1
|
Nishida N, Sugimoto S, Miyagaki S, Cho C, Konishi M, Goda T, Yamaguchi M, Kawabe Y, Morimoto H, Kusuyama J, Okamura T, Hamaguchi M, Mori J, Nakajima H, Fukui M, Iehara T. Anti-inflammatory effect of Angiotensin 1-7 in white adipose tissue. Adipocyte 2025; 14:2449027. [PMID: 39803918 PMCID: PMC11730366 DOI: 10.1080/21623945.2024.2449027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/08/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice. Monocyte chemoattractant protein-1 (MCP-1) produced by white adipocytes and tumour necrosis factor-α (TNF-α) produced by macrophages are pro-inflammatory cytokines and interact to form a pathogenic loop to exacerbate obesity-induced inflammation. We found that Ang 1-7 reduced MCP-1 and TNF-α gene expressions and the number of crown-like structures, which are histological hallmarks of the pro-inflammatory process, in visceral epididymal WAT (eWAT) and reduced circulating MCP-1 and TNF-α levels, accompanied by improvement in insulin resistance, in dietary-induced obese mice. Furthermore, Ang 1-7 reduced MCP-1 and TNF-α secretions in 3T3-L1 white adipocytes and RAW 264.7 macrophages, respectively, which are in vitro experimental models mimicking obesity condition. Our results suggest that Ang 1-7 directly acts on WAT to mitigate obesity-induced inflammation. Thus, this study provides novel insights into the underlying mechanism of anti-obesity effects of Ang 1-7.
Collapse
Affiliation(s)
- Nozomi Nishida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoru Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Miyagaki
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chiharu Cho
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Madoka Konishi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Goda
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mihoko Yamaguchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiro Kawabe
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidechika Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Joji Kusuyama
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Mori
- Division of Pediatric Endocrinology, Metabolism and Nephrology, Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Hisakazu Nakajima
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Sun Y, Shan X, Li M, Niu Y, Sun Z, Ma X, Wang T, Zhang J, Niu D. Autoimmune mechanisms and inflammation in obesity-associated type 2 diabetes, atherosclerosis, and non-alcoholic fatty liver disease. Funct Integr Genomics 2025; 25:84. [PMID: 40205260 DOI: 10.1007/s10142-025-01587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
Obesity, characterized by the excessive accumulation of white adipose tissue, is a significant global health burden and a major risk factor for a range of diseases, including malignancies and metabolic disorders. Individuals with high visceral fat content are particularly susceptible to severe complications such as type 2 diabetes, cardiovascular diseases, and liver disorders. However, the pathogenesis of obesity-related metabolic diseases extends beyond simple adiposity. Chronic obesity triggers a prolonged inflammatory response, which leads to tissue fibrosis and sustained organ damage, contributing to multi-organ dysfunction. This review explores the autoimmune mechanisms and inflammatory pathways underlying obesity-induced type 2 diabetes, atherosclerosis, and non-alcoholic fatty liver disease, with an emphasis on their interrelated pathophysiology and the potential for therapeutic interventions.
Collapse
Grants
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- LZ22C010003 Key Project of Zhejiang Provincial Natural Science Foundation of China
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 2021R52043 Scientific and Technological Innovation Leading Talents Project of Zhejiang Provincial "High-level Talents Special Support Plan"
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- 32202656, 32402753 National Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- LQ23C170003, LQ23C180003 & LQ24C170001 Zhejiang Provincial Natural Science Foundation of China
- 2021C02068-4 Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding
- 2021C02068-4 Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding
Collapse
Affiliation(s)
- Yuanyuan Sun
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xueting Shan
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mingyang Li
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yifan Niu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhongxin Sun
- Department of Plastic, Reconstructive & Hand Microsurgery, Ningbo NO.6 Hospital, Ningbo, 315000, Zhejiang, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China.
| | - Jufang Zhang
- Department of Plastic and Aesthetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
3
|
Berbudi A, Khairani S, Tjahjadi AI. Interplay Between Insulin Resistance and Immune Dysregulation in Type 2 Diabetes Mellitus: Implications for Therapeutic Interventions. Immunotargets Ther 2025; 14:359-382. [PMID: 40196377 PMCID: PMC11974557 DOI: 10.2147/itt.s499605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a rapidly growing global health issue characterized by insulin resistance and chronic inflammation. Beyond regulating glucose homeostasis, insulin plays a pivotal role in modulating immune cell function, linking metabolic dysregulation with immune responses. This review examines the intricate relationship between insulin resistance and immune dysfunction in T2DM, focusing on how impaired insulin signaling pathways, particularly PI3K/Akt and MAPK, contribute to immune cell activation, proliferation, and chronic inflammation. Insulin resistance impacts immune cells such as T cells, B cells, macrophages, and neutrophils, leading to an imbalance between pro-inflammatory and anti-inflammatory responses. Elevated pro-inflammatory cytokines (eg, TNF-α, IL-6) and adipokines (eg, leptin, resistin) exacerbate insulin resistance, promoting a vicious cycle of metabolic and immune dysregulation. This interplay contributes to the chronic low-grade inflammation that underlies T2DM pathogenesis, further impairing insulin signaling and glucose metabolism. Restoration of insulin sensitivity is, therefore, a critical step toward correcting immune imbalance in insulin-resistant states like T2DM. Therapeutic approaches that reduce inflammation could also support improvements in insulin sensitivity, addressing both metabolic and immune disturbances simultaneously. The review also explores therapeutic strategies, including insulin therapy, targeting insulin signaling pathways, and lifestyle interventions. Insulin therapy can reduce pro-inflammatory cytokine production and enhance anti-inflammatory responses, although challenges such as potential immune suppression and hyperinsulinemia remain. Targeting key signaling pathways and transcription factors offers promising avenues for modulating immune responses, while lifestyle interventions, such as dietary modifications, physical activity, and weight management, can improve insulin sensitivity and reduce inflammation. By understanding the dual role of insulin in regulating both metabolic and immune functions, this review underscores the importance of addressing immune dysfunction as part of comprehensive T2DM management. Targeting the interconnected pathways of insulin signaling and immune regulation could lead to more effective therapeutic approaches, ultimately improving patient outcomes and reducing disease complications.
Collapse
Affiliation(s)
- Afiat Berbudi
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Universitas Padjadjaran Hospital, Sumedang, Indonesia
| | - Shafia Khairani
- Department of Biomedical Sciences, Cell Biology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Adi Imam Tjahjadi
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Universitas Padjadjaran Hospital, Sumedang, Indonesia
- Department of Biomedical Sciences, Microbiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
4
|
Ernst IVS, Lehtonen L, Nilsson SM, Nielsen FL, Marcher AB, Mandrup S, Madsen JGS. Single Nucleus Multiome Analysis Reveals Early Inflammatory Response to High-Fat Diet in Mouse Pancreatic Islets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646568. [PMID: 40236154 PMCID: PMC11996447 DOI: 10.1101/2025.04.01.646568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In periods of sustained hyper-nutrition, pancreatic β-cells undergo functional compensation through transcriptional upregulation of gene programs driving insulin secretion. This adaptation is essential for maintaining systemic glucose homeostasis and metabolic health. Using single nuclei multiomics, we have mapped the early transcriptional compensation mechanisms in murine islets of Langerhans exposed to high-fat diet (HFD) for one and three weeks. We show that β-cells exhibit the largest transcriptional response to HFD, characterized by early activation of proinflammatory eRegulons and downregulation of β-cell identity genes, particularly in a distinct subset of β-cells. Our observations translate to humans, as we observe an increase in the inflammatory gene signatures in human β-cells in pre-diabetes and diabetes. Collectively, these observations point to cellular cross-talk through proinflammatory signaling as a central and early driver of β-cell dysfunction that limits the compensatory capacity of β-cells, which is closely linked to the development of diabetes.
Collapse
|
5
|
Liu Y, Liu J, Ren R, Xin Z, Luo Y, Chen Y, Huang C, Liu Y, Yang T, Wang X. Short-term and long-term high-fat diet promote metabolic disorder through reprogramming mRNA m 6A in white adipose tissue by gut microbiota. MICROBIOME 2025; 13:75. [PMID: 40091072 PMCID: PMC11912683 DOI: 10.1186/s40168-025-02047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Although short-term high-fat diet (S-HFD) and long-term high-fat diet (L-HFD) induce metabolic disorder, the underlying epigenetic mechanism is still unclear. RESULTS Here, we found that both 4 days of S-HFD and 10 weeks of L-HFD increased mRNA m6A level in epididymal white adipose tissue (eWAT) and impaired metabolic health. Interestingly, S-HFD activated transposable elements (TEs), especially endogenous retroviruses (ERVs) in eWAT, while L-HFD activated long interspersed elements (LINEs). Subsequently, we demonstrated that both S-HFD and L-HFD increased m6A level of Ehmt2 and decreased EHMT2 protein expression and H3K9me2 level, accounting for activation of ERVs and LINEs. Overexpression of EHMT2 in eWAT or inhibition of ERVs and LINEs by antiviral therapy improved metabolic health under HFD feeding. Notably, we found that both short-term and long-term HFD feeding increased Fimicutes/Bacteroidota ratio and decreased the gut microbiome health index. Fecal microbiota transplantation (FMT) experiments demonstrated that gut microbiota from S-HFD and L-HFD was responsible for increased m6A level in eWAT, resulting in glucose intolerance and insulin insensitivity. Furthermore, we identified that both S-HFD and L-HFD increased the abundance of the gut microbial metabolite homogentisic acid (HGA), and HGA level was positively correlated with unclassified_f__Lachnospiraceae which was both increased in S-HFD and L-HFD feeding mice. Administration of HGA increased the m6A level of Ehmt2 and decreased the EHMT2 protein expression and H3K9me2 level in eWAT, leading to metabolic disorder in mice. CONCLUSIONS Together, this study reveals a novel mechanism that S-HFD and L-HFD induce metabolism disorder through gut microbiota-HGA-m6A-Ehmt2-ERV/LINE signaling. These findings may provide a novel insight for prevention and treatment of metabolism disorder upon short-term or long-term dietary fat intake. Video Abstract.
Collapse
Affiliation(s)
- Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Zhejiang Key Laboratory of nutrition and breeding for high-quality animal products, Hangzhou, Zhejiang, China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Zhejiang Key Laboratory of nutrition and breeding for high-quality animal products, Hangzhou, Zhejiang, China
| | - Ruiti Ren
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Zhejiang Key Laboratory of nutrition and breeding for high-quality animal products, Hangzhou, Zhejiang, China
| | - Zimeng Xin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Zhejiang Key Laboratory of nutrition and breeding for high-quality animal products, Hangzhou, Zhejiang, China
| | - Yaojun Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Zhejiang Key Laboratory of nutrition and breeding for high-quality animal products, Hangzhou, Zhejiang, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Zhejiang Key Laboratory of nutrition and breeding for high-quality animal products, Hangzhou, Zhejiang, China
| | - Chaoqun Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Zhejiang Key Laboratory of nutrition and breeding for high-quality animal products, Hangzhou, Zhejiang, China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Zhejiang Key Laboratory of nutrition and breeding for high-quality animal products, Hangzhou, Zhejiang, China
| | - Tongyudan Yang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Zhejiang Key Laboratory of nutrition and breeding for high-quality animal products, Hangzhou, Zhejiang, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.
- Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.
- Zhejiang Key Laboratory of nutrition and breeding for high-quality animal products, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Campos-Bayardo TI, Román-Rojas D, García-Sánchez A, Cardona-Muñoz EG, Sánchez-Lozano DI, Totsuka-Sutto S, Gómez-Hermosillo LF, Casillas-Moreno J, Andrade-Sierra J, Pazarín-Villaseñor L, Campos-Pérez W, Martínez-López E, Miranda-Díaz AG. The Role of TLRs in Obesity and Its Related Metabolic Disorders. Int J Mol Sci 2025; 26:2229. [PMID: 40076851 PMCID: PMC11900219 DOI: 10.3390/ijms26052229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity affects the adaptability of adipose tissue (AT), impairing its ability to regulate energy and metabolism. Obesity is associated with many metabolic disorders, including dyslipidemia, hypertension, sleep disorders, non-alcoholic liver disease, and some types of cancer. Toll-like receptors (TLRs) are important in obesity and related metabolic disorders. TLRs are pattern-recognizing receptors (PRRs) involved in the innate immune system and recognize pathogen-associated molecular patterns (PAMPs) and endogenous ligands. TLRs, especially TLR2 and TLR4, are activated by fatty acids, endotoxins, and other ligands. TLR2 and TLR4 activation triggers inflammatory responses. Chronic inflammation driven by TLR activation is a hallmark of obesity and metabolic diseases. The inflammatory response triggered by TLR activation alters insulin signaling, contributing to insulin resistance, a key feature of metabolic syndrome and type 2 diabetes. Modulation of TLR activity through lifestyle changes (diet and exercise), obesity surgery, and pharmacological agents is under study as a possible therapeutic approach to controlling obesity and its complications.
