1
|
Liang C, Jia Y, He RT, Ding B, Yang ZD, Cao XQ, Zhang J. Wheat bran supplementation improved polystyrene degradation efficiency of Zophobas atratus larvae by alleviating intestinal injury caused by polystyrene-intake. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138148. [PMID: 40184973 DOI: 10.1016/j.jhazmat.2025.138148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Wheat bran supplementation significantly improves the polystyrene consumption capacity of Zophobas atratus larvae. However, the underlying mechanism remains unclear, limiting further advancements in degradation efficiency. This study seeks to clarify the mechanism by analyzing intestinal morphology, gut microbiota structure, gene transcription, and targeted metabolites. Specifically, histopathology results demonstrated that wheat bran supplementation alleviated polystyrene-induced intestinal injury in larvae. From a genetic perspective, genes related to annexins and tight junction proteins were upregulated in intestinal tissues. These genetic changes positively correlated with increased levels of short-chain fatty acids, eicosanoids, and beneficial bacteria (e.g., Latilactobacillus curvatus). Moreover, wheat bran supplementation alleviated gut microbiota dysbiosis, suppressed pathogenic bacteria, reduced over upregulation of NADPH oxidase activity related genes, and up-regulated genes linked to the intestinal immune system process pathway, thereby mitigating the intestinal injury. It also upregulated genes associated with the aromatase activity pathway, promoting the degradation of polystyrene and its intermediates. In summary, wheat bran supplementation enhanced the polystyrene degradation efficiency of Z. atratus larvae by upregulating genes linked to the aromatase activity pathway and mitigating intestinal injury (through modulation of intestinal gene transcription, microbiota structure, and metabolites). Our findings offer new insights into improving the efficiency of insect-mediated plastic biodegradation.
Collapse
Affiliation(s)
- Cong Liang
- College of safety and environmental engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yun Jia
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Ren-Tao He
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Bin Ding
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
| | - Zheng-da Yang
- College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiao-Qiang Cao
- College of safety and environmental engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jian Zhang
- College of safety and environmental engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
2
|
Lai Y, Zhu Y, Zhang X, Ding S, Wang F, Hao J, Wang Z, Shi C, Xu Y, Zheng L, Huang W. Gut microbiota-derived metabolites: Potential targets for cardiorenal syndrome. Pharmacol Res 2025; 214:107672. [PMID: 40010448 DOI: 10.1016/j.phrs.2025.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
The characteristic of cardiorenal syndrome (CRS) is simultaneous damage to both the heart and kidneys. CRS has caused a heavy burden of mortality and incidence rates worldwide. The regulation of host microbiota metabolism that triggers heart and kidney damage is an emerging research field that promotes a new perspective on cardiovascular risk. We summarize current studies from bench to bedside of gut microbiota-derived metabolites to better understand CRS in the context of gut microbiota-derived metabolites. We focused on the involvement of gut microbiota-derived metabolites in the pathophysiology of CRS, including lipid and cholesterol metabolism disorders, coagulation abnormalities and platelet aggregation, oxidative stress, endothelial dysfunction, inflammation, mitochondrial damage and energy metabolism disorders, vascular calcification and renal fibrosis, as well as emerging therapeutic approaches targeting CRS metabolism in gut microbiota-derived metabolites which provides an innovative treatment approach for CRS to improve patient prognosis and overall quality of life.
Collapse
Affiliation(s)
- Yuchen Lai
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Xihui Zhang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Shifang Ding
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China
| | - Fang Wang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Jincen Hao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Zhaomeng Wang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Congqi Shi
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yongjin Xu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China.
| | - Wei Huang
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China.
| |
Collapse
|
3
|
Patel TA, Zheng H, Patel KP. Sodium-Glucose Cotransporter 2 Inhibitors as Potential Antioxidant Therapeutic Agents in Cardiovascular and Renal Diseases. Antioxidants (Basel) 2025; 14:336. [PMID: 40227417 PMCID: PMC11939188 DOI: 10.3390/antiox14030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Redox (reduction-oxidation) imbalance is a physiological feature regulated by a well-maintained equilibrium between reactive oxygen species (ROS) and oxidative stress (OS), the defense system of the body (antioxidant enzymes). The redox system comprises regulated levels of ROS in the cells, tissues and the overall organ system. The levels of ROS are synchronized by gradients of electrons that are generated due to sequential reduction and oxidation of various biomolecules by various enzymes. Such redox reactions are present in each cell, irrespective of any tissue or organ. Failure in such coordinated regulation of redox reactions leads to the production of excessive ROS and free radicals. Excessively produced free radicals and oxidative stress affect various cellular and molecular processes required for cell survival and growth, leading to pathophysiological conditions and, ultimately, organ failure. Overproduction of free radicals and oxidative stress are the key factors involved in the onset and progression of pathophysiological conditions associated with various cardiovascular and renal diseases. Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are glucose-lowering drugs prescribed to diabetic patients. Interestingly, apart from their glucose-lowering effect, these drugs exhibit beneficial effects in non-diabetic patients suffering from various cardiovascular and chronic kidney diseases, perhaps due to their antioxidant properties. Recently, it has been demonstrated that SGLT2is exhibit strong antioxidant properties by reducing ROS and OS. Hence, in this review, we aim to present the novel antioxidant role of SGLT2is and their consequent beneficial effects in various cardiovascular and renal disease states.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|
4
|
Kim H, Rebholz CM. Insights from omics research on plant-based diets and cardiometabolic health. Trends Endocrinol Metab 2025:S1043-2760(25)00023-2. [PMID: 39984401 DOI: 10.1016/j.tem.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
Plant-based diets emphasize higher intake of plant foods and are low in animal products. Individuals following plant-based diets have a lower risk of chronic conditions; however, the mechanisms underlying these associations are not completely understood. Omics data have opened opportunities to investigate the mechanistic effect of dietary intake on health outcomes. Here, we review omics analyses of plant-based diets in feeding and observational studies, showing that although metabolomics and proteomics identified candidate biomarkers and distinct pathways modifiable by plant-based diets, current evidence from transcriptomics and methylomics is limited. We also argue that future studies should examine how unhealthful plant-based diets are associated with a higher risk of health outcomes and integrate multiple omics data from feeding studies to provide further mechanistic insights.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA; Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA; Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Malaweera A, Huang L, McMahon L. Benefits and Pitfalls of Uraemic Toxin Measurement in Peritoneal Dialysis. J Clin Med 2025; 14:1395. [PMID: 40004925 PMCID: PMC11857055 DOI: 10.3390/jcm14041395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic kidney disease is a global health burden with a rising incidence and prevalence in developed and developing nations. Once established, it results in a progressive accumulation of a myriad of uraemic toxins. Peritoneal dialysis (PD) uses the body's peritoneal membrane to remove these toxins across a semipermeable membrane to restore and maintain homeostasis. Traditionally, dialysis adequacy has been measured through clearance of urea and creatinine. However, numerous studies have shown marginal links comparing the clearance of urea and creatinine with clinical outcomes reflected in the recent changes to the ISPD guidelines on dialysis adequacy. Instead, attention has focused on protein-bound uraemic toxins (PBTs). Produced by gut bacteria, these molecules are highly protein-bound and poorly removed by either dialysis or absorptive agents. Elevated concentrations of molecules such as p-cresyl sulfate and indoxyl sulfate have been associated with abnormal cellular function and poor patient outcomes. However, widespread use of these measures to determine dialysis adequacy has been limited by the need for specialized techniques required for measurement. Altering the gut microbiome to reduce generation of PBTs through increased dietary fiber might be an alternate approach to better patient outcomes, with some initial positive reports. This report explores advantages and limitations of measuring uraemic toxins in PD, now and in the foreseeable future.
Collapse
Affiliation(s)
- Aruni Malaweera
- Department of Renal Medicine, Eastern Health, 5, Arnold Street, Box Hill, Melbourne, VIC 3128, Australia; (L.H.); (L.M.)
| | | | | |
Collapse
|
6
|
Flynn CK, Adams JB, Krajmalnik-Brown R, Khoruts A, Sadowsky MJ, Nirmalkar K, Takyi E, Whiteley P. Review of Elevated Para-Cresol in Autism and Possible Impact on Symptoms. Int J Mol Sci 2025; 26:1513. [PMID: 40003979 PMCID: PMC11855632 DOI: 10.3390/ijms26041513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Para-cresol (p-cresol), and its primary human metabolite p-cresol sulfate (pCS), are among the most studied gut-derived metabolites relevant to autism spectrum disorder (ASD). P-cresol is produced by bacterial modification of phenylalanine or tyrosine and is one of many potentially deleterious metabolites produced by the gut microbiota. Seventeen studies have observed p-cresol and/or p-cresol sulfate as being higher in the urine of children with autism spectrum disorder (ASD) vs. controls. P-cresol has harmful effects on the body, including within the gut, brain, kidneys, liver, immune system, and mitochondria. Some of these effects may contribute to autism and comorbid symptoms. In the gut, p-cresol acts as an antibiotic, altering the gut microbiome to favor the bacteria that produce it. In the mitochondria, p-cresol disrupts ATP production and increases oxidative stress, which is also common in autism. In the brain, p-cresol impairs neuronal development. P-cresol inactivates dopamine beta-hydroxylase, which converts dopamine to noradrenaline. P-cresol sulfate impairs kidney function and is linked to chronic kidney disease (CKD), which is more common in ASD adults. P-cresol also interferes with immune function. Three animal studies have demonstrated that p-cresol causes autism-related symptoms in mice, and that mice can be recovered by the administration of fecal microbiota transplant from healthy mice. Similarly, it was found that microbiota transplant therapy treatment in children with ASD significantly reduced p-cresol sulfate levels to normal and led to significant improvements in gastrointestinal (GI) and ASD symptoms. In summary, p-cresol and pCS likely contribute to ASD core symptoms in a substantial subset of children with ASD.
Collapse
Affiliation(s)
- Christina K. Flynn
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA; (C.K.F.)
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - James B. Adams
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA; (C.K.F.)
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA; (C.K.F.)
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Alexander Khoruts
- Department of Medicine, Division of Gastroenterology, Center for Immunology and BioTechnology Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael J. Sadowsky
- Department of Medicine and BioTechnology Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Khemlal Nirmalkar
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA; (C.K.F.)
| | - Evelyn Takyi
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA; (C.K.F.)
| | | |
Collapse
|
7
|
Li J, Wang Y, Li C, Duan J, Liu J, Guo J. Liquid chromatography coupled with high resolution mass spectrometry reveals the inhibitory effects of Huangkuisiwu formula on biosynthesis of protein-binding uremic toxins in rats with chronic kidney disease. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124445. [PMID: 39746293 DOI: 10.1016/j.jchromb.2024.124445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/19/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Chronic kidney disease (CKD) is recognized as a common disorder worldwide. Protein-binding uremic toxins that cannot be efficiently removed by extracorporeal renal replacement therapies, such as indoxyl sulfate (IS) and p-cresyl sulfate (PCS), are associated with high risks of cardiovascular complications and high mortality in CKD population. This study aimed to explore the therapeutical effects of Huangkuisiwu formula (HKSWF) on CKD rats. Moreover, the underlying mechanisms of HKSWF to inhibit the biosynthesis of IS and PCS were studied. Untargeted metabolomics based on UHPLC-QTOF/MS was conducted to analyze the alterations of endogenous metabolites in plasma. Levels of IS and PCS in plasma and peripheral tissues, as well as levels of amino acids in colonic contents were analyzed by UHPLC-TQ/MS. Levels of indole and p-cresol, the precursors of IS and PCS, in feces and colonic contents were quantified by HPLC-FLD. mRNA and protein expression of sulfotransferase 1 a1 (SULT1A1) were determined by qPCR and Western blotting, respectively. The ability of colonic microbiota to metabolize amino acids into precursors, as well as the activity of sulfotransferase to catalyze precursors into uremic toxins were evaluated by detecting corresponding products from specific substrates. 16S rRNA sequencing were conducted to analyze the profile of gut microbiota. The results showed that HKSWF significantly alleviated the structural and functional impairment of kidney, as well as improved the global metabolic disorders in CKD rats. IS and PCS were identified as the key differential metabolites that contributed to the effects of HKSWF. HKSWF significantly reduced the levels of IS and PCS in plasma, kidney, liver and heart of CKD rats. HKSWF showed no significant effects on the expression of SULT1A1 or the activity of sulfotransferase. HKSWF significantly decreased the levels of indole and p-cresol in the colonic contents and feces of CKD rats, by inhibiting the ability of colonic microbiota to metabolize tryptophan and tyrosine into indole and p-cresol. Alterations in the profile of amino acids and gut microbiota in CKD rats were significantly improved by HKSWF treatment. Conclusively, HKSWF inhibited gut-microbiota mediated biosynthesis of indole and p-cresol, to alleviate the accumulation of IS and PCS in CKD rats.
