1
|
Piyasiri SB, Senanayake S, Smaranayake N, Doh S, Iniguez E, Valenzuela JG, Kamhawi S, Karunaweera ND. Salivary antigens rPagSP02 and rPagSP06 are a reliable composite biomarker for evaluating exposure to Phlebotomus argentipes in Sri Lanka. Sci Rep 2024; 14:25863. [PMID: 39468289 PMCID: PMC11519893 DOI: 10.1038/s41598-024-77666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
Phlebotomus argentipes is the established vector of leishmaniasis in the Indian sub-continent. Antibodies to sand fly salivary antigens are biomarkers for vector-host exposure in leishmaniasis-endemic regions. Ph. argentipes transmits Leishmania donovani in Sri Lanka, primarily causing cutaneous leishmaniasis (CL). Our study compared the performance of salivary gland homogenate (SGH) from a lab-reared local strain of Ph. argentipes females to a composite recombinant salivary biomarker (rPagSP02 + rPagSP06) in a CL-endemic population. Sera from 546 healthy individuals, 30 CL patients, and 15 non-endemic individuals were collected. Western blot analysis of Ph. argentipes SGH identified immunogenic bands between 15 kDa and 67 kDa, with bands of predicted molecular weight ∼of 15 kDa (SP02) and ∼28-30 kDa (SP06) as the major antibody targets. Indirect ELISAs using SGH or rPagSP02 + rPagSP06 antigens showed high sensitivity (96.7%) and specificity (100%), detecting comparable seropositivity in endemic populations. rPagSP02 + rPagSP06 exhibited enhanced discriminatory ability, supported by a strong positive correlation (r = 0.869) with SGH. Our findings indicate that the composite rPagSP02 + rPagSP06 salivary biomarker effectively identifies Ph. argentipes exposure in individuals living in Sri Lanka, showing promising potential for use in surveillance. These findings should be further validated to confirm the epidemiological applications in leishmaniasis-endemic regions.
Collapse
Affiliation(s)
- Sachee Bhanu Piyasiri
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Sanath Senanayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Nilakshi Smaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Serena Doh
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | - Eva Iniguez
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | - Jesus Gilberto Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Maryland, 20892, USA
| | | |
Collapse
|
2
|
Zahri A, Ahlamine M, Abou-Elaaz FZ, Talimi H, El Berbri I, Balenghien T, Bourquia M. Diversity of biting midges, mosquitoes and sand flies at four dog shelters in rural and peri-urban areas of Central Morocco. Parasite 2024; 31:57. [PMID: 39331804 PMCID: PMC11433837 DOI: 10.1051/parasite/2024057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/31/2024] [Indexed: 09/29/2024] Open
Abstract
Blood-feeding arthropods are involved in the transmission of several pathogens that have a major impact on public health. Entomological investigations highlighted the composition, abundance, and diversity of flying hematophagous arthropods at four dog shelters located in central Morocco during an eight-month study, with the aim of discussing their vectorial roles and assessing the risk of these shelters as foci for zoonotic diseases. Monitoring of the arthropod fauna for 64 catch nights resulted in the collection of 2,321 biting midges (Ceratopogonidae), 570 mosquitoes (Culicidae), and 475 sand flies (Psychodidae). Fourteen Culicoides species were recorded and dominant species were Culicoides imicola (55.96%), C. paolae (16.07%), C. circumscriptus (10.29%), and C. newsteadi (5.77%). Three mosquito species were collected, including Culex pipiens s.l. (96.84%), Culiseta longiareolata (2.80%), and Cx. perexiguus (0.36%). Ten sand fly species were collected, including seven Phlebotomus species (62.70%) and three Sergentomyia species (37.30%); Sergentomyia minuta was the most dominant species (34.31%), followed by Phlebotomus sergenti (32.42%), typical Ph. perniciosus (8.63%), Ph. alexandri (6.94%), and Ph. riouxi (6.52%). The coexistence of several vectors in these study areas indicates the potential circulation of a wide range of pathogens, including zoonotic ones, thus requiring the implementation of surveillance and control programs to prevent the emergence and spread of disease outbreaks.
Collapse
Affiliation(s)
- Abderrahmane Zahri
- Parasitology and Parasitic Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| | - Mehdi Ahlamine
- Parasitology and Parasitic Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| | - Fatima-Zahra Abou-Elaaz
- Geophysics, Natural Patrimony and Green Chemistry Research Centre (GEOPAC), Geo-Biodiversity and Natural Patrimony Laboratory (GEOBIOL), Scientific Institute, Mohammed V University Rabat Morocco
| | - Hasnaa Talimi
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Maroc Casablanca Morocco
- Systems and Data Engineering Team, National School of Applied Sciences, Abdelmalek Essaâdi University Tangier Morocco
| | - Ikhlass El Berbri
- Microbiology, Immunology and Contagious Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| | - Thomas Balenghien
- CIRAD, UMR ASTRE 34398 Montpellier France
- ASTRE, Université de Montpellier, CIRAD, INRAE Montpellier France
| | - Maria Bourquia
- Parasitology and Parasitic Diseases Unit, Department of Animal Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II Rabat Morocco
| |
Collapse
|
3
|
Piyasiri SB, Senanayake S, Samaranayake N, Doh S, Iniguez E, Kamhawi S, Karunaweera ND. rPagSP02+rPagSP06 recombinant salivary antigen is a reliable biomarker for evaluating exposure to Phlebotomus argentipes in Sri Lanka. RESEARCH SQUARE 2024:rs.3.rs-4633976. [PMID: 39070615 PMCID: PMC11276025 DOI: 10.21203/rs.3.rs-4633976/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Phlebotomus argentipes is the established vector of leishmaniasis in the Indian sub-continent. Antibodies to sand fly salivary antigens are biomarkers for vector-host exposure in leishmaniasis-endemic regions. Ph. argentipes transmits Leishmania donovani in Sri Lanka, primarily causing cutaneous leishmaniasis (CL). Our study compared the performance of salivary gland homogenate (SGH) from a lab-reared local strain of Ph. argentipes females to a composite recombinant salivary biomarker (rPagSP02 + rPagSP06) in a CL-endemic population. Sera from 546 healthy individuals, 30 CL patients, and 15 non-endemic individuals were collected. Western blot analysis of Ph. argentipes SGH identified immunogenic bands between 15 kDa and 67 kDa, with bands of predicted molecular weight õf 15 kDa (SP02) and ~28-30 kDa (SP06) as the major antibody targets. Indirect ELISAs using SGH or rPagSP02 + rPagSP06 antigens showed high sensitivity (96.7%) and specificity (100%), detecting comparable seropositivity in endemic populations. rPagSP02 + rPagSP06 exhibited enhanced discriminatory ability, supported by a strong positive correlation (r = 0.869) with SGH. Our findings indicate that the composite rPagSP02 + rPagSP06 salivary biomarker effectively identifies Ph. argentipes exposure in individuals living in Sri Lanka, showing promising potential for use in surveillance. These findings should be further validated to confirm the epidemiological applications in leishmaniasis-endemic regions.
Collapse
Affiliation(s)
- Sachee Bhanu Piyasiri
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Sanath Senanayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 0800, Sri Lanka
| | | | | | | | | |
Collapse
|
4
|
Rock KS, Chapman LAC, Dobson AP, Adams ER, Hollingsworth TD. The Hidden Hand of Asymptomatic Infection Hinders Control of Neglected Tropical Diseases: A Modeling Analysis. Clin Infect Dis 2024; 78:S175-S182. [PMID: 38662705 PMCID: PMC11045017 DOI: 10.1093/cid/ciae096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neglected tropical diseases are responsible for considerable morbidity and mortality in low-income populations. International efforts have reduced their global burden, but transmission is persistent and case-finding-based interventions rarely target asymptomatic individuals. METHODS We develop a generic mathematical modeling framework for analyzing the dynamics of visceral leishmaniasis in the Indian sub-continent (VL), gambiense sleeping sickness (gHAT), and Chagas disease and use it to assess the possible contribution of asymptomatics who later develop disease (pre-symptomatics) and those who do not (non-symptomatics) to the maintenance of infection. Plausible interventions, including active screening, vector control, and reduced time to detection, are simulated for the three diseases. RESULTS We found that the high asymptomatic contribution to transmission for Chagas and gHAT and the apparently high basic reproductive number of VL may undermine long-term control. However, the ability to treat some asymptomatics for Chagas and gHAT should make them more controllable, albeit over relatively long time periods due to the slow dynamics of these diseases. For VL, the toxicity of available therapeutics means the asymptomatic population cannot currently be treated, but combining treatment of symptomatics and vector control could yield a quick reduction in transmission. CONCLUSIONS Despite the uncertainty in natural history, it appears there is already a relatively good toolbox of interventions to eliminate gHAT, and it is likely that Chagas will need improvements to diagnostics and their use to better target pre-symptomatics. The situation for VL is less clear, and model predictions could be improved by additional empirical data. However, interventions may have to improve to successfully eliminate this disease.
Collapse
Affiliation(s)
- Kat S Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Lloyd A C Chapman
- Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Emily R Adams
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - T Déirdre Hollingsworth
- Nuffield Department of Medicine, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Uranw S, Bhattarai NR, Cloots K, Roy L, Rai K, Kiran U, Pyakurel UR, Lal BK, Burza S, Rijal S, Karki P, Khanal B, Hasker E. Visceral leishmaniasis in the hills of western Nepal: A transmission assessment. PLoS One 2024; 19:e0289578. [PMID: 38630746 PMCID: PMC11023194 DOI: 10.1371/journal.pone.0289578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/12/2024] [Indexed: 04/19/2024] Open
Abstract
In Nepal, visceral leishmaniasis (VL) has been targeted for elimination as a public health problem by 2026. Recently, increasing numbers of VL cases have been reported from districts of doubtful endemicity including hills and mountains, threatening the ongoing VL elimination program in Nepal. We conducted a multi-disciplinary, descriptive cross-sectional survey to assess the local transmission of Leishmania donovani in seven such districts situated at altitudes of up to 1,764 meters in western Nepal from March to December 2019. House-to-house surveys were performed for socio-demographic data and data on past and current VL cases. Venous blood was collected from all consenting individuals aged ≥2 years and tested with the rK39 RDT. Blood samples were also tested with direct agglutination test, and a titer of ≥1:1600 was taken as a marker of infection. A Leishmania donovani species-specific PCR (SSU-rDNA) was performed for parasite species confirmation. We also captured sand flies using CDC light traps and mouth aspirators. The house-to-house surveys documented 28 past and six new VL cases of which 82% (28/34) were without travel exposure. Overall, 4.1% (54/1320) of healthy participants tested positive for L. donovani on at least one serological or molecular test. Among asymptomatic individuals, 17% (9/54) were household contacts of past VL cases, compared to 0.5% (6/1266) among non-infected individuals. Phlebotomus argentipes, the vector of L. donovani, was found in all districts except in Bajura. L. donovani was confirmed in two asymptomatic individuals and one pool of sand flies of Phlebotomus (Adlerius) sp. We found epidemiological and entomological evidence for local transmission of L. donovani in areas previously considered as non-endemic for VL. The national VL elimination program should revise the endemicity status of these districts and extend surveillance and control activities to curb further transmission of the disease.