Collapse
Affiliation(s)
- Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniela Itzel Sánchez-Lozano
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Sylvia Totsuka-Sutto
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Casillas-Moreno
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Andrade-Sierra
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Leonardo Pazarín-Villaseñor
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Wendy Campos-Pérez
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Erika Martínez-López
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| |
Collapse
|
7
|
Scheidl TB, Wager JL, Thompson JA. Adipose Tissue Stromal Cells: Rheostats for Adipose Tissue Function and Metabolic Disease Risk. Can J Cardiol 2025:S0828-282X(25)00137-0. [PMID: 39986382 DOI: 10.1016/j.cjca.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025] Open
Abstract
The transition from metabolically healthy obesity to the development of obesity-associated metabolic syndrome and cardiovascular disease is thought to be triggered by a loss in the functional integrity of adipose tissue. Although mature adipocytes are the primary functional units that carry out lipid partitioning in adipose tissue for the promotion of whole-body energy balance, they are supported by a heterogenous collection of nonadipocytes in the stroma. Research over the past couple of decades has expanded perspectives on the homeostatic and pathological roles of the nonadipocyte compartment. Adipose progenitors originate in the embryonic period and drive the developmental adipogenesis that establishes the set point of adiposity. A population of adipocyte progenitors reside in adult depots and serve an important homeostatic role as a reservoir to support adipocyte turnover. Adipocyte hypertrophy in obesity increases the rate of adipocyte death and the ability of progenitors to support this high rate of adipocyte turnover is important for the preservation of the lipid-buffering function of adipose tissue. Some evidence exists to suggest that impaired adipogenesis or a decline in progenitors capable of differentiation is a key event in the development of adipose dysfunction. The efficiency of macrophages to clear the debris and toxic lipids released from dead adipocytes lies at the fulcrum between preservation of adipose function and the progression toward chronic inflammation. Although macrophages in collaboration with other immune cells propagate the inflammation that underlies adipose dysfunction, there is now a greater appreciation for the diverse and unique roles of immune cells within adipose tissue.
Collapse
Affiliation(s)
- Taylor B Scheidl
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. https://twitter.com/TaylorScheidl
| | - Jessica L Wager
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Song M, Bai Y, Song F. High-fat diet and neuroinflammation: The role of mitochondria. Pharmacol Res 2025; 212:107615. [PMID: 39842474 DOI: 10.1016/j.phrs.2025.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/28/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
In recent years, increasing evidence has supported that high-fat diet (HFD) can induce the chronic, low-grade neuroinflammation in the brain, which is closely associated with the impairment of cognitive function. As the key organelles responsible for energy metabolism in the cell, mitochondria are believed to involved in the pathogenesis of a variety of neurological disorders. This review summarizes the current progress in the field of the relationship between HFD exposure and neurodegenerative diseases, and outline the major routines of HFD induced neuroinflammation and its pathological significance in the pathogenesis of neurodegenerative diseases. Furthermore, the article highlights the pivotal role of mitochondrial dysfunction in driving the neuroinflammation in the setting of HFD. Danger-associated molecular patterns (DAMPs) from damaged mitochondria can activate innate immune signaling pathways, while mitochondrial dysfunction itself can lead to metabolic remodeling of inflammatory cells, thus inducing neuroinflammation. More importantly, mitochondrial damage, neuroinflammation, and insulin resistance caused by HFD form a mutually reinforcing vicious cycle, ultimately leading to the death of neurons and promoting the progression of neurodegenerative diseases. Thus, in-depth elucidation of the role and underlying mechanisms of mitochondrial dysfunction in HFD-induced metabolic disorders may not only expand our understanding of the mechanistic linkages between HFD and etiology of neurodegenerative diseases, but also help develop the specific strategies for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China.
| | - Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Fuyong Song
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China.
| |
Collapse
|
9
|
Jang JH, Sung JH, Huh JY. Diverse Functions of Macrophages in Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease: Bridging Inflammation and Metabolism. Immune Netw 2025; 25:e12. [PMID: 40078789 PMCID: PMC11896663 DOI: 10.4110/in.2025.25.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Macrophages play crucial roles in immune response and tissue homeostasis, with their functions becoming increasingly complex in obesity-mediated metabolic disorders. This review explores the extensive range of macrophage activities within adipose and liver tissues, emphasizing their contribution to the pathogenesis and progression of obesity and its related metabolic dysfunction-associated steatotic liver disease (MASLD). In the context of obesity, macrophages respond adaptively to lipid overloads and inflammatory cues in adipose tissue, profoundly influencing insulin resistance and metabolic homeostasis. Concurrently, their role in the liver extends to moderating inflammation and orchestrating fibrotic responses, integral to the development of MASLD. Highlighting the spectrum of macrophage phenotypes across these metabolic landscapes, we summarize their diverse roles in linking inflammatory processes with metabolic functions. This review advocates for a deeper understanding of macrophage subsets in metabolic tissues, proposing targeted research to harness their therapeutic potential in mitigating MASLD and other metabolic disorders.
Collapse
Affiliation(s)
- Jun Hee Jang
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| | - Jin Hyun Sung
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul 04107, Korea
- Center for Nano Materials, Sogang University, Seoul 04107, Korea
| |
Collapse
|
10
|
Yildiz R, Ganbold K, Sparman NZR, Rajbhandari P. Immune Regulatory Crosstalk in Adipose Tissue Thermogenesis. Compr Physiol 2025; 15:e70001. [PMID: 39921241 DOI: 10.1002/cph4.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Brown adipose tissue (BAT) and thermogenic beige fat within white adipose tissue (WAT), collectively known as adaptive thermogenic fat, dissipate energy as heat, offering promising therapeutic potential to combat obesity and metabolic disorders. The specific biological functions of these fat depots are determined by their unique interaction with the microenvironments, composed of immune cells, endothelial cells, pericytes, and nerve fibers. Immune cells residing in these depots play a key role in regulating energy expenditure and systemic energy homeostasis. The dynamic microenvironment of thermogenic fat depots is essential for maintaining tissue health and function. Immune cells infiltrate both BAT and beige WAT, contributing to their homeostasis and activation through intricate cellular communications. Emerging evidence underscores the importance of various immune cell populations in regulating thermogenic adipose tissue, though many remain undercharacterized. This review provides a comprehensive overview of the immune cells that regulate adaptive thermogenesis and their complex interactions within the adipose niche, highlighting their potential to influence metabolic health and contribute to therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ramazan Yildiz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Khatanzul Ganbold
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Njeri Z R Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
11
|
Han SM, Nahmgoong H, Yim KM, Kim JB. How obesity affects adipocyte turnover. Trends Endocrinol Metab 2025; 36:147-160. [PMID: 39095230 DOI: 10.1016/j.tem.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Min Yim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Bum Kim
- National Leader Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Sakamoto K, Butera MA, Zhou C, Maurizi G, Chen B, Ling L, Shawkat A, Patlolla L, Thakker K, Calle V, Morgan DA, Rahmouni K, Schwartz GJ, Tahiri A, Buettner C. Overnutrition causes insulin resistance and metabolic disorder through increased sympathetic nervous system activity. Cell Metab 2025; 37:121-137.e6. [PMID: 39437790 PMCID: PMC11711004 DOI: 10.1016/j.cmet.2024.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/19/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The mechanisms underlying obesity-induced insulin resistance remain incompletely understood, as impaired cellular insulin signaling, traditionally considered the primary driver of insulin resistance, does not always accompany impaired insulin action. Overnutrition rapidly increases plasma norepinephrine (NE), suggesting overactivation of the sympathetic nervous system (SNS). However, the role of the SNS in obesity is controversial, as both increased and decreased SNS activity (SNA) have been reported. Here, we show that reducing catecholamine (CA) release from the SNS protects against overnutrition-induced insulin resistance as well as hyperglucagonemia, adipose tissue dysfunction, and fatty liver disease, as we demonstrate utilizing a mouse model of inducible and peripherally restricted deletion of tyrosine hydroxylase (th; THΔper). A key mechanism through which heightened SNA induces insulin resistance is by triggering adipose tissue lipolysis. Increased SNA emerges as a critical driver in the pathogenesis of overnutrition-induced insulin resistance and metabolic disease independent of cellular insulin signaling.
Collapse
Affiliation(s)
- Kenichi Sakamoto
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary A Butera
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chunxue Zhou
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulia Maurizi
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bandy Chen
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Ling
- Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adham Shawkat
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Likhitha Patlolla
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kavira Thakker
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Victor Calle
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gary J Schwartz
- Department of Medicine & Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Azeddine Tahiri
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Department of Medicine and Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Keles U, Kalem-Yapar NE, Hultén H, Zhao LN, Kaldis P. Impact of Short-Term Lipid Overload on Whole-Body Physiology. Mol Cell Biol 2024; 45:47-58. [PMID: 39726368 DOI: 10.1080/10985549.2024.2438814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Complex metabolic diseases due to overnutrition such as obesity, type 2 diabetes, and fatty liver disease are a major burden on the healthcare system worldwide. Current research primarily focuses on disease endpoints and trying to understand underlying mechanisms at relatively late stages of the diseases, when irreversible damage is already done. However, complex interactions between physiological systems during disease development create a problem regarding how to build cause-and-effect relationships. Therefore, it is essential to understand the early pathophysiological effects of overnutrition, which can help us understand the origin of the disease and to design better treatment strategies. Here, we focus on early metabolic events in response to high-fat diets (HFD) in rodents. Interestingly, insulin resistance, fatty liver, and obesity-promoting systemic inflammatory responses are evident within a week when mice are given consecutive HFD meals. However, as shown in human studies, these effects are usually not visible after a single meal. Overall, these results suggest that sustained HFD-intake within days can create a hyperlipidemic environment, globally remodeling metabolism in all affected organs and resembling some of the important disease features.
Collapse
Affiliation(s)
- Umur Keles
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Nisan Ece Kalem-Yapar
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Hanna Hultén
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
- Lund University Diabetes Centre (LUDC), Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
14
|
Li J, Mei Q, Yang C, Zhu N, Li G. TransBic: bucket trend-preserving biclustering for finding local and interpretable expression patterns. Brief Bioinform 2024; 26:bbaf050. [PMID: 39905952 PMCID: PMC11794469 DOI: 10.1093/bib/bbaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Biclustering has emerged as a promising approach for analyzing high-dimensional expression data, offering unique advantages in uncovering localized co-expression patterns that traditional clustering methods often miss and thus facilitating advancements in complex disease research and other biomedical applications. However, state-of-the-art methods identify distinct patterns at the expense of losing information about specific patterns, some of which have been used to define cancer subtypes or reflect the progression of a disease or cellular processes. Additionally, these methods exhibit poor effectiveness in noisy environments. To address these limitations, we propose the bucket trend-preserving (BTP) pattern, a novel generalization of existing patterns. And we have developed an algorithm, TransBic, to extract significant biclusters of BTP-patterns. Specifically, TransBic transforms the problem into identifying common multipartite acyclic tournament subdigraphs shared by distinct subsets of acyclic tournament digraphs derived from a given expression matrix. Compared with prominent tools, TransBic demonstrates superior performance in identifying biclusters of all non-row-constant patterns, especially under noise and data fluctuations. Furthermore, TransBic successfully identifies the most disease-related pathways for type 2 diabetes (T2D), colorectal cancer, hepatocellular carcinoma, and breast cancer, outperforming other tools in this regard. Different from previous generalizations, BTP-patterns capture specific up-regulation and down-regulation dynamics. Through targeted analysis of BTP-patterns in T2D expression data, TransBic uncovers biological processes affected by disease risk factors, extending the application of trend-preserving biclustering in expression data analysis.