Collapse
Affiliation(s)
- Jianping Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yumeng Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chengxi Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianjing Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
8
|
Zhang S, Tang S, Liu Y, Xue B, Xie Q, Zhao L, Yuan H. Protein-bound uremic toxins as therapeutic targets for cardiovascular, kidney, and metabolic disorders. Front Endocrinol (Lausanne) 2025; 16:1500336. [PMID: 39931238 PMCID: PMC11808018 DOI: 10.3389/fendo.2025.1500336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome is a systemic clinical condition characterized by pathological and physiological interactions among metabolic abnormalities, chronic kidney disease, and cardiovascular diseases, leading to multi-organ dysfunction and a higher incidence of cardiovascular endpoints. Traditional approaches to managing CKM syndrome risk are inadequate in these patients, necessitating strategies targeting specific CKM syndrome risk factors. Increasing evidence suggests that addressing uremic toxins and/or pathways induced by uremic toxins may reduce CKM syndrome risk and treat the disease. This review explores the interactions among heart, kidney, and metabolic pathways in the context of uremic toxins and underscores the significant role of uremic toxins as potential therapeutic targets in the pathophysiology of these diseases. Strategies aimed at regulating these uremic toxins offer potential avenues for reversing and managing CKM syndrome, providing new insights for its clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huijuan Yuan
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| |
Collapse
|
9
|
Chen WY, Zhang JH, Chen LL, Byrne CD, Targher G, Luo L, Ni Y, Zheng MH, Sun DQ. Bioactive metabolites: A clue to the link between MASLD and CKD? Clin Mol Hepatol 2025; 31:56-73. [PMID: 39428978 PMCID: PMC11791555 DOI: 10.3350/cmh.2024.0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
Collapse
Affiliation(s)
- Wen-Ying Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Hui Zhang
- Department of Pediatric Laboratory, Affiliated Children’s Hospital of Jiangnan University, Wuxi Children’s Hospital, Wuxi, Jiangsu, China
| | - Li-Li Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Liang Luo
- Intensive Care Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yan Ni
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Dan-Qin Sun
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Department of Nephrology, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|
10
|
Al-Dajani AR, Kiang TKL. A high-throughput liquid chromatography-tandem mass spectrometry assay for the simultaneous quantification of p-cresol sulfate, p-cresol glucuronide, indoxyl sulfate, and indoxyl glucuronide in HepaRG culture medium and the demonstration of mefenamic acid as a potent and selective detoxifying agent. Expert Opin Drug Metab Toxicol 2025; 21:81-93. [PMID: 39323391 DOI: 10.1080/17425255.2024.2409257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND p-cresol and indole are uremic compounds which undergo sulfonation to generate the highly toxic p-cresol sulfate (pCS) and indoxyl sulfate (IxS). They are also subjected to glucuronidation to produce the less toxic p-cresol glucuronide (pCG) and indoxyl glucuronide (IG). We developed and validated an assay to quantify these metabolites in HepaRG cells. We also tested the effects of mefenamic acid on their in-situ formations in relation to the development of cellular necrosis. RESEARCH DESIGN AND METHODS HepaRG cells were exposed to p-cresol or indole (0-1 mM) with mefenamic acid (0-3000 nM) for 24 hours to generate uremic metabolites. Cells were also exposed to 0.5 mM p-cresol or indole with/without 30 nM mefenamic acid to characterize lactate dehydrogenase (LDH) release. RESULTS The assay exhibited high sensitivity and wide calibration ranges covering human concentrations. HepaRG cells also generated physiologically-relevant concentrations of each metabolite. Mefenamic acid inhibited pCS formation in a concentration-dependent manner without affecting pCG, IxS, or IG. Mefenamic acid also reduced LDH release from p-cresol (by 50.12±5.86%) or indole (56.26±3.58%). CONCLUSIONS This novel assay is capable of quantifying these metabolites in HepaRG cells. Our novel findings suggest that mefenamic acid can be potentially utilized therapeutically to attenuate pCS-associated toxicities.
Collapse
Affiliation(s)
- Ala'a R Al-Dajani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| | - Tony K L Kiang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Alberta, Canada
| |
Collapse
|
11
|
Kim K, Cho WH, Hwang SD, Lee SW, Song JH. Association between constipation and incident chronic kidney disease in the UK Biobank study. Sci Rep 2024; 14:32106. [PMID: 39738665 PMCID: PMC11686077 DOI: 10.1038/s41598-024-83855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Despite previous studies supporting a close relationship between constipation and chronic kidney disease (CKD), the potential impact of constipation on incident CKD and the role of laxatives remains uncertain. We analyzed longitudinal data from the UK Biobank, which links baseline assessment data with follow-up data from hospital episode statistics and general practice records. Constipation was defined with diagnostic codes or regular use of laxatives at baseline as reported in the questionnaire. Cox proportional hazard models were used to evaluate the association between constipation and incident CKD. After excluding individuals with pre-existing CKD or missing covariates, 118,020 participants with general practice follow-up data were included in the main analysis. Over a median follow-up of 7.4 years, 6,833 (5.8%) patients developed CKD. Constipation was significantly associated with increased risk of CKD development in the multivariable adjusted models (hazard ratio [HR] 1.51, 95% confidence interval [CI] 1.37-1.67) for ICD-defined constipation, HR 1.34, 95% CI 1.23-1.47 for constipation defined by ICD codes or laxative use). Patients with ICD-defined constipation, even when taking laxatives, were found to have a higher risk of incident CKD than those without constipation (HR 1.42, 95% CI 1.08-1.85). We found no moderating effects of laxative use on the association between constipation and incident CKD. Constipation is independently associated with incident CKD in the large population-based longitudinal cohort. These findings highlight constipation as a potential risk factor or predictor of CKD development. Further research is warranted to elucidate the role of laxatives in controlled study designs.
Collapse
Affiliation(s)
- Kipyo Kim
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhangro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Won-Hee Cho
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhangro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Seun Deuk Hwang
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhangro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Seoung Woo Lee
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhangro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Joon Ho Song
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhangro, Jung-gu, Incheon, 22332, Republic of Korea.
| |
Collapse
|
12
|
Ribeiro FPB, de Luna Freire MO, de Oliveira Coutinho D, de Santana Cirilo MA, de Brito Alves JL. Gut Dysbiosis and Probiotic Therapy in Chronic Kidney Disease: A Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10427-9. [PMID: 39668321 DOI: 10.1007/s12602-024-10427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial disease affecting more than 13.4% of the world's population and is a growing public health problem. It is silent in its early stages and leads to irreversible kidney damage as the disease progresses. A key factor in this progression is the bidirectional relationship between CKD and gut dysbiosis, which creates an imbalance that promotes the accumulation of uremic toxins (UTs), contributing to renal fibrosis, endothelial dysfunction, and decreased glomerular filtration rate. In addition, CKD itself exacerbates gut dysbiosis by altering the composition of the gut microbiota (GM) and promoting the growth of pathogenic microorganisms. Therefore, it is crucial to explore new therapeutic strategies, and the use of probiotics and synbiotics has shown promise in modulating the GM. Numerous preclinical studies have shown that the use of probiotics in CKD has a beneficial effect on the kidney by reducing UTs, apoptosis, inflammation, and oxidative stress. Probiotic treatment has also been associated with restoration of intestinal integrity, modulation of microbial composition and diversity, and increased production of short-chain fatty acids (SCFAs). These positive results have also been observed in patients at different stages of CKD, where the use of probiotics and/or synbiotics was able to improve creatinine levels and uremic parameters and alleviate abdominal discomfort, in addition to modulating GM and reducing serum endotoxin levels. Although recent studies have explored the benefits of probiotics in the treatment of CKD, further research is needed to determine their long-term efficacy and clinical relevance. This review focuses on the factors driving gut dysbiosis in CKD, its role in disease progression, and the potential of probiotics as a therapeutic strategy.
Collapse
Affiliation(s)
- Fernanda Priscila Barbosa Ribeiro
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | - Daniella de Oliveira Coutinho
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil
| | | | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd, Cidade Universitária, João Pessoa, 58051-900, Brazil.
| |
Collapse
|
13
|
Li XJ, Shan QY, Wu X, Miao H, Zhao YY. Gut microbiota regulates oxidative stress and inflammation: a double-edged sword in renal fibrosis. Cell Mol Life Sci 2024; 81:480. [PMID: 39636415 PMCID: PMC11621299 DOI: 10.1007/s00018-024-05532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Gut microbiota is a complex and dynamic system that plays critical roles in human health and various disease. Progressive chronic kidney disease (CKD) suggests that patients irreversibly progress to end-stage kidney disease and need renal replacement treatments, including dialysis and transplantation. Ample evidence indicates that local oxidative stress and inflammation play pivotal roles in the pathogenesis and progression of CKD and dysbiosis of gut microbiota. CKD is always accompanied by intestinal inflammation and oxidative stress, which lead to rapid systemic translocation of bacterial-derived uraemic toxins, including indoxyl sulphate, phenyl sulphate and indole-3-acetic acid, and the consequent development and aggravation of renal fibrosis. Although inflammation and oxidative stress have been extensively discussed, there is a paucity of reports on the effects of gut microbiota on renal fibrosis and gut microbiota mediation of oxidative stress and inflammation. This review provides an overview of gut microbiota on inflammation and oxidative stress in renal fibrosis, briefly discusses regulation of the gut flora using microecological preparations and natural products, such as resveratrol, curcumin and emodin as treatments for CKD, and provides a clear pathophysiological rationale for the design of promising therapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Qi-Yuan Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
14
|
Li H, Song Q, Su X, Shen Y, Yan H, Yu Z, Li Z, Yuan J, Huang J, Ni Z, Gu L, Fang W. Serum angiopoietin-2/angiopoietin-1 ratio is associated with cardiovascular and all-cause mortality in peritoneal dialysis patients: a prospective cohort study. Ren Fail 2024; 46:2380037. [PMID: 39082686 PMCID: PMC11293270 DOI: 10.1080/0886022x.2024.2380037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024] Open
Abstract
INTRODUCTION Our objective was to examine the factors associated with the serum angiopoietin-2/angiopoietin-1 (Angpt-2/Angpt-1) ratio in peritoneal dialysis (PD) patients and to investigate the association between Angpt-2/Angpt-1 ratio and cardiovascular and all-cause mortality. METHODS Patients on PD who were prevalent between January 2014 and April 2015 in the center of Renji Hospital were enrolled. At the time of enrollment, serum and dialysate samples were collected to detect biochemical parameters, serum angiopoietin-2 and angiopoietin-1 levels. Patients were dichotomized into two groups according to a median of Angpt-2/Angpt-1 ratio and followed up prospectively until the end of the study. RESULTS A total of 325 patients were enrolled, including 168 males (51.7%) with a mean age of 56.9 ± 14.2 years and a median PD duration of 32.4 (9.8-55.9) months. Multiple linear regression showed pulse pressure (β = 0.206, p < .001) and high-sensitivity C-reactive protein (hs-CRP) (β = 0.149, p = .011) were positively correlated with serum Angpt-2/Angpt-1 ratio, while residual renal function (RRF) (β= -0.219, p < .001) was negatively correlated with serum Angpt-2/Angpt-1 ratio. Multivariate Cox regression analysis showed the high serum Angpt-2/Angpt-1 ratio was an independent predictor of cardiovascular mortality (hazard ratio (HR)=2.467, 95% confidence interval (CI) 1.243-4.895, p = .010) and all-cause mortality (HR = 1.486, 95%CI 1.038-2.127, p = .031). In further subgroup analysis by gender, a significant association was shown in high Angpt-2/Angpt-1 ratio with all-cause mortality in male (p < .05), but not in female patients (p>.05). CONCLUSIONS High Angpt-2/Angpt-1 ratio is an independent risk factor for cardiovascular and all-cause mortality in PD patients.
