Wang K, Sun Z. The role of m6A methylation in abdominal aortic aneurysms: Mechanisms, progress and future perspectives (Review).
Mol Med Rep 2025;
32:199. [PMID:
40376996 DOI:
10.3892/mmr.2025.13564]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
Abdominal aortic aneurysm (AAA) is a type of cardiovascular disease. Sudden aortic rupture and subsequent bleeding are the main causes of mortality due to AAA. N6‑methyladenosine (m6A) methylation, the most common epitranscriptomic modification in eukaryotic mRNAs, has a key role in the regulation of gene expression. m6A methylation markedly influences the development and progression of AAA. The present review highlights the mechanism of m6A methylation in AAA, including current research progress and future prospects. From a mechanistic perspective, m6A methylation exerts its influence on AAA‑related genes by modulating the post‑transcriptional levels of RNA, thereby impacting the pathological process of AAA. In terms of clinical applications, the mechanisms by which m6A methylation regulators influence their development and progression in AAA involve multiple target genes and signaling pathways. These regulatory factors affect inflammatory immunomodulation, cell proliferation, apoptosis and endogenous processes by modulating the m6A modification status of target genes and the activity of immune‑related signaling pathways. Therefore, for the prevention and treatment of AAA, current therapeutic strategies should comprehensively consider the interactions and synergistic regulation among m6A methylation regulators to reveal the integrated effects of the entire regulatory network in AAA development. Consequently, a more comprehensive understanding of the precise mechanisms of m6A methylation in AAA should be attained, which will support the development of innovative therapeutic strategies aimed at m6A methylation and establish a basis for the early diagnosis and treatment of AAA.
Collapse