Collapse
Affiliation(s)
- Surendra Uranw
- Department of Internal Medicine, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Narayan Raj Bhattarai
- Department of Microbiology, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Kristien Cloots
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lalita Roy
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- Tropical & Infectious Diseases Center, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Keshav Rai
- Department of Microbiology, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Usha Kiran
- World Health Organization, Country Office for Nepal, Kathmandu, Nepal
| | - Uttam Raj Pyakurel
- Epidemiology and Disease Control Division, Department of Health Services, Government of Nepal, Kathmandu, Nepal
| | - Bibek Kumar Lal
- Epidemiology and Disease Control Division, Department of Health Services, Government of Nepal, Kathmandu, Nepal
| | - Sakib Burza
- Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Suman Rijal
- Drugs for Neglected Diseases Initiative, India Office, New Delhi, India
| | - Prahlad Karki
- Department of Internal Medicine, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Basudha Khanal
- Department of Microbiology, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Epco Hasker
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
6
|
Joshi AB, Banjara MR, Das ML, Ghale P, Pant KR, Pyakurel UR, Dahal G, Paudel KP, Das CL, Kroeger A, Aseffa A. Epidemiological, Serological, and Entomological Investigation of New Visceral Leishmaniasis Foci in Nepal. Am J Trop Med Hyg 2024; 110:44-51. [PMID: 38011729 DOI: 10.4269/ajtmh.23-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/15/2023] [Indexed: 11/29/2023] Open
Abstract
The aim of this study was to explore epidemiological, serological, entomological, and social aspects of visceral leishmaniasis (VL) in new foci in Nepal. The study was conducted in 11 villages of five districts that had been previously free of VL but that reported new cases between 2019 and 2021. We screened 1,288 inhabitants using rK39 tests and investigated the epidemiological and clinical characteristics of 12 recent VL cases. A total of 182 community members were interviewed about knowledge, attitude, and practices regarding VL. They then underwent an awareness training; 40 of them had a second interview at 6 months to assess the training impact. Vector surveys were conducted in six houses per village to assess sandfly density and infection rates. The prevalence of VL infection was 0.5% and 3.2% among screened populations in Dolpa and Kavre districts, respectively, while the other districts had no rK39-positive cases. No association between travel history and VL infection was found. Phlebotomus argentipes sandflies were collected in three districts at high altitudes (from 1,084 to 4,450 m). None of the sandflies captured had Leishmania donovani DNA. People in new foci were not aware of VL symptoms, vectors, or preventive measures. The training significantly improved their knowledge and practice in seeking medical care in case of illness. The epidemiological, serological, and entomological investigations suggest indigenous focal transmission of VL. An integrated package of strategic interventions should be implemented by the national VL elimination program in districts with new VL foci.
Collapse
Affiliation(s)
- Anand Ballabh Joshi
- Public Health and Infectious Disease Research Center (PHIDReC), Kathmandu, Nepal
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland
| | - Murari Lal Das
- Public Health and Infectious Disease Research Center (PHIDReC), Kathmandu, Nepal
| | - Pragyan Ghale
- Public Health and Infectious Disease Research Center (PHIDReC), Kathmandu, Nepal
| | - Krishna Raj Pant
- Public Health and Infectious Disease Research Center (PHIDReC), Kathmandu, Nepal
| | - Uttam Raj Pyakurel
- Epidemiology and Disease Control Division, Department of Health Services, Teku, Kathmandu, Nepal
| | - Gokarna Dahal
- Epidemiology and Disease Control Division, Department of Health Services, Teku, Kathmandu, Nepal
| | - Krishna Prasad Paudel
- Epidemiology and Disease Control Division, Department of Health Services, Teku, Kathmandu, Nepal
| | - Chuman Lal Das
- Epidemiology and Disease Control Division, Department of Health Services, Teku, Kathmandu, Nepal
| | - Axel Kroeger
- Centre for Medicine and Society, Albert-Ludwigs-University, Freiburg, Germany
| | - Abraham Aseffa
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland
| |
Collapse
|
7
|
Roy L, Cloots K, Uranw S, Rai K, Bhattarai NR, Smekens T, Hendrickx R, Caljon G, Hasker E, Das ML, Van Bortel W. The ongoing risk of Leishmania donovani transmission in eastern Nepal: an entomological investigation during the elimination era. Parasit Vectors 2023; 16:404. [PMID: 37932813 PMCID: PMC10629032 DOI: 10.1186/s13071-023-05986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL), a life-threatening neglected tropical disease, is targeted for elimination from Nepal by the year 2026. The national VL elimination program is still confronted with many challenges including the increasingly widespread distribution of the disease over the country, local resurgence and the questionable efficacy of the key vector control activities. In this study, we assessed the status and risk of Leishmania donovani transmission based on entomological indicators including seasonality, natural Leishmania infection rate and feeding behavior of vector sand flies, Phlebotomus argentipes, in three districts that had received disease control interventions in the past several years in the context of the disease elimination effort. METHODS We selected two epidemiologically contrasting settings in each survey district, one village with and one without reported VL cases in recent years. Adult sand flies were collected using CDC light traps and mouth aspirators in each village for 12 consecutive months from July 2017 to June 2018. Leishmania infection was assessed in gravid sand flies targeting the small-subunit ribosomal RNA gene of the parasite (SSU-rRNA) and further sequenced for species identification. A segment (~ 350 bp) of the vertebrate cytochrome b (cytb) gene was amplified from blood-fed P. argentipes from dwellings shared by both humans and cattle and sequenced to identify the preferred host. RESULTS Vector abundance varied among districts and village types and peaks were observed in June, July and September to November. The estimated Leishmania infection rate in vector sand flies was 2.2% (1.1%-3.7% at 95% credible interval) and 0.6% (0.2%-1.3% at 95% credible interval) in VL and non-VL villages respectively. The common source of blood meal was humans in both VL (52.7%) and non-VL (74.2%) villages followed by cattle. CONCLUSIONS Our findings highlight the risk of ongoing L. donovani transmission not only in villages with VL cases but also in villages not reporting the presence of the disease over the past several years within the districts having disease elimination efforts, emphasize the remaining threats of VL re-emergence and inform the national program for critical evaluation of disease elimination strategies in Nepal.
Collapse
Affiliation(s)
- Lalita Roy
- Tropical and Infectious Disease Centre, BP Koirala Institute of Health Sciences, Dharan, Nepal.
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Antwerp, Belgium.
| | - Kristien Cloots
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Surendra Uranw
- Department of Internal Medicine, BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - Keshav Rai
- Department of Microbiology, BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - Narayan R Bhattarai
- Department of Microbiology, BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - Tom Smekens
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Rik Hendrickx
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Antwerp, Belgium
| | - Epco Hasker
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Murari L Das
- Department of Microbiology, BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - Wim Van Bortel
- Department of Biomedical Sciences and Outbreak Research Team, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
8
|
Sharma A, Kumar S, Panda PK, Yadav S, Kalita D. Emerging leishmaniasis in southern Himalayas: A mini-review. World J Clin Infect Dis 2023; 13:11-23. [DOI: 10.5495/wjcid.v13.i2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/28/2022] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease affecting millions of people worldwide. However, in the last decade, the number of cases has been reduced from well-documented endemic parts, but sporadic cases have been reported widely from various non-endemic areas, especially from the southern Himalayan zone. This raises concerns about the emergence of new ecological niches. This warrants a critical evaluation of key factors causing this rapid spread and possibly indigenous transmission. This mini-review article is aimed to briefly address the parasite, the vector, and the environmental aspects in the transmission of leishmaniasis in these new foci against a background of worldwide endemic leishmaniasis with a special focus on the southern Himalayan zone. As the lack of knowledge about the causative parasites, vectors, reservoir hosts, atypical presentations, and their management make the problem serious and may lead to the emergence of public health issues. The present works also reviewed the existing information regarding clinical variations, diagnostic methods, treatment, its outcome, and ignite for further research in these aspects of the disease.
Collapse
Affiliation(s)
- Ashwani Sharma
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Santosh Kumar
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Prasan Kumar Panda
- Department of Medicine, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Sweety Yadav
- Department of Internal Medicine, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Deepjyoti Kalita
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India
| |
Collapse
|
9
|
Asymptomatic Leishmania infection in humans: A systematic review. J Infect Public Health 2023; 16:286-294. [PMID: 36630836 DOI: 10.1016/j.jiph.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Leishmaniasis is a highly prevalent neglected tropical disease. It mainly presents as two forms: cutaneous and visceral leishmaniasis, the latter being the most severe form. However, asymptomatic cases of Leishmania infection result in an increase in the underreporting and transmission of the protozoan OBJECTIVES: In this study, articles on the incidence of asymptomatic Leishmania infection were systematically reviewed. METHODS The publications identified in the Medline/PubMed and Science Direct databases included 4568 articles. Inclusion, exclusion, and eligibility criterion analysis resulted in 83 articles being retained. These studies were mostly performed in Brazil (n = 26) and India (n = 15). RESULTS Several detection techniques have been used for diagnosis. Among the species found were L. infantum and L. donovani, which result in visceral leishmaniasis, and L. amazonensis, L. braziliensis, and L. panamensis. The incidence rates varied between the analyzed locations, largely due to sampling and the presence or absence of endemism in the regions. The largest populations analyzed were in two studies performed in India and Nepal. One of these studies evaluated 32,529 people and the incidence rate was 8.3% (n = 2702), while the other study evaluated 21,267 people and the incidence rate was 1.76% (n = 375). Only 14.28% of the studies investigated leishmaniasis in blood donors. Preexisting diseases have also been reported. CONCLUSION The findings of this systematic review present the incidence of cases of asymptomatic Leishmania infection worldwide, in addition to detailing the studies and offering information for researchers and health authorities to seek alternatives to reduce the number of leishmaniasis cases.
Collapse
|
10
|
Banjara MR, Joshi AB, Singh VK, Das ML, Gurung CK, Olliaro P, Halleux C, Matlashewski G, Kroeger A. Response to Visceral Leishmaniasis Cases through Active Case Detection and Vector Control in Low-Endemic Hilly Districts of Nepal. Am J Trop Med Hyg 2022; 107:349-354. [PMID: 35895401 PMCID: PMC9393440 DOI: 10.4269/ajtmh.21-0766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
The visceral leishmaniasis (VL) elimination program in Nepal has largely completed the attack phase and is moving toward consolidation and maintenance phases. New VL foci are, however, appearing in Nepal, and therefore new innovative community-centered strategies need to be developed and tested. We conducted early case detection by an index case-based approach and assessed the feasibility, efficacy, and cost of an intervention for sandfly control through indoor residual spraying (IRS) or insecticidal wall painting (IWP) in new and low-endemic districts Palpa and Surkhet. IRS was performed in 236 households and IWP in 178 households. We screened 1,239 and 596 persons in Palpa and Surkhet, respectively, resulting in the detection of one VL case in Palpa. Both IWP and IRS were well accepted, and the percentage reductions in sandfly density after 1, 9, and 12 months of intervention were 90%, 81%, and 75%, respectively, for IWP and 81%, 59%, and 63% respectively for IRS. The cost per household protected per year was USD 10.3 for IRS and 32.8 for IWP, although over a 2-year period, IWP was more cost-effective than IRS. Active case detection combined with sandfly control through IWP or IRS can support to VL elimination in the consolidation and maintenance phase.
Collapse
Affiliation(s)
- Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anand Ballabh Joshi
- Public Health and Infectious Disease Research Center, New Baneshwor, Kathmandu, Nepal
| | - Vivek Kumar Singh
- Public Health and Infectious Disease Research Center, New Baneshwor, Kathmandu, Nepal
| | - Murari Lal Das
- Public Health and Infectious Disease Research Center, New Baneshwor, Kathmandu, Nepal
| | - Chitra Kumar Gurung
- Public Health and Infectious Disease Research Center, New Baneshwor, Kathmandu, Nepal
| | - Piero Olliaro
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Christine Halleux
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Canada
| | - Axel Kroeger
- Freiburg University, Centre for Medicine and Society, Freiburg, Germany
| |
Collapse
|
11
|
Jagadesh S, Combe M, Ginouvès M, Simon S, Prévot G, Couppié P, Nacher M, Gozlan RE. Spatial variations in Leishmaniasis: A biogeographic approach to mapping the distribution of Leishmania species. One Health 2021; 13:100307. [PMID: 34430698 PMCID: PMC8368019 DOI: 10.1016/j.onehlt.2021.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Cutaneous Leishmaniasis (CL) is the most prevalent form of Leishmaniasis and is widely endemic in the Americas. Several species of Leishmania are responsible for CL, a severely neglected tropical disease and the treatment of CL vary according to the different species of Leishmania. We proposed to map the distribution of the Leishmania species reported in French Guiana (FG) using a biogeographic approach based on environmental predictors. We also measured species endemism i.e., the uniqueness of species to a defined geographic location. Our results show that the distribution patterns varied between Leishmania spp. and were spatially dependent on climatic covariates. The species distribution modelling of the eco-epidemiological spatial patterns of Leishmania spp. is the first to measure endemism based on bioclimatic factors in FG. The study also emphasizes the impact of tree cover loss and climate on the increasing distribution of L. (Viannia) braziliensis in the most anthropized regions. Detection of high-risk regions for the different between Leishmania spp. is essential for monitoring and active surveillance of the vector. As climate plays a major role in the spatial distribution of the vector and reservoir and the survival of the pathogen, climatic covariates should be included in the analysis and mapping of vector-borne diseases. This study underscores the significance of local land management and the urgency of considering the impact of climate change in the development of vector-borne disease management strategies at the global scale.