Collapse
Affiliation(s)
- Han Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Qianhui Song
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Xinyu Su
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Yiwei Shen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Hao Yan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Zanzhe Yu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Zhenyuan Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Jiangzi Yuan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Jiaying Huang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Wei Fang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| |
Collapse
|
15
|
Lee TL, Hsuan CF, Hsu CC, Wei CT, Wang CP, Lu YC, Tang WH, Lu NH, Chung FM, Lee YJ, Tsai IT. Associations of circulating total p-cresylsulfate and indoxyl sulfate concentrations with central obesity in patients with stable coronary artery disease: sex-specific insights. Int J Obes (Lond) 2024; 48:1775-1784. [PMID: 39237758 PMCID: PMC11584387 DOI: 10.1038/s41366-024-01624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND/AIMS Elevated systemic inflammation, common in obesity, increases cardiovascular disease risk. Obesity is linked to a pro-inflammatory gut microbiota that releases uremic toxins like p-cresylsulfate (PCS) and indoxyl sulfate (IS), which are implicated in coronary atherosclerosis, insulin resistance, and chronic kidney disease. This study examines the relationship between total PCS and IS levels and central obesity in patients with stable coronary artery disease (CAD). METHODS A cross-sectional study was conducted on 373 consecutive patients with stable CAD from a single center. Serum levels of total PCS and IS were measured using an Ultra Performance LC System. Central obesity was evaluated using a body shape index (ABSI) and conicity index (CI). Six obesity-related proteins were also analyzed. Structural equation modeling (SEM) assessed direct and indirect effects of total PCS, IS, and the six obesity-related proteins on central obesity. RESULTS Significant positive correlations were found between total PCS and IS with waist-to-hip ratio (WHR) (r = 0.174, p = 0.005 for total PCS; r = 0.144, p = 0.021 for IS), CI (r = 0.273, p < 0.0001 for total PCS; r = 0.260, p < 0.0001 for IS), and ABSI (r = 0.297, p < 0.0001 for total PCS; r = 0.285, p < 0.0001 for IS) in male patients, but not in female patients. Multivariate analysis showed higher odds ratios (ORs) for elevated CI (OR = 3.18, 95% CI: 1.54-6.75, p = 0.002) and ABSI (OR = 3.28, 95% CI: 1.54-7.24, p = 0.002) in patients with high PCS levels, and elevated CI (OR = 2.30, 95% CI: 1.15-4.66, p = 0.018) and ABSI (OR = 2.22, 95% CI: 1.07-4.72, p = 0.033) in those with high IS levels, compared to those with low toxin levels. SEM analysis indicated that total PCS and IS directly impacted central obesity indices and indirectly influenced central adiposity measures like WHR through high sensitivity C-reactive protein (hs-CRP) (β = 0.252, p < 0.001). CONCLUSIONS Circulating total PCS and IS contribute to central obesity in male patients with stable CAD, partially mediated by hs-CRP.
Collapse
Affiliation(s)
- Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung, 807066, Taiwan
| | - Chia-Chang Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- Health Examination Center, E-Da Dachang Hospital, I-Shou University, Kaohsiung, 807066, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Ching-Ting Wei
- The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Division of General Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Yung-Chuan Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445, Taiwan
| | - Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Yuli Branch, Hualien, 98142, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Nan-Han Lu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- Department of Radiology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Yau-Jiunn Lee
- Lee's Endocrinologic Clinic, Pingtung, 90000, Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan.
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan.
| |
Collapse
|
16
|
Zheng G, Cao J, Wang XH, He W, Wang B. The gut microbiome, chronic kidney disease, and sarcopenia. Cell Commun Signal 2024; 22:558. [PMID: 39574190 PMCID: PMC11580515 DOI: 10.1186/s12964-024-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024] Open
Abstract
Sarcopenia is a prevalent condition in patients with chronic kidney disease (CKD), intricately linked to adverse prognoses, heightened cardiovascular risks, and increased mortality rates. Extensive studies have found a close and complex association between gut microbiota, kidney and muscle. On one front, patients with CKD manifest disturbances in gut microbiota and alterations in serum metabolites. These abnormal microbiota composition and metabolites in turn participate in the development of CKD. On another front, altered gut microbiota and its metabolites may lead to significant changes in metabolic homeostasis and inflammation, ultimately contributing to the onset of sarcopenia. The disturbance of gut microbial homeostasis, coupled with the accumulation of toxic metabolites, exerts deleterious effects on skeletal muscles in CKD patients with sarcopenia. This review meticulously describes the alterations observed in gut microbiota and its serum metabolites in CKD and sarcopenia patients, providing a comprehensive overview of pertinent studies. By delving into the intricate interplay of gut microbiota and serum metabolites in CKD-associated sarcopenia, we aim to unveil novel treatment strategies for ameliorating their symptoms and prognosis.
Collapse
Affiliation(s)
- Guohao Zheng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Jingyuan Cao
- Institute of Nephrology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Xiaonan H Wang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| | - Wei He
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Tong Y, Guo S, Li T, Yang K, Gao W, Peng F, Zou X. Gut microbiota and renal fibrosis. Life Sci 2024; 357:123072. [PMID: 39307181 DOI: 10.1016/j.lfs.2024.123072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Renal fibrosis represents a critical pathological condition in the progression of renal dysfunction, characterized by aberrant accumulation of extracellular matrix (ECM) and structural alterations in renal tissue. Recent research has highlighted the potential significance of gut microbiota and demonstrated their influence on host health and disease mechanisms through the production of bioactive metabolites. This review examines the role of alterations in gut microbial composition and their metabolites in the pathophysiological processes underlying renal fibrosis. It delineates current therapeutic interventions aimed at modulating gut microbiota composition, encompassing dietary modifications, pharmacological approaches, and probiotic supplementation, while evaluating their efficacy in mitigating renal fibrosis. Through a comprehensive analysis of current research findings, this review enhances our understanding of the bidirectional interaction between gut microbiota and renal fibrosis, establishing a theoretical foundation for future research directions and potential clinical applications in this domain.
Collapse
Affiliation(s)
- Yinghao Tong
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Shangze Guo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Ting Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Kexin Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Wei Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
18
|
Ghajavand B, Avesani C, Stenvinkel P, Bruchfeld A. Unlocking the Potential of Brewers' Spent Grain: A Sustainable Model to Use Beer for Better Outcome in Chronic Kidney Disease. J Ren Nutr 2024; 34:482-492. [PMID: 38621435 DOI: 10.1053/j.jrn.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
The rising global incidence of chronic inflammatory diseases calls for innovative and sustainable medical solutions. Brewers' spent grain (BSG), a byproduct of beer production, presents a unique opportunity in this regard. This review explores the multifaceted health benefits of BSG, with a focus on managing chronic kidney disease (CKD). BSG is identified as a potent prebiotic with potential as a therapeutic agent in CKD. We emphasize the role of gut dysbiosis in CKD and discuss how BSG could help mitigate metabolic derangements resulting from dysbiosis and CKD. Fermentation of BSG further enhances its positive impact on gut health. Incorporating fermented BSG as a key component in preventive health care could promote a more sustainable and healthier future. By optimizing the use of this typically discarded byproduct, we can align proactive health-care strategies with responsible resource management, benefiting both people and the environment.
Collapse
Affiliation(s)
- Babak Ghajavand
- Department of Renal Medicine, Linköping University Hospital, Linköping, Sweden.
| | - Carla Avesani
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Du J, Zhao X, Ding X, Han Q, Duan Y, Ren Q, Wang H, Song C, Wang X, Zhang D, Zhu H. The Role of the Gut Microbiota in Complications among Hemodialysis Patients. Microorganisms 2024; 12:1878. [PMID: 39338552 PMCID: PMC11434415 DOI: 10.3390/microorganisms12091878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The composition of the gut microbiota varies among end-stage renal disease (ESRD) patients on the basis of their mode of renal replacement therapy (RRT), with notably more pronounced dysbiosis occurring in those undergoing hemodialysis (HD). Interventions such as dialysis catheters, unstable hemodynamics, strict dietary restrictions, and pharmacotherapy significantly alter the intestinal microenvironment, thus disrupting the gut microbiota composition in HD patients. The gut microbiota may influence HD-related complications, including cardiovascular disease (CVD), infections, anemia, and malnutrition, through mechanisms such as bacterial translocation, immune regulation, and the production of gut microbial metabolites, thereby affecting both the quality of life and the prognosis of patients. This review focuses on alterations in the gut microbiota and its metabolites in HD patients. Additionally, understanding the impact of the gut microbiota on the complications of HD could provide insights into the development of novel treatment strategies to prevent or alleviate complications in HD patients.
Collapse
Affiliation(s)
- Junxia Du
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Xiaolin Zhao
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiaonan Ding
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yingjie Duan
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Qinqin Ren
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Chenwen Song
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Xiaochen Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Dong Zhang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| |
Collapse
|
20
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
21
|
Huang L, Wu W, Wang X. Analysis of the microecological mechanism of diabetic kidney disease based on the theory of "gut-kidney axis": A systematic review. Open Life Sci 2024; 19:20220909. [PMID: 39119482 PMCID: PMC11306963 DOI: 10.1515/biol-2022-0909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the main microvascular complications of diabetes mellitus, as well as the leading cause of end-stage renal disease. Intestinal microbiota has emerged as a crucial regulator of its occurrence and development. Dysbiosis of the intestinal microbiota can disrupt the intestinal mucosal barrier, abnormal immunological response, reduction in short-chain fatty acid metabolites, and elevation of uremic toxins, all closely related to the occurrence and development of DKD. However, the underlying mechanisms of how intestinal microbiota and its metabolites influence the onset and progression of DKD has not been fully elucidated. In the current review, we will try to summarize the microecological mechanism of DKD by focusing on three aspects: the intestinal microbiota and its associated metabolites, and the "gut-kidney axis," and try to summarize therapies targeted at managing the intestinal microbiota, expecting to provide theoretical basis for the subsequent study of the relationship between intestinal homeostasis and DKD, and will open an emerging perspective and orientation for DKD treatment.
