positive cells were identified as quiescent lung cancer stem cells (qLCSCs) since they expressed high levels of ALDH1 and CD133 and low levels of Ki67. SETD4 expression was significantly higher in advanced-stage NSCLC tissues than in early-stage NSCLC tissues and significantly higher in samples from the chemoresistant group than in those from the chemosensitive group. Patients with high SETD4 expression had shorter progression-free survival (PFS) times than those with low SETD4 expression. SETD4 facilitated heterochromatin formation via H4K20me3, thereby leading to cell quiescence. RNA-seq analysis showed upregulation of genes involved in cell proliferation, glucose metabolism, and PI3K-AKT signaling in activated qLCSCs (A-qLCSCs) compared with qLCSCs. In addition, SETD4 overexpression facilitated PTEN-mediated inhibition of the PI3K-mTOR pathway. In summary, SETD4 confers chemoresistance, tumor progression, and a poor prognosis by regulating CSCs in NSCLC patients.
Collapse
Affiliation(s)
- Yuehong Wang
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuman Yu
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weijun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linying Wu
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yaoshun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qianyun Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhou
- Department of Respiratory Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
10
|
Lu X, Zhang W, Liu Y, Liu M. Evodiamine exerts inhibitory roles in non‑small cell lung cancer cell A549 and its sub‑population of stem‑like cells. Exp Ther Med 2022; 24:746. [PMID: 36561974 PMCID: PMC9748704 DOI: 10.3892/etm.2022.11682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Evodiamine (EVO) is one of the main components extracted from Evodia rutaecarpa and has been reported to inhibit tumor growth by inhibiting proliferation and inducing apoptosis. Although the anticancer activity of evodiamine has been confirmed, the exact mechanism remains to be elucidated. In the present study, cancer stem-like cells (CSCs) were successfully enriched from A549 cells by being cultured in serum-free medium and characterized by detecting stemness markers. Expectedly, the addition of EVO inhibited proliferation, migration and invasion in A549 cells, demonstrating its inhibitory effects on the malignant behaviors of A549 cells. In CSCs derived from A549 cells, EVO treatment promoted cell proliferation while inhibiting migration and invasion. By detecting the hallmarks of the epithelial-mesenchymal transition (EMT), including E-cadherin, Vimentin, Slug and Snail via western blotting, it was revealed that EVO treatment inactivated the EMT process and potentially led to the loss of self-renewal capacity of CSCs and promoted proliferation. By activating the EMT using TGF-β pretreatment, EVO treatment downregulated the hallmarks of the EMT and led to inactivation of the EMT, indicating its potential mechanism of regulating CSCs via the EMT pathway. The findings suggested that modulation of the self-renewal capacity of CSCs may affect malignant cancer behaviors following surgery. EVO exerts inhibitory effects not only on cancer cells but also on CSCs in non-small-cell lung cancer, and therefore could be used as a promising drug targeting CSCs.
Collapse
Affiliation(s)
- Xiumin Lu
- Department of Laboratory Diagnosis, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Wenjing Zhang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Yu Liu
- Department of Prenatal Diagnosis, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Meimei Liu
- Department of Prenatal Diagnosis, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China,Correspondence to: Professor Meimei Liu, Department of Prenatal Diagnosis, The Sixth Affiliated Hospital of Harbin Medical University, Intersection of Guihua 294 Road and Guihua 143 Road, Songbei, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
11
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
12
|
Dzul Keflee R, Hoong Leong K, Ogawa S, Bignon J, Chiang Chan M, Weng Kong K. Overview of the multifaceted resistances toward EGFR-TKIs and new chemotherapeutic strategies in non-small cell lung cancer. Biochem Pharmacol 2022; 205:115262. [PMID: 36191627 DOI: 10.1016/j.bcp.2022.115262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
Abstract
The role of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) has been vastly studied over the last decade. This has led to the rapid development of many generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, patients treated with third-generation TKIs (osimertinib, avitinib and rociletinib) targeting the EGFR T790M mutation have shown emerging resistances and relapses. Therefore, further molecular understanding of NSCLC mutations, bypass signalling, tumour microenvironment and the existence of cancer stem cells to overcome such resistances is warranted. This will pave the way for designing novel and effective chemotherapies to improve patients' overall survival. In this review, we provide an overview of the multifaceted mechanism of resistances towards EGFR-TKIs, as well as the challenges and perspectives that should be addressed in strategising chemotherapeutic treatments to overcome the ever evolving and adaptive nature of NSCLC.
Collapse
Affiliation(s)
- Rashidi Dzul Keflee
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jerome Bignon
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris Saclay, Gif-sur-Yvette, France
| | - Mun Chiang Chan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Hefni AM, Sayed AM, Hussien MT, Abdalla AZ, Gabr AG. CD133 is an independent predictive and prognostic marker in metastatic breast cancer. Cancer Biomark 2022; 35:207-215. [PMID: 36120770 DOI: 10.3233/cbm-210539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND CD133 is a transmembrane glycoprotein and is considered the most common cell surface marker to identify cancer stem cells in hematological and solid tumors, including breast cancer. OBJECTIVES To evaluate the impact of immunohistochemical expression of CD133 on response rate and survival in metastatic breast cancer, as well as to correlate it with various demographics and clinicopathological characteristics. METHODS One-hundred metastatic breast cancer patients were prospectively recruited at the Medical Oncology Department at South Egypt Cancer Institute during the period from January 2018 to January 2020. RESULTS There was a statistically significant correlation between CD133 positive patients with various adverse clinicopathological parameters such as high grade (p= 0.013), higher tumor (p= 0.001), and nodal staging (p= 0.024) during a median follow-up time of 17 months. In addition, Cases with CD133 positive expression had a significantly lower survival time than those with negative expression (3-years OS 37.4% versus 85.5%, p= 0.024). Regarding the response rate, CD133 positive patients had a lower response rate than negative patients (50% versus 54%, p= 0.012). CONCLUSIONS Positive CD133 is correlated with poor prognosis in metastatic breast cancer patients.
Collapse
Affiliation(s)
- Ahmed Mubarak Hefni
- Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Ayat Mohammed Sayed
- Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Marwa T Hussien
- Oncologic Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | | | - Adel Gomaa Gabr
- Medical Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
14
|
Skurikhin E, Pershina O, Zhukova M, Widera D, Ermakova N, Pan E, Pakhomova A, Morozov S, Kubatiev A, Dygai A. Potential of Stem Cells and CART as a Potential Polytherapy for Small Cell Lung Cancer. Front Cell Dev Biol 2021; 9:778020. [PMID: 34926461 PMCID: PMC8678572 DOI: 10.3389/fcell.2021.778020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the increasing urgency of the problem of treating small cell lung cancer (SCLC), information on the causes of its development is fragmentary. There is no complete understanding of the features of antitumor immunity and the role of the microenvironment in the development of SCLC resistance. This impedes the development of new methods for the diagnosis and treatment of SCLC. Lung cancer and chronic obstructive pulmonary disease (COPD) have common pathogenetic factors. COPD is a risk factor for lung cancer including SCLC. Therefore, the search for effective approaches to prevention, diagnosis, and treatment of SCLC in patients with COPD is an urgent task. This review provides information on the etiology and pathogenesis of SCLC, analyses the effectiveness of current treatment options, and critically evaluates the potential of chimeric antigen receptor T cells therapy (CART therapy) in SCLC. Moreover, we discuss potential links between lung cancer and COPD and the role of endothelium in the development of COPD. Finally, we propose a new approach for increasing the efficacy of CART therapy in SCLC.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Mariia Zhukova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
15
|
Cell Populations Expressing Stemness-Associated Markers in Lung Adenocarcinoma. Life (Basel) 2021; 11:life11101106. [PMID: 34685477 PMCID: PMC8541371 DOI: 10.3390/life11101106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/09/2022] Open
Abstract
The stemness-associated markers OCT4, NANOG, SOX2, KLF4 and c-MYC are expressed in numerous cancer types suggesting the presence of cancer stem cells (CSCs). Immunohistochemical (IHC) staining performed on 12 lung adenocarcinoma (LA) tissue samples showed protein expression of OCT4, NANOG, SOX2, KLF4 and c-MYC, and the CSC marker CD44. In situ hybridization (ISH) performed on six of the LA tissue samples showed mRNA expression of OCT4, NANOG, SOX2, KLF4 and c-MYC. Immunofluorescence staining performed on three of the tissue samples showed co-expression of OCT4 and c-MYC with NANOG, SOX2 and KLF4 by tumor gland cells, and expression of OCT4 and c-MYC exclusively by cells within the stroma. RT-qPCR performed on five LA-derived primary cell lines showed mRNA expression of all the markers except SOX2. Western blotting performed on four LA-derived primary cell lines demonstrated protein expression of all the markers except SOX2 and NANOG. Initial tumorsphere assays performed on four LA-derived primary cell lines demonstrated 0–80% of tumorspheres surpassing the 50 µm threshold. The expression of the stemness-associated markers OCT4, SOX2, NANOG, KFL4 and c-MYC by LA at the mRNA and protein level, and the unique expression patterns suggest a putative presence of CSC subpopulations within LA, which may be a novel therapeutic target for this cancer. Further functional studies are required to investigate the possession of stemness traits.