Collapse
Affiliation(s)
- Soushieta Jagadesh
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Marine Combe
- ISEM, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Marine Ginouvès
- Equipe TBIP Tropical Biome and Immunophysiopathology, Université de Guyane, 97300 Cayenne, French Guiana
- Centre National de Référence des Leishmanioses - Laboratoire Associé, Centre Hospitalier Andrée Rosemon, 97304 Cayenne Cedex, French Guiana
| | - Stéphane Simon
- Equipe TBIP Tropical Biome and Immunophysiopathology, Université de Guyane, 97300 Cayenne, French Guiana
- Centre National de Référence des Leishmanioses - Laboratoire Associé, Centre Hospitalier Andrée Rosemon, 97304 Cayenne Cedex, French Guiana
| | - Ghislaine Prévot
- Equipe TBIP Tropical Biome and Immunophysiopathology, Université de Guyane, 97300 Cayenne, French Guiana
- Univ. de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Pierre Couppié
- Equipe TBIP Tropical Biome and Immunophysiopathology, Université de Guyane, 97300 Cayenne, French Guiana
- Univ. de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
- Service de Dermatologie, Centre Hospitalier Andrée Rosemon, 97304 Cayenne Cedex, French Guiana
| | - Mathieu Nacher
- Equipe TBIP Tropical Biome and Immunophysiopathology, Université de Guyane, 97300 Cayenne, French Guiana
- Univ. de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
- Centre d'investigation Clinique (CIC Inserm 1424), Centre hospitalier Andrée Rosemon, 97304 Cayenne Cedex, French Guiana
| | | |
Collapse
|
12
|
Jamshaid H, Din FU, Khan GM. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnology 2021; 19:106. [PMID: 33858436 PMCID: PMC8051083 DOI: 10.1186/s12951-021-00853-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
As a neglected tropical disease, Leishmaniasis is significantly instigating morbidity and mortality across the globe. Its clinical spectrum varies from ulcerative cutaneous lesions to systemic immersion causing hyperthermic hepato-splenomegaly. Curbing leishmanial parasite is toughly attributable to the myriad obstacles in existing chemotherapy and immunization. Since the 1990s, extensive research has been conducted for ameliorating disease prognosis, by resolving certain obstacles of conventional therapeutics viz. poor efficacy, systemic toxicity, inadequate drug accumulation inside the macrophage, scarce antigenic presentation to body's immune cells, protracted length and cost of the treatment. Mentioned hurdles can be restricted by designing nano-drug delivery system (nano-DDS) of extant anti-leishmanials, phyto-nano-DDS, surface modified-mannosylated and thiolated nano-DDS. Likewise, antigen delivery with co-transportation of suitable adjuvants would be achievable through nano-vaccines. In the past decade, researchers have engineered nano-DDS to improve the safety profile of existing drugs by restricting their release parameters. Polymerically-derived nano-DDS were found as a suitable option for oral delivery as well as SLNs due to pharmacokinetic re-modeling of drugs. Mannosylated nano-DDS have upgraded macrophage internalizing of nanosystem and the entrapped drug, provided with minimal toxicity. Cutaneous Leishmaniasis (CL) was tackling by the utilization of nano-DDS designed for topical delivery including niosomes, liposomes, and transfersomes. Transfersomes, however, appears to be superior for this purpose. The nanotechnology-based solution to prevent parasitic resistance is the use of Thiolated drug-loaded and multiple drugs loaded nano-DDS. These surfaces amended nano-DDS possess augmented IC50 values in comparison to conventional drugs and un-modified nano-DDS. Phyto-nano-DDS, another obscure horizon, have also been evaluated for their anti-leishmanial response, however, more intense assessment is a prerequisite. Impoverished Cytotoxic T-cells response followed by Leishmanial antigen proteins delivery have also been vanquished using nano-adjuvants. The eminence of nano-DDS for curtailment of anti-leishmanial chemotherapy and immunization associated challenges are extensively summed up in this review. This expedited approach is ameliorating the Leishmaniasis management successfully. Alongside, total to partial eradication of this disease can be sought along with associated co-morbidities.
Collapse
Affiliation(s)
- Humzah Jamshaid
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Gul Majid Khan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
13
|
Leishmaniasis: where are we and where are we heading? Parasitol Res 2021; 120:1541-1554. [PMID: 33825036 DOI: 10.1007/s00436-021-07139-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/24/2021] [Indexed: 01/19/2023]
Abstract
Leishmaniasis is a zoonotic disease in humans caused by the bite of a parasite-infected sandfly. The disease, widely referred to as "poor man's disease," affects millions of people worldwide. The clinical manifestation of the disease depends upon the species of the parasite and ranges from physical disfigurement to death if left untreated. Here, we review the past, present, and future of leishmaniasis in detail. The life cycle of Leishmania sp., along with its epidemiology, is discussed, and in addition, the line of therapeutics available for treatment currently is examined. The current status of the disease is critically evaluated, keeping emerging threats like human immunodeficiency virus (HIV) coinfection and post kala-azar dermal leishmaniasis (PKDL) into consideration. In summary, the review proposes a dire need for new therapeutics and reassessment of the measures and policies concerning emerging threats. New strategies are essential to achieve the goal of leishmaniasis eradication in the next few decades.
Collapse
|
14
|
Zheng Z, Chen J, Ma G, Satoskar AR, Li J. Integrative genomic, proteomic and phenotypic studies of Leishmania donovani strains revealed genetic features associated with virulence and antimony-resistance. Parasit Vectors 2020; 13:510. [PMID: 33046138 PMCID: PMC7552375 DOI: 10.1186/s13071-020-04397-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
Background Leishmaniasis is a neglected tropical disease affecting millions of people worldwide. Emerging drug resistance of Leishmania species poses threaten to the effective control and elimination programme of this neglected tropical disease. Methods In this work, we conducted drug-resistance testing, whole genome resequencing and proteome profiling for a recently reported clinical isolate with supposed drug resistance (HCZ), and two reference sensitive strains (DD8 and 9044) of Leishmania donovani, to explore molecular mechanisms underlying drug resistance in this parasite. Results With reference to DD8 and 9044 strains, HCZ isolate showed higher-level virulence and clear resistance to antimonials in promastigote culture, infected macrophages and animal experiment. Pairwise genomic comparisons revealed genetic variations (86 copy number variations, 271 frameshift mutations in protein-coding genes and two site mutations in non-coding genes) in HCZ isolate that were absent from the reference sensitive strains. Proteomic analysis indicated different protein expression between HCZ isolate and reference strains, including 69 exclusively detected proteins and 82 consistently down-/upregulated molecules in the HCZ isolate. Integrative analysis showed linkage of 12 genomic variations (gene duplication, insertion and deletion) and their protein expression changes in HCZ isolate, which might be associated with pathogenic and antimony-resistant phenotype. Functional annotation analyses further indicated that molecules involved in nucleotide-binding, fatty acid metabolism, oxidation-reduction and transport might play a role in host-parasite interaction and drug-resistance. Conclusions This comprehensive integrative work provided novel insights into the genetic basis underlying virulence and resistance, suggesting new aspects to be investigated for a better intervention against L. donovani and associated diseases.![]()
Collapse
Affiliation(s)
- Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China.,Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus, USA.,Department of Microbiology, Ohio State University, Columbus, USA
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Inferring transmission trees to guide targeting of interventions against visceral leishmaniasis and post-kala-azar dermal leishmaniasis. Proc Natl Acad Sci U S A 2020; 117:25742-25750. [PMID: 32973088 PMCID: PMC7568327 DOI: 10.1073/pnas.2002731117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Methods for analyzing individual-level geo-located disease data have existed for some time, but have rarely been used to analyze endemic human diseases. Here we apply such methods to nearly a decade’s worth of uniquely detailed epidemiological data on incidence of the deadly vector-borne disease visceral leishmaniasis (VL) and its secondary condition, post–kala-azar dermal leishmaniasis (PKDL), to quantify the spread of infection around cases in space and time by inferring who infected whom, and estimate the relative contribution of different infection states to transmission. Our findings highlight the key role long diagnosis delays and PKDL play in maintaining VL transmission. This detailed characterization of the spatiotemporal transmission of VL will help inform targeting of interventions around VL and PKDL cases. Understanding of spatiotemporal transmission of infectious diseases has improved significantly in recent years. Advances in Bayesian inference methods for individual-level geo-located epidemiological data have enabled reconstruction of transmission trees and quantification of disease spread in space and time, while accounting for uncertainty in missing data. However, these methods have rarely been applied to endemic diseases or ones in which asymptomatic infection plays a role, for which additional estimation methods are required. Here, we develop such methods to analyze longitudinal incidence data on visceral leishmaniasis (VL) and its sequela, post–kala-azar dermal leishmaniasis (PKDL), in a highly endemic community in Bangladesh. Incorporating recent data on VL and PKDL infectiousness, we show that while VL cases drive transmission when incidence is high, the contribution of PKDL increases significantly as VL incidence declines (reaching 55% in this setting). Transmission is highly focal: 85% of mean distances from inferred infectors to their secondary VL cases were <300 m, and estimated average times from infector onset to secondary case infection were <4 mo for 88% of VL infectors, but up to 2.9 y for PKDL infectors. Estimated numbers of secondary cases per VL and PKDL case varied from 0 to 6 and were strongly correlated with the infector’s duration of symptoms. Counterfactual simulations suggest that prevention of PKDL could have reduced overall VL incidence by up to 25%. These results highlight the need for prompt detection and treatment of PKDL to achieve VL elimination in the Indian subcontinent and provide quantitative estimates to guide spatiotemporally targeted interventions against VL.
Collapse
|
16
|
Abstract
Visceral leishmaniasis (VL) remains an important public health issue worldwide causing substantial morbidity and mortality. The Indian subcontinent accounted for up to 90% of the global VL burden in the past but made significant progress during recent years and is now moving towards elimination. However, to achieve and sustain elimination of VL, knowledge gaps on infection reservoirs and transmission need to be addressed urgently. Xenodiagnosis is the most direct way for testing the infectiousness of hosts to the vectors and can be used to investigate the dynamics and epidemiology of Leishmania donovani transmission. There are, however, several logistic and ethical issues with xenodiagnosis that need to be addressed before its application on human subjects. In the current Review, we discuss the critical knowledge gaps in VL transmission and the role of xenodiagnosis in disease transmission dynamics along with its technical challenges. Establishment of state of the art xenodiagnosis facilities is essential for the generation of much needed evidence in the VL elimination initiative.
Collapse
|
17
|
Van Bockstal L, Hendrickx S, Maes L, Caljon G. Sand Fly Studies Predict Transmission Potential of Drug-resistant Leishmania. Trends Parasitol 2020; 36:785-795. [PMID: 32713762 DOI: 10.1016/j.pt.2020.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
Leishmania parasites have the capacity to rapidly adapt to changing environments in their digenetic life cycle which alternates between a vertebrate and an invertebrate host. Emergence of resistance following drug exposure can evoke phenotypic alterations that affect several aspects of parasite fitness in both hosts. Current studies of the impact of resistance are mostly limited to interactions with the mammalian host and characterization of in vitro parasite growth and differentiation. Development in the vector and transmission capacity have been largely ignored. This review reflects on the impact of drug resistance on its spreading potential with specific focus on the use of the sand fly infection model to evaluate parasite development in the vector and the ensuing transmission potential of drug-resistant phenotypes.
