1
|
Herrmann C, Zaldana K, Lustig AM, Bee GCW, Agostino EL, Koralov SB, Cadwell K. Environmental stress drives clearance of a persistent enteric virus in mice. Nat Microbiol 2025:10.1038/s41564-025-02046-z. [PMID: 40562879 DOI: 10.1038/s41564-025-02046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 05/20/2025] [Indexed: 06/28/2025]
Abstract
Persistent viral infections are associated with long-term health issues and prolonged transmission. How external perturbations after initial exposure affect the duration of infection is unclear. Here we discovered that murine astrovirus, an enteric RNA virus, persists indefinitely when mice remain unperturbed but is cleared rapidly after cage change. In addition to eliminating the external viral reservoir, cage change also induced interferon-stimulated genes in the intestinal epithelium that are necessary for viral clearance. We further identified that displacing infected animals initially caused a temporary period of immune suppression through the stress hormone corticosterone, which was followed by an immune rebound characterized by activation of CD8 T cells responsible for downstream epithelial antiviral responses. Our findings show how viral persistence can be disrupted by preventing re-exposure and activating immunity upon stress recovery, indicating that external factors can be manipulated to shorten the duration of a viral infection.
Collapse
Affiliation(s)
- Christin Herrmann
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kimberly Zaldana
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Abigail M Lustig
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gavyn Chern Wei Bee
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eva L Agostino
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Sergei B Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Thanapati S, Kulkarni S, Shinde T, Ganu M, Ganu A, Jayawant P, Tripathy AS. Pro inflammatory IL-1β: A potential biomarker for chronic chikungunya arthritis condition. Hum Immunol 2025; 86:111336. [PMID: 40527074 DOI: 10.1016/j.humimm.2025.111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/23/2025] [Accepted: 06/11/2025] [Indexed: 06/19/2025]
Abstract
BACKGROUND Cytokines and chemokines play a crucial role in orchestrating the immune response to chikungunya virus (CHIKV) infection, influencing disease course and outcome. Although significant efforts have been made to understand the cytokine signatures associated with CHIKV infection, the identification of specific cytokine biomarkers across different disease stages remains incomplete. MATERIAL AND METHOD We have assessed CHIKV-specific cytokine, chemokine profiles of 17 analytes in 50 acute chikungunya patients, 31 chronic chikungunya arthritis patients, 30 recovered individuals, and 23 healthy controls. The cytokine and chemokines were measured in the supernatant of PBMCs stimulated in vitro with inactivated chikungunya virus. RESULTS It was observed that chronic chikungunya arthritis patients exhibited significantly higher levels of IL-1β, IL-6, and GM-CSF compared to all other groups. MCP-1 levels were elevated in patient groups compared to recovered and control individuals. IL-1β emerged as a potential biomarker for chronic chikungunya arthritis based on ROC analysis. A negative correlation between IFN-γ levels and CHIKV load was observed in acute patients, suggesting its antiviral role. IL-12 levels were higher in recovered individuals compared to all other groups, while IFN-γ levels were elevated in recovered individuals compared to acute patients. CONCLUSION Our findings highlight IL-1β as a potential biomarker for chronic chikungunya arthritis and suggest that GM-CSF inhibition could serve as a therapeutic intervention for disease-associated chronic inflammation. The observed co-regulation of IL-12 and IFN-γ in recovered individuals needs further investigation into their role in disease resolution. These insights provide a deeper understanding of the immunopathogenesis of CHIKV infection and may contribute in future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Subrat Thanapati
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411 001, India
| | - Shruti Kulkarni
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411 001, India
| | - Tanvi Shinde
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411 001, India
| | - Mohini Ganu
- Sanjeevan Hospital, Latur, Maharashtra, India
| | - Ashok Ganu
- Sanjeevan Hospital, Latur, Maharashtra, India
| | - Priyanka Jayawant
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411 001, India
| | - Anuradha S Tripathy
- Department of Dengue and Chikungunya, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr Ambedkar Road, Pune 411 001, India.