Collapse
Affiliation(s)
- Lili Huang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan430061, China
| | - Wenjing Wu
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Xiaoqin Wang
- Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| |
Collapse
|
22
|
Ahangari H, Bahramian B, Khezerlou A, Tavassoli M, Kiani‐Salmi N, Tarhriz V, Ehsani A. Association between monosodium glutamate consumption with changes in gut microbiota and related metabolic dysbiosis-A systematic review. Food Sci Nutr 2024; 12:5285-5295. [PMID: 39139924 PMCID: PMC11317663 DOI: 10.1002/fsn3.4198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 08/15/2024] Open
Abstract
Monosodium glutamate (MSG) is used as a common food additive in some foods. However, based on our search and knowledge, no comprehensive study discussed the effect of MSG on the human gut microbiome. In this study, the effects of MSG on the gut microbiome, liver, and kidney were performed. Data were collected from databases including PubMed, Scopus, Web of Science, and ScienceDirect using the search strategy and keywords. Finally, 14 eligible studies were selected for systematic review. This study provides a new perspective on the effects of MSG on the gut flora, shedding light on the potential relationship between MSG intake and human health.
Collapse
Affiliation(s)
- Hossein Ahangari
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Behnam Bahramian
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Narges Kiani‐Salmi
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Vahideh Tarhriz
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
- Nutrition Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
23
|
Cheng G, Liu Y, Guo R, Wang H, Zhang W, Wang Y. Molecular mechanisms of gut microbiota in diabetic nephropathy. Diabetes Res Clin Pract 2024; 213:111726. [PMID: 38844054 DOI: 10.1016/j.diabres.2024.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Diabetic nephropathy is a common complication of diabetes and a considerable contributor to end-stage renal disease. Evidence indicates that glucose dysregulation and lipid metabolism comprise a pivotal pathogenic mechanism in diabetic nephropathy. However, current treatment outcomes are limited, as they only provide symptomatic relief without preventing disease progression. The gut microbiota is a group of microorganisms that inhabit the human intestinal tract and play a crucial role in maintaining host energy balance, metabolism, and immune activity. Patients with diabetic nephropathy exhibit altered gut microbiota, suggesting its potential involvement in the onset and progression of the disease. However, how a perturbed microbiota induces and promotes diabetic nephropathy remains unelucidated. This article summarizes the evidence of the impact of gut microbiota on the progression of diabetic nephropathy, with a particular focus on the molecular mechanisms involved, aiming to provide new insights into the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Gang Cheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - YuLin Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Rong Guo
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Huinan Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China.
| | - Wenjun Zhang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Yingying Wang
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
24
|
Hung TW, Hsieh YH, Lee HL, Ting YH, Lin CL, Chao WW. Renoprotective effect of rosmarinic acid by inhibition of indoxyl sulfate-induced renal interstitial fibrosis via the NLRP3 inflammasome signaling. Int Immunopharmacol 2024; 135:112314. [PMID: 38788450 DOI: 10.1016/j.intimp.2024.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
We previously reported that rosmarinic acid (RA) ameliorated renal fibrosis in a unilateral ureteral obstruction (UUO) murine model of chronic kidney disease. This study aimed to determine whether RA attenuates indoxyl sulfate (IS)-induced renal fibrosis by regulating the activation of the NLRP3 inflammasome/IL-1β/Smad circuit. We discovered the NLRP3 inflammasome was activated in the IS treatment group and downregulated in the RA-treated group in a dose-dependent manner. Additionally, the downstream effectors of the NLRP3 inflammasome, cleaved-caspase-1 and cleaved-IL-1β showed similar trends in different groups. Moreover, RA administration significantly decreased the ROS levels of reactive oxygen species in IS-treated cells. Our data showed that RA treatment significantly inhibited Smad-2/3 phosphorylation. Notably, the effects of RA on NLRP3 inflammasome/IL-1β/Smad and fibrosis signaling were reversed by the siRNA-mediated knockdown of NLRP3 or caspase-1 in NRK-52E cells. In vivo, we demonstrated that expression levels of NLRP3, c-caspase-1, c-IL-1β, collagen I, fibronectin and α-SMA, and TGF- β 1 were downregulated after treatment of UUO mice with RA or RA + MCC950. Our findings suggested RA and MCC950 synergistically inhibited UUO-induced NLRP3 signaling activation, revealing their renoprotective properties and the potential for combinatory treatment of renal fibrosis and chronic kidney inflammation.
Collapse
Affiliation(s)
- Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Deptartment of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yi-Hsuan Ting
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chu-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan 33857, Taiwan.
| |
Collapse
|
25
|
Snelson M, Deliyanti D, Tan SM, Drake AM, de Pasquale C, Kumar V, Woodruff TM, Wilkinson-Berka JL, Coughlan MT. Dietary resistant starch enhances immune health of the kidney in diabetes via promoting microbially-derived metabolites and dampening neutrophil recruitment. Nutr Diabetes 2024; 14:46. [PMID: 38902253 PMCID: PMC11190267 DOI: 10.1038/s41387-024-00305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Dietary-resistant starch is emerging as a potential therapeutic tool to limit the negative effects of diabetes on the kidneys. However, its metabolic and immunomodulatory effects have not yet been fully elucidated. METHODS Six-week-old db/db mice were fed a diet containing 12.5% resistant starch or a control diet matched for equivalent regular starch for 10 weeks. db/m mice receiving the control diet were utilised as non-diabetic controls. Freshly collected kidneys were digested for flow cytometry analysis of immune cell populations. Kidney injury was determined by measuring albuminuria, histology, and immunohistochemistry. Portal vein plasma was collected for targeted analysis of microbially-derived metabolites. Intestinal histology and tight junction protein expression were assessed. RESULTS Resistant starch limited the development of albuminuria in db/db mice. Diabetic db/db mice displayed a decline in portal vein plasma levels of acetate, propionate, and butyrate, which was increased with resistant starch supplementation. Diabetic db/db mice receiving resistant starch had a microbially-derived metabolite profile similar to that of non-diabetic db/m mice. The intestinal permeability markers lipopolysaccharide and lipopolysaccharide binding protein were increased in db/db mice consuming the control diet, which was not seen in db/db mice receiving resistant starch supplementation. Diabetes was associated with an increase in the kidney neutrophil population, neutrophil activation, number of C5aR1+ neutrophils, and urinary complement C5a excretion, all of which were reduced with resistant starch. These pro-inflammatory changes appear independent of fibrotic changes in the kidney. CONCLUSIONS Resistant starch supplementation in diabetes promotes beneficial circulating microbially-derived metabolites and improves intestinal permeability, accompanied by a modulation in the inflammatory profile of the kidney including neutrophil infiltration, complement activation, and albuminuria. These findings indicate that resistant starch can regulate immune and inflammatory responses in the kidney and support the therapeutic potential of resistant starch supplementation in diabetes on kidney health.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, School of Translational Medicine, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia.
| | - Devy Deliyanti
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Sih Min Tan
- Department of Diabetes, School of Translational Medicine, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Anna M Drake
- Department of Diabetes, School of Translational Medicine, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Cassandra de Pasquale
- Department of Diabetes, School of Translational Medicine, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer L Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Melinda T Coughlan
- Department of Diabetes, School of Translational Medicine, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, VIC, Australia
| |
Collapse
|
26
|
Wang M, Huang ZH, Zhu YH, Li S, Li X, Sun H, He P, Peng YL, Fan QL. Association of dietary live microbe intake with diabetic kidney disease in patients with type 2 diabetes mellitus in US adults: a cross-sectional study of NHANES 1999-2018. Acta Diabetol 2024; 61:705-714. [PMID: 38400938 PMCID: PMC11101549 DOI: 10.1007/s00592-023-02231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/27/2023] [Indexed: 02/26/2024]
Abstract
AIMS Several studies have reported dietary microorganisms' beneficial effects on human health. We aimed to detect the potential association between dietary live microbe intake and diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM) through a cross-sectional analysis of the National Health and Nutrition Examination Survey from 1999 to 2018. METHODS According to the Sanders classification system of dietary live microbes, the study participants were divided into three groups: low, medium, and high live microbe groups. In patients with T2DM, DKD was assessed by glomerular filtration rate (< 60 mL/min/1.73 m2 using the Chronic Kidney Disease Epidemiology Collaboration algorithm), proteinuria (urinary albumin to creatinine ratio ≥ 30 mg/g), or both. Weighted univariate and multivariate logistic regression and subgroup analyses were conducted to investigate the independent association between dietary live microbe and DKD. RESULTS The study included 3836 participants, of whom 1467 (38.24%) had DKD for the diagnosis. Our study demonstrated that participants in the high dietary live microbe group were more likely to be older, female, non-Hispanic White, have higher education levels, have a lower prevalence of smoking, have a high poverty-income ratio, have higher energy intake, lower haemoglobin (HbA1c) and serum creatinine levels, and lower risk of progression. After adjustment for covariates, patients in the high dietary live microbe group had a low prevalence of DKD, whereas no significant association with DKD was found between the medium and low dietary live microbe groups. No statistically significant interaction was observed in all subgroup analyses except for HbA1c (p for interaction < 0.05). CONCLUSIONS Our results indicate that high dietary live microbe intake was associated with a low DKD prevalence.
Collapse
Affiliation(s)
- Min Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhao-Hui Huang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yong-Hong Zhu
- Department of Nephrology, The second affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuai Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Li
- Department of Nephrology, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ping He
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ya-Li Peng
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiu-Ling Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China.
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Al-Dajani AR, Hou QK, Kiang TKL. Liquid Chromatography-Mass Spectrometry Analytical Methods for the Quantitation of p-Cresol Sulfate and Indoxyl Sulfate in Human Matrices: Biological Applications and Diagnostic Potentials. Pharmaceutics 2024; 16:743. [PMID: 38931865 PMCID: PMC11206749 DOI: 10.3390/pharmaceutics16060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Indoxyl sulfate (IxS) and p-cresyl sulfate (pCS) are toxic uremic compounds with documented pathological outcomes. This review critically and comprehensively analyzes the available liquid chromatography-mass spectrometry methods quantifying IxS and pCS in human matrices and the biological applications of these validated assays. Embase, Medline, PubMed, Scopus, and Web of Science were searched until December 2023 to identify assays with complete analytical and validation data (N = 23). Subsequently, citation analysis with PubMed and Scopus was utilized to identify the biological applications for these assays (N = 45). The extraction methods, mobile phase compositions, chromatography, and ionization methods were evaluated with respect to overall assay performance (e.g., sensitivity, separation, interference). Most of the assays focused on human serum/plasma, utilizing acetonitrile or methanol (with ammonium acetate/formate or formic/acetic acid), liquid-liquid extraction, reverse phase (e.g., C18) chromatography, and gradient elution for analyte separation. Mass spectrometry conditions were also consistent in the identified papers, with negative electrospray ionization, select multiple reaction monitoring transitions and deuterated internal standards being the most common approaches. The validated biological applications indicated IxS and/or pCS were correlated with renal disease progression and cardiovascular outcomes, with limited data on central nervous system disorders. Methods for reducing IxS and/or pCS concentrations were also identified (e.g., drugs, natural products, diet, dialysis, transplantation) where inconsistent findings have been reported. The clinical monitoring of IxS and pCS is gaining significant interest, and this review will serve as a useful compendium for scientists and clinicians.