Collapse
Affiliation(s)
- Jing Li
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, No. 72 Binhai Road, Jimo Distinct, Qingdao 266237, Shandong, China
- Institute of Systems Engineering, PLA Academy of Military Sciences, No. 28 Xizhimen North Street, Haidian Distinct, Beijing 100082, China
| | - Qinglin Mei
- MOE key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, No. 30 Shuangqing Road, Beijing 100084, China
| | - Chaoxia Yang
- College of Science, Nanjing University of Posts and Telecommunications, No. 9 Wenyuan Road, Yadong New City District, Nanjing 210023, Jiangsu, China
| | - Naibo Zhu
- Institute of Systems Engineering, PLA Academy of Military Sciences, No. 28 Xizhimen North Street, Haidian Distinct, Beijing 100082, China
| | - Guojun Li
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, No. 72 Binhai Road, Jimo Distinct, Qingdao 266237, Shandong, China
| |
Collapse
|
15
|
Zhang J, Sjøberg KA, Gong S, Wang T, Li F, Kuo A, Durot S, Majcher A, Ardicoglu R, Desgeorges T, Mann CG, Soro Arnáiz I, Fitzgerald G, Gilardoni P, Abel ED, Kon S, Olivares-Villagómez D, Zamboni N, Wolfrum C, Hornemann T, Morscher R, Tisch N, Ghesquière B, Kopf M, Richter EA, De Bock K. Endothelial metabolic control of insulin sensitivity through resident macrophages. Cell Metab 2024; 36:2383-2401.e9. [PMID: 39270655 DOI: 10.1016/j.cmet.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Endothelial cells (ECs) not only form passive blood conduits but actively contribute to nutrient transport and organ homeostasis. The role of ECs in glucose homeostasis is, however, poorly understood. Here, we show that, in skeletal muscle, endothelial glucose transporter 1 (Glut1/Slc2a1) controls glucose uptake via vascular metabolic control of muscle-resident macrophages without affecting transendothelial glucose transport. Lowering endothelial Glut1 via genetic depletion (Glut1ΔEC) or upon a short-term high-fat diet increased angiocrine osteopontin (OPN/Spp1) secretion. This promoted resident muscle macrophage activation and proliferation, which impaired muscle insulin sensitivity. Consequently, co-deleting Spp1 from ECs prevented macrophage accumulation and improved insulin sensitivity in Glut1ΔEC mice. Mechanistically, Glut1-dependent endothelial glucose metabolic rewiring increased OPN in a serine metabolism-dependent fashion. Our data illustrate how the glycolytic endothelium creates a microenvironment that controls resident muscle macrophage phenotype and function and directly links resident muscle macrophages to the maintenance of muscle glucose homeostasis.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Kim Anker Sjøberg
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Songlin Gong
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Tongtong Wang
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Fengqi Li
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China; Key Laboratory of Immune Response and Immunotherapy, Hefei, China
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Stephan Durot
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Adam Majcher
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphaela Ardicoglu
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland; Laboratory of Molecular and Behavioral Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Thibaut Desgeorges
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Charlotte Greta Mann
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Ines Soro Arnáiz
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Gillian Fitzgerald
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Paola Gilardoni
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Department Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, 8603 Zürich, Switzerland
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland; Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Raphael Morscher
- Pediatric Cancer Metabolism Laboratory, Children`s Research Center, University of Zürich, 8032 Zürich, Switzerland
| | - Nathalie Tisch
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Bart Ghesquière
- Metabolomics Core Facility Leuven, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland.
| |
Collapse
|
16
|
Zhao R, Guo Z, Lu K, Chen Q, Riaz F, Zhou Y, Yang L, Cheng X, Wu L, Cheng K, Feng L, Liu S, Wu X, Zheng M, Yin C, Li D. Hepatocyte-specific NR5A2 deficiency induces pyroptosis and exacerbates non-alcoholic steatohepatitis by downregulating ALDH1B1 expression. Cell Death Dis 2024; 15:770. [PMID: 39438459 PMCID: PMC11496806 DOI: 10.1038/s41419-024-07151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is a prevalent chronic disease, yet its exact mechanisms and effective treatments remain elusive. Nuclear receptor subfamily 5 group A member 2 (NR5A2), a transcription factor closely associated with cholesterol metabolism in the liver, has been hindered from comprehensive investigation due to the lethality of NR5A2 loss in cell lines and animal models. To elucidate the role of NR5A2 in NASH, we generated hepatocyte-specific knockout mice for Nr5a2 (Nr5a2HKO) and examined their liver morphology across different age groups under a regular diet. Furthermore, we established cell lines expressing haploid levels of NR5A2 and subsequently reintroduced various isoforms of NR5A2. In the liver of Nr5a2HKO mice, inflammation and fibrosis spontaneously emerged from an early age, independent of lipid accumulation. Pyroptosis occurred in NR5A2-deficient cell lines, and different isoforms of NR5A2 reversed this form of cell death. Our findings unveiled that inhibition of NR5A2 triggers pyroptosis, a proinflammatory mode of cell death primarily mediated by the activation of the NF-κB pathway induced by reactive oxygen species (ROS). As a transcriptionally regulated molecule of NR5A2, aldehyde dehydrogenase 1 family member B1 (ALDH1B1) participates in pyroptosis through modulation of ROS level. In conclusion, the diverse isoforms of NR5A2 exert hepatoprotective effects against NASH by maintaining a finely tuned balance of ROS, which is contingent upon the activity of ALDH1B1.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Qian Chen
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, P.R. China
| | - Farooq Riaz
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yimeng Zhou
- Department of Planned Immunization, Xi'an Center for Disease Control and Prevention, No. 599 Xiying Road, Yanta District, Xi'an, Shaanxi, China
| | - Luyun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Xiaona Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Kexin Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Lina Feng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Sitong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Xiaodan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Dongmin Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China.
- Department of Biochemistry and Molecular Biology & Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, P.R. China.
| |
Collapse
|
17
|
Sun Q, Tang H, Zhu H, Liu Y, Zhang M, Che C, Xiang B, Wang S. Single-cell transcriptome analysis reveals the regulatory functions of islet exocrine cells after short-time obesogenic diet. Endocrine 2024; 86:204-214. [PMID: 38806892 DOI: 10.1007/s12020-024-03883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE This study aims to investigate the functions of exocrine islet cell subtypes in the early stage of obesity induced by high-fat diet (HFD), which is accompanied with deterioration of the systemic insulin response and islet subpopulation abnormalities. METHODS In this study, we analyzed published islet single-cell RNA sequencing (scRNA-seq) datasets from the early stage induced by HFD feeding. Bioinformatics tools such as findMarkers, Cellchat, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and Gene Ontology (GO) terms were applied to identify the different functions of exocrine cell clusters. RESULTS A total of 26 cell clusters were obtained were identified from this dietary intervention model. Most proportions of cell subtypes were consistent between high-fat diet (HFD) and low-fat diet (LFD) groups, except for partial endocrine islet clusters and exocrine clusters. Most differentiated expression of genes in the HFD group was found in exocrine cluster. And we also found that the cell-cell interactions between ductal and endothelial cells were reduced in the HFD group, with the significant alteration in C17 (ductal) cluster. By further analyzing the co-expression regulatory network of transcription in the C17 cluster, we speculate that differentially expressed transcription factors affected the function of duct cells by affecting the expression of related genes in intercellular interaction networks, thereby promoting insulin resistance (IR) development. CONCLUSION Our results provide a reference for the function and regulatory mechanisms of exocrine cells in the obesity induced by HFD and probably influence the process of following insulin resistance.
Collapse
Affiliation(s)
- Qianqian Sun
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Huiyu Tang
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Huan Zhu
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yanyan Liu
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Min Zhang
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chenghang Che
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Bing Xiang
- Department of Hematology, Sichuan University West China Hospital, Chengdu, Sichuan, China.
| | - Shuang Wang
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China.
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Huang Y, Gao P, Young LH, Qi D. Targeting white adipose tissue to combat insulin resistance. Trends Pharmacol Sci 2024; 45:868-871. [PMID: 39054181 DOI: 10.1016/j.tips.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Metabolic and endocrine dysfunction of white adipose tissue (WAT) is linked to inflammation, which has been considered a key mechanism of insulin resistance (IR). However, recent studies revealed non-inflammatory mechanisms of IR in WAT, which may trigger inflammation and could be developed as a novel strategy to counteract IR.
Collapse
Affiliation(s)
- Yiheng Huang
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Pingyi Gao
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lawrence H Young
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Dake Qi
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
19
|
Jeelani I, Moon JS, da Cunha FF, Nasamran CA, Jeon S, Zhang X, Bandyopadhyay GK, Dobaczewska K, Mikulski Z, Hosseini M, Liu X, Kisseleva T, Brenner D, Singh S, Loomba R, Kim M, Lee YS. HIF-2α drives hepatic Kupffer cell death and proinflammatory recruited macrophage activation in nonalcoholic steatohepatitis. Sci Transl Med 2024; 16:eadi0284. [PMID: 39259813 PMCID: PMC11665927 DOI: 10.1126/scitranslmed.adi0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/12/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Proinflammatory hepatic macrophage activation plays a key role in the development of nonalcoholic steatohepatitis (NASH). This involves increased embryonic hepatic Kupffer cell (KC) death, facilitating the replacement of KCs with bone marrow-derived recruited hepatic macrophages (RHMs) that highly express proinflammatory genes. Moreover, phago/efferocytic activity of KCs is diminished in NASH, enhancing liver inflammation. However, the molecular mechanisms underlying these changes in KCs are not known. Here, we show that hypoxia-inducible factor 2α (HIF-2α) mediates NASH-associated decreased KC growth and efferocytosis by enhancing lysosomal stress. At the molecular level, HIF-2α stimulated mammalian target of rapamycin (mTOR)- and extracellular signal-regulated kinase-dependent inhibitory transcription factor EB (TFEB) phosphorylation, leading to decreased lysosomal and phagocytic gene expression. With increased metabolic stress and phago/efferocytic burden in NASH, these changes were sufficient to increase lysosomal stress, causing decreased efferocytosis and lysosomal cell death. Of interest, HIF-2α-dependent TFEB regulation only occurred in KCs but not RHMs. Instead, in RHMs, HIF-2α promoted mitochondrial reactive oxygen species production and proinflammatory activation by increasing ANT2 expression and mitochondrial permeability transition. Consequently, myeloid lineage-specific or KC-specific HIF-2α depletion or the inhibition of mTOR-dependent TFEB inhibition using antisense oligonucleotide treatment protected against the development of NASH in mice. Moreover, treatment with an HIF-2α-specific inhibitor reduced inflammatory and fibrogenic gene expression in human liver spheroids cultured under a NASH-like condition. Together, our results suggest that macrophage subtype-specific effects of HIF-2α collectively contribute to the proinflammatory activation of liver macrophages, leading to the development of NASH.