| |
Collapse
|
3
|
Trautmann A. Core features and inherent diversity of post-acute infection syndromes. Front Immunol 2025; 16:1509131. [PMID: 40529374 PMCID: PMC12170329 DOI: 10.3389/fimmu.2025.1509131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/19/2025] [Indexed: 06/20/2025] Open
Abstract
Post-acute infection syndromes (PAIS), i.e., long-lasting pathologies subsequent to infections that do not properly resolve, have both a common core and a broad diversity of manifestations. PAIS include a group of core symptoms (pathological fatigue, cognitive problems, sleep disorders and pain) accompanied by a large set of diverse symptoms. Core and diverse additional symptoms, which can persist for years, exhibiting periods of relapses and remissions, usually start suddenly after an apparently common infection. PAIS display highly variable clinical features depending on the nature of the initial pathogen, and to an even larger extent, on the diversity of preexisting individual terrains in which PAIS are rooted. In a first part, I discuss biological issues related to the persistence of microbial antigens, dysregulated immune responses, reactivation of latent viruses, different potential self-sustained inflammatory loops, mitochondrial dysfunction, metabolic disorders in the tryptophan- kynurenin pathway (TKP) with impact on serotonin, and consequences of a dysfunctional bidirectional microbiota-gut-brain axis. The second part deals with the nervous system dependence of PAIS. I rely on the concept of interoception, the process by which the brain senses, integrates and interprets signals originating from within the body, and sends feebacks aimed at maintaining homeostasis. Interoception is central for understanding the origin of fatigue, dysautonomia, dysfunctioning of the hypothalamus-pituitary-adrenal (HPA) axis, and its relation with stress, inflammation or depression. I propose that all individual predispositions leading to self-sustained vicious circles constitute building blocks that can self-assemble in many possible ways, to give rise to both core and diverse features of PAIS. A useful discrimination between different PAIS subtypes should be obtained with a composite profiling including biomarkers, questionnaires and functional tests so as to take into account PAIS multidimensionality.
Collapse
Affiliation(s)
- Alain Trautmann
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Paris, France
| |
Collapse
|
4
|
Chopra A, Venugopalan A. Chikungunya and other viral arthritis. Best Pract Res Clin Rheumatol 2025:102068. [PMID: 40360316 DOI: 10.1016/j.berh.2025.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Several viruses cause acute and chronic arthritis. Millions of people suffered from Chikungunya(CHIK) during the recent epidemics/outbreaks in Asia, Africa and the Americas. Almost 20-40 % failed to recover completely and suffered from chronic pain and arthritis sequel. A wide spectrum of clinical phenotypic arthritis was described. Non-specific arthralgias(NSA) and soft tissue pains were predominant although inflammatory arthritis (mostly undifferentiated)(IA-U) was substantial. Specifically, rheumatoid arthritis(RA) and spondyloarthritis(SpA) like disorders were described. The frequency of biomarkers such as rheumatoid factor(RF) was low. Arthritis was mostly non-erosive in population studies. Abnormal immune mechanisms and persistent specific CHIK virus (CHIKV) IgM and IgG antibodies were shown. The etiopathogenetic evidence was divided between intense joint tissue inflammation due to prolonged virus persistence and abnormal autoimmune mechanisms. There was no specific therapy. The symptomatic management was often combined with an empirical use of disease modifying anti rheumatoid drugs and steroids. Substantial research is required to address knowledge gaps and unravel evidence-based medicine.