Collapse
|
16
|
Pan D, Du Y, Li R, Shen A, Liu X, Li C, Hu B. miR-29b-3p Increases Radiosensitivity in Stemness Cancer Cells via Modulating Oncogenes Axis. Front Cell Dev Biol 2021; 9:741074. [PMID: 34604239 PMCID: PMC8481616 DOI: 10.3389/fcell.2021.741074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Radioresistance conferred by cancer stem cells (CSCs) is the principal cause of the failure of cancer radiotherapy. Eradication of CSCs is a prime therapeutic target and a requirement for effective radiotherapy. Three dimensional (3D) cell-cultured model could mimic the morphology of cells in vivo and induce CSC properties. Emerging evidence suggests that microRNAs (miRNAs) play crucial roles in the regulation of radiosensitivity in cancers. In this study, we aim to investigate the effects of miRNAs on the radiosensitivity of 3D cultured stem-like cells. Using miRNA microarray analysis in 2D and 3D cell culture models, we found that the expression of miR-29b-3p was downregulated in 3D cultured A549 and MCF7 cells compared with monolayer (2D) cells. Clinic data analysis from The Cancer Genome Atlas database exhibited that miR-29b-3p high expression showed significant advantages in lung adenocarcinoma and breast invasive carcinoma patients’ prognosis. The subsequent experiments proved that miR-29b-3p overexpression decreased the radioresistance of cells in 3D culture and tumors in vivo through interfering kinetics process of DNA damage repair and inhibiting oncogenes RBL1, PIK3R1, AKT2, and Bcl-2. In addition, miR-29b-3p knockdown enhanced cancer cells invasion and migration capability. MiR-29b-3p overexpression decreased the stemness of 3D cultured cells. In conclusion, our results demonstrate that miR-29b-3p could be a sensitizer of radiation killing in CSC-like cells via inhibiting oncogenes expression. MiR-29b-3p could be a novel therapeutic candidate target for radiotherapy.
Collapse
Affiliation(s)
- Dong Pan
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Yarong Du
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Rong Li
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Aihua Shen
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chuanyuan Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| |
Collapse
|
17
|
Xie C, Zhou X, Liang C, Li X, Ge M, Chen Y, Yin J, Zhu J, Zhong C. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:266. [PMID: 34429133 PMCID: PMC8385858 DOI: 10.1186/s13046-021-02069-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Background Recently, a variety of clinical trials have shown that apatinib, a small-molecule anti-angiogenic drug, exerts promising inhibitory effects on multiple solid tumors, including non-small cell lung cancer (NSCLC). However, the underlying molecular mechanism of apatinib on NSCLC remains unclear. Methods MTT, EdU, AO/EB staining, TUNEL staining, flow cytometry, colony formation assays were performed to investigate the effects of apatinib on cell proliferation, cell cycle distribution, apoptosis and cancer stem like properties. Wound healing and transwell assays were conducted to explore the role of apatinib on migration and invasion. The regulation of apatinib on VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling were detected. Furthermore, we collected conditioned medium (CM) from A549 and H1299 cells to stimulate phorbol myristate acetate (PMA)-activated THP-1 cells, and examined the effect of apatinib on PD-L1 expression in macrophages. The Jurkat T cells and NSCLC cells co-culture model was used to assess the effect of apatinib on T cells activation. Subcutaneous tumor formation models were established to evaluate the effects of apatinib in vivo. Histochemical, immunohistochemical staining and ELISA assay were used to examine the levels of signaling molecules in tumors. Results We showed that apatinib inhibited cell proliferation and promoted apoptosis in NSCLC cells in vitro. Apatinib induced cell cycle arrest at G1 phase and suppressed the expression of Cyclin D1 and CDK4. Moreover, apatinib upregulated Cleaved Caspase 3, Cleaved Caspase 9 and Bax, and downregulated Bcl-2 in NSCLC cells. The colony formation ability and the number of CD133 positive cells were significantly decreased by apatinib, suggesting that apatinib inhibited the malignant and stem-like features of NSCLC cells. Mechanistically, apatinib inhibited PD-L1 and c-Myc expression by targeting VEGFR2/STAT3 signaling. Apatinib also inhibited PD-L1 expression in THP-1 derived macrophages stimulated by CM from NSCLC cells. Furthermore, apatinib pretreatment increased CD69 expression and IFN-γ secretion in stimulated Jurkat T cells co-cultured with NSCLC cells. Apatinib also promoted ROS production and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC. Moreover, apatinib significantly inhibited tumor growth in vivo. Conclusion Our data indicated that apatinib induced autophagy and apoptosis in NSCLC via regulating VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02069-4.
Apatinib suppressed proliferation, induced cell cycle arrest and apoptosis, and inhibited malignancy in NSCLC in vitro and in vivo. Apatinib downregulated PD-L1 and c-Myc in NSCLC through VEGFR2/STAT3 pathway. Apatinib inhibited PD-L1 expression in THP-1 derived macrophages stimulated by the conditioned medium from NSCLC cells and partially restored the activation of Jurkat T cells co-cultured with NSCLC cells. Apatinib induced ROS generation and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Chunhua Liang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Miaomiao Ge
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, 215008, China
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, 215008, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China. .,Cancer Research Division, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
18
|
Windmöller BA, Beshay M, Helweg LP, Flottmann C, Beermann M, Förster C, Wilkens L, Greiner JFW, Kaltschmidt C, Kaltschmidt B. Novel Primary Human Cancer Stem-Like Cell Populations from Non-Small Cell Lung Cancer: Inhibition of Cell Survival by Targeting NF-κB and MYC Signaling. Cells 2021; 10:cells10051024. [PMID: 33925297 PMCID: PMC8145874 DOI: 10.3390/cells10051024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that cancer stem cells (CSCs), a small subpopulation of self-renewal cancer cells, are responsible for tumor growth, treatment resistance, and cancer relapse and are thus of enormous clinical interest. Here, we aimed to isolate new CSC-like cells derived from human primary non-small cell lung cancer (NSCLC) specimens and to analyze the influence of different inhibitors of NF-κB and MYC signaling on cell survival. CSC-like cells were established from three squamous cell carcinomas (SCC) and three adenocarcinomas (AC) of the lung and were shown to express common CSC markers such as Prominin-1, CD44-antigen, and Nestin. Further, cells gave rise to spherical cancer organoids. Inhibition of MYC and NF-κB signaling using KJ-Pyr-9, dexamethasone, and pyrrolidinedithiocarbamate resulted in significant reductions in cell survival for SCC- and AC-derived cells. However, inhibition of the protein–protein interaction of MYC/NMYC proto-oncogenes with Myc-associated factor X (MAX) using KJ-Pyr-9 revealed the most promising survival-decreasing effects. Next to the establishment of six novel in vitro models for studying NSCLC-derived CSC-like populations, the presented investigations might provide new insights into potential novel therapies targeting NF-κB/MYC to improve clinical outcomes in NSCLC patients. Nevertheless, the full picture of downstream signaling still remains elusive.
Collapse
Affiliation(s)
- Beatrice A. Windmöller
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Correspondence: ; Tel.: +49-0521-106-5629
| | - Morris Beshay
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Department of General Thoracic Surgery, Protestant Hospital of Bethel Foundation, Burgsteig 13, 33617 Bielefeld, Germany
| | - Laureen P. Helweg
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Clara Flottmann
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
| | - Miriam Beermann
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
| | - Christine Förster
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Ludwig Wilkens
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Institute of Pathology, KRH Hospital Nordstadt, Haltenhoffstrasse 41, Affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; (L.P.H.); (C.F.); (M.B.); (J.F.W.G.); (C.K.); (B.K.)
- Forschungsverbund BioMedizin Bielefeld/OWL FBMB e. V., Maraweg 21, 33617 Bielefeld, Germany; (M.B.); (C.F.); (L.W.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
19
|
Iommelli F, De Rosa V, Terlizzi C, Fonti R, Camerlingo R, Stoppelli MP, Stewart CA, Byers LA, Piwnica-Worms D, Del Vecchio S. A Reversible Shift of Driver Dependence from EGFR to Notch1 in Non-Small Cell Lung Cancer as a Cause of Resistance to Tyrosine Kinase Inhibitors. Cancers (Basel) 2021; 13:cancers13092022. [PMID: 33922104 PMCID: PMC8122511 DOI: 10.3390/cancers13092022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Notch1 plays a key role in epithelial-mesenchymal transition (EMT) and in the maintenance of cancer stem cells. In the present study we tested whether high levels of activated Notch1 in oncogene-driven NSCLC can induce a reversible shift of driver dependence from EGFR to Notch1, and thus causing resistance to EGFR inhibitors. Adherent cells (parental) and tumor spheres (TS) from NSCLC H1975 cells and patient-derived CD133-positive cells were tested for EGFR and Notch1 signaling cascade. The Notch1-dependent modulation of EGFR, NCID, Hes1, p53, and Sp1 were then analyzed in parental cells by binding assays with a Notch1 agonist, DLL4. TS were more resistant than parental cells to EGFR inhibitors. A strong upregulation of Notch1 and a concomitant downregulation of EGFR were observed in TS compared to parental cells. Parental cell exposure to DLL4 showed a dose-dependent decrease of EGFR and a simultaneous increase of NCID, Hes1, p53, and Sp1, along with the dislocation of Sp1 from the EGFR promoter. Furthermore, an enhanced interaction between p53 and Sp1 was observed in TS. In NSCLC cells, high levels of active Notch1 can promote a reversible shift of driver dependence from EGFR to Notch1, leading to resistance to EGFR inhibitors.