Collapse
Affiliation(s)
- Ishtiaq Jeelani
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Jae-Su Moon
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Flavia Franco da Cunha
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Chanond A. Nasamran
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, California, 92093, USA
| | - Seokhyun Jeon
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Xinhang Zhang
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Gautam K. Bandyopadhyay
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California, 92093, USA
| | - Xiao Liu
- Department of Surgery, University of California San Diego, La Jolla, California, 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, California, 92093, USA
| | - David Brenner
- Department of Medicine, University of California San Diego, La Jolla, California, 92093, USA
| | - Seema Singh
- Division of Gastroenterology, University of California San Diego, La Jolla, California, 92093, USA
| | - Rohit Loomba
- Division of Gastroenterology, University of California San Diego, La Jolla, California, 92093, USA
- Division of Epidemiology Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, 92093, USA
- NAFLD Research Center University of California, San Diego, La Jolla, California, 92093, USA
| | - Minkyu Kim
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | - Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| |
Collapse
|
20
|
Beddows CA, Shi F, Horton AL, Dalal S, Zhang P, Ling CC, Yong VW, Loh K, Cho E, Karagiannis C, Rose AJ, Montgomery MK, Gregorevic P, Watt MJ, Packer NH, Parker BL, Brown RM, Moh ESX, Dodd GT. Pathogenic hypothalamic extracellular matrix promotes metabolic disease. Nature 2024; 633:914-922. [PMID: 39294371 PMCID: PMC11424483 DOI: 10.1038/s41586-024-07922-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Metabolic diseases such as obesity and type 2 diabetes are marked by insulin resistance1,2. Cells within the arcuate nucleus of the hypothalamus (ARC), which are crucial for regulating metabolism, become insulin resistant during the progression of metabolic disease3-8, but these mechanisms are not fully understood. Here we investigated the role of a specialized chondroitin sulfate proteoglycan extracellular matrix, termed a perineuronal net, which surrounds ARC neurons. In metabolic disease, the perineuronal net of the ARC becomes augmented and remodelled, driving insulin resistance and metabolic dysfunction. Disruption of the perineuronal net in obese mice, either enzymatically or with small molecules, improves insulin access to the brain, reversing neuronal insulin resistance and enhancing metabolic health. Our findings identify ARC extracellular matrix remodelling as a fundamental mechanism driving metabolic diseases.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Feiyue Shi
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna L Horton
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sagar Dalal
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ping Zhang
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kim Loh
- St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chris Karagiannis
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, USA
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Pan T, Yang B, Yao S, Wang R, Zhu Y. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: A comprehensive review. Life Sci 2024; 351:122802. [PMID: 38857656 DOI: 10.1016/j.lfs.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Sheng Yao
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
22
|
Shetty S, Duesman SJ, Patel S, Huynh P, Toh P, Shroff S, Das A, Chowhan D, Keller B, Alvarez J, Fisher-Foye R, Sebra R, Beaumont K, McAlpine CS, Rajbhandari P, Rajbhandari AK. Sex-specific role of high-fat diet and stress on behavior, energy metabolism, and the ventromedial hypothalamus. Biol Sex Differ 2024; 15:55. [PMID: 39010139 PMCID: PMC11247790 DOI: 10.1186/s13293-024-00628-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Scientific evidence highlights the influence of biological sex on the relationship between stress and metabolic dysfunctions. However, there is limited understanding of how diet and stress concurrently contribute to metabolic dysregulation in both males and females. Our study aimed to investigate the combined effects of high-fat diet (HFD) induced obesity and repeated stress on fear-related behaviors, metabolic, immune, and hypothalamic outcomes in male and female mice. METHODS To investigate this, we used a highly reliable rodent behavioral model that faithfully recapitulates key aspects of post-traumatic stress disorder (PTSD)-like fear. We subjected mice to footshock stressor followed by a weekly singular footshock stressor or no stressor for 14 weeks while on either an HFD or chow diet. At weeks 10 and 14 we conducted glucose tolerance and insulin sensitivity measurements. Additionally, we placed the mice in metabolic chambers to perform indirect calorimetric measurements. Finally, we collected brain and peripheral tissues for cellular analysis. RESULTS We observed that HFD-induced obesity disrupted fear memory extinction, increased glucose intolerance, and affected energy expenditure specifically in male mice. Conversely, female mice on HFD exhibited reduced respiratory exchange ratio (RER), and a significant defect in glucose tolerance only when subjected to repeated stress. Furthermore, the combination of repeated stress and HFD led to sex-specific alterations in proinflammatory markers and hematopoietic stem cells across various peripheral metabolic tissues. Single-nuclei RNA sequencing (snRNAseq) analysis of the ventromedial hypothalamus (VMH) revealed microglial activation in female mice on HFD, while male mice on HFD exhibited astrocytic activation under repeated stress. CONCLUSIONS Overall, our findings provide insights into complex interplay between repeated stress, high-fat diet regimen, and their cumulative effects on health, including their potential contribution to the development of PTSD-like stress and metabolic dysfunctions, emphasizing the need for further research to fully understand these interconnected pathways and their implications for health.
Collapse
Affiliation(s)
- Sanutha Shetty
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Samuel J Duesman
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sanil Patel
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pacific Huynh
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Toh
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sanjana Shroff
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anika Das
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Excellence in Youth Education, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Disha Chowhan
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Keller
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Johana Alvarez
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel Fisher-Foye
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin Beaumont
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abha K Rajbhandari
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
23
|
Brayner B, Keske MA, Roberts-Thomson KM, Parker L, Betik AC, Thomas HJ, Mason S, Way KL, Livingstone KM, Hamilton DL, Kaur G. Short-term high-calorie high-fat feeding induces hyperinsulinemia and blunts skeletal muscle microvascular blood flow in healthy humans. Am J Physiol Endocrinol Metab 2024; 327:E42-E54. [PMID: 38717363 DOI: 10.1152/ajpendo.00070.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Skeletal muscle microvascular blood flow (MBF) plays an important role in glucose disposal in muscle. Impairments in muscle MBF contribute to insulin resistance and prediabetes. Animal studies show that short-term (3 day) high-fat feeding blunts skeletal muscle MBF before impairing insulin-stimulated glucose disposal. It is not known whether this occurs in humans. We investigated the temporal impact of a 7-day high-calorie high-fat (HCHF) diet intervention (+52% kJ; 41% fat) on fasting and postprandial cardiometabolic outcomes in 14 healthy adults (18-37 yr). Metabolic health and vascular responses to a mixed-meal challenge (MMC) were measured at pre (day 0)-, mid (day 4)- and post (day 8)-intervention. There were no significant differences in body weight, body fat %, fasting blood glucose, and fasting plasma insulin concentrations at pre-, mid- and postintervention. Compared with preintervention there was a significant increase in insulin (but not glucose) total area under the curve in response to the MMC at midintervention (P = 0.041) and at postintervention (P = 0.028). Unlike at pre- and midintervention, at postintervention muscle MBF decreased at 60 min (P = 0.024) and 120 min (P = 0.023) after the MMC. However, macrovascular blood flow was significantly increased from 0 to 60 min (P < 0.001) and 120 min (P < 0.001) after the MMC at pre-, mid- and postintervention. Therefore, short-term HCHF feeding in healthy individuals leads to elevated postprandial insulin but not glucose levels and a blunting of meal-induced skeletal muscle MBF responses but not macrovascular blood flow responses.NEW & NOTEWORTHY This is the first study to investigate skeletal muscle microvascular blood flow (MBF) responses in humans after short-term high-calorie high-fat (HCHF) diet. The main findings were that HCHF diet causes elevated postprandial insulin in healthy individuals within 3 days and blunts meal-induced muscle MBF within 7 days, despite no impairments in postprandial glucose or macrovascular blood flow.
Collapse
Affiliation(s)
- Barbara Brayner
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | | | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Hannah J Thomas
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Shaun Mason
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Kimberley L Way
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Exercise Physiology and Cardiovascular Health Lab, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Katherine M Livingstone
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - D Lee Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Gunveen Kaur
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
24
|
Babuta M, Nagesh PT, Datta AA, Remotti V, Zhuang Y, Mehta J, Lami F, Wang Y, Szabo G. Combined Insults of a MASH Diet and Alcohol Binges Activate Intercellular Communication and Neutrophil Recruitment via the NLRP3-IL-1β Axis in the Liver. Cells 2024; 13:960. [PMID: 38891092 PMCID: PMC11171595 DOI: 10.3390/cells13110960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Binge drinking in obese patients positively correlates with accelerated liver damage and liver-related death. However, the underlying mechanism and the effect of alcohol use on the progression of metabolic-dysfunction-associated steatotic liver disease (MASLD) remain unexplored. Here, we show that short-term feeding of a metabolic-dysfunction-associated steatohepatitis (MASH) diet plus daily acute alcohol binges for three days induce liver injury and activation of the NLRP3 inflammasome. We identify that a MASH diet plus acute alcohol binges promote liver inflammation via increased infiltration of monocyte-derived macrophages, neutrophil recruitment, and NET release in the liver. Our results suggest that both monocyte-derived macrophages and neutrophils are activated via NLRP3, while the administration of MCC950, an NLRP3 inhibitor, dampens these effects.In this study, we reveal important intercellular communication between hepatocytes and neutrophils. We discover that the MASH diet plus alcohol induces IL-1β via NLRP3 activation and that IL-1β acts on hepatocytes and promotes the production of CXCL1 and LCN2. In turn, the increase in these neutrophils recruits chemokines and causes further infiltration and activation of neutrophils in the liver. In vivo administration of the NLRP3 inhibitor, MCC950, improves the early phase of MetALD by preventing liver damage, steatosis, inflammation, and immune cells recruitment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; (M.B.)
| |
Collapse
|
25
|
Zhang XY, Yu L, Wang K, Wang M, Li P, Zheng ZG, Yang H. The combination of berberine and isoliquiritigenin synergistically improved adipose inflammation and obesity-induced insulin resistance. Phytother Res 2024. [PMID: 38729776 DOI: 10.1002/ptr.8233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
White adipose tissue accumulation and inflammation contribute to obesity by inducing insulin resistance. Herein, we aimed to screen the synergistic components of the herbal pair Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma for the treatment of insulin resistance and explore the potential synergistic mechanisms. Enzyme-linked immunosorbent assay and quantitative PCR were used to detect expression levels of inflammatory genes in vitro and in vivo. Western blotting and immunohistochemistry were performed to detect protein levels of the insulin signaling pathway and macrophage markers. The effects on obesity-induced insulin resistance were verified using a diet-induced obesity (DIO) mouse model. Interactions between macrophage and adipocyte were assessed using a cellular supernatant transfer assay. Berberine (BBR) and isoliquiritigenin (ISL) alleviated mRNA levels and secretion of inflammatory genes in vitro and in vivo. Furthermore, BBR acted synergistically with ISL to ameliorate obesity and dyslipidemia in DIO mice. Meanwhile, the combination treatment significantly improved glucose intolerance and insulin resistance and decreased M1-macrophage accumulation and infiltration in the adipose tissue. Mechanistically, co-treatment with BBR and ISL upregulated the protein expression of the IRS1-PI3K-Akt insulin signaling pathway, enhanced glucose uptake in adipocyte, and suppressed the interaction between macrophage and adipocyte. BBR and ISL were identified as the synergistic components of the herbal pair Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma for treating insulin resistance. The synergistic combination of BBR with ISL can be a promising and effective strategy for improving obesity-induced adipose inflammation and insulin resistance.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingling Yu
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Keke Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mingsu Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
26
|
Cui J, Wang M, Zhang W, Sun J, Zhang Y, Zhao L, Hong Z, Li D, Huang YX, Zhang N, Chen Y. Enhancing insulin sensitivity in type 2 diabetes mellitus using apelin-loaded small extracellular vesicles from Wharton's jelly-derived mesenchymal stem cells: a novel therapeutic approach. Diabetol Metab Syndr 2024; 16:84. [PMID: 38622732 PMCID: PMC11020616 DOI: 10.1186/s13098-024-01332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM), characterized by β-cell dysfunction and insulin resistance (IR), presents considerable treatment challenges. Apelin is an adipocyte-derived factor that shows promise in improving IR; however, it is limited by poor targeting and a short half-life. In the present study, engineered small extracellular vesicles (sEVs) derived from Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) loaded with apelin were used to address the limitations of the therapeutic application of apelin. METHODS WJ-MSCs were transduced to obtain engineered sEVs loaded with overexpressed apelin (apelin-MSC-sEVs) and the control sEVs (MSC-sEVs). T2DM mice were injected with apelin-MSC-sEVs and MSC-sEVs, and blood glucose monitoring, glucose and insulin tolerance tests, confocal microscopy, and immunocytochemical analysis were performed. IR models of 3T3-L1 adipocytes were employed to detect GLUT4 expression in each group using western blotting; the affected pathways were determined by measuring the changes in Akt and AMPK signaling and phosphorylation. RESULTS Upon successful engineering, WJ-MSCs demonstrated significant overexpression of apelin. The genetic modification did not adversely impact the characteristics of sEVs, ranging from surface protein markers, morphology, to particle size, but generated apelin-overexpressed sEVs. Apelin-MSC-sEVs treatment resulted in notable enhancement of Akt and AMPK pathway activities within 3T3-L1 adipocytes and adipose tissues of T2DM mice. Furthermore, the apelin-loaded sEVs significantly reduced plasma glucose levels, increased pancreatic β-cell proliferation, improved insulin and glucose tolerance, and modulated pro-inflammatory cytokine profiles, compared to mice treated with the control sEVs. CONCLUSION Our study developed novel genetically engineered apelin-loaded sEVs derived from WJ-MSCs, and demonstrated their potent role in augmenting insulin sensitivity and regulating inflammatory responses, highlighting their therapeutic promise in T2DM management. The findings open new avenues for the development of clinically viable treatments for T2DM in humans using the apelin-loaded sEVs.
Collapse
Affiliation(s)
- Jing Cui
- The Fifth School of Clinical Medicine, Navy Clinical College, Anhui Medical University, Hefei, Anhui, China
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Mingkun Wang
- The Fifth School of Clinical Medicine, Navy Clinical College, Anhui Medical University, Hefei, Anhui, China
| | - Wenhong Zhang
- The Fifth School of Clinical Medicine, Navy Clinical College, Anhui Medical University, Hefei, Anhui, China
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Li Zhao
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Zhibo Hong
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Dongtao Li
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Yi Xiong Huang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Ningkun Zhang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China.
| | - Yu Chen
- The Fifth School of Clinical Medicine, Navy Clinical College, Anhui Medical University, Hefei, Anhui, China.