Collapse
Affiliation(s)
- Arvind Chopra
- Center for Rheumatic Diseases, 11 Hermes Elegance, 1988 Convent Street, Camp, Pune, 411001, India.
| | - Anuradha Venugopalan
- Center for Rheumatic Diseases, 11 Hermes Elegance, 1988 Convent Street, Camp, Pune, 411001, India.
| |
Collapse
|
5
|
de Souza WM, Lecuit M, Weaver SC. Chikungunya virus and other emerging arthritogenic alphaviruses. Nat Rev Microbiol 2025:10.1038/s41579-025-01177-8. [PMID: 40335675 DOI: 10.1038/s41579-025-01177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 05/09/2025]
Abstract
Arthritogenic alphaviruses are arboviruses (arthropod-borne viruses) that are genetically and serologically related positive-strand RNA viruses and cause epidemics on a global scale. They are transmitted by mosquitoes and cause diseases in humans that are mainly characterized by fever and often debilitating, sometimes chronic polyarthralgia. At present, approved treatments or vaccines are not available for most arthritogenic alphaviruses, and recently licensed vaccines against chikungunya virus are awaiting implementation in endemic areas. Most arthritogenic alphaviruses are currently limited to specific geographic areas due to vector distributions and availability of amplifying hosts, but they pose a substantial risk of emergence in other regions. The exception is chikungunya virus, which has emerged repeatedly from Africa, established sustained and efficient transmission in urban areas (including in temperate climates) and has caused major epidemics across the world. In this Review, we highlight recent advances in our understanding of the transmission cycles of arthritogenic alphaviruses, their vectors, epidemiology, transmission dynamics, evolution, pathophysiology and immune responses. We also outline strategies and countermeasures to anticipate and mitigate the impact of arthritogenic alphaviruses on human health.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Marc Lecuit
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, Paris, France
- Department of Infectious Diseases and Tropical Medicine, Assistance Publique-Hôpitaux de Paris, Institut Imagine, Necker-Enfants Malades University Hospital, Paris, France
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
6
|
Gonçalves WA, de Sousa CDF, Teixeira MM, Souza DG. A brief overview of chikungunya-related pain. Eur J Pharmacol 2025; 994:177322. [PMID: 39892450 DOI: 10.1016/j.ejphar.2025.177322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Pain is an important symptom associated with the arboviral disease caused by the Chikungunya virus (CHIKV). For a significant number of patients, this symptom can persist for months or even years, negatively affecting their quality of life. Unfortunately, pharmacological options for this condition are limited and only partially effective, as the underlying mechanisms associated with CHIKV-induced pain are still poorly understood. The re-emergence of CHIKV has led to new outbreaks, and the expected high prevalence of pain in these global events requires new scientific advances to find more effective solutions. Here we review the main aspects of pain caused by CHIKV infection, such as the anatomy of the affected sites, the prevalence and management of this symptom, the diversity of possible cellular and molecular mechanisms, and finally highlight a promising meningeal pathway to elucidate the mechanisms involved in the unsolved problem of CHIKV-associated pain.
Collapse
Affiliation(s)
- William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Carla Daiane Ferreira de Sousa
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany.
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Daniele G Souza
- Laboratório Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Ou TP, Sorn S, Nguon K, In S, Ken S, Ly S, Flamand C, Voirin N, Mandron M, Watson H, Duong V. Viral Kinetics During Acute Chikungunya Virus Infection: Insights Into Potential Role of Monoclonal Antibodies in Viral Clearance and Prophylaxis Using Mathematical Modeling. J Med Virol 2025; 97:e70391. [PMID: 40358000 DOI: 10.1002/jmv.70391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/31/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Chikungunya virus (CHIKV), an arthritogenic alphavirus, is a significant public health threat in endemic and newly affected regions. This study investigates viral kinetics, immune responses, and the potential of monoclonal antibody (mAb) therapies to mitigate viraemia and transmission during acute CHIKV infection, providing novel insights into early intervention strategies. Using data from 29 patients in Cambodia, serial sampling and viral load quantification revealed that the population-average peak viral load occurred ~1.87 days prior to symptom onset. Children demonstrated higher peak viral loads and faster replication rates compared to adults, although symptom severity and burden were similar across age groups. IgM antibodies appeared earlier in adults (median: 4.1 days) than in children (median: 5.1 days; p = 0.036). C-reactive protein (CRP) levels were transiently elevated in about 50% of patients but showed no correlation with disease severity. Mathematical modeling highlighted that prophylactic mAb therapies, when administered 3 days before symptoms onset, could substantially reduce viral load and potentially prevent detectable viraemia. While these findings underscore the potential of mAbs as an early therapeutic strategy, further studies are necessary to evaluate the robustness of these results and assess their practical implications to curb CHIKV outbreaks by minimizing viraemia and presymptomatic transmission.