Collapse
Affiliation(s)
- Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy; (F.I.); (V.D.R.); (R.F.)
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy; (F.I.); (V.D.R.); (R.F.)
| | - Cristina Terlizzi
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy;
| | - Rosa Fonti
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy; (F.I.); (V.D.R.); (R.F.)
| | - Rosa Camerlingo
- Department of Cell Biology and Biotherapy, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics, “Adriano Buzzati Traverso” National Research Council, 80131 Naples, Italy;
| | - C. Allison Stewart
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.A.S.); (L.A.B.)
| | - Lauren Averett Byers
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.A.S.); (L.A.B.)
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-7463307; Fax: +39-081-5457081
| |
Collapse
|
20
|
Cho HY, Choi JH, Lim J, Lee SN, Choi JW. Microfluidic Chip-Based Cancer Diagnosis and Prediction of Relapse by Detecting Circulating Tumor Cells and Circulating Cancer Stem Cells. Cancers (Basel) 2021; 13:1385. [PMID: 33803846 PMCID: PMC8003176 DOI: 10.3390/cancers13061385] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Detecting circulating tumor cells (CTCs) has been considered one of the best biomarkers in liquid biopsy for early diagnosis and prognosis monitoring in cancer. A major challenge of using CTCs is detecting extremely low-concentrated targets in the presence of high noise factors such as serum and hematopoietic cells. This review provides a selective overview of the recent progress in the design of microfluidic devices with optical sensing tools and their application in the detection and analysis of CTCs and their small malignant subset, circulating cancer stem cells (CCSCs). Moreover, discussion of novel strategies to analyze the differentiation of circulating cancer stem cells will contribute to an understanding of metastatic cancer, which can help clinicians to make a better assessment. We believe that the topic discussed in this review can provide brief guideline for the development of microfluidic-based optical biosensors in cancer prognosis monitoring and clinical applications.
Collapse
Affiliation(s)
- Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea;
- Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Korea
| | - Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Joungpyo Lim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
| |
Collapse
|
21
|
Ma Y, Yang X, Zhao W, Yang Y, Zhang Z. Calcium channel α2δ1 subunit is a functional marker and therapeutic target for tumor-initiating cells in non-small cell lung cancer. Cell Death Dis 2021; 12:257. [PMID: 33707423 PMCID: PMC7952379 DOI: 10.1038/s41419-021-03522-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
It is hypothesized that tumor-initiating cells (TICs) with stem cell-like properties constitute a sustaining force to drive tumor growth and renew fully established malignancy. However, the identification of such a population in non-small cell lung carcinoma (NSCLC) has been hindered by the lacking of reliable surface markers, and very few of the currently available surface markers are of functional significance. Here, we demonstrate that a subpopulation of TICs could be specifically defined by the voltage-gated calcium channel α2δ1 subunit from non-small cell lung carcinoma (NSCLC) cell lines and clinical specimens. The α2δ1+ NSCLC TICs are refractory to conventional chemotherapy, and own stem cell-like properties such as self-renewal, and the ability to generate heterogeneous tumors in NOD/SCID mice. Moreover, α2δ1+ NSCLC cells are more enriched for TICs than CD133+, or CD166+ cells. Interestingly, α2δ1 is functionally sufficient and indispensable to promote TIC properties by mediating Ca2+ influx into cells, which subsequently activate Calcineurin/NFATc2 signaling that directly activates the expression of NOTCH3, ABCG2. Importantly, a specific antibody against α2δ1 has remarkably therapeutic effects on NSCLC xenografts by eradicating TICs. Hence, targeting α2δ1 to prevent calcium influx provides a novel strategy for targeted therapy against TICs of NSCLC.
Collapse
MESH Headings
- A549 Cells
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Antibodies, Monoclonal/pharmacology
- Antineoplastic Agents, Immunological/pharmacology
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Calcineurin/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- Cell Self Renewal
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice, Inbred NOD
- Mice, SCID
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Receptor, Notch3/genetics
- Receptor, Notch3/metabolism
- Tumor Burden
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Thoracic Surgery Unit II, Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Xiaodan Yang
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Wei Zhao
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China
| | - Yue Yang
- Department of Thoracic Surgery Unit II, Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.
| | - Zhiqian Zhang
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Beijing, 100142, China.
| |
Collapse
|
22
|
FOLFOX Therapy Induces Feedback Upregulation of CD44v6 through YB-1 to Maintain Stemness in Colon Initiating Cells. Int J Mol Sci 2021; 22:ijms22020753. [PMID: 33451103 PMCID: PMC7828641 DOI: 10.3390/ijms22020753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer initiating cells (CICs) drive tumor formation and drug-resistance, but how they develop drug-resistance characteristics is not well understood. In this study, we demonstrate that chemotherapeutic agent FOLFOX, commonly used for drug-resistant/metastatic colorectal cancer (CRC) treatment, induces overexpression of CD44v6, MDR1, and oncogenic transcription/translation factor Y-box-binding protein-1 (YB-1). Our study revealed that CD44v6, a receptor for hyaluronan, increased the YB-1 expression through PGE2/EP1-mTOR pathway. Deleting CD44v6, and YB-1 by the CRISPR/Cas9 system attenuates the in vitro and in vivo tumor growth of CICs from FOLFOX resistant cells. The results of DNA:CD44v6 immunoprecipitated complexes by ChIP (chromatin-immunoprecipitation) assay showed that CD44v6 maintained the stemness traits by promoting several antiapoptotic and stemness genes, including cyclin-D1,BCL2,FZD1,GINS-1, and MMP9. Further, computer-based analysis of the clones obtained from the DNA:CD44v6 complex revealed the presence of various consensus binding sites for core stemness-associated transcription factors “CTOS” (c-Myc, TWIST1, OCT4, and SOX2). Simultaneous expressions of CD44v6 and CTOS in CD44v6 knockout CICs reverted differentiated CD44v6-knockout CICs into CICs. Finally, this study for the first time describes a positive feedback loop that couples YB-1 induction and CD44 alternative splicing to sustain the MDR1 and CD44v6 expressions, and CD44v6 is required for the reversion of differentiated tumor cells into CICs.
Collapse
|
23
|
Kihira K, Chelakkot VS, Kainuma H, Okumura Y, Tsuboya N, Okamura S, Kurihara K, Iwamoto S, Komada Y, Hori H. Close interaction with bone marrow mesenchymal stromal cells induces the development of cancer stem cell-like immunophenotype in B cell precursor acute lymphoblastic leukemia cells. Int J Hematol 2020; 112:795-806. [PMID: 32862292 DOI: 10.1007/s12185-020-02981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
Minimal residual disease of leukemia may reside in the bone marrow (BM) microenvironment and escape the effects of chemotherapeutic agents. This study investigated interactions between B cell precursor (BCP)-acute lymphoblastic leukemia (ALL) cells and BM mesenchymal stromal cells (BM-MSCs) in vitro. Five BCP-ALL cell lines established from pediatric patients and primary samples from a BCP-ALL patient were examined by flow cytometry and immunocytochemistry for expression of specific cell surface markers and cell adhesion proteins. The cell lines developed chemoresistance to commonly used anti-leukemic agents through adhesion to MSC-TERT cells in long-term culture. The change in chemosensitivity after adhering to BM-MSCs was associated with the expression of CD34, CD133, P-glycoprotein and BCRP/ABCG2, and downregulation of CD38. Similar phenotypic changes were observed in primary samples obtained by marrow aspiration or biopsy from a BCP-ALL patient. BM-MSC-adhering leukemia cells also showed deceleration of cell proliferation and expressed proteins in the Cadherin and Integrin pathways. These results suggest that BCP-ALL cells residing in the BM microenvironment may acquire chemoresistance by altering their phenotype to resemble that of cancer stem cells. Our results indicate that cell adhesion could be potentially targeted to improve the chemosensitivity of residual BCP-ALL cells in the BM microenvironment.