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China.
| |
Collapse
|
27
|
Alqallaf J, Orange ST, Matu J, Griffiths A, Johnson K, Stavropoulos-Kalinoglou A, Holliday A, Wilson O. The Effect of High-Fat Diet on Intramyocellular Lipid Content in Healthy Adults: A Systematic Review, Meta-Analysis, and Meta-Regression. J Nutr 2024; 154:1087-1100. [PMID: 38417551 PMCID: PMC11007750 DOI: 10.1016/j.tjnut.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Fatty acids are stored within the muscle as intramyocellular lipids (IMCL). Some, but not all, studies indicate that following a high-fat diet (HFD), IMCL may accumulate and affect insulin sensitivity. This systematic review and meta-analysis aimed to quantify the effects of an HFD on IMCL. It also explored the potential modifying effects of HFD fat content and duration, IMCL measurement technique, physical activity status, and the associations of IMCL with insulin sensitivity. Five databases were systematically searched for studies that examined the effect of ≥3 d of HFD (>35% daily energy intake from fat) on IMCL content in healthy individuals. Meta-regressions were used to investigate associations of the HFD total fat content, duration, physical activity status, IMCL measurement technique, and insulin sensitivity with IMCL responses. Changes in IMCL content and insulin sensitivity (assessed by hyperinsulinemic-euglycemic clamp) are presented as standardized mean difference (SMD) using a random effects model with 95% confidence intervals (95% CIs). Nineteen studies were included in the systematic review and 16 in the meta-analysis. IMCL content increased following HFD (SMD = 0.63; 95% CI: 0.31, 0.94, P = 0.001). IMCL accumulation was not influenced by total fat content (P = 0.832) or duration (P = 0.844) of HFD, physical activity status (P = 0.192), or by the IMCL measurement technique (P > 0.05). Insulin sensitivity decreased following HFD (SMD = -0.34; 95% CI: -0.52, -0.16; P = 0.003), but this was not related to the increase in IMCL content following HFD (P = 0.233). Consumption of an HFD (>35% daily energy intake from fat) for ≥3 d significantly increases IMCL content in healthy individuals regardless of HFD total fat content and duration of physical activity status. All IMCL measurement techniques detected the increased IMCL content following HFD. The dissociation between changes in IMCL and insulin sensitivity suggests that other factors may drive HFD-induced impairments in insulin sensitivity in healthy individuals. This trial was registered at PROSPERO as CRD42021257984.
Collapse
Affiliation(s)
- Jasem Alqallaf
- Carnegie School of Sport, Leeds Beckett University, United Kingdom
| | - Samuel T Orange
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, United Kingdom; Newcastle University Centre for Cancer, Newcastle University, United Kingdom
| | - Jamie Matu
- School of Health, Leeds Beckett University, United Kingdom
| | - Alex Griffiths
- School of Health, Leeds Beckett University, United Kingdom
| | - Kelsie Johnson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, United Kingdom
| | | | - Adrian Holliday
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Oliver Wilson
- Carnegie School of Sport, Leeds Beckett University, United Kingdom.
| |
Collapse
|
28
|
Vujičić M, Broderick I, Salmantabar P, Perian C, Nilsson J, Sihlbom Wallem C, Wernstedt Asterholm I. A macrophage-collagen fragment axis mediates subcutaneous adipose tissue remodeling in mice. Proc Natl Acad Sci U S A 2024; 121:e2313185121. [PMID: 38300872 PMCID: PMC10861897 DOI: 10.1073/pnas.2313185121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Efficient removal of fibrillar collagen is essential for adaptive subcutaneous adipose tissue (SAT) expansion that protects against ectopic lipid deposition during weight gain. Here, we used mice to further define the mechanism for this collagenolytic process. We show that loss of collagen type-1 (CT1) and increased CT1-fragment levels in expanding SAT are associated with proliferation of resident M2-like macrophages that display increased CD206-mediated engagement in collagen endocytosis compared to chow-fed controls. Blockage of CD206 during acute high-fat diet-induced weight gain leads to SAT CT1-fragment accumulation associated with elevated inflammation and fibrosis markers. Moreover, these SAT macrophages' engagement in collagen endocytosis is diminished in obesity associated with elevated levels collagen fragments that are too short to assemble into triple helices. We show that such short fragments provoke M2-macrophage proliferation and fibroinflammatory changes in fibroblasts. In conclusion, our data delineate the importance of a macrophage-collagen fragment axis in physiological SAT expansion. Therapeutic targeting of this process may be a means to prevent pathological adipose tissue remodeling, which in turn may reduce the risk for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Milica Vujičić
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Isabella Broderick
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Pegah Salmantabar
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Charlène Perian
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Jonas Nilsson
- Proteomics Core Facility, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Carina Sihlbom Wallem
- Proteomics Core Facility, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg405 30, Sweden
| |
Collapse
|
29
|
Somalou P, Ieronymaki E, Feidaki K, Prapa I, Stylianopoulou E, Spyridopoulou K, Skavdis G, Grigoriou ME, Panas P, Argiriou A, Tsatsanis C, Kourkoutas Y. Novel Wild-Type Pediococcus and Lactiplantibacillus Strains as Probiotic Candidates to Manage Obesity-Associated Insulin Resistance. Microorganisms 2024; 12:231. [PMID: 38399636 PMCID: PMC10891751 DOI: 10.3390/microorganisms12020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
As the food and pharmaceutical industry is continuously seeking new probiotic strains with unique health properties, the aim of the present study was to determine the impact of short-term dietary intervention with novel wild-type strains, isolated from various sources, on high-fat diet (HFD)-induced insulin resistance. Initially, the strains were evaluated in vitro for their ability to survive in simulated gastrointestinal (GI) conditions, for adhesion to Caco-2 cells, for bile salt hydrolase secretion, for cholesterol-lowering and cellular cholesterol-binding ability, and for growth inhibition of food-borne pathogens. In addition, safety criteria were assessed, including hemolytic activity and susceptibility to antibiotics. The in vivo test on insulin resistance showed that mice receiving the HFD supplemented with Pediococcus acidilactici SK (isolated from human feces) or P. acidilactici OLS3-1 strain (isolated from olive fruit) exhibited significantly improved insulin resistance compared to HFD-fed mice or to the normal diet (ND)-fed group.
Collapse
Affiliation(s)
- Paraskevi Somalou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | - Eleftheria Ieronymaki
- Laboratory of Clinical Chemistry, Department of Laboratory Medicine, Medical School, University of Crete, 71003 Crete, Greece; (E.I.); (C.T.)
| | - Kyriaki Feidaki
- Institute of Applied Sciences, Centre for Research and Technology, 57001 Thessaloniki, Greece; (K.F.); (A.A.)
- Department of Food Science and Nutrition, University of the Aegean, 81400 Lemnos, Greece
| | - Ioanna Prapa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | - Electra Stylianopoulou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | - Katerina Spyridopoulou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | - George Skavdis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | - Maria E. Grigoriou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| | | | - Anagnostis Argiriou
- Institute of Applied Sciences, Centre for Research and Technology, 57001 Thessaloniki, Greece; (K.F.); (A.A.)
- Department of Food Science and Nutrition, University of the Aegean, 81400 Lemnos, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Department of Laboratory Medicine, Medical School, University of Crete, 71003 Crete, Greece; (E.I.); (C.T.)
- Institute for Molecular Biology and Biotechnology, FORTH, 71100 Heraklion, Greece
| | - Yiannis Kourkoutas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.S.); (I.P.); (E.S.); (K.S.); (G.S.); (M.E.G.)
| |
Collapse
|
30
|
Lee J, An HS, Shin HJ, Jang HM, Im CO, Jeong Y, Eum K, Yoon S, Lee SJ, Jeong EA, Kim KE, Roh GS. Intermittent Fasting Reduces Neuroinflammation and Cognitive Impairment in High-Fat Diet-Fed Mice by Downregulating Lipocalin-2 and Galectin-3. Nutrients 2024; 16:159. [PMID: 38201988 PMCID: PMC10780385 DOI: 10.3390/nu16010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Intermittent fasting (IF), an alternating pattern of dietary restriction, reduces obesity-induced insulin resistance and inflammation. However, the crosstalk between adipose tissue and the hippocampus in diabetic encephalopathy is not fully understood. Here, we investigated the protective effects of IF against neuroinflammation and cognitive impairment in high-fat diet(HFD)-fed mice. Histological analysis revealed that IF reduced crown-like structures and adipocyte apoptosis in the adipose tissue of HFD mice. In addition to circulating lipocalin-2 (LCN2) and galectin-3 (GAL3) levels, IF reduced HFD-induced increases in LCN2- and GAL3-positive macrophages in adipose tissue. IF also improved HFD-induced memory deficits by inhibiting blood-brain barrier breakdown and neuroinflammation. Furthermore, immunofluorescence showed that IF reduced HFD-induced astrocytic LCN2 and microglial GAL3 protein expression in the hippocampus of HFD mice. These findings indicate that HFD-induced adipocyte apoptosis and macrophage infiltration may play a critical role in glial activation and that IF reduces neuroinflammation and cognitive impairment by protecting against blood-brain barrier leakage.
Collapse
Affiliation(s)
- Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Hye Min Jang
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Chae Oh Im
- Department of Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.O.I.); (Y.J.); (K.E.); (S.Y.)
| | - Yeonjun Jeong
- Department of Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.O.I.); (Y.J.); (K.E.); (S.Y.)
| | - Kibaek Eum
- Department of Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.O.I.); (Y.J.); (K.E.); (S.Y.)
| | - Sejeong Yoon
- Department of Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.O.I.); (Y.J.); (K.E.); (S.Y.)
| | - So Jeong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; (J.L.); (H.S.A.); (H.J.S.); (H.M.J.); (S.J.L.); (E.A.J.); (K.E.K.)
| |
Collapse
|
31
|
Shah DS, McNeilly AD, McCrimmon RJ, Hundal HS. The C5aR1 complement receptor: A novel immunomodulator of insulin action in skeletal muscle. Cell Signal 2024; 113:110944. [PMID: 37890688 DOI: 10.1016/j.cellsig.2023.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The complement system constitutes an integral component of the innate immune system and plays a critical role in adaptive immunity. Activation of this system engenders the production of complement peptide fragments, including C5a, which engage G-protein coupled receptors predominantly expressed in immune-associated cells, such as neutrophils, initiating pro-inflammatory responses. Intriguingly, our investigation has unveiled the presence of C5a receptor 1 (C5aR1) expression within skeletal muscle, a key metabolic tissue and primary target of insulin. Herein, we demonstrate that C5aR1 activation by C5a in differentiated human skeletal muscle cells elicits acute suppression of insulin signalling. This suppression manifests as impaired insulin-dependent association between IRS1 and the p85 subunit of PI3-kinase, a 50% reduction in Akt phosphorylation, and a 60% decline in insulin-stimulated glucose uptake. This impairment in insulin signalling is associated with a three-fold elevation in intramyocellular diacylglycerol (DAG) levels and a two-fold increase in cytosolic calcium content, which promote PKC-mediated IRS1 inhibition via enhanced phosphorylation at IRS1 Ser1101. Significantly, our findings demonstrate that structurally diverse C5aR1 antagonists, along with genetic deletion or stable silencing of C5aR1 by 80% using short-hairpin RNA, effectively attenuate repression of insulin signalling by C5a in LHCN-M2 human skeletal myotubes. These results underscore the potential of heightened C5aR1 activation, characteristic of obesity and chronic inflammatory conditions, to detrimentally impact insulin function within skeletal muscle cells. Additionally, the study suggests that agents targeting the C5a-C5aR axis, originally devised for mitigating complement-dependent inflammatory conditions, may offer therapeutic avenues to ameliorate immune-driven insulin resistance in key peripheral metabolic tissues, including skeletal muscle.
