Published online Feb 28, 2023. doi: 10.5495/wjcid.v13.i1.1
Peer-review started: August 28, 2022
First decision: December 13, 2022
Revised: December 28, 2022
Accepted: February 1, 2023
Article in press: February 1, 2023
Published online: February 28, 2023
Processing time: 182 Days and 11.8 Hours
Leprosy is a disease caused by Mycobacterium leprae (M. leprae), an intracellular pathogen that has tropism and affects skin and nervous system cells. The disease has two forms of presentation: Paucibacillary and multibacillary, with different clinical and immunological manifestations. Unlike what occurs in the multibacillary form , the diagnostic tests for the paucibacillary form are nonspecific and not very sensitive, allowing the existence of infected individuals without treatment, which contributes to the spread of the pathogen in the population. To mitigate this contamination, more sensitive diagnostic tests capable of detecting paucibacillary patients are needed.
To predict the three-dimensional structure models of M. leprae antigens with serodiagnostic potential for leprosy.
In this in silico study, satisfactory templates were selected in the Protein Data Bank (PDB) using Basic Local Alignment Search Tool to predict the structural templates of ML2038, ML0286, ML0050, and 85B antigens by comparative modeling. The templates were selected according to general criteria such as sequence identity, coverage, X-ray resolution, Global Model Quality Estimate value and phylo
The three-dimensional structure models of ML2038, ML0286, ML0050, and 85B antigens of M. leprae were predicted using the templates PDB: 3UOI (90.51% identity), PDB: 3EKL (87.46% identity), PDB: 3FAV (40.00% identity), and PDB: 1F0N (85.21% identity), respectively. The QMEAN and Z-score values indicated the good quality of the structure models. These data refer to the monomeric units of antigens, since some of these antigens have quaternary structure. The validation of the models was performed with the final three-dimensional structure - monomer (ML0050 and 85B antigens) and quaternary structures (ML2038 and ML0286). The majority of amino acid residues were observed in favorable and allowed regions in the Ramachandran plot, indicating correct positioning of the side chain and absence of steric impediment. The MolProbity score value and Verify 3D results of all models indicated a satisfactory prediction.
The polarized immune response against M. leprae creates a problem in leprosy detection. The selection of immunodominant epitopes is essential for the development of more sensitive serodiagnostic tests, for this it is important to know the three-dimensional structure of the antigens, which can be predicted with bioinformatics tools.
Core Tip: Leprosy is a disease with high clinical and epidemiological impact, because it causes irreversible and disfiguring sequelae and has a high incidence in endemic countries. Its variability of manifestations, with different immune responses and the difficulty of cultivating Mycobacterium leprae (M. leprae) in the laboratory, makes it difficult to develop sensitive and specific tests for the diagnosis of the disease, thus emphasizing the importance of in silico studies to solve this problem. In this sense, this study aimed to obtain three-dimensional models of M. leprae antigens, which have stood out in previous studies as candidates for the serological diagnosis of leprosy.