Collapse
Affiliation(s)
- Kentaro Kihira
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | | | - Hiroki Kainuma
- Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yosuke Okumura
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoki Tsuboya
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Satoshi Okamura
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kosuke Kurihara
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroki Hori
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan. .,Department of Medical Education, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
24
|
Jing Z, Xi Y, Yin J, Shuwen H. Biological roles of piRNAs in colorectal cancer. Gene 2020; 769:145063. [PMID: 32827685 DOI: 10.1016/j.gene.2020.145063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide and a major cause of cancer-related deaths. Numerous studies have suggested that piwi-interacting RNAs (piRNAs), a new type of non-coding RNA (ncRNA), are closely related to the occurrence and development of cancer. piRNAs have been shown to regulate the occurrence of CRC by modulating multiple molecular signaling pathways. Here, the roles of piRNAs in CRC were reviewed to provide evidence for their potential as molecular targets for CRC.
Collapse
Affiliation(s)
- Zhuang Jing
- Graduate School of Nursing, Huzhou University, Zhejiang, No. 1 Bachelor Road, Huzhou, Zhejiang Province 313000, PR China
| | - Yang Xi
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, 198 Hongqi Rd, Huzhou, Zhejiang 313000, PR China
| | - Jin Yin
- Department of Laboratory Medicine, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, 198 Hongqi Rd, Huzhou, Zhejiang 313000, PR China
| | - Han Shuwen
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, 198 Hongqi Rd, Huzhou, Zhejiang 313000, PR China.
| |
Collapse
|
25
|
Khonthun C, Saikachain N, Popluechai S, Kespechara K, Hiranyakas A, Srikummool M, Surangkul D. Microarray Analysis of Gene Expression Involved in Butyrate-Resistant Colorectal Carcinoma HCT116 Cells. Asian Pac J Cancer Prev 2020; 21:1739-1746. [PMID: 32592372 PMCID: PMC7568904 DOI: 10.31557/apjcp.2020.21.6.1739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/04/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Resistance to chemotherapeutic agents is usually found in cancer stem cells (CSCs) and cancer stem-like cells that are often regarded as the target for cancer monitoring. However, the different patterns of their transcriptomic profiling is still unclear. OBJECTIVE This study aims to illustrate the transcriptomic profile of CSCs and butyrate-resistant colorectal carcinoma cells (BR-CRCs), by comparing them with parental colorectal cancer (CRC) cells in order to identify distinguishing transcription patterns of the CSCs and BR-CRCs. METHODS Parental CRC cells HCT116 (HCT116-PT) were cultured and induced to establish the butyrate resistant cell model (HCT116-BR). Commercial enriching of the HCT116-CSCs were grown in a tumorsphere suspension culture, which was followed firstly by the assessment of butyrate tolerance using MTT and PrestoBlue. Then their gene expression profiling was analyzed by microarray. RESULTS The results showed that both butyrate-resistant HCT116 cells (HCT116-BR) and HCT116-CSCs were more tolerant a butyrate effects than HCT116-PT cells. Differentially expressed gene profiles exhibited that IFI27, FOXQ1, PRF1, and SLC2A3 genes were increasingly expressed in CSCs, and were dramatically overexpressed in HCT116-BR cells when compared with HCT116-PT cells. Moreover, PKIB and LOC399959 were downregulated both in HCT116-CSCs and HCT116-BR cells. CONCLUSION Our findings shed light on the transcriptomic profiles of chemoresistant CRC cells. This data should be useful for further study to provide guidelines for clinical prognosis to determine the guidelines for CRC treatment, especially in patients with chemoresistance and designing novel anti-neoplastic agents.
Collapse
Affiliation(s)
- Chakkraphong Khonthun
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Nongluk Saikachain
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Siam Popluechai
- School of Science, Mae Fah Luang University, Chaiang Rai, Thailand.
- Gut microbiome research group, Mae Fah Luang University, Chaiang Rai, Thailand.
| | | | | | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Damratsamon Surangkul
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
26
|
Eroglu Z, Erdem C, Oktem G, Bozok Cetintas V, Duzgun Z. Effect of SIRT1 activators and inhibitors on CD44+/CD133+‑enriched non‑small cell lung cancer cells. Mol Med Rep 2020; 22:575-581. [PMID: 32377734 DOI: 10.3892/mmr.2020.11113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/23/2020] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is one of the most commonly diagnosed cancers and it is associated with high rates of morbidity and mortality. Metastasis and relapse of the tumor depend on the survival and proliferation of lung cancer stem cells (LCSCs). The ability to identify CSCs may prevent recurrence and lead to more effective treatments. Sirtuins are a group of deacetylases that include seven variants (SIRT1‑7), with sirtuin 1 (SIRT1) being the most intensively investigated. Evidence suggests that SIRT1 is both a tumor‑suppressor gene and an oncogene. SIRT1 can deacetylate the tumor‑suppressor protein p53 to decrease its activity. SIRT1 activators increase the deacetylation of p53, whereas SIRT1 inhibitors can stimulate p53 by inhibiting deacetylation. In the present study, CD44+ and CD133+‑enriched A549 (non‑small cell lung cancer) cells collected using the CD44 and CD133 CSC surface markers by fluorescence‑activated cell sorting method were treated with SIRT1 inhibitors (tenovin‑6 and sirtinol) and SIRT1 activators (resveratrol and SRT1720), and their effects on apoptosis, as well as the mRNA and protein expression of SIRT1 and p53 were investigated. Of these agents, it was found that resveratrol increased p53 expression by 4.1‑fold, decreased SIRT1 expression by 0.2‑fold, and it was the most potent inducer of apoptosis.
Collapse
Affiliation(s)
- Zuhal Eroglu
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| | - Ceren Erdem
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| | - Vildan Bozok Cetintas
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| | - Zekeriya Duzgun
- Department of Medical Biology, Faculty of Medicine, Giresun University, Debboy, Giresun 28100, Turkey
| |
Collapse
|
27
|
Ko TY, Kim JI, Lee SH. Relationship between Cancer Stem Cell Marker CD133 and Cancer Germline Antigen Genes in NCI-H292 Lung Cancer Cells. THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2020; 53:22-27. [PMID: 32090054 PMCID: PMC7006610 DOI: 10.5090/kjtcs.2020.53.1.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/22/2022]
Abstract
Background Previous studies have shown that lung cancer stem cells express CD133 and that certain cancer stem cells express cancer germline antigens (CGAs). The transcriptional regulation of CD133 is complicated and poorly understood. We investigated CD133 and CGA expression in a non-small cell lung cancer cell line. Methods The expression levels of CD133 and CGAs (MAGE-6, GAGE, SSX, and TRAG-3) were measured in an NCI-H292 lung cancer cell line. The methylation status of the CD133 gene promoter region was analyzed. The expression levels and promoter methylation statuses of CD133 and CGAs were confirmed by treatment with the demethylating agent 5-aza-2′-deoxycytidine (ADC). Results After treatment with ADC, CD133 expression was no longer detected. MAGE-6 and TRAG-3 were detected before ADC treatment, while GAGE and SSX were not detected. ADC treatment upregulated MAGE-6 and TRAG-3 expression, while GAGE expression was still undetected after treatment, and only weak SSX expression was observed. GAGE expression was not correlated with expression of CD133, while the levels of expression of MAGE-6, TRAG-3, and SSX were inversely correlated with CD133 expression. Conclusion These results showed that CD133 expression can be regulated by methylation. Thus, the demethylation of the CD133 promoter may compromise the treatment of lung cancer by inactivating cancer stem cells and/or activating CGAs.