Collapse
Affiliation(s)
- Dinesh S Shah
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alison D McNeilly
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Rory J McCrimmon
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
32
|
Kim DM, Lee JH, Pan Q, Han HW, Shen Z, Eshghjoo S, Wu CS, Yang W, Noh JY, Threadgill DW, Guo S, Wright G, Alaniz R, Sun Y. Nutrient-sensing growth hormone secretagogue receptor in macrophage programming and meta-inflammation. Mol Metab 2024; 79:101852. [PMID: 38092245 PMCID: PMC10772824 DOI: 10.1016/j.molmet.2023.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE Obesity-associated chronic inflammation, aka meta-inflammation, is a key pathogenic driver for obesity-associated comorbidity. Growth hormone secretagogue receptor (GHSR) is known to mediate the effects of nutrient-sensing hormone ghrelin in food intake and fat deposition. We previously reported that global Ghsr ablation protects against diet-induced inflammation and insulin resistance, but the site(s) of action and mechanism are unknown. Macrophages are key drivers of meta-inflammation. To unravel the role of GHSR in macrophages, we generated myeloid-specific Ghsr knockout mice (LysM-Cre;Ghsrf/f). METHODS LysM-Cre;Ghsrf/f and control Ghsrf/f mice were subjected to 5 months of high-fat diet (HFD) feeding to induce obesity. In vivo, metabolic profiling of food intake, physical activity, and energy expenditure, as well as glucose and insulin tolerance tests (GTT and ITT) were performed. At termination, peritoneal macrophages (PMs), epididymal white adipose tissue (eWAT), and liver were analyzed by flow cytometry and histology. For ex vivo studies, bone marrow-derived macrophages (BMDMs) were generated from the mice and treated with palmitic acid (PA) or lipopolysaccharide (LPS). For in vitro studies, macrophage RAW264.7 cells with Ghsr overexpression or Insulin receptor substrate 2 (Irs2) knockdown were studied. RESULTS We found that Ghsr expression in PMs was increased under HFD feeding. In vivo, HFD-fed LysM-Cre;Ghsrf/f mice exhibited significantly attenuated systemic inflammation and insulin resistance without affecting food intake or body weight. Tissue analysis showed that HFD-fed LysM-Cre;Ghsrf/f mice have significantly decreased monocyte/macrophage infiltration, pro-inflammatory activation, and lipid accumulation, showing elevated lipid-associated macrophages (LAMs) in eWAT and liver. Ex vivo, Ghsr-deficient macrophages protected against PA- or LPS-induced pro-inflammatory polarization, showing reduced glycolysis, increased fatty acid oxidation, and decreased NF-κB nuclear translocation. At molecular level, GHSR metabolically programs macrophage polarization through PKA-CREB-IRS2-AKT2 signaling pathway. CONCLUSIONS These novel results demonstrate that macrophage GHSR plays a key role in the pathogenesis of meta-inflammation, and macrophage GHSR promotes macrophage infiltration and induces pro-inflammatory polarization. These exciting findings suggest that GHSR may serve as a novel immunotherapeutic target for the treatment of obesity and its associated comorbidity.
Collapse
Affiliation(s)
- Da Mi Kim
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Jong Han Lee
- Department of Marine Bioindustry, Hanseo University, Seosan 31962, South Korea; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA
| | - Quan Pan
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Hye Won Han
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Zheng Shen
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Sahar Eshghjoo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Agilent technologies, Aanta Clara, CA 95051, USA
| | - Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA
| | - Wanbao Yang
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ji Yeon Noh
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - David W Threadgill
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Genome Sciences and Society, Department of Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Gus Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Robert Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; Tlaloc Therapeutics Inc., College Station, TX 77845, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College Medicine, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Shetty S, Duesman SJ, Patel S, Huyhn P, Shroff S, Das A, Chowhan D, Sebra R, Beaumont K, McAlpine CS, Rajbhandari P, Rajbhandari AK. Sexually dimorphic role of diet and stress on behavior, energy metabolism, and the ventromedial hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567534. [PMID: 38014350 PMCID: PMC10680837 DOI: 10.1101/2023.11.17.567534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Scientific evidence underscores the influence of biological sex on the interplay between stress and metabolic dysfunctions. However, there is limited understanding of how diet and stress jointly contribute to metabolic dysregulation in both males and females. To address this gap, our study aimed to investigate the combined effects of a high-fat diet (HFD) and repeated footshock stress on fear-related behaviors and metabolic outcomes in male and female mice. Using a robust rodent model that recapitulates key aspects of post-traumatic stress disorder (PTSD), we subjected mice to footshock stressor followed by weekly reminder footshock stressor or no stressor for 14 weeks while on either an HFD or chow diet. Our findings revealed that HFD impaired fear memory extinction in male mice that received initial stressor but not in female mice. Blood glucose levels were influenced by both diet and sex, with HFD-fed female mice displaying elevated levels that returned to baseline in the absence of stress, a pattern not observed in male mice. Male mice on HFD exhibited higher energy expenditure, while HFD-fed female mice showed a decreased respiratory exchange ratio (RER). Sex-specific alterations in pro-inflammatory markers and abundance of hematopoietic stem cells were observed in chronically stressed mice on an HFD in different peripheral tissues, indicating the manifestation of distinct comorbid disorders. Single-nuclei RNA sequencing of the ventromedial hypothalamus from stressed mice on an HFD provided insights into sex-specific glial cell activation and cell-type-specific transcriptomic changes. In conclusion, our study offers a comprehensive understanding of the intricate interactions between stress, diet, sex, and various physiological and behavioral outcomes, shedding light on a potential brain region coordinating these interactions.
Collapse
Affiliation(s)
- Sanutha Shetty
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Samuel J. Duesman
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Sanil Patel
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Pacific Huyhn
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Sanjana Shroff
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anika Das
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Center for Excellence in Youth Education, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Disha Chowhan
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin Beaumont
- Center for Advanced Genomic Technology, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S. McAlpine
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
| | - Prashant Rajbhandari
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Senior authors
| | - Abha K. Rajbhandari
- Department of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, NY, New York 10029
- Senior authors
| |
Collapse
|
34
|
de Lemos Muller CH, Schroeder HT, Rodrigues-Krause J, Krause M. Extra and intra cellular HSP70 levels in adults with and without metabolic disorders: a systematic review and meta-analysis. Cell Stress Chaperones 2023; 28:761-771. [PMID: 37495770 PMCID: PMC10746644 DOI: 10.1007/s12192-023-01368-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Metabolic disorders, such as obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome (MS) are related to chronic pro-inflammatory conditions. Evidence suggests that heat shock proteins are linked to metabolic disorders. Intracellular HSP70 (iHSP70) is mandatory for normal insulin signalling, and proteostasis, and exerts a powerful anti-inflammatory role. On the other hand, the extracellular (eHSP72) is linked with a pro-inflammatory state and induces insulin resistance in humans. Then, we conducted a systematic review with meta-analysis to summarize the data of HSP70 in people with and without metabolic disorders. PubMed, Embase, Scopus, and Web of Science databases were used. Eligibility criteria included observational and baseline data of experimental studies that assessed iHSP70 and/or eHSP72 in adults with metabolic disorders and healthy people. The risk of bias was assessed by the Newcastle-Ottawa scale. Meta-analysis was performed using a random-effect model and the mean difference was estimated for eHSP72 and the standardized mean difference for iHSP70. A total of 11,255 articles were retrieved, 31 articles were assessed for eligibility and 15 were included for data extraction. There was no difference in eHSP72 between metabolic disorders and healthy controls (mean difference (MD) = 0.11; 95% confidence interval (CIs) = -0.05 to 0.27; I2 = 95%). Subgroup analysis showed higher levels of eHSP72 in T2DM people than healthy ones (MD = 0.32; 95% CIs = 0.17 to 0.47; I2 = 92%). For iHSP70 no difference was found (standardized mean difference (SMD) =-0.24; 95% CIs =-1.62 to 1.15; I2 = 86%). Our results suggest that eHSP72 levels may be dependent on metabolic condition and no difference in iHSP70 levels are attributed to high heterogeneity level between studies (PROSPERO REGISTRATION: CRD42022323514).
Collapse
Affiliation(s)
- Carlos Henrique de Lemos Muller
- Laboratório de Pesquisa em Inflamação, Metabolismo e Exercício (LAPIMEX) E Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Helena Trevisan Schroeder
- Laboratório de Pesquisa em Inflamação, Metabolismo e Exercício (LAPIMEX) E Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Josianne Rodrigues-Krause
- Programa de Pós-Graduação Em Ciências Do Movimento Humano, Escola de Educação Física, Fisioterapia E Dança (ESEFID), Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90690-200, Brazil
- Department of Physical Education, Physical Activity, Sport and Health Research Group, Sogipa Faculty, Porto Alegre, RS, Brazil
| | - Maurício Krause
- Laboratório de Pesquisa em Inflamação, Metabolismo e Exercício (LAPIMEX) E Laboratório de Fisiologia Celular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
35
|
Yu L, Xu M, Yan Y, Huang S, Yuan M, Cui B, Lv C, Zhang Y, Wang H, Jin X, Hui R, Wang Y. ZFYVE28 mediates insulin resistance by promoting phosphorylated insulin receptor degradation via increasing late endosomes production. Nat Commun 2023; 14:6833. [PMID: 37884540 PMCID: PMC10603069 DOI: 10.1038/s41467-023-42657-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Insulin resistance is associated with many pathological conditions, and an in-depth understanding of the mechanisms involved is necessary to improve insulin sensitivity. Here, we show that ZFYVE28 expression is decreased in insulin-sensitive obese individuals but increased in insulin-resistant individuals. Insulin signaling inhibits ZFYVE28 expression by inhibiting NOTCH1 via the RAS/ERK pathway, whereas ZFYVE28 expression is elevated due to impaired insulin signaling in insulin resistance. While Zfyve28 overexpression impairs insulin sensitivity and causes lipid accumulation, Zfyve28 knockout in mice can significantly improve insulin sensitivity and other indicators associated with insulin resistance. Mechanistically, ZFYVE28 colocalizes with early endosomes via the FYVE domain, which inhibits the generation of recycling endosomes but promotes the conversion of early to late endosomes, ultimately promoting phosphorylated insulin receptor degradation. This effect disappears with deletion of the FYVE domain. Overall, in this study, we reveal that ZFYVE28 is involved in insulin resistance by promoting phosphorylated insulin receptor degradation, and ZFYVE28 may be a potential therapeutic target to improve insulin sensitivity.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengchen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupeng Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuchen Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Lv
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongrui Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolei Jin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
36
|
Kasai S, Kokubu D, Mizukami H, Itoh K. Mitochondrial Reactive Oxygen Species, Insulin Resistance, and Nrf2-Mediated Oxidative Stress Response-Toward an Actionable Strategy for Anti-Aging. Biomolecules 2023; 13:1544. [PMID: 37892226 PMCID: PMC10605809 DOI: 10.3390/biom13101544] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Reactive oxygen species (ROS) are produced mainly by mitochondrial respiration and function as signaling molecules in the physiological range. However, ROS production is also associated with the pathogenesis of various diseases, including insulin resistance (IR) and type 2 diabetes (T2D). This review focuses on the etiology of IR and early events, especially mitochondrial ROS (mtROS) production in insulin-sensitive tissues. Importantly, IR and/or defective adipogenesis in the white adipose tissues (WAT) is thought to increase free fatty acid and ectopic lipid deposition to develop into systemic IR. Fatty acid and ceramide accumulation mediate coenzyme Q reduction and mtROS production in IR in the skeletal muscle, while coenzyme Q synthesis downregulation is also involved in mtROS production in the WAT. Obesity-related IR is associated with the downregulation of mitochondrial catabolism of branched-chain amino acids (BCAAs) in the WAT, and the accumulation of BCAA and its metabolites as biomarkers in the blood could reliably indicate future T2D. Transcription factor NF-E2-related factor 2 (Nrf2), which regulates antioxidant enzyme expression in response to oxidative stress, is downregulated in insulin-resistant tissues. However, Nrf2 inducers, such as sulforaphane, could restore Nrf2 and target gene expression and attenuate IR in multiple tissues, including the WAT.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Daichi Kokubu
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
- Diet & Well-being Research Institute, KAGOME CO., LTD., 17 Nishitomiyama, Nasushiobara 329-2762, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan;
| |
Collapse
|
37
|
Kitamoto T, Accili D. Unraveling the mysteries of hepatic insulin signaling: deconvoluting the nuclear targets of insulin. Endocr J 2023; 70:851-866. [PMID: 37245960 DOI: 10.1507/endocrj.ej23-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Over 100 years have passed since insulin was first administered to a diabetic patient. Since then great strides have been made in diabetes research. It has determined where insulin is secreted from, which organs it acts on, how it is transferred into the cell and is delivered to the nucleus, how it orchestrates the expression pattern of the genes, and how it works with each organ to maintain systemic metabolism. Any breakdown in this system leads to diabetes. Thanks to the numerous researchers who have dedicated their lives to cure diabetes, we now know that there are three major organs where insulin acts to maintain glucose/lipid metabolism: the liver, muscles, and fat. The failure of insulin action on these organs, such as insulin resistance, result in hyperglycemia and/or dyslipidemia. The primary trigger of this condition and its association among these tissues still remain to be uncovered. Among the major organs, the liver finely tunes the glucose/lipid metabolism to maintain metabolic flexibility, and plays a crucial role in glucose/lipid abnormality due to insulin resistance. Insulin resistance disrupts this tuning, and selective insulin resistance arises. The glucose metabolism loses its sensitivity to insulin, while the lipid metabolism maintains it. The clarification of its mechanism is warranted to reverse the metabolic abnormalities due to insulin resistance. This review will provide a brief historical review for the progress of the pathophysiology of diabetes since the discovery of insulin, followed by a review of the current research clarifying our understanding of selective insulin resistance.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| |
Collapse
|
38
|
Costa KA, Oliveira MCD, Cordeiro LMDS, Val CH, Machado FS, Fernandes SOA, Cardoso VN, Teixeira MM, Silveira ALM, Ferreira AVM. Effect of high-refined carbohydrate diet on intestinal integrity. Nutrition 2023; 113:112084. [PMID: 37354649 DOI: 10.1016/j.nut.2023.112084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES One of the leading causes of obesity is the consumption of excess nutrients. Obesity is characterized by adipose tissue expansion, chronic low-grade inflammation, and metabolic alterations. Although consumption of a high-fat diet has been demonstrated to be a diet-induced obesity model associated with gut disorders, the same effect is not well explored in a mild-obesity model induced by high-refined carbohydrate (HC) diet intake. The intestinal tract barrier comprises mucus, epithelial cells, tight junctions, immune cells, and gut microbiota. This system is susceptible to dysfunction by excess dietary components that could increase intestinal permeability and bacterial translocation. The aim of this study was to evaluate whether an HC diet and the alterations resulting from its intake are linked to small intestine changes. METHODS Male BALB/c mice were fed a chow or an HC diet for 8 wk. RESULTS Although differences in body weight gain were not observed between the groups, mice fed the HC diet showed increased adiposity associated with metabolic alterations. The interferon-γ expression and myeloperoxidase levels were increased in the small intestine in mice fed an HC diet. However, the intestinal villi length, the expression of tight junctions (zonula occludens-1 and claudin-4) and tumor necrosis factor-α cytokine, and the percentage of intraepithelial lymphocytes did not differ in the jejunum or ileum between the groups. We did not observe differences in intestinal permeability and bacterial translocation. CONCLUSION Metabolic alterations caused by consumption of an HC diet lead to a mild obesity state that does not necessarily involve significant changes in intestinal integrity.