Collapse
Affiliation(s)
- Tey Putita Ou
- Virology Unit, Pasteur Network, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Pasteur Network, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Kunthy Nguon
- Epidemiology and Public Health Unit, Pasteur Network, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saraden In
- Virology Unit, Pasteur Network, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sreymom Ken
- Virology Unit, Pasteur Network, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sowath Ly
- Epidemiology and Public Health Unit, Pasteur Network, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Claude Flamand
- Epidemiology and Public Health Unit, Pasteur Network, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, U1332 INSERM, UMR2000 CNRS, Paris, France
| | | | - Marie Mandron
- Clinical Development and Translational Medicine, Evotec ID, Lyon, France
| | - Hugh Watson
- Clinical Development and Translational Medicine, Evotec ID, Lyon, France
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Veasna Duong
- Virology Unit, Pasteur Network, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
8
|
Gérardin P, Medina-Santos R, Le Clerc S, Bruneau L, Maillot A, Labib T, Rahmouni M, Spadoni JL, Meyniel JP, Cornet C, Lefebvre C, El Jahrani N, Savara J, Mathew MJ, Fontaine C, Payet C, Ah-You N, Chabert C, Mussard C, Porcherat S, Medjane S, Noirel J, Marimoutou C, Hocini H, Zagury JF. Transcriptomic analysis of chronic chikungunya in the Reunionese CHIKGene cohort uncovers a shift in gene expression more than 10 years after infection. Travel Med Infect Dis 2025; 65:102825. [PMID: 39999933 DOI: 10.1016/j.tmaid.2025.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
AIM In 2005-2006, a chikungunya epidemic of unprecedented magnitude hit Reunion Island, which raised a public health concern through the substantial proportions of long-lasting manifestations. To understand the pathophysiology underlying chronic chikungunya (CC), we designed the CHIKGene cohort study and collected blood samples from 133 subjects diagnosed with CC and from 86 control individuals that had recovered within 3 months, 12-to-15 years after exposure. METHODS We conducted bulk RNAseq analysis on peripheral blood mononuclear cells to find differentially expressed genes (DEGs), gene set enrichment analysis (GSEA) and gene ontologies to uncover top-level enriched terms associated with DEGs, and weighted gene correlation network analysis (WGCNA) to elucidate underlying cellular processes. RESULTS Among 1549 DEGs, gene expression analysis identified 10 top genes including NR4A2 and TRIM58 (upregulated in CC), IGHG3 and IGHV3-49 (downregulated in CC) linked to immune regulation, OSBP2 (upregulated in CC) and SEMA6B (downregulated in CC) linked to neuronal homeostasis and axon guidance, respectively. GSEA and WGCNA unveiled cellular processes such as "Metabolism of RNA" and "Cell Cycle". CONCLUSIONS This study uncovers a shift in gene expression of CC subjects. IGHG3 and IGHV3-49 gene shut-offs spotlight the importance of neutralizing antibodies against chikungunya virus in the progression to chronic disease. Human diseases associations highlight connections to rheumatoid arthritis, nervous and cardiac systems. GSEA and WGCNA bounce the hypotheses of a persistent viral reservoir or an increased susceptibility to RNA viral pathogens with new onset infections. Together, our findings might offer potential targets for therapeutic options aimed at alleviating chronic chikungunya.