Collapse
Affiliation(s)
- Taek Yong Ko
- Department of Thoracic and Cardiovascular Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Jong In Kim
- Department of Thoracic and Cardiovascular Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Sang Ho Lee
- Department of Thoracic and Cardiovascular Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
28
|
Tsunedomi R, Yoshimura K, Suzuki N, Hazama S, Nagano H. Clinical implications of cancer stem cells in digestive cancers: acquisition of stemness and prognostic impact. Surg Today 2020; 50:1560-1577. [PMID: 32025858 DOI: 10.1007/s00595-020-01968-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Digestive system cancers are the most frequent cancers worldwide and often associated with poor prognosis because of their invasive and metastatic characteristics. Recent studies have found that the plasticity of cancer cells can impart cancer stem-like properties via the epithelial-mesenchymal transition (EMT). Cancer stem-like properties such as tumor initiation are integral to the formation of metastasis, which is the main cause of poor prognosis. Numerous markers of cancer stem cells (CSCs) have been identified in many types of cancer. Therefore, CSCs, via their stem cell-like functions, may play an important role in prognosis after surgery. While several reports have described prognostic analysis using CSC markers, few reviews have summarized CSCs and their association with prognosis. Herein, we review the prognostic potential of eight CSC markers, CD133, CD44, CD90, ALDH1A1, EPCAM, SOX2, SOX9, and LGR5, in digestive cancers including those of the pancreas, colon, liver, gastric, and esophagus.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Kiyoshi Yoshimura
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Faculty of Medicine, Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
29
|
Kim BH, Park JW, Kim JS, Lee SK, Hong EK. Stem Cell Markers Predict the Response to Sorafenib in Patients with Hepatocellular Carcinoma. Gut Liver 2020; 13:342-348. [PMID: 30600675 PMCID: PMC6529171 DOI: 10.5009/gnl18345] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Sorafenib remains the only approved molecular targeted agent for hepatocellular carcinoma (HCC); however, reliable biomarkers that predict its efficacy are still lacking. The aim of this study was to explore whether cancer stem cell (CSC) markers have a predictive role with regard to the sorafenib response in HCC patients. Methods We enrolled 47 patients with HCC for whom tumor samples obtained before starting sorafenib treatment were available. RNA was extracted from formalin-fixed, paraffin-embedded samples, and real-time polymerase chain reaction was used to quantify mRNA expression of the CSC genes EpCAM, CD13, CK8, CD24, CD44, CD90, CD133, SALL4, ALDH1A1, ALB, and AFP. Results Of 47 patients, 14.9% and 74.5% had vascular invasion and extrahepatic spread, respectively. Patients with low CD133 expression tended to have longer progression-free survival (PFS) than those with high CD133 expression (5.5 months vs 4.0 months), although without statistical significance. The expression levels of other markers were not associated with PFS. When examining markers in combination, patients with high CD133 and CD90 expression had shorter PFS rates than those with low expression (2.7 months vs 5.5 months; p=0.04). Patients with low CD133 and EpCAM expression demonstrated better PFS than those with high expression (7.0 months vs 4.2 months; p=0.04). Multivariable analysis indicated that an Eastern Cooperative Oncology Group performance status score of 1 and high CD133/CD90 expression were significantly associated with shorter PFS. Conclusions Overexpression of the CSC markers CD133 and CD90 in HCC was associated with poorer response to sorafenib. These two genes may serve as predictive biomarkers for sorafenib therapy.
Collapse
Affiliation(s)
- Bo Hyun Kim
- Center for Liver Cancer,Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea.,Common Cancer Branch, Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| | - Joong-Won Park
- Center for Liver Cancer,Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea.,Common Cancer Branch, Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| | - Jin Sook Kim
- Common Cancer Branch, Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| | - Sook-Kyung Lee
- Common Cancer Branch, Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| | - Eun Kyung Hong
- Center for Liver Cancer,Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
30
|
Akbarzadeh M, Maroufi NF, Tazehkand AP, Akbarzadeh M, Bastani S, Safdari R, Farzane A, Fattahi A, Nejabati HR, Nouri M, Samadi N. Current approaches in identification and isolation of cancer stem cells. J Cell Physiol 2019; 234:14759-14772. [PMID: 30741412 DOI: 10.1002/jcp.28271] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Cancer stem cells (CSCs) are tumor cells with initiating ability, self-renewal potential, and intrinsic resistance to conventional therapeutics. Efficient isolation and characterization of CSCs pave the way for more comprehensive knowledge about tumorigenesis, heterogeneity, and chemoresistance. Also a better understanding of CSCs will lead to novel era of both basic and clinical cancer research, reclassification of human tumors, and development of innovative therapeutic strategies. Finding novel diagnostic and effective therapeutic strategies also enhance the success of treatment in cancer patients. There are various methods based on the characteristics of the CSCs to detect and isolate these cells, some of which have recently developed. This review summarized current techniques for effective isolation and characterization of CSCs with a focus on advantages and limitations of each method with clinical applications.
Collapse
Affiliation(s)
- Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moloud Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cellular and Molecular Biology, Faculty of Biological Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Safdari
- Department of Health Information Management, School of Allied Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farzane
- Department of Health Information Management, School of Allied Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Fattahi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Camerlingo R, Miceli R, Marra L, Rea G, D’Agnano I, Nardella M, Montella R, Morabito A, Normanno N, Tirino V, Rocco G. Conditioned medium of primary lung cancer cells induces EMT in A549 lung cancer cell line by TGF-ß1 and miRNA21 cooperation. PLoS One 2019; 14:e0219597. [PMID: 31344049 PMCID: PMC6657837 DOI: 10.1371/journal.pone.0219597] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/27/2019] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) plays a key role in tumor progression, drug resistance and metastasis. Recently, numerous microRNA (miRNA) have been described to regulate EMT in tumor progression. In this study, we found that conditioned medium from the LC212 non-small-cell lung cancer (NSCLC) cell line (LC212-CM) induces morphological changes and overexpression of Vimentin, CD90, SMAD 2/3, SLUG and TWIST in A549 NSCLC cells, consistent with a mesenchymal phenotype. To identify the soluble mediators in LC212-CM involved in this phenomenon, we performed miRNA profiling and TGF-β1 quantification. We found that LC212-CM contains high levels of TGF-β1 as well as different secreted miRNAs. We focused our attention on Homo sapiens-microRNA21 (hsa-miR21), one of most relevant miRNA associated with lung cancer progression, metastasis and EMT. An hsa-miR21 antagomiR was able to prevent the LC212-CM-induced EMT phenotype in A549 cells. Furthermore, we found that TGF-β1 and hsa-miR21 cooperate in the induction of EMT in A549 cells. Intriguingly, TGF-β1 was found to induce hsa-miR21 expression in A549 cell, thus suggesting that the hsa-miR21 mediates at least in part the pro-EMT effects of TGF-β1. In conclusion, hsa-miR21 and TGF-β1 are involved in autocrine and paracrine circuits that regulate the EMT status of lung cancer cells.
Collapse
Affiliation(s)
- Rosa Camerlingo
- SC Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | | | - Laura Marra
- SC Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Giuseppina Rea
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Igea D’Agnano
- Institute of Cell Biology and Neurobiology-CNR, Monterotondo, Rome, Italy
- Institute for Biomedical Technologies-CNR, Segrate, Milan, Italy
| | - Marta Nardella
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberta Montella
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale Naples, Italy
| | - Nicola Normanno
- SC Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
- * E-mail:
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, NY, United States of America
| |
Collapse
|
32
|
Varillas JI, Zhang J, Chen K, Barnes II, Liu C, George TJ, Fan ZH. Microfluidic Isolation of Circulating Tumor Cells and Cancer Stem-Like Cells from Patients with Pancreatic Ductal Adenocarcinoma. Theranostics 2019; 9:1417-1425. [PMID: 30867841 PMCID: PMC6401494 DOI: 10.7150/thno.28745] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) requires multimodal therapeutic approaches and disease monitoring for effective treatment. Liquid biopsy biomarkers, including circulating tumor cells (CTCs) and cancer stem-like cells (CSCs), hold promise for evaluating treatment response promptly and guiding therapeutic modifications. Methods: From 24 patients with metastatic PDAC (stage IV, M1) undergoing active systemic treatment, we collected 78 blood samples at different time points for CTC and CSC isolation using a microfluidic platform functionalized with antibodies against a CTC biomarker, epithelial cell adhesion molecule (EpCAM), or a CSC biomarker, CD133. These isolated cells were further verified, via fluorescent staining and imaging, using cytokeratin (CK), CD45, and nucleic acid stain 4',6-diamidino-2-phenylindole (DAPI). Results: The majority (84.4%) of patient blood samples were positive for CTCs (EpCAM+CK+CD45-DAPI+) and 70.8% of patient blood samples were positive for CSCs (CD133+CK+CD45-DAPI+), using the highest baseline value of healthy samples as threshold. The CTC subtypes (EpCAM+CK+CD45-DAPI+CD133+ and EpCAM+CK+CD45-DAPI+CD133-) and CSC subtypes (CD133+CK+CD45-DAPI+EpCAM+ and CD133+CK+CD45-DAPI+EpCAM-) were also analyzed using immunochemical methods. In several cases, CSCs exhibited cytokeratin expression that did not express EpCAM, indicating that they will not be detected using EpCAM-based isolation. Conclusion: The microfluidic platform enabled the reliable isolation of CTCs and CSCs from PDAC patient samples, as well as their subtypes. Complementary assessment of both CTCs and CSCs appears advantageous to assess the profile of tumor progressing in some cases. This research has important implications for the application and interpretation of approved methods to detect CTCs.
