Basic Study
Copyright ©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Exp Med. Dec 20, 2023; 13(5): 142-155
Published online Dec 20, 2023. doi: 10.5493/wjem.v13.i5.142
Exploring the mechanism of action bitter melon in the treatment of breast cancer by network pharmacology
Kavan Panchal, Bhavya Nihalani, Utsavi Oza, Aarti Panchal, Bhumi Shah
Kavan Panchal, Bhavya Nihalani, Utsavi Oza, Aarti Panchal, Bhumi Shah, Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Gujarat, Ahmedabad 382210, India
Author contributions: Panchal K designed, performed and wrote the paper; Nihalani B designed, performed and wrote the paper; Oza U edited the paper; Panchal A edited the paper; Shah B designed, supervised and edited the paper.
Conflict-of-interest statement: The authors declare no conflicts of interest in this paper.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Bhumi Shah, PhD, Associate Professor, Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Sanand Circle, Sarkhej-Gandhinagar Hwy, Sarkhej, Gujarat, Ahmedabad 382210, India. bhumi197@gmail.com
Received: September 22, 2023
Peer-review started: September 22, 2023
First decision: September 29, 2023
Revised: October 4, 2023
Accepted: October 30, 2023
Article in press: October 30, 2023
Published online: December 20, 2023
Core Tip

Core Tip: The phytochemicals and molecular processes in bitter melon that are thought to be involved in the therapy of breast cancer (BRCA) were investigated using network Pharmacology. Our research demonstrated that the anti-BRCA benefits of bitter melon are likely caused by negative regulation of transcription, cell differentiation, apoptosis, proteolysis, negative control of neuron apoptosis, and cell migration. Further discovered nine important pathways like phosphatidylinositol 3-kinase/protein kinase B signaling, transcriptional dysregulation, axon guidance, calcium signaling, focal adhesion, janus kinase-signal transducer and activator of transcription signaling, cyclic adenosine monophosphate signaling, mammalian target of rapamycin signaling, and phospholipase D signaling, are likely to be involved in the mechanism of action of bitter melon for the treatment of BRCA.