Collapse
Affiliation(s)
- Patrick Gérardin
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Platform for Clinical and Translational Research, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France.
| | - Raissa Medina-Santos
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France.
| | - Sigrid Le Clerc
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Léa Bruneau
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Adrien Maillot
- Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Taoufik Labib
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Myriam Rahmouni
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Jean-Louis Spadoni
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | | | - Clémence Cornet
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France; AdvanThink, Saint-Aubin, France
| | - Cécile Lefebvre
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Nora El Jahrani
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Jakub Savara
- École d'Ingénieurs Généraliste du Numérique, EFREI, Paris, France; Department of Immunology, Palacky University and University Hospital Olomouc, Czech Republic; Department of Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Mano Joseph Mathew
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France; École d'Ingénieurs Généraliste du Numérique, EFREI, Paris, France
| | - Christine Fontaine
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Christine Payet
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Nathalie Ah-You
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Cécile Chabert
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Corinne Mussard
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Sylvaine Porcherat
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Samir Medjane
- Direction of Clinical Research and Innovation (DRCI), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Josselin Noirel
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Catherine Marimoutou
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Hakim Hocini
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France.
| |
Collapse
|
9
|
Sharma A, Ravindran V. Current and future advances in practice: arboviral arthritides. Rheumatol Adv Pract 2025; 9:rkaf029. [PMID: 40225230 PMCID: PMC11992517 DOI: 10.1093/rap/rkaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Arboviral arthritides are a group of viral infections affecting the musculoskeletal system. Mosquitoes are vectors for some of the arboviral febrile diseases such as due to chikungunya, dengue and Zika viruses, which constitute a major proportion of arboviral arthritide syndromes in humans. They have gained epidemiological importance as the natural habitats of these mosquitoes are in the vicinity of human dwellings. Chikungunya virus infection frequently leads to post-infectious chronic musculoskeletal syndromes including erosive inflammatory arthritis, which resembles RA. Clinical features of the chronic phase result from the chronic persistence of the virus in certain tissues after the acute infection has resolved. In addition, the triggering of autoimmunity has also been implicated in musculoskeletal syndromes. Due to the diversity of clinical presentations and overlapping features with other viral illnesses and inflammatory arthritides, diagnosis and management are challenging. Poor prognostic factors for predicting evolution to chronic arthritides are not well delineated. There is no universal agreement regarding when to start immunomodulatory agents and the duration of such therapy. The lack of specific antiviral agents adds to the complexity of the situation. A live-attenuated vaccine has been recently approved by the US Food and Drug Administration for the prevention of chikungunya virus infection. This review discusses the musculoskeletal syndromes related to arboviral infections, with a major focus on chikungunya virus-related arthritis to provide practical guidance to clinicians involved in managing patients with chikungunya and its sequelae.
Collapse
Affiliation(s)
- Ashish Sharma
- Dilshad Garden, Rheumatology Clinic, New Delhi, India
| | - Vinod Ravindran
- Department of Rheumatology, Centre for Rheumatology, Calicut, Kerala, India
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Ansah-Dico S, Heckler I, Premazzi Papa M, Sucerquia Hernández A, Mejía JF, Tritsch SR, Mendoza-Torres E, Encinales L, Bonfanti AC, Proctor AM, Wells JM, Hernández DD, Pretelt Gazabon JM, Pulido MG, Castiblanco-Arroyave SC, Simmens SJ, Lynch R, Chang AYH. The role of autoantibodies in post-chikungunya viral arthritis disease severity. Microbiol Spectr 2025; 13:e0265624. [PMID: 40042325 PMCID: PMC11960447 DOI: 10.1128/spectrum.02656-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