Collapse
Affiliation(s)
- Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| |
Collapse
|
18
|
Kumar A, Saurabh S, Jamil S, Kumar V. Intensely clustered outbreak of visceral leishmaniasis (kala-azar) in a setting of seasonal migration in a village of Bihar, India. BMC Infect Dis 2020; 20:10. [PMID: 31906924 PMCID: PMC6945436 DOI: 10.1186/s12879-019-4719-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background A visceral leishmaniasis outbreak was reported from a village in a low-endemic district of Bihar, India. Methods Outbreak investigation with house-to-house search and rapid test of kala-azar suspects and contacts was carried out. Sandfly collection and cone bio-assay was done as part of entomological study. Results A spatially and temporally clustered kala-azar outbreak was found at Kosra village in Sheikhpura district with 70 cases reported till December 2018. Delay of more than a year was found between diagnosis and treatment of the index case. The southern hamlet with socio-economically disadvantaged migrant population was several times more affected than rest of the village (attack rate of 19.0% vs 0.5% respectively, ORMH = 39.2, 95% CI 18.2–84.4). The median durations between onset of fever to first contact with any health services, onset to kala-azar diagnosis, diagnosis to treatment were 10 days (IQR 4–18), 30 days (IQR 17–73) and 1 day (IQR 0.5 to 3), respectively, for 50 kala-azar cases assessed till June 2017. Three-fourths of these kala-azar cases had out-of-pocket medical expenditure for their condition. Known risk factors for kala-azar such as illiteracy, poverty, belonging to socially disadvantaged community, migration, residing in kutcha houses, sleeping in rooms with unplastered walls and non-use of mosquito nets were present in majority of these cases. Only half the dwellings of the kala-azar cases were fully sprayed. Fully gravid female P. argentipes collected post indoor residual spraying (IRS) and low sandfly mortality on cone-bioassay indicated poor effectiveness of vector control. Conclusions There is need to focus on low-endemic areas of kala-azar. The elimination programme should implement a routine framework for kala-azar outbreak response. Complete case-finding, use of quality-compliant insecticide and coverage of all sprayable surfaces in IRS could help interrupt transmission during outbreaks.
Collapse
Affiliation(s)
- Arvind Kumar
- Vector Borne Diseases Control officer - Sheikhpura district, Health Department, Government of Bihar, India. Currently, Chief Medical Officer - Arwal district, Health Department, Government of Bihar, Sheikhpura, India
| | - Suman Saurabh
- Zonal Coordinator - Neglected Tropical Diseases, Muzaffarpur, World Health Organization - India. Currently, Assistant Professor, Department of Community and Family Medicine, All India Institute of Medical Sciences (AIIMS) - Jodhpur, Jodhpur, Rajasthan, 342005, India.
| | - Sarosh Jamil
- Zonal Coordinator - Neglected Tropical Diseases, Bhagalpur, World Health Organization - India. Currently, State Coordinator - Neglected Tropical Diseases, World Health Organization - India, Raipur, Chhattisgarh, India
| | - Vijay Kumar
- Consultant and Ex-Scientist E, Department of Vector Biology & Control, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Patna, India
| |
Collapse
|
19
|
Ghimire TR, Regmi GR, Huettmann F. When Micro Drives the Macro: A Fresh Look at Disease and its Massive Contributions in the Hindu Kush-Himalaya. HINDU KUSH-HIMALAYA WATERSHEDS DOWNHILL: LANDSCAPE ECOLOGY AND CONSERVATION PERSPECTIVES 2020. [PMCID: PMC7197387 DOI: 10.1007/978-3-030-36275-1_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outbreaks of emerging and reemerging diseases have a high impact on the human and animal health because they are the underlying causes of disability, death, and long-term illness. For many regions those details are not, or just poorly known. Here we present on the morbidity and mortality in faunal diversities including domestic and wild species caused by various viral, bacterial, parasitic, and fungal diseases prevalent in Nepal and relevant for the wider Hindu Kush Himalaya. In addition, we provide details how antibiotic resistivity, vectors, and zoonosis have resulted on a landscape-scale in the huge public and veterinary health problem has been dealt with in the context of Nepal and the wider region.
Collapse
|
20
|
Insights from mathematical modelling and quantitative analysis on the proposed WHO 2030 targets for visceral leishmaniasis on the Indian subcontinent. Gates Open Res 2019; 3:1651. [PMID: 32803128 PMCID: PMC7416083 DOI: 10.12688/gatesopenres.13073.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 01/05/2023] Open
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease (NTD) caused by
Leishmania protozoa that are transmitted by female sand flies. On the Indian subcontinent (ISC), VL is targeted by the World Health Organization (WHO) for elimination as a public health problem by 2020, which is defined as <1 VL case (new and relapse) per 10,000 population at district level in Nepal and sub-district level in Bangladesh and India. WHO is currently in the process of formulating 2030 targets, asking whether to maintain the 2020 target or to modify it, while adding a target of zero mortality among detected cases. The NTD Modelling Consortium has developed various mathematical VL transmission models to gain insight into the transmission dynamics of VL, identify the main knowledge gaps, and predict the feasibility of achieving and sustaining the targets by simulating the impact of varying intervention strategies. According to the models, the current target is feasible at the appropriate district/sub-district level in settings with medium VL endemicities (up to 5 reported VL cases per 10,000 population per year) prior to the start of the interventions. However, in settings with higher pre-control endemicities, additional efforts may be required. We also highlight the risk that those with post-kala-azar dermal leishmaniasis (PKDL) may pose to reaching and sustaining the VL targets, and therefore advocate adding control of PKDL cases to the new 2030 targets. Spatial analyses revealed that local hotspots with high VL incidence remain. We warn that the current target provides a perverse incentive to not detect/report cases as the target is approached, posing a risk for truly achieving elimination as a public health problem although this is taken into consideration by the WHO procedures for validation. Ongoing modelling work focuses on the risk of recrudescence when interventions are relaxed after the elimination target has been achieved.
Collapse
|
21
|
Seblova V, Dujardin JC, Rijal S, Domagalska MA, Volf P. ISC1, a new Leishmania donovani population emerging in the Indian sub-continent: Vector competence of Phlebotomus argentipes. INFECTION GENETICS AND EVOLUTION 2019; 76:104073. [PMID: 31629887 DOI: 10.1016/j.meegid.2019.104073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 02/06/2023]
Abstract
Visceral leishmaniasis (VL), the most severe form of the disease, is caused by Leishmania donovani in the Indian sub-continent (ISC). Whole genome sequencing studies revealed that two parasite populations exist in the ISC: a main population named the Core Group (CG) found mostly in the lowlands, and a new, genetically different subpopulation called ISC1. Parasites belonging to the CG were shown to be responsible for the recent epidemics, while the ISC1 variant was originally identified in hilly districts of Nepal and was later on increasingly found in the lowlands. Importantly, the ISC1 and CG isolates differ in their drug susceptibility and virulence signatures, suggesting that ISC1 constitutes an emerging and functionally different variant of L. donovani. In present study we aimed to address the potential of ISC1 transmission by the natural vector of L. donovani in the lowlands, Phlebotomus argentipes. By experimental infection of sand flies with parasites of the different genotypes, we demonstrate that ISC1 and CG strains are developing similarly in P. argentipes, suggesting that P. argentipes is a fully competent vector for ISC1 parasites. Integration of previous and current findings shows thus that ISC1 is a new and different variant of L. donovani, fully adapted to spread in the ISC through the main vector. This information is directly useful for managers of the elimination program. Furthermore, integration of our successive studies (genotyping, phenotyping and vector competence) demonstrates the relevance of molecular surveillance and should be of interest for scientists working on vector borne diseases and control managers.
Collapse
Affiliation(s)
- Veronika Seblova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Suman Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
22
|
|
23
|
Bastola A, Shrestha M, Lamsal M, Shrestha S, Prajapati S, Adhikari A, Gupta BP, Hide M, Devkota L, Chalise BS, Pandey K, Manandhar KD. A case of high altitude cutaneous leishmaniasis in a non-endemic region in Nepal. Parasitol Int 2019; 74:101991. [PMID: 31520692 DOI: 10.1016/j.parint.2019.101991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
A case of cutaneous leishmaniasis was discovered in a 32-year old man with a persistent erythematous plaque. The patient resides in a high altitude (~2000 m above sea level) area that is not endemic for cutaneous leishmaniasis in the Dunai village of Dolpa, Nepal. The patient's lesion was initially misdiagnosed as lupus vulgaris. After response failure to initial treatment, additional testing by histological microscopy revealed the presence of Leishmania amastigotes in tissue from the lesion, and the diagnosis of cutaneous leishmaniasis was confirmed by nested PCR DNA assay of tissue from the lesion, and by a positive rK39 test in blood. Sequencing of the kinetoplast region confirmed the presence of Leishmania donovani complex. The patient responded well to treatments for cutaneous leishmaniasis and the skin lesions regressed after 6 months. This is the first known case of cutaneous leishmaniasis in a patient in Nepal who resides at high altitude in a non-endemic region. Increasing temperatures in this region of Nepal may be expanding the range of vectors that transmit cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Anup Bastola
- Sukraraj Tropical & Infectious Disease Hospital, Kathmandu, Nepal
| | - Mitesh Shrestha
- Central Department of Biotechnology, Tribhuvan University, Nepal; Research Institute for Bioscience and Biotechnology, Nepal.
| | - Mahesh Lamsal
- Central Department of Biotechnology, Tribhuvan University, Nepal
| | - Srijan Shrestha
- Central Department of Biotechnology, Tribhuvan University, Nepal
| | - Sabita Prajapati
- Central Department of Biotechnology, Tribhuvan University, Nepal
| | - Anurag Adhikari
- Central Department of Biotechnology, Tribhuvan University, Nepal
| | | | - Mallorie Hide
- Maladies infectieusesetvecteurs: écologie, génétique, évolution et contrôle, UMR (IRD/CNRS/UM), 5290 Montpellier, France.
| | - Lina Devkota
- Sukraraj Tropical & Infectious Disease Hospital, Kathmandu, Nepal
| | | | - Kishor Pandey
- Molecular Biotechnology Unit, Nepal Academy of Science and Technology, Nepal
| | | |
Collapse
|
24
|
Application of kDNA Minicircle PCR-RFLP to Characterize Leishmania donovaniClinical Isolates Obtained from Post-Kala-Azar Dermal Leishmaniasis in Eastern Nepal. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2019; 2019:9392414. [PMID: 31467623 PMCID: PMC6701360 DOI: 10.1155/2019/9392414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022]
Abstract
Post-kala-azar dermal leishmaniasis (PKDL) is a skin manifestation of visceral leishmaniasis (VL) which develops after apparent cure in some patients. PKDL is considered as the potential reservoir for the VL infection. Molecular epidemiological characterization of L. donovani isolates obtained from VL and PKDL isolates is essentially required in order to understand the transmission dynamics of the VL infection. To date, genetic variation among the VL and PKDL L. donovani isolates was not fully elucidated. Therefore, 14 clinical isolates from VL and 4 clinical isolates from PKDL were speciated by hsp70 and rDNA genes. Further characterization of L. donovani by haspB PCR demonstrates two different genotypes. All PKDL isolates have the same genetic structure. kDNA PCR-RFLP assay revealed 18 different genotypes; however, structural analysis showed the two distinct kDNA genotype population (k = 2). The kDNA fingerprint patterns of parasites from hilly districts were clustered separately from low-land districts. Therefore, further study with a large number of samples is urgently required for systematic characterization of the clinical isolates to track the molecular epidemiology of the Leishmania donovani causing VL and the role of PKDL as a reservoir.