Collapse
Affiliation(s)
| | | | - Tony K. L. Kiang
- Katz Group Centre for Pharmacy and Health Research, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.R.A.-D.); (Q.K.H.)
| |
Collapse
|
28
|
Juin SK, Pushpakumar S, Sen U. Nimbidiol protects from renal injury by alleviating redox imbalance in diabetic mice. Front Pharmacol 2024; 15:1369408. [PMID: 38835661 PMCID: PMC11148448 DOI: 10.3389/fphar.2024.1369408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Chronic hyperglycemia-induced oxidative stress plays a crucial role in the development of diabetic nephropathy (DN). Moreover, adverse extracellular matrix (ECM) accumulation elevates renal resistive index leading to progressive worsening of the pathology in DN. Nimbidiol is an alpha-glucosidase inhibitor, isolated from the medicinal plant, 'neem' (Azadirachta indica) and reported as a promising anti-diabetic compound. Previously, a myriad of studies demonstrated an anti-oxidative property of a broad-spectrum neem-extracts in various diseases including diabetes. Our recent study has shown that Nimbidiol protects diabetic mice from fibrotic renal dysfunction in part by mitigating adverse ECM accumulation. However, the precise mechanism remains poorly understood. Methods The present study aimed to investigate whether Nimbidiol ameliorates renal injury by reducing oxidative stress in type-1 diabetes. To test the hypothesis, wild-type (C57BL/6J) and diabetic Akita (C57BL/6-Ins2Akita/J) mice aged 10-14 weeks were used to treat with saline or Nimbidiol (400 μg kg-1 day-1) for 8 weeks. Results Diabetic mice showed elevated blood pressure, increased renal resistive index, and decreased renal vasculature compared to wild-type control. In diabetic kidney, reactive oxygen species and the expression levels of 4HNE, p22phox, Nox4, and ROMO1 were increased while GSH: GSSG, and the expression levels of SOD-1, SOD-2, and catalase were decreased. Further, eNOS, ACE2, Sirt1 and IL-10 were found to be downregulated while iNOS and IL-17 were upregulated in diabetic kidney. The changes were accompanied by elevated expression of the renal injury markers viz., lipocalin-2 and KIM-1 in diabetic kidney. Moreover, an upregulation of p-NF-κB and a downregulation of IkBα were observed in diabetic kidney compared to the control. Nimbidiol ameliorated these pathological changes in diabetic mice. Conclusion Altogether, the data of our study suggest that oxidative stress largely contributes to the diabetic renal injury, and Nimbidiol mitigates redox imbalance and thereby protects kidney in part by inhibiting NF-κB signaling pathway in type-1 diabetes.
Collapse
Affiliation(s)
- Subir Kumar Juin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
29
|
Zhou TY, Tian N, Li L, Yu R. Iridoids modulate inflammation in diabetic kidney disease: A review. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:210-222. [PMID: 38631983 DOI: 10.1016/j.joim.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/18/2024] [Indexed: 04/18/2024]
Abstract
In recent years, preclinical research on diabetic kidney disease (DKD) has surged to the forefront of scientific and clinical attention. DKD has become a pervasive complication of type 2 diabetes. Given the complexity of its etiology and pathological mechanisms, current interventions, including drugs, dietary modifications, exercise, hypoglycemic treatments and lipid-lowering methods, often fall short in achieving desired therapeutic outcomes. Iridoids, primarily derived from the potent components of traditional herbs, have been the subject of long-standing research. Preclinical data suggest that iridoids possess notable renal protective properties; however, there has been no summary of the research on their efficacy in the management and treatment of DKD. This article consolidates findings from in vivo and in vitro research on iridoids in the context of DKD and highlights their shared anti-inflammatory activities in treating this condition. Additionally, it explores how certain iridoid components modify their chemical structures through the regulation of intestinal flora, potentially bolstering their therapeutic effects. This review provides a focused examination of the mechanisms through which iridoids may prevent or treat DKD, offering valuable insights for future research endeavors. Please cite this article as: Zhou TY, Tian N, Li L, Yu R. Iridoids modulate inflammation in diabetic kidney disease: A review. J Integr Med. 2024; 22(3): 210-222.
Collapse
Affiliation(s)
- Tong-Yi Zhou
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Na Tian
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Liu Li
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Rong Yu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China; Hunan Provincial Key Laboratory of Translational Research in Traditional Chinese Medicine Prescriptions and Zheng, Changsha 410208, Hunan Province, China.
| |
Collapse
|
30
|
Sohn MB, Gao B, Kendrick C, Srivastava A, Isakova T, Gassman JJ, Fried LF, Wolf M, Cheung AK, Raphael KL, Vinales PC, Middleton JP, Pabalan A, Raj DS. Targeting Gut Microbiome With Prebiotic in Patients With CKD: The TarGut-CKD Study. Kidney Int Rep 2024; 9:671-685. [PMID: 38481512 PMCID: PMC10927482 DOI: 10.1016/j.ekir.2023.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2025] Open
Abstract
Introduction Disruption of gut microbiota underpins some of the metabolic alterations observed in chronic kidney disease (CKD). Methods In a nonrandomized, open-label, 3-phase pilot trial, with repeated measures within each phase, we examined the efficacy of oligofructose-enriched inulin (p-inulin) in changing the gut microbiome and their metabolic products in 15 patients with CKD. The stability of microbiome and metabolome was studied during the pretreatment phase (8 weeks), a p-inulin treatment phase (12 weeks), and a post treatment phase (8 weeks) of the study. Results Study participants completed 373 of the 420 expected study visits (88.8%). Adherence to p-inulin was 83.4%. 16S rRNA sequencing was performed in 368 stool samples. A total of 1085 stool, urine, and plasma samples were subjected to untargeted metabolomic studies. p-inulin administration altered the composition of the gut microbiota significantly, with an increase in abundance of Bifidobacterium and Anaerostipes. Intersubject variations in microbiome and metabolome were larger than intrasubject variation, indicating the stability of the gut microbiome within each phase of the study. Overall metabolite compositions assessed by beta diversity in urine and stool metabolic profiles were significantly different across study phases. Several specific metabolites in stool, urine, and plasma were significant at false discovery rate (FDR) ≤ 0.1 over phase. Specifically, there was significant enrichment in microbial metabolites derived from saccharolysis. Conclusion Results from our study highlight the stability of the gut microbiome and the expansive effect of p-inulin on microbiome and host cometabolism in patients with CKD. Findings from this study will enable rigorous design of microbiome-based intervention trials.
Collapse
Affiliation(s)
- Michael B. Sohn
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Bei Gao
- Division of Renal Diseases and Hypertension, George Washington University, Washington, USA
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China
| | - Cynthia Kendrick
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anvesha Srivastava
- Division of Renal Diseases and Hypertension, George Washington University, Washington, USA
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jennifer J. Gassman
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Linda F. Fried
- Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alfred K. Cheung
- Division of Nephrology & Hypertension, University of Utah, Salt Lake City, Utah, USA
| | - Kalani L. Raphael
- Division of Nephrology & Hypertension, University of Utah, Salt Lake City, Utah, USA
| | | | - John P. Middleton
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ana Pabalan
- Division of Renal Diseases and Hypertension, George Washington University, Washington, USA
| | - Dominic S. Raj
- Division of Renal Diseases and Hypertension, George Washington University, Washington, USA
| |
Collapse
|
31
|
Sánchez-Ospina D, Mas-Fontao S, Gracia-Iguacel C, Avello A, González de Rivera M, Mujika-Marticorena M, Gonzalez-Parra E. Displacing the Burden: A Review of Protein-Bound Uremic Toxin Clearance Strategies in Chronic Kidney Disease. J Clin Med 2024; 13:1428. [PMID: 38592263 PMCID: PMC10934686 DOI: 10.3390/jcm13051428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Uremic toxins (UTs), particularly protein-bound uremic toxins (PBUTs), accumulate in chronic kidney disease (CKD) patients, causing significant health complications like uremic syndrome, cardiovascular disease, and immune dysfunction. The binding of PBUTs to plasma proteins such as albumin presents a formidable challenge for clearance, as conventional dialysis is often insufficient. With advancements in the classification and understanding of UTs, spearheaded by the European Uremic Toxins (EUTox) working group, over 120 molecules have been identified, prompting the development of alternative therapeutic strategies. Innovations such as online hemodiafiltration aim to enhance the removal process, while novel adsorptive therapies offer a means to address the high affinity of PBUTs to plasma proteins. Furthermore, the exploration of molecular displacers, designed to increase the free fraction of PBUTs, represents a cutting-edge approach to facilitate their dialytic clearance. Despite these advancements, the clinical application of displacers requires more research to confirm their efficacy and safety. The pursuit of such innovative treatments is crucial for improving the management of uremic toxicity and the overall prognosis of CKD patients, emphasizing the need for ongoing research and clinical trials.
Collapse
Affiliation(s)
- Didier Sánchez-Ospina
- Servicio Análisis Clínicos, Hospital Universitario de Burgos, 09006 Burgos, Spain; (D.S.-O.); (M.M.-M.)
| | - Sebastián Mas-Fontao
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X el Sabio (UAX), 28037 Madrid, Spain
| | - Carolina Gracia-Iguacel
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | - Alejandro Avello
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | - Marina González de Rivera
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | | | - Emilio Gonzalez-Parra
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| |
Collapse
|
32
|
Das S, Devi Rajeswari V, Venkatraman G, Elumalai R, Dhanasekaran S, Ramanathan G. Current updates on metabolites and its interlinked pathways as biomarkers for diabetic kidney disease: A systematic review. Transl Res 2024; 265:71-87. [PMID: 37952771 DOI: 10.1016/j.trsl.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus (DM) that poses a serious risk as it can lead to end-stage renal disease (ESRD). DKD is linked to changes in the diversity, composition, and functionality of the microbiota present in the gastrointestinal tract. The interplay between the gut microbiota and the host organism is primarily facilitated by metabolites generated by microbial metabolic processes from both dietary substrates and endogenous host compounds. The production of numerous metabolites by the gut microbiota is a crucial factor in the pathogenesis of DKD. However, a comprehensive understanding of the precise mechanisms by which gut microbiota and its metabolites contribute to the onset and progression of DKD remains incomplete. This review will provide a summary of the current scenario of metabolites in DKD and the impact of these metabolites on DKD progression. We will discuss in detail the primary and gut-derived metabolites in DKD, and the mechanisms of the metabolites involved in DKD progression. Further, we will address the importance of metabolomics in helping identify potential DKD markers. Furthermore, the possible therapeutic interventions and research gaps will be highlighted.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - V Devi Rajeswari
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ganesh Venkatraman
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramprasad Elumalai
- Department of Nephrology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat 382426, India
| | - Gnanasambandan Ramanathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
33
|
Cha RH. Pharmacologic therapeutics in sarcopenia with chronic kidney disease. Kidney Res Clin Pract 2024; 43:143-155. [PMID: 38389147 PMCID: PMC11016676 DOI: 10.23876/j.krcp.23.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 02/24/2024] Open
Abstract
Inflammation, metabolic acidosis, renin-angiotensin system activation, insulin resistance, and impaired perfusion to skeletal muscles, among others, are possible causes of uremic sarcopenia. These conditions induce the activation of the nuclear factor-kappa B and mitogen-activated protein kinase pathways, adenosine triphosphate ubiquitin-proteasome system, and reactive oxygen species system, resulting in protein catabolism. Strategies for the prevention and treatment of sarcopenia in chronic kidney disease (CKD) are aerobic and resistance exercises along with nutritional interventions. Anabolic hormones have shown beneficial effects. Megestrol acetate increased weight, protein catabolic rate, and albumin concentration, and it increased intracellular water component and muscle mass. Vitamin D supplementation showed improvement in physical function, muscle strength, and muscle mass. Correction of metabolic acidosis showed an increase in protein intake, serum albumin levels, body weight, and mid-arm circumference. The kidney- gut-muscle axis indicates that dysbiosis and changes in gut-derived uremic toxins and short-chain fatty acids affect muscle mass, composition, strength, and functional capacity. Biotic supplements, AST-120 administration, hemodiafiltration, and preservation of residual renal function are alleged to reduce uremic toxins, including indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Synbiotics reversed the microbiota change in CKD patients and decreased uremic toxins. AST-120 administration changed the overall gut microbiota composition in CKD. AST-120 prevented IS and PCS tissue accumulation, ameliorated muscle atrophy, improved exercise capacity and mitochondrial biogenesis, restored epithelial tight junction proteins, and reduced plasma endotoxin levels and markers of oxidative stress and inflammation. In a human study, the addition of AST-120 to standard treatment had modest beneficial effects on gait speed change and quality of life.