Collapse
Affiliation(s)
- Kátia Anunciação Costa
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina Chaves de Oliveira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Cynthia Honorato Val
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Valbert Nascimento Cardoso
- Department of Clinical Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Letícia Malheiros Silveira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adaliene Versiani Matos Ferreira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
39
|
Wilson SMG, Peach JT, Fausset H, Miller ZT, Walk ST, Yeoman CJ, Bothner B, Miles MP. Metabolic impact of polyphenol-rich aronia fruit juice mediated by inflammation status of gut microbiome donors in humanized mouse model. Front Nutr 2023; 10:1244692. [PMID: 37727634 PMCID: PMC10505616 DOI: 10.3389/fnut.2023.1244692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Background The Aronia melanocarpa fruit is emerging as a health food owing to its high polyphenolic content and associated antioxidant activity. Antioxidant-rich foods, such as Aronia fruit, may counter inflammatory stimuli and positively modulate the gut microbiome. However, a comprehensive study characterizing the impact of Aronia fruit supplementation has not been completed. Therefore, we completed analyses measuring the metabolic, microbial, and inflammatory effects of a diet supplemented with Aronia fruit juice. Method Humanized mice were generated by colonizing gnotobiotic mice with microbiomes from human donors presenting disparate inflammation levels. Blood and fecal samples were collected throughout the course of an 8-week dietary intervention with either Aronia juice or a carbohydrate-matched beverage alone (2 weeks) or in combination with a high-fat diet to induce inflammation (6 weeks). Samples were analyzed using 16S rRNA gene sequencing (stool) and liquid chromatography-mass spectrometry (serum). Results We demonstrated transfer of microbiome composition and diversity and metabolic characteristics from humans with low and high inflammation levels to second-generation humanized mice. Aronia supplementation provided robust protection against high-fat diet induced metabolic and microbiome changes that were dependent in part on microbiome donor. Aronia induced increases in bacteria of the Eggerthellaceae genus (7-fold) which aligns with its known ability to metabolize (poly)phenols and in phosphatidylcholine metabolites which are consistent with improved gut barrier function. The gut microbiome from a low inflammation phenotype donor provided protection against high-fat diet induced loss of microbiome β-diversity and global metabolomic shifts compared to that from the high inflammation donor. Conclusion These metabolic changes elucidate pathway-specific drivers of reduced inflammation stemming from both Aronia and the gut microbiota.
Collapse
Affiliation(s)
- Stephanie M. G. Wilson
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| | - Jesse T. Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Zachary T. Miller
- Department of Research Centers, Montana State University, Bozeman, MT, United States
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Carl J. Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
40
|
Collotta D, Franchina MP, Carlucci V, Collino M. Recent advances in JAK inhibitors for the treatment of metabolic syndrome. Front Pharmacol 2023; 14:1245535. [PMID: 37701031 PMCID: PMC10494544 DOI: 10.3389/fphar.2023.1245535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
With an epidemic spread, metabolic syndrome represents an increasingly emerging risk for the population globally, and is currently recognized as a pathological entity. It is represented by a cluster of different conditions including increased blood pressure, high blood sugar, excess body fat around the waist and abnormal cholesterol or triglyceride levels. These conditions lead directly to several disorders, including obesity, dyslipidemia, hyperglycaemia, insulin resistance, impaired glucose tolerance and hypertension causing an increase in cardiovascular risk and in particular atherosclerotic disease. Despite efforts to promote healthier lifestyles through exercise, reduced caloric intake, and improved dietary choices, the incidence and prevalence of metabolic syndrome continue to rise worldwide. Recent research has highlighted the involvement of signaling pathways in chronic inflammatory conditions like obesity and type 2 diabetes mellitus, revealing the significance of the JAK/STAT pathway in atherosclerotic events. This pathway serves as a rapid membrane-to-nucleus signaling module that regulates the expression of critical mediators. Consequently, JAK inhibitors (JAKi) have emerged as potential therapeutic options for metabolic diseases, offering a promising avenue for intervention. The aim of this review is to shed light on the emerging indications of JAK inhibitors in metabolic syndrome, emphasizing their potential role in attenuating associated inflammatory processes, improving insulin sensitivity, and addressing cross-talk with the insulin pathway, with the intention of contributing to efforts in the field of inflammation pharmacology.
Collapse
Affiliation(s)
- Debora Collotta
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - Maria Paola Franchina
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | | | - Massimo Collino
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| |
Collapse
|
41
|
Knaack DA, Chang J, Thomas MJ, Sorci-Thomas MG, Chen Y, Sahoo D. Scavenger receptor class B type I is required for efficient glucose uptake and metabolic homeostasis in adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554190. [PMID: 37662321 PMCID: PMC10473602 DOI: 10.1101/2023.08.21.554190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Obesity is a worldwide epidemic and places individuals at a higher risk for developing comorbidities that include cardiovascular disease and type 2 diabetes. Adipose tissue contains adipocytes that are responsible for lipid metabolism and reducing misdirected lipid storage. Adipocytes facilitate this process through insulin-mediated uptake of glucose and its subsequent metabolism into triglycerides for storage. During obesity, adipocytes become insulin resistant and have a reduced ability to mediate glucose import, thus resulting in whole-body metabolic dysfunction. Scavenger receptor class B type I (SR-BI) has been implicated in glucose uptake in skeletal muscle and adipocytes via its native ligands, apolipoprotein A-1 and high-density lipoproteins. Further, SR-BI translocation to the cell surface in adipocytes is sensitive to insulin stimulation. Using adipocytes differentiated from ear mesenchymal stem cells isolated from wild-type and SR-BI knockout (SR-BI -/- ) mice as our model system, we tested the hypothesis that SR-BI is required for insulin-mediated glucose uptake and regulation of energy balance in adipocytes. We demonstrated that loss of SR-BI in adipocytes resulted in inefficient glucose uptake regardless of cell surface expression levels of glucose transporter 4 compared to WT adipocytes. We also observed reduced glycolytic capacity, increased lipid biosynthesis, and dysregulated expression of lipid metabolism genes in SR-BI -/- adipocytes compared to WT adipocytes. These results partially support our hypothesis and suggest a novel role for SR-BI in glucose uptake and metabolic homeostasis in adipocytes.
Collapse
|
42
|
Markussen LK, Mandrup S. Adipocyte gene expression in obesity - insights gained and challenges ahead. Curr Opin Genet Dev 2023; 81:102060. [PMID: 37331148 DOI: 10.1016/j.gde.2023.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
White adipocytes possess extraordinary plasticity with an unparalleled capacity to expand in size with nutritional overload. Several lines of evidence indicate that limitations to this plasticity, as found in both lipodystrophy and obesity, drive several of the comorbidities of these disease, thereby underscoring the need to understand the mechanisms of healthy and unhealthy adipose expansion. Recent single-cell technologies and studies of isolated adipocytes have allowed researchers to gain insight into the molecular mechanisms of adipocyte plasticity. Here, we review current insight into the effect of nutritional overload on white adipocyte gene expression and function. We review the role of adipocyte size and heterogeneity and discuss the challenges and future directions.
Collapse
Affiliation(s)
- Lasse K Markussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Center for Adipocyte Signaling (ADIPOSIGN), Odense, Denmark; Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark. https://twitter.com/@ATLAS_SDU
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Center for Adipocyte Signaling (ADIPOSIGN), Odense, Denmark; Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark.
| |
Collapse
|
43
|
Lee MK, Ryu H, Van JY, Kim MJ, Jeong HH, Jung WK, Jun JY, Lee B. The Role of Macrophage Populations in Skeletal Muscle Insulin Sensitivity: Current Understanding and Implications. Int J Mol Sci 2023; 24:11467. [PMID: 37511225 PMCID: PMC10380189 DOI: 10.3390/ijms241411467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance is a crucial factor in the development of type 2 diabetes mellitus (T2DM) and other metabolic disorders. Skeletal muscle, the body's largest insulin-responsive tissue, plays a significant role in the pathogenesis of T2DM due to defects in insulin signaling. Recently, there has been growing evidence that macrophages, immune cells essential for tissue homeostasis and injury response, also contribute to the development of skeletal muscle insulin resistance. This review aims to summarize the current understanding of the role of macrophages in skeletal muscle insulin resistance. Firstly, it provides an overview of the different macrophage populations present in skeletal muscle and their specific functions in the development of insulin resistance. Secondly, it examines the underlying mechanisms by which macrophages promote or alleviate insulin resistance in skeletal muscle, including inflammation, oxidative stress, and altered metabolism. Lastly, the review discusses potential therapeutic strategies targeting macrophages to improve skeletal muscle insulin sensitivity and metabolic health.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Heeyeon Ryu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Ji Yun Van
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.V.)
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (J.Y.V.)
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea;
| | - Joo Yun Jun
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA;
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (M.-K.L.); (H.R.)
| |
Collapse
|
44
|
Alruhaimi RS, Mostafa-Hedeab G, Abduh MS, Bin-Ammar A, Hassanein EHM, Kamel EM, Mahmoud AM. A flavonoid-rich fraction of Euphorbia peplus attenuates hyperglycemia, insulin resistance, and oxidative stress in a type 2 diabetes rat model. Front Pharmacol 2023; 14:1204641. [PMID: 37397470 PMCID: PMC10311489 DOI: 10.3389/fphar.2023.1204641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Type 2 diabetes (T2D) is a metabolic disorder characterized by insulin resistance (IR) and hyperglycemia. Plants are valuable sources of therapeutic agents for the management of T2D. Euphorbia peplus has been widely used as a traditional medicine for the treatment of various diseases, but its beneficial role in T2D has not been fully explored. Methods: The anti-diabetic efficacy of E. peplus extract (EPE) was studied using rats with T2D induced by high-fat diet (HFD) and streptozotocin (STZ). The diabetic rats received 100, 200, and 400 mg/kg EPE for 4 weeks. Results: Phytochemical fractionation of the aerial parts of E. peplus led to the isolation of seven known flavonoids. Rats with T2D exhibited IR, impaired glucose tolerance, decreased liver hexokinase and glycogen, and upregulated glycogen phosphorylase, glucose-6-phosphatase (G-6-Pase), and fructose-1,6-bisphosphatase (F-1,6-BPase). Treatment with 100, 200, and 400 mg/kg EPE for 4 weeks ameliorated hyperglycemia, IR, liver glycogen, and the activities of carbohydrate-metabolizing enzymes. EPE attenuated dyslipidemia, serum transaminases, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and liver lipid accumulation, nuclear factor (NF)-κB p65, and lipid peroxidation, nitric oxide and enhanced antioxidants. All EPE doses upregulated serum adiponectin and liver peroxisome proliferator-activated receptor γ (PPARγ) in HFD/STZ-induced rats. The isolated flavonoids showed in silico binding affinity toward hexokinase, NF-κB, and PPARγ. Conclusion: E. peplus is rich in flavonoids, and its extract ameliorated IR, hyperglycemia, dyslipidemia, inflammation and redox imbalance, and upregulated adiponectin and PPARγ in rats with T2D.