Collapse
|
25
|
Koirala KD, Chappuis F, Verdonck K, Rijal S, Boelaert M. Persistent febrile illnesses in Nepal: A systematic review. Indian J Med Res 2019; 148:385-395. [PMID: 30666001 PMCID: PMC6362719 DOI: 10.4103/ijmr.ijmr_505_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background & objectives Although febrile illnesses are a frequent cause of consultation and hospitalization in low- and middle-income countries (LMICs), research has mainly focused on acute febrile illnesses (AFIs). In contrast, there are limited data on the causes of persistent febrile illnesses (PFIs) in LMIC. Lack of clarity on the differential diagnosis of PFIs in the rural tropics leads to the absence of diagnostic guidance tools. Methods In this study, a review of the potential causes of persistent fever defined as fever of more than seven days was done in Nepal, with a focus on nine pathogen-specific conditions. The current knowledge on their burden, distribution and diagnosis was summarized. Results Limited data were found on the incidence and public health burden of leptospirosis, murine typhus and brucellosis due to the absence of diagnostic tools outside reference laboratories and the overlap of signs and symptoms with other febrile conditions. The incidence of malaria and visceral leishmaniasis (VL) was found to be decreasing in Nepal, with some changes of the geographical areas at risk. Interpretation & conclusions This review indicates a need for more research on the causes of PFIs in Nepal and in the region and for the development of clinical guidance tailored to current local epidemiology. Guidance tools should include specific clinical features (e.g. eschar), results of rapid diagnostic tests (e.g. malaria, VL), appropriate indications for more sophisticated tests (e.g. abdominal ultrasound, polymerase chain reaction) and recommendations for adequate use of empirical treatment.
Collapse
Affiliation(s)
- Kanika Deshpande Koirala
- Department of Medicine, B.P. Koirala Institute of Health Science, Dharan, Nepal; Epidemiology and Control of Neglected Tropical Diseases Unit, Institute of Tropical Medicine, Antwerp, Belgium; Institute of Global Health, University of Geneva, Geneva, Switzerland
| | - François Chappuis
- Institute of Global Health, University of Geneva; Division of Tropical & Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Kristien Verdonck
- Epidemiology and Control of Neglected Tropical Diseases Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Suman Rijal
- Department of Medicine, B.P. Koirala Institute of Health Science, Dharan, Nepal
| | - Marleen Boelaert
- Epidemiology and Control of Neglected Tropical Diseases Unit, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
26
|
Shrestha M, Khatri-Chhetri M, Poudel RC, Maharjan J, Dumre SP, Manandhar KD, Pandey BD, Pun SB, Pandey K. Molecular evidence supports the expansion of visceral leishmaniasis towards non-program districts of Nepal. BMC Infect Dis 2019; 19:444. [PMID: 31113385 PMCID: PMC6528229 DOI: 10.1186/s12879-019-4083-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022] Open
Abstract
Background Visceral Leishmaniasis (VL) is caused by a protozoan parasite Leishmania donovani that is transmitted to humans by an infected female sandfly, Phlebotomus argentipes. VL is common in the Indian sub-continent including Nepal and efforts for its elimination are ongoing. However, expansion of disease towards the higher altitude areas, previously considered as VL free in Nepal, may impact the ability to achieve the elimination target by 2020. Methods This was an exploratory study, where VL suspected patients living exclusively in the non-program districts of Nepal and presenting with fever > 2 weeks and splenomegaly was included. The patients’ blood samples were collected, and DNA was extracted. DNA was subjected to PCR amplification and subsequent sequencing. Additionally, past 10 years data of VL cases from the national databases were analysed to see the trends of the disease in program and non program districts. Results Analysis of the past 10 years data revealed that trend of VL cases significantly decreased in the program districts (p = 0.001) while it increased in the non-program districts (p = 0.002). The national trend for overall incidence of VL also significantly decreased over this time period. Limited number of patients’ samples (n = 14) were subjected to molecular investigation, and four patients were found to be positive for Leishmania species by PCR. Interestingly, these cases in non-program districts were indeed also L. donovoni complex. All four patients were male with age ranges from 10 to 68 years. GenBank BLAST of the obtained DNA sequences confirmed identified specimens as L. donovani complex. We identified additional VL cases from non-program districts (including the high lands) of Nepal, indicating that the infection could be an emerging threat for the non-program areas of Nepal. Conclusion The demonstration of VL cases in areas initially considered non-endemic has raised concern about on-going transmission in those regions and may trigger subsequent government plan and action to include those areas in the elimination program. Thus, the government should consider revising the disease control programs to accommodate non-program districts for achieving the VL elimination goal set for 2020.
Collapse
Affiliation(s)
- Mitesh Shrestha
- Molecular Biotechnology Unit, Nepal Academy of Science and Technology (NAST), Khumaltar, GPO box: 3323, Lalitpur, Nepal
| | - Medha Khatri-Chhetri
- Molecular Biotechnology Unit, Nepal Academy of Science and Technology (NAST), Khumaltar, GPO box: 3323, Lalitpur, Nepal
| | - Ram Chandra Poudel
- Molecular Biotechnology Unit, Nepal Academy of Science and Technology (NAST), Khumaltar, GPO box: 3323, Lalitpur, Nepal
| | - Jyoti Maharjan
- Molecular Biotechnology Unit, Nepal Academy of Science and Technology (NAST), Khumaltar, GPO box: 3323, Lalitpur, Nepal
| | - Shyam Prakash Dumre
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Basu Dev Pandey
- Sukraraj Tropical and Infectious Disease Hospital, Kathmandu, Nepal
| | - Sher Bahadur Pun
- Sukraraj Tropical and Infectious Disease Hospital, Kathmandu, Nepal
| | - Kishor Pandey
- Molecular Biotechnology Unit, Nepal Academy of Science and Technology (NAST), Khumaltar, GPO box: 3323, Lalitpur, Nepal.
| |
Collapse
|
27
|
Lim D, Banjara MR, Singh VK, Joshi AB, Gurung CK, Das ML, Matlashewski G, Olliaro P, Kroeger A. Barriers of Visceral Leishmaniasis reporting and surveillance in Nepal: comparison of governmental VL-program districts with non-program districts. Trop Med Int Health 2018; 24:192-204. [PMID: 30565348 DOI: 10.1111/tmi.13189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES At the time when Nepal is on the verge of reaching the maintenance phase of the Visceral Leishmaniasis (VL) elimination program, the country is facing new challenges. The disease has expanded to 61 of the country's 75 districts including previously non-endemic areas where there is no control or patient management program in place. This study aimed to assess which elements of the surveillance and reporting systems need strengthening to identify cases at an early stage, prevent further transmission and ensure sustained VL elimination. METHODS In a cross-sectional mixed-method study, we collected data from two study populations in VL program and non-program districts. From February to May 2016, structured interviews were conducted with 40 VL patients, and 14 in-depth and semi-structured interviews were conducted with health managers. RESULTS The median total delay from onset of symptoms to successful reporting to the Ministry of Health was 68.5 days in the VL-program and 83 days in non-program districts. The difference in patient's delay from the onset of symptoms to seeking health care was 3 days in VL-program and 20 days in non-program districts. The diagnostic delay (38.5 days and 36 days, respectively), treatment delay (1 vs. 1 days) and reporting delay (45 vs. 36 days) were similar in program and non-program districts. The diagnostic delay increased three-fold from 2012, while treatment and reporting delay remained unchanged. The main barriers to surveillance were: (i) lack of access and awareness in non-program districts; (ii) growing private sector not included in and not participating to referral, treatment and reporting; (iii) lack of cooperation and coordination among stakeholders for training and deployment of interventions; (iv) insufficient validation, outreach and process optimisation of the reporting system. CONCLUSIONS Corrective measures are needed to maintain the achievements of the VL elimination campaign and prevent resurgence of the disease in Nepal. A clear patient referral structure, reinforcement of report notification and validation and direct relay of data by local hospitals and the private sector to the district health offices are needed to ensure prompt treatment and timely and reliable information to facilitate a responsive system of interventions.
Collapse
Affiliation(s)
- DaJull Lim
- General Medicine Department, University of Freiburg, Freiburg, Germany
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Vivek Kumar Singh
- Public Health and Infectious Disease Research Centre (PHIDReC), Kathmandu, Nepal
| | - Anand Ballabh Joshi
- Public Health and Infectious Disease Research Centre (PHIDReC), Kathmandu, Nepal
| | - Chitra Kumar Gurung
- Public Health and Infectious Disease Research Centre (PHIDReC), Kathmandu, Nepal
| | | | | | - Piero Olliaro
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland
| | - Axel Kroeger
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland.,Center for Medicine and Society, University of Freiburg, Germany
| |
Collapse
|
28
|
Chapman LAC, Morgan ALK, Adams ER, Bern C, Medley GF, Hollingsworth TD. Age trends in asymptomatic and symptomatic Leishmania donovani infection in the Indian subcontinent: A review and analysis of data from diagnostic and epidemiological studies. PLoS Negl Trop Dis 2018; 12:e0006803. [PMID: 30521526 PMCID: PMC6283524 DOI: 10.1371/journal.pntd.0006803] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Age patterns in asymptomatic and symptomatic infection with Leishmania donovani, the causative agent of visceral leishmaniasis (VL) in the Indian subcontinent (ISC), are currently poorly understood. Age-stratified serology and infection incidence have been used to assess transmission levels of other diseases, which suggests that they may also be of use for monitoring and targeting control programmes to achieve elimination of VL and should be included in VL transmission dynamic models. We therefore analysed available age-stratified data on both disease incidence and prevalence of immune markers with the aim of collating the currently available data, estimating rates of infection, and informing modelling and future data collection. METHODOLOGY/PRINCIPAL FINDINGS A systematic literature search yielded 13 infection prevalence and 7 VL incidence studies meeting the inclusion criteria. Statistical tests were performed to identify trends by age, and according to diagnostic cut-off. Simple reversible catalytic models with age-independent and age-dependent infection rates were fitted to the prevalence data to estimate infection and reversion rates, and to test different hypotheses about the origin of variation in these rates. Most of the studies showed an increase in infection prevalence with age: from ≲10% seroprevalence (<20% Leishmanin skin test (LST) positivity) for 0-10-year-olds to >10% seroprevalence (>20% LST-positivity) for 30-40-year-olds, but overall prevalence varied considerably between studies. VL incidence was lower amongst 0-5-year-olds than older age groups in most studies; most showing a peak in incidence between ages 5 and 20. The age-independent catalytic model provided the best overall fit to the infection prevalence data, but the estimated rates for the less parsimonious age-dependent model were much closer to estimates from longitudinal studies, suggesting that infection rates may increase with age. CONCLUSIONS/SIGNIFICANCE Age patterns in asymptomatic infection prevalence and VL incidence in the ISC vary considerably with geographical location and time period. The increase in infection prevalence with age and peaked age-VL-incidence distribution may be due to lower exposure to infectious sandfly bites in young children, but also suggest that acquired immunity to the parasite increases with age. However, poor standardisation of serological tests makes it difficult to compare data from different studies and draw firm conclusions about drivers of variation in observed age patterns.
Collapse
Affiliation(s)
- Lloyd A. C. Chapman
- Zeeman Institute, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alex L. K. Morgan
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- School of Biological Sciences, University of Edinburgh, Edinbugh, United Kingdom
| | - Emily R. Adams
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Graham F. Medley
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - T. Déirdre Hollingsworth
- Zeeman Institute, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Sundar S, Singh OP, Chakravarty J. Visceral leishmaniasis elimination targets in India, strategies for preventing resurgence. Expert Rev Anti Infect Ther 2018; 16:805-812. [PMID: 30289007 DOI: 10.1080/14787210.2018.1532790] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Visceral leishmaniasis (VL) is a fatal parasitic disease caused by a parasite belonging to the Leishmania donovani complex and transmitted by infected female Phlebotomous argentipes sand flies. The VL elimination strategy in the Indian subcontinent (ISC), which has a current goal of reducing the incidence of VL to below 1/10,000 of population by the year 2020, consists of rapid detection and treatment of VL to reduce the number of human reservoirs as well as vector control using indoor residual spraying (IRS). However, as the incidence of VL declines toward the elimination goal, greater targeting of control methods will be required to ensure appropriate early action to prevent the resurgence of VL. Area covered: We discuss the current progress and challenges in the VL elimination program and strategies to be employed to ensure sustained elimination of VL. Expert commentary: The VL elimination initiative has saved many human lives; however, for VL elimination to become a reality in a sustained way, an intense effort is needed, as substantial numbers of endemic subdistricts (primary health centers (PHCs) blocks level) are yet to reach the elimination target. In addition to effective epidemiological surveillance, appropriate diagnostic and treatment services for VL at PHCs will be needed to ensure long-term sustainability and prevent reemergence of VL.
