Published online Feb 23, 2016. doi: 10.5494/wjh.v6.i1.41
Peer-review started: August 24, 2015
First decision: September 30, 2015
Revised: November 2, 2015
Accepted: December 1, 2015
Article in press: December 2, 2015
Published online: February 23, 2016
Processing time: 186 Days and 6.3 Hours
The objective of this review is to summarize current data obtained so far in catecholamine-essential hypertension (EH) relationships on a genetic basis. As the major elements driving the sympathetic system’s actions, catecholamines modulate a variety of physiological processes and mutations related to the system. This could generate serious disorders, such as severe mental illnesses, stress-induced disorders, or impaired control of blood pressure or motor pathways. EH is idiopathic, and the genetic basis of its causes and substantial interindividual discrepancies in response to different types of treatments are the focus of interest. Susceptibility to disease or efficacy of treatments are thought to reflect genomic variabilities among individuals. Therefore, outlining the available knowledge in functional genetic polymorphisms linked to EH will make the picture clearer and will help to establish future prospects in the field.
Core tip: Catecholamines are the major elements of sympathetic system’s actions, therefore they also act as important regulators of blood pressure. Polymorphism studies require a tedious approach since there are inconsistencies among the studies due to different ethnical origins, subject size and self discrepancies among individuals. Nevertheless, there are many promising findings and still more fields to investigate. Especially role of genes involved in the biosynthesis and metabolism of catecholamines were relatively missing. This review summarizes the current knowledge about catecholamine-related polymorphisms on the basis of development, prognosis and drug response of essential hypertension and aims to improve better assessment of the disease.