Collapse
|
33
|
Pišlar A, Jewett A, Kos J. Cysteine cathepsins: Their biological and molecular significance in cancer stem cells. Semin Cancer Biol 2018; 53:168-177. [DOI: 10.1016/j.semcancer.2018.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022]
|
34
|
Wang X, Meng Q, Qiao W, Ma R, Ju W, Hu J, Lu H, Cui J, Jin Z, Zhao Y, Wang Y. miR-181b/Notch2 overcome chemoresistance by regulating cancer stem cell-like properties in NSCLC. Stem Cell Res Ther 2018; 9:327. [PMID: 30470250 PMCID: PMC6260863 DOI: 10.1186/s13287-018-1072-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/21/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023] Open
Abstract
Background Lung cancer stem cells have the ability to self-renew and are resistant to conventional chemotherapy. MicroRNAs (miRNAs) regulate and control the expression and function of many target genes; therefore, miRNA disorders are involved in the pathogenesis of human diseases, such as cancer. However, the effects of miRNA dysregulation on tumour stemness and drug resistance have not been fully elucidated. miR-181b has been reported to be a tumour suppressor miRNA and is associated with drug-resistant non-small cell lung cancer. Methods Cancer stem cell (CSC)-like properties were tested by a cell proliferation assay and flow cytometry; miR-181b expression was measured by real-time PCR; and Notch2 and related proteins were detected by Western blotting and immunohistochemistry. A mouse xenograft model was also established. Results In this study, we found that ectopic miR-181b expression suppressed cancer stem cell properties and enhanced sensitivity to cisplatin (DDP) treatment by directly targeting Notch2. miR-181b could inactivate the Notch2/Hes1 signalling pathway. In addition, tumours from nude mice treated with miR-181b were significantly smaller than tumours from mice treated with control agomir. Decreased miR-181b expression and increased Notch2 expression were observed to have a significant relationship with overall survival (OS) and CSC-like properties in non-small cell lung cancer (NSCLC) patients. Conclusions This study elucidates an important role of miR-181b in the regulation of CSC-like properties, suggesting a potential therapeutic target for overcoming drug resistance in NSCLC. Electronic supplementary material The online version of this article (10.1186/s13287-018-1072-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Qingwei Meng
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Wenbo Qiao
- The Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Ruishuang Ma
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Weiwei Ju
- Pathology Department, Laboratory of Molecular Medicine, College of Medicine, Eastern Liaodong University, Dandong, Liaoning Province, China
| | - Jing Hu
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Hailing Lu
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Jianqi Cui
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Zhao Jin
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Yanbin Zhao
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Yan Wang
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| |
Collapse
|
35
|
Wang J, Chen J, Jiang Y, Shi Y, Zhu J, Xie C, Geng S, Wu J, Zhang Q, Wang X, Meng Y, Li Y, Chen Y, Cao W, Wang X, Zhong C, Li X. Wnt/β-catenin modulates chronic tobacco smoke exposure-induced acquisition of pulmonary cancer stem cell properties and diallyl trisulfide intervention. Toxicol Lett 2018; 291:70-76. [PMID: 29626521 DOI: 10.1016/j.toxlet.2018.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide; tobacco smoke (TS) constitutes the main causes of lung cancer. Acquisition of cancer stem cells (CSCs)-like properties is the essential progression for the initiation of lung cancer. However, the mechanisms for tobacco smoke-induced lung carcinogenesis remain elusive. In the present study, we demonstrated that long-term exposure of human bronchial epithelial (HBE) cells to TS resulted in malignant transformation and acquisition of CSC-like properties. Moreover, Wnt/β-catenin pathway was involved in acquisition of the CSC-like phenotype during neoplastic transformation of HBE cells induced by TS. Downregulation of β-catenin reduced the tumorsphere and decreased the protein expression of lung CSCs markers in TS-transformated HBE sphere-forming cells. Furthermore, Diallyl trisulfide (DATS) inhibited the CSCs activity of TS-transformed HBE cells, as well as Wnt/β-catenin suppression. Activation of Wnt/β-catenin diminished the inhibitory effects of DATS on TS-induced stemness of HBE cells. Together, the present investigation elucidates the modulation of Wnt/β-catenin in chronic TS exposure-triggered pulmonary acquisition of CSCs properties and DATS intervention, which may provide new insights into the interventional strategies against lung CSCs.
Collapse
Affiliation(s)
- Jiaye Wang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiaqi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ye Jiang
- Department of Food and School Hygiene, Taizhou Municipal Center for Disease Control and Prevention, Taizhou, Zhejiang, 318000, China
| | - Yingying Shi
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianyun Zhu
- Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qi Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaoqian Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yu Meng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wanshuang Cao
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xueqi Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
36
|
Wang D, Wen GM, Hou W, Xia P. The roles of CD133 expression in the patients with non-small cell lung cancer. Cancer Biomark 2018; 22:385-394. [DOI: 10.3233/cbm-170835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dan Wang
- Department of Histology and Embryology, College of Basic Medical Science, Liaoning Medical University, Jinzhou, Liaoning, China
- Department of Histology and Embryology, College of Basic Medical Science, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Gui-Min Wen
- Department of Basic Nursing, College of Nursing, Liaoning Medical University, Jinzhou, Liaoning, China
- Department of Histology and Embryology, College of Basic Medical Science, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Wei Hou
- Department of Medical Genetics, College of Basic Medical Science, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Pu Xia
- Department of Cell Biology, College of Basic Medical Science, and Biological Anthropology Institute, Liaoning Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
37
|
Satar NA, Fakiruddin KS, Lim MN, Mok PL, Zakaria N, Fakharuzi NA, Abd Rahman AZ, Zakaria Z, Yahaya BH, Baharuddin P. Novel triple‑positive markers identified in human non‑small cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics. Oncol Rep 2018; 40:669-681. [PMID: 29845263 PMCID: PMC6072294 DOI: 10.3892/or.2018.6461] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
Through the specific identification and direct targeting of cancer stem cells (CSCs), it is believed that a better treatment efficacy of cancer may be achieved. Hence, the present study aimed to identify a CSC subpopulation from adenocarcinoma cells (A549) as a model of non-small cell lung cancer (NSCLC). Initially, we sorted two subpopulations known as the triple-positive (EpCAM+/CD166+/CD44+) and triple-negative (EpCAM−/CD166−/CD44−) subpopulation using fluorescence-activated cell sorting (FACS). Sorted cells were subsequently evaluated for proliferation and chemotherapy-resistance using a viability assay and were further characterized for their clonal heterogeneity, self-renewal characteristics, cellular migration, alkaline dehydrogenase (ALDH) activity and the expression of stemness-related genes. According to our findings the triple-positive subpopulation revealed significantly higher (P<0.01) proliferation activity, exhibited better clonogenicity, was mostly comprised of holoclones and had markedly bigger (P<0.001) spheroid formation indicating a better self-renewal capacity. A relatively higher resistance to both 5-fluouracil and cisplatin with 80% expression of ALDH was observed in the triple-positive subpopulation, compared to only 67% detected in the triple-negative subpopulation indicated that high ALDH activity contributed to greater chemotherapy-resistance characteristics. Higher percentage of migrated cells was observed in the triple-positive subpopulation with 56% cellular migration being detected, compared to only 19% in the triple-negative subpopulation on day 2. This was similarly observed on day 3 in the triple-positive subpopulation with 36% higher cellular migration compared to the triple-negative subpopulation. Consistently, elevated levels of the stem cell genes such as REX1 and SSEA4 were also found in the triple-positive subpopulation indicating that the subpopulation displayed a strong characteristic of pluripotency. In conclusion, our study revealed that the triple-positive subpopulation demonstrated similar characteristics to CSCs compared to the triple-negative subpopulation. It also confirmed the feasibility of using the triple-positive (EpCAM+/CD166+/CD44+) marker as a novel candidate marker that may lead to the development of novel therapies targeting CSCs of NSCLC.
Collapse
Affiliation(s)
- Nazilah Abdul Satar
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Penang, Malaysia
| | - Kamal Shaik Fakiruddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Moon Nian Lim
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
| | - Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Penang, Malaysia
| | - Noor Atiqah Fakharuzi
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Ahmad Zuhairi Abd Rahman
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Zubaidah Zakaria
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Penang, Malaysia
| | - Puteri Baharuddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Abstract
The ribosome has long been considered as a consistent molecular factory, with a rather passive role in the translation process. Recent findings have shifted this obsolete view, revealing a remarkably complex and multifaceted machinery whose role is to orchestrate spatiotemporal control of gene expression. Ribosome specialization discovery has raised the interesting possibility of the existence of its malignant counterpart, an 'oncogenic' ribosome, which may promote tumor progression. Here we weigh the arguments supporting the existence of an 'oncogenic' ribosome and evaluate its role in cancer evolution. In particular, we provide an analysis and perspective on how the ribosome may play a critical role in the acquisition and maintenance of cancer stem cell phenotype.
Collapse
|
39
|
Alguacil-Núñez C, Ferrer-Ortiz I, García-Verdú E, López-Pirez P, Llorente-Cortijo IM, Sainz B. Current perspectives on the crosstalk between lung cancer stem cells and cancer-associated fibroblasts. Crit Rev Oncol Hematol 2018; 125:102-110. [PMID: 29650269 DOI: 10.1016/j.critrevonc.2018.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/17/2018] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
Lung cancer, in particular non-small cell lung carcinoma (NSCLC), is the second most common cancer in both men and women and the leading cause of cancer-related deaths worldwide. Its prognosis and diagnosis are determined by several driver mutations and diverse risk factors (e.g. smoking). While immunotherapy has proven effective in some patients, treatment of NSCLC using conventional chemotherapy is largely ineffective. The latter is believed to be due to the existence of a subpopulation of stem-like, highly tumorigenic and chemoresistant cells within the tumor population known as cancer stem cells (CSC). To complicate the situation, CSCs interact with the tumor microenvironment, which include cancer-associated fibroblasts (CAFs), immune cells, endothelial cells, growth factors, cytokines and connective tissue components, which via a dynamic crosstalk, composed of proteins and exosomes, activates the CSC compartment. In this review, we analyze the crosstalk between CSCs and CAFs, the primary component of the NSCLC microenvironment, at the molecular and extracellular level and contemplate therapies to disrupt this communication.