Collapse
Affiliation(s)
- Shyam Sundar
- a Department of Medicine , Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
| | - Om Prakash Singh
- a Department of Medicine , Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
| | - Jaya Chakravarty
- a Department of Medicine , Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
| |
Collapse
|
30
|
Chapman LAC, Jewell CP, Spencer SEF, Pellis L, Datta S, Chowdhury R, Bern C, Medley GF, Hollingsworth TD. The role of case proximity in transmission of visceral leishmaniasis in a highly endemic village in Bangladesh. PLoS Negl Trop Dis 2018; 12:e0006453. [PMID: 30296295 PMCID: PMC6175508 DOI: 10.1371/journal.pntd.0006453] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/13/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is characterised by a high degree of spatial clustering at all scales, and this feature remains even with successful control measures. VL is targeted for elimination as a public health problem in the Indian subcontinent by 2020, and incidence has been falling rapidly since 2011. Current control is based on early diagnosis and treatment of clinical cases, and blanket indoor residual spraying of insecticide (IRS) in endemic villages to kill the sandfly vectors. Spatially targeting active case detection and/or IRS to higher risk areas would greatly reduce costs of control, but its effectiveness as a control strategy is unknown. The effectiveness depends on two key unknowns: how quickly transmission risk decreases with distance from a VL case and how much asymptomatically infected individuals contribute to transmission. METHODOLOGY/PRINCIPAL FINDINGS To estimate these key parameters, a spatiotemporal transmission model for VL was developed and fitted to geo-located epidemiological data on 2494 individuals from a highly endemic village in Mymensingh, Bangladesh. A Bayesian inference framework that could account for the unknown infection times of the VL cases, and missing symptom onset and recovery times, was developed to perform the parameter estimation. The parameter estimates obtained suggest that, in a highly endemic setting, VL risk decreases relatively quickly with distance from a case-halving within 90m-and that VL cases contribute significantly more to transmission than asymptomatic individuals. CONCLUSIONS/SIGNIFICANCE These results suggest that spatially-targeted interventions may be effective for limiting transmission. However, the extent to which spatial transmission patterns and the asymptomatic contribution vary with VL endemicity and over time is uncertain. In any event, interventions would need to be performed promptly and in a large radius (≥300m) around a new case to reduce transmission risk.
Collapse
Affiliation(s)
- Lloyd A. C. Chapman
- Zeeman Institute, University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris P. Jewell
- Centre for Health Informatics, Computing And Statistics, Lancaster University, Lancaster, UK
| | - Simon E. F. Spencer
- Zeeman Institute, University of Warwick, Coventry, UK
- Department of Statistics, University of Warwick, Coventry, UK
| | | | - Samik Datta
- Zeeman Institute, University of Warwick, Coventry, UK
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Rajib Chowdhury
- National Institute of Preventive and Social Medicine (NIPSOM), Mohakhali, Dhaka, Bangladesh
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Graham F. Medley
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - T. Déirdre Hollingsworth
- Zeeman Institute, University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Abstract
Leishmaniasis is a poverty-related disease with two main clinical forms: visceral leishmaniasis and cutaneous leishmaniasis. An estimated 0·7-1 million new cases of leishmaniasis per year are reported from nearly 100 endemic countries. The number of reported visceral leishmaniasis cases has decreased substantially in the past decade as a result of better access to diagnosis and treatment and more intense vector control within an elimination initiative in Asia, although natural cycles in transmission intensity might play a role. In east Africa however, the case numbers of this fatal disease continue to be sustained. Increased conflict in endemic areas of cutaneous leishmaniasis and forced displacement has resulted in a surge in these endemic areas as well as clinics across the world. WHO lists leishmaniasis as one of the neglected tropical diseases for which the development of new treatments is a priority. Major evidence gaps remain, and new tools are needed before leishmaniasis can be definitively controlled.
Collapse
Affiliation(s)
- Sakib Burza
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium; Médecins Sans Frontières, Delhi, India
| | - Simon L Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium.
| |
Collapse
|
32
|
Thakur L, Singh KK, Shanker V, Negi A, Jain A, Matlashewski G, Jain M. Atypical leishmaniasis: A global perspective with emphasis on the Indian subcontinent. PLoS Negl Trop Dis 2018; 12:e0006659. [PMID: 30260957 PMCID: PMC6159859 DOI: 10.1371/journal.pntd.0006659] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Among the neglected tropical diseases, leishmaniasis continues to be prevalent in many tropical and subtropical countries despite international, national, and local efforts towards its control and elimination over the last decade. This warrants a critical evaluation of such factors as under-reporting, asymptomatic infections, post kala azar dermal leishmaniasis (PKDL) cases, and drug resistance. In this review, we highlight lesser-understood atypical presentations of the disease involving atypical parasite strains against a background of classical leishmaniasis with a focus on the Indian subcontinent. METHODS AND FINDINGS A literature review based on endemic areas, the nature of disease manifestation, and underlying causative parasite was performed with data collected from WHO reports for each country. Searches on PubMed included the term ''leishmaniasis" and "leishmaniasis epidemiology" alone and in combination with each of the endemic countries, Leishmania species, cutaneous, visceral, endemic, non-endemic, typical, classical, atypical, and unusual with no date limit and published in English up to September 2017. Our findings portray a scenario with a wider distribution of the disease in new endemic foci, with new discoveries of parasite-driven atypical disease manifestations in different regions of the world. Unlike the classical picture, some Leishmania species are associated with more than one disease presentation, e.g., the L. donovani complex, generally associated with the visceral form, is now also associated with a cutaneous disease presentation, while L. tropica species complex, known to cause cutaneous disease, can cause viscerotropic disease. This phenomenon points towards the discovery of novel parasite variants as etiologic agents of atypical disease manifestations and represents an excellent opportunity to identify and study genes that control disease virulence and tropism. CONCLUSIONS The increased recognition of atypical leishmaniasis as an outcome of parasite variants has major implications for leishmaniasis control and elimination. Identifying molecular correlates of parasite isolates from distinct regions associated with different disease phenotypes is required to understand the current epidemiology of leishmaniasis in regions with atypical disease.
Collapse
Affiliation(s)
- Lovlesh Thakur
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Kiran K. Singh
- Department of Geography and Geology, Central University of Punjab, Bathinda, Punjab, India
| | - Vinay Shanker
- Department of Dermatology and Venereology, Maharishi Markandeshwar Medical College and Hospital, Sultanpur, Kumarhatti, Solan, Himachal Pradesh, India
| | - Ajeet Negi
- Department of Dermatology, Indira Gandhi Medical Centre, Shimla, Himachal Pradesh, India
| | - Aklank Jain
- Department of Animal Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Manju Jain
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
33
|
Recent Development of Visceral Leishmaniasis Treatments: Successes, Pitfalls, and Perspectives. Clin Microbiol Rev 2018; 31:31/4/e00048-18. [PMID: 30158301 DOI: 10.1128/cmr.00048-18] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Research in visceral leishmaniasis in the last decade has been focused on how better to use the existing medicines as monotherapy or in combination. Systematic research by geographical regions has shown that a universal treatment is far from today's reality. Substantial progress has been made in the elimination of kala-azar in South Asia, with a clear strategy on first- and second-line therapy options of single-dose liposomal amphotericin B and a combination of paromomycin and miltefosine, respectively, among other interventions. In Eastern Africa, sodium stibogluconate (SSG) and paromomycin in combination offer an advantage compared to the previous SSG monotherapy, although not exempted of limitations, as this therapy requires 17 days of painful double injections and bears the risk of SSG-related cardiotoxicity. In this region, attempts to improve the combination therapy have been unsuccessful. However, pharmacokinetic studies have led to a better understanding of underlying mechanisms, like the underexposure of children to miltefosine treatment, and an improved regimen using an allometric dosage. Given this global scenario of progress and pitfalls, we here review what steps need to be taken with existing medicines and highlight the urgent need for oral drugs. Furthermore, it should be noted that six candidates belonging to five new chemical classes are reaching phase I, ensuring an optimistic near future.
Collapse
|
34
|
Cuypers B, Berg M, Imamura H, Dumetz F, De Muylder G, Domagalska MA, Rijal S, Bhattarai NR, Maes I, Sanders M, Cotton JA, Meysman P, Laukens K, Dujardin JC. Integrated genomic and metabolomic profiling of ISC1, an emerging Leishmania donovani population in the Indian subcontinent. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 62:170-178. [PMID: 29679745 PMCID: PMC6261844 DOI: 10.1016/j.meegid.2018.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023]
Abstract
Leishmania donovani is the responsible agent for visceral leishmaniasis (VL) in the Indian subcontinent (ISC). The disease is lethal without treatment and causes 0.2 to 0.4 million cases each year. Recently, reports of VL in Nepalese hilly districts have increased as well as VL cases caused by L. donovani from the ISC1 genetic group, a new and emerging genotype. In this study, we perform for the first time an integrated, untargeted genomics and metabolomics approach to characterize ISC1, in comparison with the Core Group (CG), main population that drove the most recent outbreak of VL in the ISC. We show that the ISC1 population is very different from the CG, both at genome and metabolome levels. The genomic differences include SNPs, CNV and small indels in genes coding for known virulence factors, immunogens and surface proteins. Both genomic and metabolic approaches highlighted dissimilarities related to membrane lipids, the nucleotide salvage pathway and the urea cycle in ISC1 versus CG. Many of these pathways and molecules are important for the interaction with the host/extracellular environment. Altogether, our data predict major functional differences in ISC1 versus CG parasites, including virulence. Therefore, particular attention is required to monitor the fate of this emerging ISC1 population in the ISC, especially in a post-VL elimination context.
Collapse
Affiliation(s)
- Bart Cuypers
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Maya Berg
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Franck Dumetz
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Géraldine De Muylder
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Suman Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - James A Cotton
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Pieter Meysman
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
35
|
Visceral leishmaniasis from a non-endemic Himalayan region of Nepal. Parasitol Res 2018; 117:2323-2326. [PMID: 29717371 DOI: 10.1007/s00436-018-5887-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
Abstract
Visceral leishmaniasis (VL) is endemic to the southern plains of Nepal. Here, we report the first case of VL from a non-endemic Himalayan region of Nepal. The patient presented with a history of high-grade fever, splenomegaly, and anemia but had not traveled to a VL-endemic region. Visceral leishmaniasis was diagnosed following microscopic detection of the Leishmania species amastigote in a bone marrow aspirate, positive result for the rK39 test, and further validation by nested polymerase chain reaction (PCR). The patient was treated with 5 mg/kg liposomal amphotericin B and was clinically improved upon discharge. Our result suggests that VL is expanding towards non-endemic regions of Nepal, and it should therefore be considered that VL surveillance systems be strengthened, particularly for non-program districts and VL be included as a differential diagnosis in febrile illnesses.