Collapse
Affiliation(s)
- Ran-hui Cha
- Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| |
Collapse
|
34
|
Zwaenepoel B, De Backer T, Glorieux G, Verbeke F. Predictive value of protein-bound uremic toxins for heart failure in patients with chronic kidney disease. ESC Heart Fail 2024; 11:466-474. [PMID: 38041505 PMCID: PMC10804180 DOI: 10.1002/ehf2.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 12/03/2023] Open
Abstract
AIMS This retrospective cohort study aimed to be the first to evaluate the association between plasma protein-bound uremic toxins (PBUTs) concentrations, echocardiographic parameters of heart failure (HF), and incident HF events in patients with chronic kidney disease (CKD) not on dialysis. METHODS AND RESULTS Retrospective, single-centre, cohort study at the Ghent University Hospital, Belgium. Adults with CKD stages G1-G5, not on dialysis, could be included. Exclusion criteria were ongoing pregnancy, age <18 years, active acute infection, active malignancy, history of transplantation, or a cardiovascular event within 3 months prior to inclusion. Free and total concentrations of five PBUTs were quantified at baseline: indoxyl sulfate (IxS), p-cresyl sulfate (pCS), p-cresyl glucuronide (pCG), indole-3 acetic acid (IAA), and hippuric acid (HA). Patients were grouped into three echocardiographic categories: normal left ventricular ejection fraction (LVEF) and normal left ventricular end-diastolic pressure (LVEDP), normal LVEF and increased LVEDP, and reduced LVEF, based on available echocardiographic data in a time interval of ±6 months around the plasma sample collection. A total of 523 patients were included between January 2011 and January 2014. Echocardiographic data within the predefined timeframe were available for 210 patients (40% of patients). Levels of pCG and pCS were significantly higher in patients with reduced (<50%) versus normal LVEF (P < 0.05). After a median follow-up 5.5 years, 43 (8.4%) patients reached the composite endpoint of hospitalization or mortality due to HF. Free fractions of IxS, pCS, and pCG showed the strongest association with clinical outcome: free IxS: HR 1.71 (95% CI 1.11-2.63; P = 0.015), free pCS: HR 1.82 (95% CI 1.11-3.01; P = 0.019), and free pCG: HR 1.67 (95% CI 1.08-2.58; P = 0.020), and these results were independent of age, gender, body mass index, diabetes, and systolic blood pressure. In models that were also adjusted for serum creatinine, the free fractions of these PBUTs remained significant. CONCLUSIONS Elevated free concentrations of IxS, pCG, and pCS were independently associated with an increased risk of HF events in non-dialysed CKD patients. Further research is necessary to confirm these findings and investigate the potential impact of PBUT-lowering interventions on HF events in this patient group.
Collapse
Affiliation(s)
- Bert Zwaenepoel
- Department of CardiologyGhent University Hospital, Ghent UniversityGhentBelgium
| | - Tine De Backer
- Department of CardiologyGhent University Hospital, Ghent UniversityGhentBelgium
| | - Griet Glorieux
- Department of NephrologyGhent University Hospital, Ghent UniversityGhentBelgium
| | - Francis Verbeke
- Department of NephrologyGhent University Hospital, Ghent UniversityGhentBelgium
| |
Collapse
|
35
|
Wang L, Xu A, Wang J, Fan G, Liu R, Wei L, Pei M. The effect and mechanism of Fushen Granule on gut microbiome in the prevention and treatment of chronic renal failure. Front Cell Infect Microbiol 2024; 13:1334213. [PMID: 38274729 PMCID: PMC10808756 DOI: 10.3389/fcimb.2023.1334213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Background Fushen Granule is an improved granule based on the classic formula Fushen Formula, which is used for the treatment of peritoneal dialysis-related intestinal dysfunction in patients with end-stage renal disease. However, the effect and mechanism of this granule on the prevention and treatment of chronic renal failure have not been fully elucidated. Methods A 5/6 nephrectomy model of CRF was induced and Fushen Granule was administered at low and high doses to observe its effects on renal function, D-lactate, serum endotoxin, and intestinal-derived metabolic toxins. The 16SrRNA sequencing method was used to analyze the abundance and structure of the intestinal flora of CRF rats. A FMT assay was also used to evaluate the effects of transplantation of Fushen Granule fecal bacteria on renal-related functional parameters and metabolic toxins in CRF rats. Results Gavage administration of Fushen Granule at low and high doses down-regulated creatinine, urea nitrogen, 24-h urine microalbumin, D-lactate, endotoxin, and the intestinal-derived toxins indophenol sulphateand p-cresol sulphate in CRF rats. Compared with the sham-operated group in the same period, CRF rats had a decreased abundance of the firmicutes phylum and an increased abundance of the bacteroidetes phylum at the phylum level, and a decreasing trend of the lactobacillus genus at the genus level. Fushen Granule intervention increased the abundance of the firmicutes phylum, decreased the abundance of the bacteroidetes phylum, and increased the abundance of the lactobacillus genus. The transplantation of Fushen Granule fecal bacteria significantly reduced creatinine(Cr), blood urea nitrogen(Bun), uric acid(UA), 24-h urinary microalbumin, D-lactate, serum endotoxin, and enterogenic metabolic toxins in CRF rats. Compared with the sham-operated group, the transplantation of Fushen Granule fecal bacteria modulated the Firmicutes and Bacteroidetes phyla and the Lactobacillus genus. Conclusion Fushen Granule improved renal function and intestinal barrier function by regulating intestinal flora, inhibiting renal fibrosis, and delaying the progression of chronic renal failure.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Guorong Fan
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqi Liu
- Nephrology Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
36
|
Nakayama M, Kabayama S, Miyazaki M. Application of Electrolyzed Hydrogen Water for Management of Chronic Kidney Disease and Dialysis Treatment-Perspective View. Antioxidants (Basel) 2024; 13:90. [PMID: 38247514 PMCID: PMC10812465 DOI: 10.3390/antiox13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Chronic kidney disease (CKD), which is globally on the rise, has become an urgent challenge from the perspective of public health, given its risk factors such as end-stage renal failure, cardiovascular diseases, and infections. The pathophysiology of CKD, including dialysis patients, is deeply associated with enhanced oxidative stress in both the kidneys and the entire body. Therefore, the introduction of a safe and widely applicable antioxidant therapy is expected as a measure against CKD. Electrolyzed hydrogen water (EHW) generated through the electrolysis of water has been confirmed to possess chemical antioxidant capabilities. In Japan, devices producing this water have become popular for household drinking water. In CKD model experiments conducted to date, drinking EHW has been shown to suppress the progression of kidney damage related to hypertension. Furthermore, clinical studies have reported that systemic oxidative stress in patients undergoing dialysis treatment using EHW is suppressed, leading to a reduction in the incidence of cardiovascular complications. In the future, considering EHW as one of the comprehensive measures against CKD holds significant importance. The medical utility of EHW is believed to be substantial, and further investigation is warranted.
Collapse
Affiliation(s)
- Masaaki Nakayama
- Kidney Center, St. Luke’s International Hospital, Tokyo 104-8560, Japan
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
| | - Shigeru Kabayama
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
- Graduate School of Science, Technology & Innovation, Kobe University, Kobe 657-8501, Japan
- Nihon Trim Co., Ltd., Osaka 530-0001, Japan
| | - Mariko Miyazaki
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| |
Collapse
|
37
|
Diao Z, Yu H, Wu Y, Sun Y, Tang H, Wang M, Li N, Ge H, Sun J, Gu HF. Identification of the main flavonoids of Abelmoschus manihot (L.) medik and their metabolites in the treatment of diabetic nephropathy. Front Pharmacol 2024; 14:1290868. [PMID: 38313075 PMCID: PMC10836608 DOI: 10.3389/fphar.2023.1290868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction: Huangkui capsule (HKC) is made from the ethanol extract of Abelmoschus manihot (L.) Medik [Malvaceae; abelmoschi corolla] and received approval from the China Food and Drug Administration (Z19990040) in 1999. Currently, HKC is used for treatment of the patients with diabetic nephropathy (DN) in China. The bioactive chemical constituents in HKC are total flavonoids of A. manihot (L.) Medik (TFA). The present study aims to identify the primary flavonoid metabolites in HKC and TFA and their metabolism fates in db/db mice, the animal model for the study of type 2 diabetes and DN. Methods: HKC (0.84 g/kg/d) and TFA (0.076 g/kg/d) or vehicle were respectively administered daily via oral gavage in db/db mice for 4 weeks. The metabolism fate of the main metabolites of HKC in serum, liver, kidney, heart, jejunum, colon, jejunal contents, colonic contents, and urine of db/db mice were analyzed with a comprehensive metabolite identification strategy. Results and Discussion: In db/db mice administered with HKC and TFA, 7 flavonoid prototypes and 38 metabolites were identified. The related metabolic pathways at Phases I and II reactions included dehydroxylation, deglycosylation, hydrogenation, methylation, glucuronidation, sulphation, and corresponding recombined reactions. Quercetin, isorhamnetin, quercetin sulphate, quercetin monoglucuronide, and isorhamnetin monoglucuronide presented a high exposure in the serum and kidney of db/db mice. Thereby, the present study provides a pharmacodynamic substance basis for better understanding the mechanism of A. manihot (L.) Medik for medication of DN.