Collapse
Affiliation(s)
- Cristina Alguacil-Núñez
- Department of Biochemistry, Cancer Stem Cell and Tumor Microenvironment Group, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Inés Ferrer-Ortiz
- Department of Biochemistry, Cancer Stem Cell and Tumor Microenvironment Group, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Elena García-Verdú
- Department of Biochemistry, Cancer Stem Cell and Tumor Microenvironment Group, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar López-Pirez
- Department of Biochemistry, Cancer Stem Cell and Tumor Microenvironment Group, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Irene Maria Llorente-Cortijo
- Department of Biochemistry, Cancer Stem Cell and Tumor Microenvironment Group, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Bruno Sainz
- Department of Biochemistry, Cancer Stem Cell and Tumor Microenvironment Group, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Department of Cancer Biology, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, Madrid, Spain; Chronic Diseases and Cancer Area 3 - Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
40
|
Chen E, Zeng Z, Bai B, Zhu J, Song Z. The prognostic value of CSCs biomarker CD133 in NSCLC: a meta-analysis. Oncotarget 2018; 7:56526-56539. [PMID: 27489355 PMCID: PMC5302932 DOI: 10.18632/oncotarget.10964] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022] Open
Abstract
The prognostic value of cancer stem cells (CSCs) marker CD133 in non-small-cell lung cancer (NSCLC) remains controversial. We performed this meta-analysis of 32 eligible studies to clarify the prognostic value of CD133 and provide evidence for CSCs hypothesis. We calculated pooled hazard ratio (HR) for survival outcomes and pooled odds ratio (OR) for clinical parameters associated with CD133 in total 3595 NSCLC patients by STATA. Our results showed that NSCLC patients with higher CD133 expression had shorter overall survival time only in Asian patients (HR = 3.80, 95% CI: 3.12-4.04, p < 0.001; I2 = 32%) but not in Caucasian patients (HR = 1.15, 95% CI: 0.88-1.52, p = 0.307; I2 = 0%), suggesting that differential prognostic value of CD133 in distinct ethnic group. We speculated that the intrinsic EGFR gene status of CSCs might be responsible for this racial difference. Additionally, we found that higher expression of CD133 was associated with poor differentiation (OR = 2.03, 95% CI: 1.32-3.14, p = 0.001) and lymph node metastasis (OR = 2.39, 95% CI: 1.62-3.52, p < 0.001) but there was no significant difference of CD133 expression between adenocarcinoma and squamous carcinoma (OR = 1.13, 95% CI: 0.93-1.38, p = 0.3) in NSCLC patients. These results may provide a new therapeutic perspective on the treatment of NSCLC patients according to the expression of CD133 in distinct ethnic group.
Collapse
Affiliation(s)
- Engeng Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, P.R. China.,Key Laboratory of Biotherapy of Zhejiang Province, 310016, P.R. China
| | - Zhiru Zeng
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P.R. China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, P.R. China.,Key Laboratory of Biotherapy of Zhejiang Province, 310016, P.R. China
| | - Jing Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, P.R. China.,Key Laboratory of Biotherapy of Zhejiang Province, 310016, P.R. China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, P.R. China.,Key Laboratory of Biotherapy of Zhejiang Province, 310016, P.R. China
| |
Collapse
|
41
|
Eguchi T, Sogawa C, Okusha Y, Uchibe K, Iinuma R, Ono K, Nakano K, Murakami J, Itoh M, Arai K, Fujiwara T, Namba Y, Murata Y, Ohyama K, Shimomura M, Okamura H, Takigawa M, Nakatsura T, Kozaki KI, Okamoto K, Calderwood SK. Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment. PLoS One 2018; 13:e0191109. [PMID: 29415026 PMCID: PMC5802492 DOI: 10.1371/journal.pone.0191109] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.
Collapse
Affiliation(s)
- Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kenta Uchibe
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | - Kisho Ono
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keisuke Nakano
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Murakami
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
- Department of Oral Diagnosis and Dent-maxillofacial Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Manabu Itoh
- JSR Life Sciences Corporation, Tsukuba, Japan
| | - Kazuya Arai
- JSR Life Sciences Corporation, Tsukuba, Japan
| | - Toshifumi Fujiwara
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuri Namba
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshiki Murata
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazumi Ohyama
- Radio Isotope Research Center, Okayama University Dental School, Okayama, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ken-ichi Kozaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
42
|
Old Sonic Hedgehog, new tricks: a new paradigm in thoracic malignancies. Oncotarget 2018; 9:14680-14691. [PMID: 29581874 PMCID: PMC5865700 DOI: 10.18632/oncotarget.24411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
The Sonic Hedgehog (Shh) pathway is physiologically involved during embryogenesis, but is also activated in several diseases, including solid cancers. Previous studies have demonstrated that the Shh pathway is involved in oncogenesis, tumor progression and chemoresistance in lung cancer and mesothelioma. The Shh pathway is also closely associated with epithelial-mesenchymal transition and cancer stem cells. Recent findings have revealed that a small proportion of lung cancer cells expressed an abnormal full-length Shh protein, associated with cancer stem cell features. In this paper, we review the role of the Shh pathway in thoracic cancers (small cell lung cancer, non-small cell lung cancer, and mesothelioma) and discuss the new perspectives of cancer research highlighted by the recent data of the literature.
Collapse
|
43
|
Lai H, Lin F, Chen N, Wen S, Hu X, Liu L. [Research Progress in the Therapeutic Strategy Based on Targeting at
Lung Cancer Stem Cell]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:57-62. [PMID: 29357974 PMCID: PMC5972359 DOI: 10.3779/j.issn.1009-3419.2018.01.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
With high morbidity and mortality, lung cancer is a major threat to human health and one of the focuses of tumor researches. Lung cancer stem cells (LCSCs) are regarded as a subpopulation of cells within lung cancer tissues with the capacity of self-renewal and differentiation, and might be related to tumorigenesis and heterogeneity of lung cancer. Tumor recurrence, metastasis and drug resistance of lung cancers could be clarified by LCSC hypothesis. Thus it's therapeutically prospective to target at these cells. This review summarizes the biomarkers of LCSCs and their aberrant signal pathways, as well as the therapeutic strategies targeting at LCSCs.
Collapse
Affiliation(s)
- Hongjin Lai
- West China School Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Lin
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nan Chen
- West China School Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Wen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Hu
- Department of Thoracic Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
44
|
Suppression of cancer stemness by upregulating Ligand-of-Numb protein X1 in colorectal carcinoma. PLoS One 2017; 12:e0188665. [PMID: 29190716 PMCID: PMC5708683 DOI: 10.1371/journal.pone.0188665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/10/2017] [Indexed: 01/27/2023] Open
Abstract
Cancer stem-like cells (CSCs) have been reported to play major roles in tumorigenesis, tumor relapse, and metastasis after therapy against colorectal carcinoma (CRC). Therefore, identification of colorectal CSC regulators could provide promising targets for CRC. Ligand-of-Numb protein X1 (LNX1) is one E3 ubiquitin ligase which mediates the ubiquitination and degradation of Numb. Although several studies indicate LNX1 could be a potential suppressor of cancer diseases, the functions of LNX1 in mediating cancer stemness remain poorly understood. In this study, LNX1 was identified as a negative regulator of cancer stemness in CRC, which was downregulated in colonospheres or side population (SP) cells. Furthermore, the coxsackievirus and adenovirus receptor (CXADR) was found to be one critical downstream mediator of cancer stemness regulated by LNX1. Interestingly, the anti-breast cancer drug tamoxifen was found to be an agonist of LNX1 and suppress cancer stemness in CRC. In sum, this study provided the evidences that LNX1 signaling plays important roles in regulating the stemness of colon cancer cells.
