Published online Dec 30, 2011. doi: 10.5495/wjcid.v1.i1.11
Revised: October 20, 2011
Accepted: December 23, 2011
Published online: December 30, 2011
Antimicrobial resistance, which has been reported against almost every antibiotic discovered, is one of the most urgent public health problems, threatening to undermine the effectiveness of infectious disease treatment worldwide. Since penicillin ushered in the antibiotic era in the mid 20th century, the scientific world had engaged in a war between the development of antibacterial agents and bacterial resistance. During the first decade of the 21st century, grave concern has been expressed over the evolution of multi-drug resistant staphylococci, enterococci, and mycobacteria, which pose serious clinical and public health challenge to humans. The present picture is frighteningly similar to the pre-antibiotic era, with reports of nosocomial spread and intercontinental dissemination of multi-drug resistant bacteria. For infected patients, there is no magic bullet. The microbial pathogens appear to be gaining the upper hand, coupled with a recent dramatic reduction in antibiotic research by pharmaceutical companies because of the high cost of drug research. Several compounds that have recently been developed or resurrected to treat gram-positive infections are still unable to meet the armamentarium of resistance mechanisms of these pathogens. The situation is worse for gram-negative organisms, where no new drug is currently being developed against them. A multi-disciplinary approach to combat resistance is required, which must be applied, sustained, and continuously refined. The key components for maintaining effective antimicrobial chemotherapy will include better use of existing agents, coupled with continuous investment in new and innovative technologies, which must include diagnostics and vaccines in addition to new antimicrobial agents.