Collapse
Affiliation(s)
- Zhipeng Diao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Hongmei Yu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yapeng Wu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Yuanbo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Mei Wang
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Jianguo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Harvest F Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
38
|
Wiese GN, Biruete A, Stremke ER, Lindemann SR, Jannasch A, Moorthi RN, Moe SM, Swanson KS, Cross TW, Hill Gallant KM. Gut Microbiota and Uremic Retention Solutes in Adults With Moderate CKD: A 6-Day Controlled Feeding Study. J Ren Nutr 2024; 34:26-34. [PMID: 37468049 PMCID: PMC10792123 DOI: 10.1053/j.jrn.2023.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
OBJECTIVE To determine serum and urine concentrations of the uremic retention solutes (URSs), indoxyl sulfate (IS), p-cresol sulfate (PCS), and trimethylamine N-oxide (TMAO), and gut microbiota composition in individuals with moderate chronic kidney disease (CKD) compared with matched adults without CKD in a 6-day controlled feeding study. DESIGN AND METHODS This study was a secondary analysis in which 8 adults with moderate CKD were matched for age, sex, and race with 8 adults without CKD in a parallel-arm, 6-day controlled feeding study. IS, PCS, and TMAO were quantified using liquid chromatography-mass spectrometry in fecal samples, fasting serum, and fasting spot urine samples collected at the end of the feeding period. RESULTS Fasting serum URS concentrations were 2.8 to 4.9x higher in CKD compared to controls (all P < .05). No differences were found in the composition of the gut microbiota between patients with and without CKD when analyzing samples for α-diversity, β-diversity, and only minor abundance differences across taxa were apparent. Estimated glomerular filtration rate (eGFR) was inversely related to each serum URS in the whole cohort (all P < .01). However, within groups the relationships between eGFR and serum URS remained strong for CKD patients for IS and TMAO (both P < .05) but weakened for PCS (P = .10). eGFR was only correlated with urine PCS in the whole cohort (P = .03); within groups, no correlation for eGFR with any urine URS was observed. Only urine TMAO was higher in CKD compared to controls (P < .05). CONCLUSION Serum URS concentrations are elevated in adults with CKD compared to matched non-CKD adults without differences in gut microbiota composition after consuming the same controlled study diet for 6 days. Future studies are needed to determine if specific dietary components may differentially alter the microbiota and URS.
Collapse
Affiliation(s)
- Gretchen N Wiese
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana; US Renal Care, Lone Tree, Colorado
| | - Annabel Biruete
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Nutrition and Dietetics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Elizabeth R Stremke
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | | | - Amber Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana
| | - Ranjani N Moorthi
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sharon M Moe
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Tzu Wen Cross
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Kathleen M Hill Gallant
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana; Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN.
| |
Collapse
|
39
|
Gungor O, Hasbal NB, Alaygut D. Trimethylamine N-oxide and kidney diseases: what do we know? J Bras Nefrol 2024; 46:85-92. [PMID: 38039494 PMCID: PMC10962421 DOI: 10.1590/2175-8239-jbn-2023-0065en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 12/03/2023] Open
Abstract
In the human gut, there is a metabolically active microbiome whose metabolic products reach various organs and are used in the physiological activities of the body. When dysbiosis of intestinal microbial homeostasis occurs, pathogenic metabolites may increase and one of them is trimethyl amine-N-oxide (TMAO). TMAO is thought to have a role in the pathogenesis of insulin resistance, diabetes, hyperlipidemia, atherosclerotic heart diseases, and cerebrovascular events. TMAO level is also associated with renal inflammation, fibrosis, acute kidney injury, diabetic kidney disease, and chronic kidney disease. In this review, the effect of TMAO on various kidney diseases is discussed.
Collapse
Affiliation(s)
- Ozkan Gungor
- Kahramanmaras Sutcu Imam University, School of Medicine, Department
of Internal Medicine, Kahramanmaras, Turkey
| | - Nuri Baris Hasbal
- Koc University, School of Medicine, Department of Internal Medicine,
Istanbul, Turkey
| | - Demet Alaygut
- Izmir Katip Celebi University, School of Medicine, Department of
Pediatrics, Izmir, Turkey
| |
Collapse
|
40
|
Schwarz A, Hernandez L, Arefin S, Sartirana E, Witasp A, Wernerson A, Stenvinkel P, Kublickiene K. Sweet, bloody consumption - what we eat and how it affects vascular ageing, the BBB and kidney health in CKD. Gut Microbes 2024; 16:2341449. [PMID: 38686499 PMCID: PMC11062370 DOI: 10.1080/19490976.2024.2341449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
In today's industrialized society food consumption has changed immensely toward heightened red meat intake and use of artificial sweeteners instead of grains and vegetables or sugar, respectively. These dietary changes affect public health in general through an increased incidence of metabolic diseases like diabetes and obesity, with a further elevated risk for cardiorenal complications. Research shows that high red meat intake and artificial sweeteners ingestion can alter the microbial composition and further intestinal wall barrier permeability allowing increased transmission of uremic toxins like p-cresyl sulfate, indoxyl sulfate, trimethylamine n-oxide and phenylacetylglutamine into the blood stream causing an array of pathophysiological effects especially as a strain on the kidneys, since they are responsible for clearing out the toxins. In this review, we address how the burden of the Western diet affects the gut microbiome in altering the microbial composition and increasing the gut permeability for uremic toxins and the detrimental effects thereof on early vascular aging, the kidney per se and the blood-brain barrier, in addition to the potential implications for dietary changes/interventions to preserve the health issues related to chronic diseases in future.
Collapse
Affiliation(s)
- Angelina Schwarz
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Sartirana
- Department of Translational Medicine, Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale, Novara, Italy
| | - Anna Witasp
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Shah SN, Knausenberger TBA, Pontifex MG, Connell E, Le Gall G, Hardy TA, Randall DW, McCafferty K, Yaqoob MM, Solito E, Müller M, Stachulski AV, Glen RC, Vauzour D, Hoyles L, McArthur S. Cerebrovascular damage caused by the gut microbe/host co-metabolite p-cresol sulfate is prevented by blockade of the EGF receptor. Gut Microbes 2024; 16:2431651. [PMID: 39582109 PMCID: PMC11591591 DOI: 10.1080/19490976.2024.2431651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
The gut microbiota-brain axis has been associated with the pathogenesis of numerous disorders, but the mechanism(s) underlying these links are generally poorly understood. Accumulating evidence indicates the involvement of gut microbe-derived metabolites. Circulating levels of the gut microbe/host co-metabolite p-cresol sulfate (pCS) correlate with cerebrovascular event risk in individuals with chronic kidney disease (CKD), but whether this relationship is mechanistic is unclear. We hypothesized that pCS would impair the function of the blood-brain barrier (BBB), the primary brain vasculature interface. We report that pCS exposure impairs BBB integrity in human cells in vitro and both acutely (≤6 hours) and chronically (28 days) in mice, enhancing tracer extravasation, disrupting barrier-regulating tight junction components and ultimately exerting a suppressive effect upon whole-brain transcriptomic activity. In vitro and in vivo mechanistic studies showed that pCS activated epidermal growth factor receptor (EGFR) signaling, sequentially activating the intracellular signaling proteins annexin A1 and STAT3 to induce mobilization of matrix metalloproteinase MMP-2/9 and disruption to the integrity of the BBB. This effect was confirmed as specific to the EGFR through the use of both pharmacological and RNA interference approaches. Confirming the translational relevance of this work, exposure of the cerebromicrovascular endothelia to serum from hemodialysis patients in vitro led to a significant increase in paracellular permeability, with the magnitude of permeabilization closely correlating with serum pCS, but not most other uremic toxin, content. Notably, this damaging effect of hemodialysis patient serum was prevented by pharmacological blockade of the EGFR. Our results define a pathway linking the co-metabolite pCS with BBB damage and suggest that targeting the EGFR may mitigate against cerebrovascular damage in CKD. This work further provides mechanistic evidence indicating the role of gut microbe-derived metabolites in human disease.
Collapse
Affiliation(s)
- Sita N. Shah
- Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | | | - Matthew G. Pontifex
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Emily Connell
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Gwénaëlle Le Gall
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Tom A.J. Hardy
- Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - David W. Randall
- Department of Renal Medicine and Transplantation, Royal London Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Kieran McCafferty
- Department of Renal Medicine and Transplantation, Royal London Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Muhammad M. Yaqoob
- Department of Renal Medicine and Transplantation, Royal London Hospital, Barts Health NHS Trust, London, UK
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Egle Solito
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Michael Müller
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Andrew V. Stachulski
- Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Robert C. Glen
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich, UK
| | - Lesley Hoyles
- Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary, University of London, London, UK
| |
Collapse
|
42
|
Sun X, Zhou X, He W, Sun W, Xu Z. Co-Housing and Fecal Microbiota Transplantation: Technical Support for TCM Herbal Treatment of Extra-Intestinal Diseases Based on Gut Microbial Ecosystem Remodeling. Drug Des Devel Ther 2023; 17:3803-3831. [PMID: 38155743 PMCID: PMC10753978 DOI: 10.2147/dddt.s443462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Dysregulation of the gut microbial ecosystem (GME) (eg, alterations in the gut microbiota, gut-derived metabolites, and gut barrier) may contribute to the onset and progression of extra-intestinal diseases. Previous studies have found that Traditional Chinese Medicine herbs (TCMs) play an important role in manipulating the GME, but a prominent obstacle in current TCM research is the causal relationship between GME and disease amelioration. Encouragingly, co-housing and fecal microbiota transplantation (FMT) provide evidence-based support for TCMs to treat extra-intestinal diseases by targeting GME. In this review, we documented the principles, operational procedures, applications and limitations of the key technologies (ie, co-housing and FMT); furthermore, we provided evidence that TCM works through the GME, especially the gut microbiota (eg, SCFA- and BSH-producing bacteria), the gut-derived metabolites (eg, IS, pCS, and SCFAs), and intestinal barrier to alleviate extra-intestinal diseases. This will be beneficial in constructing microecological pathways for TCM treatment of extra-intestinal diseases in the future.
Collapse
Affiliation(s)
- Xian Sun
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Xi Zhou
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Weiming He
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Wei Sun
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Zheng Xu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| |
Collapse
|
43
|
Ramya Ranjan Nayak SP, Boopathi S, Haridevamuthu B, Arockiaraj J. Toxic ties: Unraveling the complex relationship between endocrine disrupting chemicals and chronic kidney disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122686. [PMID: 37802289 DOI: 10.1016/j.envpol.2023.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Environmental pollution is inherently linked to several metabolic diseases and high mortality. The kidney is more susceptible to environmental pollutants compared to other organs as it is involved in concentrating and filtering most of these toxins. Few epidemiological studies revealed the intrinsic relationship between exposure to Endocrine Disrupting Chemicals (EDCs) and CKD development. Though EDCs have the potential to cause severe pathologies, the specific molecular mechanisms by which they accelerate the progression of CKD remain elusive. In particular, our understanding of how pollutants affect the progression of chronic kidney disease (CKD) through the gut-kidney axis is currently limited. EDCs modulate the composition and function of the gut microbial community and favor the colonization of harmful gut pathogens. This alteration leads to an overproduction of uremic toxin and membrane vesicles. These vesicles carry several inflammatory molecules that exacerbate inflammation and renal tissue damage and aggravate the progression of CKD. Several experimental studies have revealed potential pathways by which uremic toxin further aggravates CKD. These include the induction of membrane vesicle production in host cells, which can trigger inflammatory pathways and insulin resistance. Reciprocally, CKD can also modulate gut bacterial composition that might further aggravate CKD condition. Thus, EDCs pose a significant threat to kidney health and the global CKD burden. Understanding this complicated issue necessitates multidisciplinary initiatives such as strict environmental controls, public awareness, and the development of novel therapeutic strategies targeting EDCs.