Collapse
|
36
|
Molecular Preadaptation to Antimony Resistance in Leishmania donovani on the Indian Subcontinent. mSphere 2018; 3:3/2/e00548-17. [PMID: 29669889 PMCID: PMC5907651 DOI: 10.1128/msphere.00548-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
The “antibiotic resistance crisis” is a major challenge for scientists and medical professionals. This steady rise in drug-resistant pathogens also extends to parasitic diseases, with antimony being the first anti-Leishmania drug that fell in the Indian subcontinent (ISC). Leishmaniasis is a major but neglected infectious disease with limited therapeutic options. Therefore, understanding how parasites became resistant to antimonials is of commanding importance. In this study, we experimentally characterized the dynamics of this resistance acquisition and show for the first time that some Leishmania populations of the ISC were preadapted to antimony resistance, likely driven by environmental factors or by drugs used in the 19th century. Antimonials (Sb) were used for decades for chemotherapy of visceral leishmaniasis (VL). Now abandoned in the Indian subcontinent (ISC) because of Leishmania donovani resistance, this drug offers a unique model for understanding drug resistance dynamics. In a previous phylogenomic study, we found two distinct populations of L. donovani: the core group (CG) in the Gangetic plains and ISC1 in the Nepalese highlands. Sb resistance was only encountered within the CG, and a series of potential markers were identified. Here, we analyzed the development of resistance to trivalent antimonials (SbIII) upon experimental selection in ISC1 and CG strains. We observed that (i) baseline SbIII susceptibility of parasites was higher in ISC1 than in the CG, (ii) time to SbIII resistance was higher for ISC1 parasites than for CG strains, and (iii) untargeted genomic and metabolomic analyses revealed molecular changes along the selection process: these were more numerous in ISC1 than in the CG. Altogether these observations led to the hypothesis that CG parasites are preadapted to SbIII resistance. This hypothesis was experimentally confirmed by showing that only wild-type CG strains could survive a direct exposure to the maximal concentration of SbIII. The main driver of this preadaptation was shown to be MRPA, a gene involved in SbIII sequestration and amplified in an intrachromosomal amplicon in all CG strains characterized so far. This amplicon emerged around 1850 in the CG, well before the implementation of antimonials for VL chemotherapy, and we discuss here several hypotheses of selective pressure that could have accompanied its emergence. IMPORTANCE The “antibiotic resistance crisis” is a major challenge for scientists and medical professionals. This steady rise in drug-resistant pathogens also extends to parasitic diseases, with antimony being the first anti-Leishmania drug that fell in the Indian subcontinent (ISC). Leishmaniasis is a major but neglected infectious disease with limited therapeutic options. Therefore, understanding how parasites became resistant to antimonials is of commanding importance. In this study, we experimentally characterized the dynamics of this resistance acquisition and show for the first time that some Leishmania populations of the ISC were preadapted to antimony resistance, likely driven by environmental factors or by drugs used in the 19th century.
Collapse
|
37
|
Hirve S, Kroeger A, Matlashewski G, Mondal D, Banjara MR, Das P, Be-Nazir A, Arana B, Olliaro P. Towards elimination of visceral leishmaniasis in the Indian subcontinent-Translating research to practice to public health. PLoS Negl Trop Dis 2017; 11:e0005889. [PMID: 29023446 PMCID: PMC5638223 DOI: 10.1371/journal.pntd.0005889] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The decade following the Regional Strategic Framework for Visceral Leishmaniasis (VL) elimination in 2005 has shown compelling progress in the reduction of VL burden in the Indian subcontinent. The Special Programme for Research and Training in Tropical Diseases (TDR), hosted by the World Health Organization (WHO) and other stakeholders, has coordinated and financed research for the development of new innovative tools and strategies to support the regional VL elimination initiative. This paper describes the process of the TDR's engagement and contribution to this initiative. METHODOLOGY/PRINCIPAL FINDINGS Multiple databases were searched to identify 152 scientific papers and reports with WHO funding or authorship affiliation around the following 3 framework strategies: detection of new cases, morbidity reduction, and prevention of infection. TDR has played a critical role in the evaluation and subsequent use of the 39-aminoacid-recombinant kinesin antigen (rK39) rapid diagnostic test (RDT) as a confirmatory test for VL in the national program. TDR has supported the clinical research and development of miltefosine and single-dose liposomal amphotericin B as a first-line treatment against VL. TDR has engaged with in-country researchers, national programme managers, and partners to generate evidence-based interventions for early detection and treatment of VL patients. TDR evaluated the quality, community acceptance, and cost effectiveness of indoor residual spraying, insecticide-treated bed nets, insecticide-impregnated durable wall linings, insecticidal paint, and environmental management as tools for integrated vector management in reducing sandfly density. CONCLUSIONS/SIGNIFICANCE TDR's engagement with country policy makers, scientists, and clinicians in the development of effective diagnosis, treatment, case detection, and vector control represents an important example of TDR's stewardship toward the elimination of VL in the Indian subcontinent.
Collapse
Affiliation(s)
| | - Axel Kroeger
- Centre for Medicine and Society and Centre for Anthropology, Freiburg University, Freiburg, Germany
- Special Programme for Research and Training in Tropical Diseases (TDR), hosted by the World Health Organization, Geneva, Switzerland
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Dinesh Mondal
- Nutrition and Clinical Services division, International Center for Diarrheal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Pradeep Das
- Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Patna, India
| | - Ahmed Be-Nazir
- Department of Microbiology and Parasitology, National Institute of Preventive and Social Medicine, Dhaka, Bangladesh
| | - Byron Arana
- Cutaneous Leishmaniasis unit, Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Piero Olliaro
- Special Programme for Research and Training in Tropical Diseases (TDR), hosted by the World Health Organization, Geneva, Switzerland
| |
Collapse
|
38
|
Rai K, Bhattarai NR, Vanaerschot M, Imamura H, Gebru G, Khanal B, Rijal S, Boelaert M, Pal C, Karki P, Dujardin JC, Van der Auwera G. Single locus genotyping to track Leishmania donovani in the Indian subcontinent: Application in Nepal. PLoS Negl Trop Dis 2017; 11:e0005420. [PMID: 28249021 PMCID: PMC5348045 DOI: 10.1371/journal.pntd.0005420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/13/2017] [Accepted: 02/17/2017] [Indexed: 11/20/2022] Open
Abstract
Background We designed a straightforward method for discriminating circulating Leishmania populations in the Indian subcontinent (ISC). Research on transmission dynamics of visceral leishmaniasis (VL, or Kala-azar) was recently identified as one of the key research priorities for elimination of the disease in the ISC. VL in Bangladesh, India, and Nepal is caused by genetically homogeneous populations of Leishmania donovani parasites, transmitted by female sandflies. Classical methods to study diversity of these protozoa in other regions of the world, such as microsatellite typing, have proven of little use in the area, as they are not able to discriminate most genotypes. Recently, whole genome sequencing (WGS) so far identified 10 different populations termed ISC001-ISC010. Methodology / Principle findings As an alternative to WGS for epidemiological or clinical studies, we designed assays based on PCR amplification followed by dideoxynucleotide sequencing for identification of the non-recombinant genotypes ISC001 up to ISC007. These assays were applied on 106 parasite isolates collected in Nepal between 2011 and 2014. Combined with data from WGS on strains collected in the period 2002–2011, we provide a proof-of-principle for the application of genotyping to study treatment outcome, and differential geographic distribution. Conclusions / Significance Our method can aid in epidemiological follow-up of visceral leishmaniasis in the Indian subcontinent, a necessity in the frame of the Kala-azar elimination initiative in the region. Visceral Leishmaniasis (VL) or Kala-azar is a life-threatening neglected tropical disease that annually affects half a million people worldwide. In the Indian subcontinent (India, Nepal, Bangladesh), the disease is caused by infection with the protozoan parasite Leishmania donovani, which is transmitted by female sand flies. Currently, the Kala-azar elimination program aims at reducing the number of VL cases in the region to less than 1 in 10.000 at upazila, sub-district and district level in Bangladesh, India, and Nepal respectively. In support of this program, tools for tracking L. donovani populations are essential, because these allow monitoring geographic spread over time. However, the parasite populations in the region are highly homogeneous, requiring sequencing of the entire genome to gather sufficient information for discriminating them. Because whole genome sequencing (WGS) is impractical for large-scale use, we designed a simple alternative to identify the WGS-genotypes. Our method is based on PCR amplification followed by sequencing of one particular locus, diagnostic of each population. We provide proof-of-principle that our method can be used to track parasite populations over time, and to correlate them with clinical parameters. We believe that our assay can support the Kala-azar control efforts in the Indian subcontinent.
Collapse
Affiliation(s)
- Keshav Rai
- Department of Microbiology, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
- Department of Zoology, West Bengal State University, Barasat, West Bengal, India
| | - Narayan Raj Bhattarai
- Department of Microbiology, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, United States of America
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Gebreyohans Gebru
- Department of Animal Science, College of Agriculture, Aksum University, Aksum, Ethiopia
| | - Basudha Khanal
- Department of Microbiology, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Suman Rijal
- Department of Internal Medicine, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Chiranjib Pal
- Department of Zoology, West Bengal State University, Barasat, West Bengal, India
| | - Prahlad Karki
- Department of Internal Medicine, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Belgium
- * E-mail: (JCD); (GVdA)
| | - Gert Van der Auwera
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail: (JCD); (GVdA)
| |
Collapse
|
39
|
Das VNR, Pandey RN, Siddiqui NA, Chapman LAC, Kumar V, Pandey K, Matlashewski G, Das P. Longitudinal Study of Transmission in Households with Visceral Leishmaniasis, Asymptomatic Infections and PKDL in Highly Endemic Villages in Bihar, India. PLoS Negl Trop Dis 2016; 10:e0005196. [PMID: 27974858 PMCID: PMC5156552 DOI: 10.1371/journal.pntd.0005196] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
Background Visceral Leishmaniasis (VL) is a neglected tropical disease that afflicts some of the poorest populations in the world including people living in the Bihar state of India. Due to efforts from local governments, NGOs and international organizations, the number of VL cases has declined in recent years. Despite this progress, the reservoir for transmission remains to be clearly defined since it is unknown what role post kala-azar dermal leishmaniasis (PKDL) and asymptomatic infections play in transmission. This information is vital to establish effective surveillance and monitoring to sustainably eliminate VL. Methodology/Principal Findings We performed a longitudinal study over a 24-month period to examine VL transmission and seroconversion in households with VL, PKDL and asymptomatic infections in the Saran and Muzaffarpur districts of Bihar. During the initial screening of 5,144 people in 16 highly endemic villages, 195 cases of recently treated VL, 116 healthy rK39 positive cases and 31 PKDL cases were identified. Approximately half of the rK39-positive healthy cases identified during the initial 6-month screening period were from households (HHs) where a VL case had been identified. During the 18-month follow-up period, seroconversion of family members in the HHs with VL cases, PKDL cases, and rK39-positive individuals was similar to control HHs. Therefore, seroconversion was highest in HHs closest to the time of VL disease of a household member and there was no evidence of higher transmission in households with PKDL or healthy rK39-positive HHs. Moreover, within the PKDL HHs, (the initial 31 PKDL cases plus an additional 66 PKDL cases), there were no cases of VL identified during the initial screen or the 18-month follow-up. Notably, 23% of the PKDL cases had no prior history of VL suggesting that infection resulting directly in PKDL is more common than previously estimated. Conclusions/Significance These observations argue that acute VL cases represent the major reservoir for transmission in these villages and early identification and treatment of VL cases should remain a priority for VL elimination. We were unable to obtain evidence that transmission occurs in HHs with a PKDL case. Visceral leishmaniasis (also known as kala-azar) caused by infection with L. donovani is a deadly parasitic disease that afflicts some of world’s poorest populations, including the people of the northern Bihar State of India. Once transmitted to a human by an infected sandfly, the L. donovani parasite migrates from the site of the sandfly bite throughout the reticuloendothelial system, resulting in high levels of infection in the spleen, liver and bone marrow that eventually lead to organ failure and death if not treated effectively. India, Nepal and Bangladesh are currently engaged in a program to eliminate visceral leishmaniasis, principally through early case detection, treatment and vector control. As humans are the only reservoir for L. donovani, it is necessary to understand how the disease is transmitted and specifically what role acute visceral leishmaniasis (VL) cases, asymptomatic infections and post kala-azar dermal leishmaniasis (PKDL) cases play in transmission. We therefore performed a study to determine seroconversion for antibodies against the L. donovani rK39 antigen as a surrogate for transmission in households with VL cases, asymptomatic infections and PKDL cases in 16 highly endemic villages over a 2-year period in Bihar, India. We observed that most transmission occurred in the VL households and further that it occurred closest to the time of acute disease. We were unable to confirm that transmission occurred in the households with either asymptomatic infections or PKDL cases. These observations argue that active surveillance to diagnose and treat VL cases as soon as possible to reduce transmission should remain a priority for VL elimination.