Collapse
|
45
|
Jimenez-Hernandez LE, Vazquez-Santillan K, Castro-Oropeza R, Martinez-Ruiz G, Muñoz-Galindo L, Gonzalez-Torres C, Cortes-Gonzalez CC, Victoria-Acosta G, Melendez-Zajgla J, Maldonado V. NRP1-positive lung cancer cells possess tumor-initiating properties. Oncol Rep 2017; 39:349-357. [PMID: 29138851 PMCID: PMC5783600 DOI: 10.3892/or.2017.6089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Tumor-initiating cells possess the capacity for self-renewal and to create heterogeneous cell lineages within a tumor. Therefore, the identification and isolation of cancer stem cells is an essential step in the analysis of their biology. The aim of the present study was to determine whether the cell surface protein neuropilin 1 (NRP1) can be used as a biomarker of stem-like cells in lung cancer tumors. For this purpose, NRP1-negative (NRP1-) and NRP1-positive (NRP1+) cell subpopulations from two lung cancer cell lines were sorted by flow cytometry. The NRP1+ cell subpopulation showed an increased expression of pluripotency markers OCT-4, Bmi-1 and NANOG, as well as higher cell migration, clonogenic and self-renewal capacities. NRP1 gene knockdown resulted not only in a decreased expression of stemness markers but also in a decrease in the clonogenic, cell migration and self-renewal potential. In addition, the NRP1+ cell subpopulation exhibited dysregulated expression of epithelial-to-mesenchymal transition-associated genes, including the ΔNp63 isoform protein, a previously reported characteristic of cancer stem cells. Notably, a genome-wide expression analysis of NRP1-knockdown cells revealed a potential new NRP1 pathway involving OLFML3 and genes associated with mitochondrial function. In conclusion, we demonstrated that NRP1+ lung cancer cells have tumor-initiating properties. NRP1 could be a useful biomarker for tumor-initiating cells in lung cancer tumors.
Collapse
|
46
|
Giroux Leprieur E, Tolani B, Li H, Leguay F, Hoang NT, Acevedo LA, Jin JQ, Tseng HH, Yue D, Kim IJ, Wislez M, Wang C, Jablons DM, He B. Membrane-bound full-length Sonic Hedgehog identifies cancer stem cells in human non-small cell lung cancer. Oncotarget 2017; 8:103744-103757. [PMID: 29262597 PMCID: PMC5732763 DOI: 10.18632/oncotarget.21781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/05/2017] [Indexed: 12/04/2022] Open
Abstract
The mechanism of Sonic Hedgehog (Shh) pathway activation in non-small cell lung cancer (NSCLC) is poorly described. Using an antibody against the Shh C-terminal domain, we found a small population of Shh-positive (Shh+) cells in NSCLC cells. The objective of this study was to characterize these Shh+ cells. Shh+ and Shh- cells were sorted by using Fluorescence Activated Cell Sorting (FACS) on 12 commercial NSCLC cell lines. Functional analyses on sorted cells were performed with gene expression assays (qRT-PCR and microarray) and cells were treated with cytotoxic chemotherapy and a targeted inhibitor of Shh signaling (GDC0449). We used in vivo models of nude mice inoculated with Shh+ and Shh- sorted cells and drug-treated cells. Finally, we confirmed our results in fresh human NSCLC samples (n=48) paired with normal lung tissue. We found that Shh+ cells produced an uncleaved, full-length Shh protein detected on the membranes of these cells. Shh+ cells exerted a paracrine effect on Shh- cells, inducing their proliferation and migration. Shh+ cells were chemo-resistant and showed features of cancer stem cells (CSCs) in vitro and in vivo. Pharmacological inhibition of the Shh pathway suppressed their CSC features. A high percentage of Shh+ cells was associated with poor prognosis in early-stage NSCLC patients. In conclusion, we describe for the first time the presence of an abnormal membrane-bound full-length Shh protein in human cancer cells that allows the identification of CSCs in vitro and in vivo.
Collapse
Affiliation(s)
- Etienne Giroux Leprieur
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340, UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Hui Li
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Fleur Leguay
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Ngoc T Hoang
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Luis A Acevedo
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Joy Q Jin
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Hsin-Hui Tseng
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Dongsheng Yue
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Il-Jin Kim
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Marie Wislez
- Sorbonne University, UPMC GRC-04 Theranoscan, Department of Respiratory Diseases, APHP - Tenon Hospital, Paris, France
| | - Changli Wang
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - David M Jablons
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
47
|
Zakaria N, Satar NA, Abu Halim NH, Ngalim SH, Yusoff NM, Lin J, Yahaya BH. Targeting Lung Cancer Stem Cells: Research and Clinical Impacts. Front Oncol 2017; 7:80. [PMID: 28529925 PMCID: PMC5418222 DOI: 10.3389/fonc.2017.00080] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC), which is one of two types of lung cancer, accounts for 85–90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs) because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.
Collapse
Affiliation(s)
- Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Nazilah Abdul Satar
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Noor Hanis Abu Halim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Siti Hawa Ngalim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Narazah Mohd Yusoff
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University (XXMU), Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University (XXMU), Xinxiang, China
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| |
Collapse
|
48
|
Suspected Pulmonary Metastasis of Actinic Cutaneous Squamous Cell Carcinoma. Case Rep Surg 2017; 2017:4176071. [PMID: 28386508 PMCID: PMC5366798 DOI: 10.1155/2017/4176071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/30/2016] [Accepted: 02/09/2017] [Indexed: 11/25/2022] Open
Abstract
Introduction. It is rare for actinic or squamous cell carcinoma (SCC) in situ to metastasize. Case Presentation. A 67-year-old male had a significant medical history including severe psoriatic arthritis treated with UVB, methotrexate, and rapamycin. He had twenty-five different skin excisions of actinic keratosis four of which were invasive SCC. Our patient developed shortness of breath necessitating a visit to the emergency department. A CT scan of his chest revealed a mass in the right lower lung. A subsequent biopsy of the mass revealed well-differentiated SCC. He underwent thoracoscopic surgery with wedge resection of the lung lesion. Discussion. Actinic keratosis (AK) is considered precancerous and associated with UV exposure. It exists as a continuum of progression with low potential for malignancy. The majority of invasive SCCs are associated with malignant progression of AK, but only 5–10% of AKs will progress to malignant potential. Conclusion. In this case, a new finding of lung SCC in the setting of multiple invasive actinic cutaneous SCC associated with a history of extensive UV light exposure and immunosuppression supports a metastatic explanation for lung cancer.
Collapse
|
49
|
Kalantari E, Asgari M, Nikpanah S, Salarieh N, Asadi Lari MH, Madjd Z. Co-Expression of Putative Cancer Stem Cell Markers CD44 and CD133 in Prostate Carcinomas. Pathol Oncol Res 2017; 23:793-802. [PMID: 28083789 DOI: 10.1007/s12253-016-0169-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are the main players of prostate tumorigenesis thus; characterization of CSCs can pave the way for understanding the early detection, drug resistance, metastasis and relapse. The current study was conducted to evaluate the expression level and clinical significance of the potential CSC markers CD44 and CD133 in a series of prostate tissues. One hundred and forty eight prostate tissues composed of prostate cancer (PCa), high-grade prostatic intraepithelial neoplasia (HGPIN), and benign prostate hyperplasia (BPH) were immunostained for the putative CSC markers CD44 and CD133. Subsequently, the correlation between the expression of these markers and the clinicopathological variables was examined. A higher level of CD44 expression was observed in 42% of PCa, 57% of HGPIN, and 42% BPH tissues. In the case of CD133 expression PCa, HGPIN, and BPH samples demonstrated high immunoreactivity in 46%, 43%, and 42% of cells, respectively. Statistical analysis showed an inverse significant correlation between CD44 expression with Gleason score of PCa (P = 0.02), while no significant correlation was observed between CD133 expression and clinicopathological parameters. A significant reciprocal correlation was observed between the expression of two putative CSC markers CD44 and CD133 in PCa specimens while not indicating clinical significance. Further clinical investigation is required to consider these markers as targets of new therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran. .,Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Pathology, Hasheminejad Urology-Nephrology Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Seyedehmoozhan Nikpanah
- Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naghme Salarieh
- Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asadi Lari
- Department of Cellular, Anatomical and Physiological Sciences, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran. .,Department of Pathology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
The Hedgehog Signaling Networks in Lung Cancer: The Mechanisms and Roles in Tumor Progression and Implications for Cancer Therapy. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7969286. [PMID: 28105432 PMCID: PMC5220431 DOI: 10.1155/2016/7969286] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
Lung cancer is the most common cause of cancer-related death worldwide and is classified into small cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Several gene mutations that contribute to aberrant cell proliferation have been identified in lung adenocarcinoma, a part of NSCLC. Various anticancer drugs that target these mutated molecules have been developed for NSCLC treatment. However, although molecularly targeted drugs are initially effective for patients, the 5-year survival rate remains low because of tumor relapse. Therefore, more effective drugs for lung cancer treatment should be developed. The hedgehog (HH) signaling pathway contributes to organ development and stem cell maintenance, and aberrant activation of this signaling pathway is observed in various cancers including lung cancer. In lung cancer, HH signaling pathway upregulates cancer cell proliferation and maintains cancer stem cells as well as cancer-associated fibroblasts (CAFs). Furthermore, physical contact between CAFs and NSCLC cells induces HH signaling pathway activation in NSCLC cells to enhance their metastatic potential. Therefore, HH signaling pathway inhibitors could be a useful option for lung cancer therapy.
Collapse
|