Collapse
Affiliation(s)
- S P Ramya Ranjan Nayak
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Seenivasan Boopathi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
44
|
Falconi CA, Fogaça-Ruiz F, da Silva JV, Neres-Santos RS, Sanz CL, Nakao LS, Stinghen AEM, Junho CVC, Carneiro-Ramos MS. Renocardiac Effects of p-Cresyl Sulfate Administration in Acute Kidney Injury Induced by Unilateral Ischemia and Reperfusion Injury In Vivo. Toxins (Basel) 2023; 15:649. [PMID: 37999512 PMCID: PMC10674368 DOI: 10.3390/toxins15110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
The precise mechanisms underlying the cardiovascular complications due to acute kidney injury (AKI) and the retention of uremic toxins like p-cresyl sulfate (PCS) remain incompletely understood. The objective of this study was to evaluate the renocardiac effects of PCS administration in animals subjected to AKI induced by ischemia and reperfusion (IR) injury. C57BL6 mice were subjected to distinct protocols: (i) administration with PCS (20, 40, or 60 mg/L/day) for 15 days and (ii) AKI due to unilateral IR injury associated with PCS administration for 15 days. The 20 mg/L dose of PCS led to a decrease in renal mass, an increase in the gene expression of Cystatin C and kidney injury molecule 1 (KIM-1), and a decrease in the α-actin in the heart. During AKI, PCS increased the renal injury biomarkers compared to control; however, it did not exacerbate these markers. Furthermore, PCS did not enhance the cardiac hypertrophy observed after 15 days of IR. An increase, but not potentialized, in the cardiac levels of interleukin (IL)-1β and IL-6 in the IR group treated with PCS, as well as in the injured kidney, was also noticed. In short, PCS administration did not intensify kidney injury, inflammation, and cardiac outcomes after AKI.
Collapse
Affiliation(s)
- Carlos Alexandre Falconi
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Fernanda Fogaça-Ruiz
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Jéssica Verônica da Silva
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| | - Carmen Lucía Sanz
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil; (C.L.S.); (L.S.N.)
| | - Lia Sumie Nakao
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba 81530-000, PR, Brazil; (C.L.S.); (L.S.N.)
| | - Andréa Emília Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil;
| | - Carolina Victoria Cruz Junho
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-170, SP, Brazil; (C.A.F.); (F.F.-R.); (J.V.d.S.); (R.S.N.-S.)
| |
Collapse
|
45
|
André C, Bodeau S, Kamel S, Bennis Y, Caillard P. The AKI-to-CKD Transition: The Role of Uremic Toxins. Int J Mol Sci 2023; 24:16152. [PMID: 38003343 PMCID: PMC10671582 DOI: 10.3390/ijms242216152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
After acute kidney injury (AKI), renal function continues to deteriorate in some patients. In a pro-inflammatory and profibrotic environment, the proximal tubules are subject to maladaptive repair. In the AKI-to-CKD transition, impaired recovery from AKI reduces tubular and glomerular filtration and leads to chronic kidney disease (CKD). Reduced kidney secretion capacity is characterized by the plasma accumulation of biologically active molecules, referred to as uremic toxins (UTs). These toxins have a role in the development of neurological, cardiovascular, bone, and renal complications of CKD. However, UTs might also cause CKD as well as be the consequence. Recent studies have shown that these molecules accumulate early in AKI and contribute to the establishment of this pro-inflammatory and profibrotic environment in the kidney. The objective of the present work was to review the mechanisms of UT toxicity that potentially contribute to the AKI-to-CKD transition in each renal compartment.
Collapse
Affiliation(s)
- Camille André
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- GRAP Laboratory, INSERM UMR 1247, University of Picardy Jules Verne, 80000 Amiens, France
| | - Sandra Bodeau
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
| | - Saïd Kamel
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
- Department of Clinical Biochemistry, Amiens Medical Center, 80000 Amiens, France
| | - Youssef Bennis
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
| | - Pauline Caillard
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
- Department of Nephrology, Dialysis and Transplantation, Amiens Medical Center, 80000 Amiens, France
| |
Collapse
|
46
|
Nery Neto JADO, Yariwake VY, Câmara NOS, Andrade-Oliveira V. Enteroendocrine cells and gut hormones as potential targets in the crossroad of the gut-kidney axis communication. Front Pharmacol 2023; 14:1248757. [PMID: 37927592 PMCID: PMC10620747 DOI: 10.3389/fphar.2023.1248757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Recent studies suggest that disruptions in intestinal homeostasis, such as changes in gut microbiota composition, infection, and inflammatory-related gut diseases, can be associated with kidney diseases. For instance, genomic investigations highlight how susceptibility genes linked to IgA nephropathy are also correlated with the risk of inflammatory bowel disease. Conversely, investigations demonstrate that the use of short-chain fatty acids, produced through fermentation by intestinal bacteria, protects kidney function in models of acute and chronic kidney diseases. Thus, the dialogue between the gut and kidney seems to be crucial in maintaining their proper function, although the factors governing this crosstalk are still emerging as the field evolves. In recent years, a series of studies have highlighted the significance of enteroendocrine cells (EECs) which are part of the secretory lineage of the gut epithelial cells, as important components in gut-kidney crosstalk. EECs are distributed throughout the epithelial layer and release more than 20 hormones in response to microenvironment stimuli. Interestingly, some of these hormones and/or their pathways such as Glucagon-Like Peptide 1 (GLP-1), GLP-2, gastrin, and somatostatin have been shown to exert renoprotective effects. Therefore, the present review explores the role of EECs and their hormones as regulators of gut-kidney crosstalk and their potential impact on kidney diseases. This comprehensive exploration underscores the substantial contribution of EEC hormones in mediating gut-kidney communication and their promising potential for the treatment of kidney diseases.
Collapse
Affiliation(s)
- José Arimatéa de Oliveira Nery Neto
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Tang Z, Yu S, Pan Y. The gut microbiome tango in the progression of chronic kidney disease and potential therapeutic strategies. J Transl Med 2023; 21:689. [PMID: 37789439 PMCID: PMC10546717 DOI: 10.1186/s12967-023-04455-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/19/2023] [Indexed: 10/05/2023] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% population worldwide and becomes a huge burden to the world. Recent studies have revealed multifold interactions between CKD and gut microbiome and their pathophysiological implications. The gut microbiome disturbed by CKD results in the imbalanced composition and quantity of gut microbiota and subsequent changes in its metabolites and functions. Studies have shown that both the dysbiotic gut microbiota and its metabolites have negative impacts on the immune system and aggravate diseases in different ways. Herein, we give an overview of the currently known mechanisms of CKD progression and the alterations of the immune system. Particularly, we summarize the effects of uremic toxins on the immune system and review the roles of gut microbiota in promoting the development of different kidney diseases. Finally, we discuss the current sequencing technologies and novel therapies targeting the gut microbiome.
Collapse
Affiliation(s)
- Zijing Tang
- Department of Nephrology, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyan Yu
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Pan
- Department of Nephrology, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Fukuoka K, Yoshida Y, Sotono K, Nishikawa N, Hamamura K, Oyama K, Tsuruta A, Mayanagi K, Koyanagi S, Matsunaga N, Ohdo S. Oral administration of vancomycin alleviates heart failure triggered by chronic kidney disease. Biochem Biophys Res Commun 2023; 675:92-98. [PMID: 37463524 DOI: 10.1016/j.bbrc.2023.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
Chronic kidney disease (CKD) induces an imbalance in the intestinal microbiota, affecting various physiological functions and leading to cardiovascular inflammation and fibrosis. However, the cardiotoxic impact of intestinal microbiota-derived uremic substances in advanced renal dysfunction remains unexplored. Therefore, we developed a 5/6 nephrectomy (5/6Nx) mouse model to investigate the intestinal microbiota and the effects of administering vancomycin (VCM) on the microbiota and the cardiac pathology associated with CKD. Despite VCM administration after the development of irreversible glomerulosclerosis and tubulointerstitial fibrosis, blood indoxyl sulfate and phenyl sulfate levels, which are intestinal bacteria-derived uremic substances, brain natriuretic peptide levels, and the fibrotic area in the heart were decreased. Moreover, VCM administration prevented 5/6Nx-induced weight loss and prolonged survival time. Our findings suggest that VCM-induced changes in the intestinal microbiota composition ameliorate heart failure and improve survival rates by reducing intestinal microbiota-derived cardiotoxic substances despite advanced renal dysfunction. This highlights the potential of using the intestinal microbiota as a target to prevent and treat cardiovascular conditions associated with CKD.
Collapse
Affiliation(s)
- Kohei Fukuoka
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kurumi Sotono
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naoki Nishikawa
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kengo Hamamura
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kosuke Oyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akito Tsuruta
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kota Mayanagi
- Department of Drug Discovery Structural Biology, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoru Koyanagi
- Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
49
|
Snauwaert E, Paglialonga F, Vande Walle J, Wan M, Desloovere A, Polderman N, Renken-Terhaerdt J, Shaw V, Shroff R. The benefits of dietary fiber: the gastrointestinal tract and beyond. Pediatr Nephrol 2023; 38:2929-2938. [PMID: 36471146 DOI: 10.1007/s00467-022-05837-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Dietary fiber is considered an essential constituent of a healthy child's diet. Diets of healthy children with adequate dietary fiber intake are characterized by a higher diet quality, a higher nutrient density, and a higher intake of vitamins and minerals in comparison to the diets of children with poor dietary fiber intake. Nevertheless, a substantial proportion of children do not meet the recommended dietary fiber intake. This is especially true in those children with kidney diseases, as traditional dietary recommendations in kidney diseases have predominantly focused on the quantities of energy and protein, and often restricting potassium and phosphate, while overlooking the quality and diversity of the diet. Emerging evidence suggests that dietary fiber and, by extension, a plant-based diet with its typically higher dietary fiber content are just as important for children with kidney diseases as for healthy children. Dietary fiber confers several health benefits such as prevention of constipation and fewer gastrointestinal symptoms, reduced inflammatory state, and decreased production of gut-derived uremic toxins. Recent studies have challenged the notion that a high dietary fiber intake confers an increased risk of hyperkalemia or nutritional deficits in children with kidney diseases. There is an urgent need of new studies and revised guidelines that address the dietary fiber intake in children with kidney diseases.
Collapse
Affiliation(s)
| | - Fabio Paglialonga
- Policlinico of Milan: Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Mandy Wan
- Evelina London Children's Hospital Paediatrics, London, UK
| | | | | | - José Renken-Terhaerdt
- Wilhelmina Children's Hospital University Medical Centre: Universitair Medisch Centrum Utrecht - Locatie Wilhelmina Kinderziekenhuis, Utrecht, Netherlands
| | - Vanessa Shaw
- Great Ormond Street Hospital NHS Trust: Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Rukshana Shroff
- Great Ormond Street Hospital NHS Trust: Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| |
Collapse
|
50
|
Yang Y, Mihajlovic M, Masereeuw R. Protein-Bound Uremic Toxins in Senescence and Kidney Fibrosis. Biomedicines 2023; 11:2408. [PMID: 37760849 PMCID: PMC10525416 DOI: 10.3390/biomedicines11092408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive condition of kidney dysfunction due to diverse causes of injury. In healthy kidneys, protein-bound uremic toxins (PBUTs) are cleared from the systemic circulation by proximal tubule cells through the concerted action of plasma membrane transporters that facilitate their urinary excretion, but the endogenous metabolites are hardly removed with kidney dysfunction and may contribute to CKD progression. Accumulating evidence suggests that senescence of kidney tubule cells influences kidney fibrosis, the common endpoint for CKD with an excessive accumulation of extracellular matrix (ECM). Senescence is a special state of cells characterized by permanent cell cycle arrest and limitation of proliferation, which promotes fibrosis by releasing senescence-associated secretory phenotype (SASP) factors. The accumulation of PBUTs in CKD causes oxidative stress and increases the production of inflammatory (SASP) factors that could trigger fibrosis. Recent studies gave some clues that PBUTs may also promote senescence in kidney tubular cells. This review provides an overview on how senescence contributes to CKD, the involvement of PBUTs in this process, and how kidney senescence can be studied. Finally, some suggestions for future therapeutic options for CKD while targeting senescence are given.
Collapse
Affiliation(s)
- Yi Yang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Milos Mihajlovic
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|