Collapse
Affiliation(s)
- Vidya Nand Ravi Das
- Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | | | | | | | - Vijay Kumar
- Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Krishna Pandey
- Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- * E-mail: (PD); (GM)
| | - Pradeep Das
- Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
- * E-mail: (PD); (GM)
| |
Collapse
|
40
|
Abbasi I, Kirstein OD, Hailu A, Warburg A. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples. Acta Trop 2016; 162:20-26. [PMID: 27288706 PMCID: PMC4987123 DOI: 10.1016/j.actatropica.2016.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/01/2022]
Abstract
Three systems of loop-mediated isothermal amplification (LAMP) were developed for diagnosing leishmaniasis. The green nucleic acid stain, SYTO-16 was adapted for monitoring the reactions in real-time. The LAMP assays proved highly sensitive detecting >100Fg DNA/reaction. Leishmania DNA was detected in a significant number of asymptomatic individuals living in endemic areas. Visceral leishmaniasis (VL), one of the most important neglected tropical diseases, is caused by Leishmania donovani eukaryotic protozoan parasite of the genus Leishmania, the disease is prevalent mainly in the Indian sub-continent, East Africa and Brazil. VL can be diagnosed by PCR amplifying ITS1 and/or kDNA genes. The current study involved the optimization of Loop-mediated isothermal amplification (LAMP) for the detection of Leishmania DNA in human blood or tissue samples. Three LAMP systems were developed; in two of those the primers were designed based on shared regions of the ITS1 gene among different Leishmania species, while the primers for the third LAMP system were derived from a newly identified repeated region in the Leishmania genome. The LAMP tests were shown to be sufficiently sensitive to detect 0.1 pg of DNA from most Leishmania species. The green nucleic acid stain SYTO16, was used here for the first time to allow real-time monitoring of LAMP amplification. The advantage of real time-LAMP using SYTO 16 over end-point LAMP product detection is discussed. The efficacy of the real time-LAMP tests for detecting Leishmania DNA in dried blood samples from volunteers living in endemic areas, was compared with that of qRT-kDNA PCR.
Collapse
|
41
|
Elimination of visceral leishmaniasis on the Indian subcontinent. THE LANCET. INFECTIOUS DISEASES 2016; 16:e304-e309. [PMID: 27692643 DOI: 10.1016/s1473-3099(16)30140-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/26/2016] [Accepted: 05/25/2016] [Indexed: 01/08/2023]
Abstract
Visceral leishmaniasis is a serious public health problem on the Indian subcontinent, causing high morbidity and mortality. The governments in the region launched a visceral leishmaniasis elimination initiative in 2005. We review knowledge gaps and research priorities. Key challenges include low coverage of health services for those most at risk, drug resistance, the absence of a vaccine, and the complex biology of the sandfly-human host transmission cycle. Vector control is an essential component, but innovation in this field is insufficient. Substantial progress has been made in the area of diagnostic, therapeutic, and vaccine development, but there are still many hurdles to overcome. For visceral leishmaniasis elimination to become a reality, effective deployment of these existing and new tools is essential. A strong commitment at community level is imperative, and appropriate diagnostic and treatment services as well as effective epidemiological surveillance need to be ensured.
Collapse
|
42
|
Transmission Dynamics of Visceral Leishmaniasis in the Indian Subcontinent - A Systematic Literature Review. PLoS Negl Trop Dis 2016; 10:e0004896. [PMID: 27490264 PMCID: PMC4973965 DOI: 10.1371/journal.pntd.0004896] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/12/2016] [Indexed: 12/24/2022] Open
Abstract
Background As Bangladesh, India and Nepal progress towards visceral leishmaniasis (VL) elimination, it is important to understand the role of asymptomatic Leishmania infection (ALI), VL treatment relapse and post kala-azar dermal leishmaniasis (PKDL) in transmission. Methodology/ Principal Finding We reviewed evidence systematically on ALI, relapse and PKDL. We searched multiple databases to include studies on burden, risk factors, biomarkers, natural history, and infectiveness of ALI, PKDL and relapse. After screening 292 papers, 98 were included covering the years 1942 through 2016. ALI, PKDL and relapse studies lacked a reference standard and appropriate biomarker. The prevalence of ALI was 4–17-fold that of VL. The risk of ALI was higher in VL case contacts. Most infections remained asymptomatic or resolved spontaneously. The proportion of ALI that progressed to VL disease within a year was 1.5–23%, and was higher amongst those with high antibody titres. The natural history of PKDL showed variability; 3.8–28.6% had no past history of VL treatment. The infectiveness of PKDL was 32–53%. The risk of VL relapse was higher with HIV co-infection. Modelling studies predicted a range of scenarios. One model predicted VL elimination was unlikely in the long term with early diagnosis. Another model estimated that ALI contributed to 82% of the overall transmission, VL to 10% and PKDL to 8%. Another model predicted that VL cases were the main driver for transmission. Different models predicted VL elimination if the sandfly density was reduced by 67% by killing the sandfly or by 79% by reducing their breeding sites, or with 4–6y of optimal IRS or 10y of sub-optimal IRS and only in low endemic setting. Conclusion/ Significance There is a need for xenodiagnostic and longitudinal studies to understand the potential of ALI and PKDL as reservoirs of infection. The role of asymptomatic Leishmania infection (ALI), PKDL and VL relapse in transmission is unclear as VL elimination is achieved in the Indian subcontinent. ALI, PKDL and relapse studies lacked a reference standard and appropriate biomarker. ALI was 4–17-fold more prevalent than VL. The risk of ALI was higher in VL case contacts. Most infections remained asymptomatic or resolved spontaneously. The natural history of PKDL showed variability. Twenty nine percent had no past history of VL treatment. The risk of VL relapse was higher with HIV co-infection. Modelling studies predicted different effects. Early diagnosis was unlikely to eliminate VL in the long term. ALI was predicted to contribute to 82% of the overall transmission, VL to 10% and PKDL to 8%. Another model predicted that VL cases were the main driver for transmission. VL elimination was predicted if the sandfly density was reduced by 67% by killing the sandfly or by 79% by reducing their breeding sites, or with 4–6y of optimal IRS or 10y of sub-optimal IRS and only in low endemic setting. There is a need for more studies to fully understand the potential of ALI and PKDL as reservoirs of infection.
Collapse
|
43
|
Cameron MM, Acosta-Serrano A, Bern C, Boelaert M, den Boer M, Burza S, Chapman LAC, Chaskopoulou A, Coleman M, Courtenay O, Croft S, Das P, Dilger E, Foster G, Garlapati R, Haines L, Harris A, Hemingway J, Hollingsworth TD, Jervis S, Medley G, Miles M, Paine M, Picado A, Poché R, Ready P, Rogers M, Rowland M, Sundar S, de Vlas SJ, Weetman D. Understanding the transmission dynamics of Leishmania donovani to provide robust evidence for interventions to eliminate visceral leishmaniasis in Bihar, India. Parasit Vectors 2016; 9:25. [PMID: 26812963 PMCID: PMC4729074 DOI: 10.1186/s13071-016-1309-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/15/2016] [Indexed: 12/31/2022] Open
Abstract
Visceral Leishmaniasis (VL) is a neglected vector-borne disease. In India, it is transmitted to humans by Leishmania donovani-infected Phlebotomus argentipes sand flies. In 2005, VL was targeted for elimination by the governments of India, Nepal and Bangladesh by 2015. The elimination strategy consists of rapid case detection, treatment of VL cases and vector control using indoor residual spraying (IRS). However, to achieve sustained elimination of VL, an appropriate post elimination surveillance programme should be designed, and crucial knowledge gaps in vector bionomics, human infection and transmission need to be addressed. This review examines the outstanding knowledge gaps, specifically in the context of Bihar State, India.The knowledge gaps in vector bionomics that will be of immediate benefit to current control operations include better estimates of human biting rates and natural infection rates of P. argentipes, with L. donovani, and how these vary spatially, temporally and in response to IRS. The relative importance of indoor and outdoor transmission, and how P. argentipes disperse, are also unknown. With respect to human transmission it is important to use a range of diagnostic tools to distinguish individuals in endemic communities into those who: 1) are to going to progress to clinical VL, 2) are immune/refractory to infection and 3) have had past exposure to sand flies.It is crucial to keep in mind that close to elimination, and post-elimination, VL cases will become infrequent, so it is vital to define what the surveillance programme should target and how it should be designed to prevent resurgence. Therefore, a better understanding of the transmission dynamics of VL, in particular of how rates of infection in humans and sand flies vary as functions of each other, is required to guide VL elimination efforts and ensure sustained elimination in the Indian subcontinent. By collecting contemporary entomological and human data in the same geographical locations, more precise epidemiological models can be produced. The suite of data collected can also be used to inform the national programme if supplementary vector control tools, in addition to IRS, are required to address the issues of people sleeping outside.
Collapse
Affiliation(s)
- Mary M Cameron
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | | | - Caryn Bern
- UCSF School of Medicine, 550 16th Street, San Francisco, 94158, CA, USA.
| | | | | | - Sakib Burza
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | | | - Alexandra Chaskopoulou
- European Biological Control Laboratory, USDA-ARS, Tsimiski 43 Street, Thessaloniki, 54623, Greece.
| | - Michael Coleman
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Orin Courtenay
- University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Simon Croft
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Pradeep Das
- Rajendra Memorial Research Institute of Medical Sciences, Patna, India.
| | - Erin Dilger
- University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Geraldine Foster
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | - Lee Haines
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | - Janet Hemingway
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | | | - Sarah Jervis
- University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Graham Medley
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Michael Miles
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Mark Paine
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Albert Picado
- FIND, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.
| | - Richard Poché
- Genesis Laboratories, Inc., Wellington, CO, 80549, USA.
| | - Paul Ready
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Matthew Rogers
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Mark Rowland
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - David Weetman
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
44
|
Le Rutte EA, Coffeng LE, Bontje DM, Hasker EC, Postigo JAR, Argaw D, Boelaert MC, De Vlas SJ. Feasibility of eliminating visceral leishmaniasis from the Indian subcontinent: explorations with a set of deterministic age-structured transmission models. Parasit Vectors 2016; 9:24. [PMID: 26787302 PMCID: PMC4717541 DOI: 10.1186/s13071-016-1292-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/31/2015] [Indexed: 02/02/2023] Open
Abstract
Background Visceral leishmaniasis (VL) is a neglected tropical disease transmitted by sandflies. On the Indian subcontinent (ISC), VL is targeted for elimination as a public health problem by 2017. In the context of VL, the elimination target is defined as an annual VL incidence of <1 per 10,000 capita at (sub-)district level. Interventions focus on vector control, surveillance and on diagnosing and treating VL cases. Many endemic areas have not yet achieved optimal control due to logistical, biological as well as technical challenges. We used mathematical modelling to quantify VL transmission dynamics and predict the feasibility of achieving the VL elimination target with current control strategies under varying assumptions about the reservoir of infection in humans. Methods We developed three deterministic age-structured transmission models with different main reservoirs of infection in humans: asymptomatic infections (model 1), reactivation of infection after initial infection (model 2), and post kala-azar dermal leishmaniasis (PKDL; model 3). For each model, we defined four sub-variants based on different assumptions about the duration of immunity and age-patterns in exposure to sandflies. All 12 model sub-variants were fitted to data from the KalaNet study in Bihar (India) and Nepal, and the best sub-variant was selected per model. Predictions were made for optimal and sub-optimal indoor residual spraying (IRS) effectiveness for three different levels of VL endemicity. Results Structurally different models explained the KalaNet data equally well. However, the predicted impact of IRS varied substantially between models, such that a conclusion about reaching the VL elimination targets for the ISC heavily depends on assumptions about the main reservoir of infection in humans: asymptomatic cases, recovered (immune) individuals that reactivate, or PKDL cases. Conclusions Available data on the impact of IRS so far suggest one model is probably closest to reality (model 1). According to this model, elimination of VL (incidence of <1 per 10,000) by 2017 is only feasible in low and medium endemic settings with optimal IRS. In highly endemic settings and settings with sub-optimal IRS, additional interventions will be required. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1292-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Epke A Le Rutte
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Luc E Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Daniel M Bontje
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Epco C Hasker
- Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium.
| | | | - Daniel Argaw
- World Health Organization, Avenue Appia 20, 1211, Geneva, Switzerland.
| | - Marleen C Boelaert
- Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium.
| | - Sake J De Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|