Collapse
Affiliation(s)
- Reem S. Alruhaimi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department, Medical College, Jouf University, Sakaka, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Albandari Bin-Ammar
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Emad H. M. Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Emadeldin M. Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman M. Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
45
|
Huang Y, Cui D, Chen L, Tong H, Wu H, Muller GK, Qi Y, Wang S, Xu J, Gao X, Fifield KE, Wang L, Xia Z, Vanderluit JL, Liu S, Leng L, Sun G, McGuire J, Young LH, Bucala R, Qi D. A pref-1-controlled non-inflammatory mechanism of insulin resistance. iScience 2023; 26:106923. [PMID: 37283810 PMCID: PMC10239698 DOI: 10.1016/j.isci.2023.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
While insulin resistance (IR) is associated with inflammation in white adipose tissue, we report a non-inflammatory adipose mechanism of high fat-induced IR mediated by loss of Pref-1. Pref-1, released from adipose Pref-1+ cells with characteristics of M2 macrophages, endothelial cells or progenitors, inhibits MIF release from both Pref-1+ cells and adipocytes by binding with integrin β1 and inhibiting the mobilization of p115. High palmitic acid induces PAR2 expression in Pref-1+ cells, downregulating Pref-1 expression and release in an AMPK-dependent manner. The loss of Pref-1 increases adipose MIF secretion contributing to non-inflammatory IR in obesity. Treatment with Pref-1 blunts the increase in circulating plasma MIF levels and subsequent IR induced by a high palmitic acid diet. Thus, high levels of fatty acids suppress Pref-1 expression and secretion, through increased activation of PAR2, resulting in an increase in MIF secretion and a non-inflammatory adipose mechanism of IR.
Collapse
Affiliation(s)
- Yiheng Huang
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liujun Chen
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Haibin Tong
- College of Life and Environment Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Hong Wu
- Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Grace K. Muller
- Department of Cell and Molecular Physiology, Loyola University, Chicago, IL, USA
| | - Yadan Qi
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shuxia Wang
- Department of Cardiology, The General Hospital of Chinese PLA, Beijing, China
| | - Jinjie Xu
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao, Shandong, China
| | - Kathleen E. Fifield
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Lingyan Wang
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Jacqueline L. Vanderluit
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Guang Sun
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - John McGuire
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Lawrence H. Young
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Dake Qi
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
46
|
Leo S, Tremoli E, Ferroni L, Zavan B. Role of Epicardial Adipose Tissue Secretome on Cardiovascular Diseases. Biomedicines 2023; 11:1653. [PMID: 37371748 DOI: 10.3390/biomedicines11061653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity and insulin resistance are associated with the inflamed and defective adipose tissue (AT) phenotype, and are established risk factors for cardiovascular diseases (CVDs). Extracellular vesicles (EVs) are a heterogeneous group of cell-derived lipid membrane vesicles involved in the onset and development of many pathologies, including insulin resistance, diabetes, and CVDs. The inflammation associated with overweight and obesity triggers the transition of the AT secretome from healthy to pathological, with a consequent increased expression of pro-inflammatory mediators. Epicardial adipose tissue (EAT) is a specialized fat depot that surrounds the heart, in direct contact with the myocardium. Recently, the role of EAT in regulating the physiopathology of many heart diseases has been increasingly explored. In particular, the EAT phenotype and derived EVs have been associated with the onset and exacerbation of CVDs. In this review, we will focus on the role of the AT secretome in the case of CVDs, and will discuss the beneficial effects of EVs released by AT as promising therapeutic candidates.
Collapse
Affiliation(s)
- Sara Leo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
47
|
Santillana N, Astudillo-Guerrero C, D’Espessailles A, Cruz G. White Adipose Tissue Dysfunction: Pathophysiology and Emergent Measurements. Nutrients 2023; 15:nu15071722. [PMID: 37049561 PMCID: PMC10096946 DOI: 10.3390/nu15071722] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
White adipose tissue (AT) dysfunction plays an important role in the development of cardiometabolic alterations associated with obesity. AT dysfunction is characterized by the loss of the expansion capacity of the AT, an increment in adipocyte hypertrophy, and changes in the secretion profile of adipose cells, associated with accumulation of macrophages and inflammation. Since not all people with an excess of adiposity develop comorbidities, it is necessary to find simple tools that can evidence AT dysfunction and allow the detection of those people with the potential to develop metabolic alterations. This review focuses on the current pathophysiological mechanisms of white AT dysfunction and emerging measurements to assess its functionality.
Collapse
Affiliation(s)
- Natalia Santillana
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8380453, Chile
| | - Camila Astudillo-Guerrero
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Amanda D’Espessailles
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
48
|
Abduh MS, Alzoghaibi MA, Alzoghaibi AM, Bin-Ammar A, Alotaibi MF, Kamel EM, Mahmoud AM. Arbutin ameliorates hyperglycemia, dyslipidemia and oxidative stress and modulates adipocytokines and PPARγ in high-fat diet/streptozotocin-induced diabetic rats. Life Sci 2023; 321:121612. [PMID: 36948387 DOI: 10.1016/j.lfs.2023.121612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Arbutin is a glycosylated hydroquinone with antioxidant and anti-hyperglycemia effects. However, its beneficial effects in type 2 diabetes (T2D) were not clarified. This study evaluated the effect of arbutin on hyperglycemia, dyslipidemia, insulin resistance, oxidative stress, and inflammatory response in T2D. Rats induced by high fat diet and streptozotocin were treated with arbutin (25 and 50 mg/kg for 4 weeks). Diabetic rats exhibited glucose intolerance, elevated HbA1c%, reduced insulin, and high HOMA-IR. Liver glycogen and hexokinase activity were decreased in T2D rats while glucose-6-phosphatase (G6Pase), fructose-1,6- biphosphatase (FBPase), and glycogen phosphorylase were upregulated. Circulating and hepatic cholesterol and triglycerides and serum transaminases were elevated in T2D rats. Arbutin ameliorated hyperglycemia, dyslipidemia, insulin deficiency and resistance, and liver glycogen and alleviated the activity of carbohydrate-metabolizing enzymes. Both doses of arbutin decreased serum transaminases and resistin, and liver lipids, TNF-α, IL-6, malondialdehyde and nitric oxide, downregulated liver resistin and fatty acid synthase, and increased serum and liver adiponectin, and liver reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT). These effects were associated with the upregulation of hepatic PPARγ. Arbutin inhibited α-glucosidase in vitro and in silico investigations revealed the ability of arbutin to bind PPARγ, hexokinase, and α-glucosidase. In conclusion, arbutin effectively ameliorated glucose intolerance, insulin resistance, dyslipidemia, inflammation, and oxidative stress, and modulated carbohydrate-metabolizing enzymes, antioxidants, adipokines and PPARγ in T2D in rats.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | | | - Albandari Bin-Ammar
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
49
|
Zhu M, Peng L, Huo S, Peng D, Gou J, Shi W, Tao J, Jiang T, Jiang Y, Wang Q, Huang B, Men L, Li S, Lv J, Lin L. STAT3 signaling promotes cardiac injury by upregulating NCOA4-mediated ferritinophagy and ferroptosis in high-fat-diet fed mice. Free Radic Biol Med 2023; 201:111-125. [PMID: 36940731 DOI: 10.1016/j.freeradbiomed.2023.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/22/2023]
Abstract
High-fat diet (HFD) intake provokes obesity and cardiac anomalies. Recent studies have found that ferroptosis plays a role in HFD-induced cardiac injury, but the underlying mechanism is largely unclear. Ferritinophagy is an important part of ferroptosis that is regulated by nuclear receptor coactivator 4 (NCOA4). However, the relationship between ferritinophagy and HFD-induced cardiac damage has not been explored. In this study, we found that oleic acid/palmitic acid (OA/PA) increased the level of ferroptotic events including iron and ROS accumulation, upregulation of PTGS2 mRNA and protein levels, reduced SOD and GSH levels, and significant mitochondrial damage in H9C2 cells, which could be reversed by the ferroptosis inhibitor ferrostatin-1 (Fer-1). Intriguingly, we found that the autophagy inhibitor 3-methyladenine mitigated OA/PA-induced ferritin downregulation, iron overload and ferroptosis. OA/PA increased the protein level of NCOA4. Knockdown of NCOA4 by SiRNA partly reversed the reduction in ferritin, mitigated iron overload and lipid peroxidation, and subsequently alleviated OA/PA-induced cell death, indicating that NCOA4-mediated ferritinophagy was required for OA/PA-induced ferroptosis. Furthermore, we demonstrated that NCOA4 was regulated by IL-6/STAT3 signaling. Inhibition or knockdown of STAT3 effectively reduced NCOA4 levels to protect H9C2 cells from ferritinophagy-mediated ferroptosis, whereas STAT3 overexpression by plasmid appeared to increase NCOA4 expression and contribute to classical ferroptotic events. Consistently, phosphorylated STAT3 upregulation, ferritinophagy activation, and ferroptosis induction also occurred in HFD-fed mice and were responsible for HFD-induced cardiac injury. In addition, we found evidence that piperlongumine, a natural compound, effectively reduced phosphorylated STAT3 levels to protect cardiomyocytes from ferritinophagy-mediated ferroptosis both in vitro and in vivo. Based on these findings, we concluded that ferritinophagy-mediated ferroptosis was one of the critical mechanisms contributing to HFD-induced cardiac injury. The STAT3/NCOA4/FTH1 axis might be a novel therapeutic target for the treatment of HFD-induced cardiac injury.
Collapse
Affiliation(s)
- Mengying Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Gou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Tao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Division of Geriatrics, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyu Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
50
|
Yu H, Raza SHA, Pan Y, Cheng G, Mei C, Zan L. Integrative Analysis of Blood Transcriptomics and Metabolomics Reveals Molecular Regulation of Backfat Thickness in Qinchuan Cattle. Animals (Basel) 2023; 13:ani13061060. [PMID: 36978600 PMCID: PMC10044415 DOI: 10.3390/ani13061060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
A crucial goal of reducing backfat thickness (BFT) is to indirectly improve feed conversion efficiency. This phenotype has been reported in certain papers; however, the molecular mechanism has yet to be fully revealed. Two extreme BFT groups, consisting of four Qinchuan cattle, were chosen for this study. We performed metabolite and transcriptome analyses of blood from cattle with a high BFT (H-BFT with average = 1.19) and from those with a low BFT (L-BFT with average = 0.39). In total, 1106 differentially expressed genes (DEGs) and 86 differentially expressed metabolites (DEMs) were identified in the extreme trait. In addition, serum ceramide was strongly correlated with BFT and could be used as a potential biomarker. Moreover, the most notable finding was that the functional genes (SMPD3 and CERS1) and metabolite (sphingosine 1-phosphate (S1P)) were filtered out and significantly enriched in the processes related to the sphingolipid metabolism. This investigation contributed to a better understanding of the subcutaneous fat depots in cattle. In general, our results indicated that the sphingolipid metabolism, involving major metabolites (serum ceramide and S1P) and key genes (SMPD3 and CERS1), could regulate BFT through blood circulation.
Collapse
Affiliation(s)
- Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (H.Y.); (S.H.A.R.)
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (H.Y.); (S.H.A.R.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Yueting Pan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (H.Y.); (S.H.A.R.)
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (H.Y.); (S.H.A.R.)
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Xianyang 712100, China
- National Beef Cattle Improvement Center, Xianyang 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (H.Y.); (S.H.A.R.)
- National Beef Cattle Improvement Center, Xianyang 712100, China
- Correspondence:
| |
Collapse
|