Post-chikungunya viral arthritis may persist for months to years after infection and is characterized by relapsing and remitting symptoms. This study investigates the relationship between autoantibodies and chikungunya arthritis severity, providing insights into arthritis pathogenesis. We assessed arthritis measures in a cohort of serologically confirmed chikungunya cases from Colombia between 2019 and 2021 (n = 144). We measured arthritis disease severity, flare intensity, pain, and disability, then plasma antibody levels of rheumatoid factor IgM, anti-cyclic citrullinated peptide (CCP), anti-citrullinated α-enolase peptide 1 (CEP-1), anti-nuclear antibody (ANA), anti-citrullinated vimentin (Sa), and immunoglobulins produced in response to chikungunya, Zika and Mayaro. Finally, we examined the correlation between the arthritis measures with the titers of antibodies hypothesized to play a potential role in arthritis pathogenesis. Cases were characterized by moderate disease severity (Disease Activity Score-28 mean, 3.66 ± 1.23) in current arthritis flare with moderate intensity (Flare Score, 25.42 ± 12.38), moderate pain (61.47 ± 27.23 on visual analog scale 0-100), and some disability (Health Assessment Questionnaire 0.77 ± 0.58). After Bonferroni adjustment, there were no statistically significant correlations between the levels of antibodies and arthritis measures. Weak correlations between rheumatoid factor IgM with arthritis severity and pain (P < 0.01) and anti-CEP1 with disability (P < 0.05) were observed when unadjusted for multiple comparisons. The data suggest that autoantibodies, such as RF, anti-CCP, and anti-CEP-1, do not correlate with post-chikungunya arthritis disease severity, thus unlikely to significantly contribute to pathogenesis. Exposure to other arboviral infections was not related to worse post-chikungunya arthritis. This suggests that other pathways for arthritis disease pathogenesis should be examined.IMPORTANCEThis cohort study describes the correlation between levels of autoantibodies, viral antibodies, and arthritis outcomes, suggesting that autoantibodies known to play an important role in other autoimmune diseases do not correlate with chikungunya arthritis relapse disease severity and are unlikely to contribute significantly to arthritis pathogenesis. This suggests that other pathways for arthritis disease pathogenesis should be examined to identify diagnostic and prognostic markers of alphaviral arthritis.
Collapse
Affiliation(s)
- Samantha Ansah-Dico
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, USA
| | - Ilana Heckler
- Department of Scientific Affairs, EUROIMMUN US, Mountain Lakes, New Jersey, USA
| | - Michelle Premazzi Papa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, USA
| | | | - Jose Forero Mejía
- Department of Medicine, George Washington University, Washington, D.C., USA
| | - Sarah Renee Tritsch
- Global Health, Milken Institute School of Public Health, George Washington University, Washington, D.C., USA
| | - Evelyn Mendoza-Torres
- Advanced Biomedicine Research Group, Faculty of Health, Exact and Natural Sciences, Universidad Libre de Colombia, Barranquilla, Atlantico, Colombia
| | - Liliana Encinales
- Department of Medicine, Allied Research Society, Barranquilla, Atlántico, Colombia
| | | | - Abigale Marie Proctor
- Global Health, Milken Institute School of Public Health, George Washington University, Washington, D.C., USA
| | - Jessica M. Wells
- Department of Quality Operations, EUROIMMUN US, Mountain Lakes, New Jersey, USA
| | - Daniela Díaz Hernández
- Pediatrics Department, Faculty of Health, Exact and Natural Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Juan Manuel Pretelt Gazabon
- Internal Medicine Department. Faculty of Health, Exact and Natural Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Mónica Gómez Pulido
- Microbiology Department. Faculty of Health, Exact and Natural Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Sara Camila Castiblanco-Arroyave
- Internal Medicine Department. Faculty of Health, Exact and Natural Sciences, Universidad Libre de Colombia, Seccional Barranquilla, Barranquilla, Atlántico, Colombia
| | - Sammuel Joseph Simmens
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University Milken Institute School of Public Health, Washington, D.C., USA
| | - Rebecca Lynch
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, USA
| | - Aileen Yu-hen Chang
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia, USA
- Department of Medicine, George Washington University, Washington, D.C., USA
| |
Collapse
|
11
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [PMID: 40134841 PMCID: PMC11612872 DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
12
|
Wang S, Mahalingam S, Merits A. Alphavirus nsP2: A Multifunctional Regulator of Viral Replication and Promising Target for Anti-Alphavirus Therapies. Rev Med Virol 2025; 35:e70030. [PMID: 40064592 PMCID: PMC11893376 DOI: 10.1002/rmv.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Alphaviruses are re-emerging vector-born pathogens that cause arthralgia or encephalitic diseases on a global scale. While a vaccine against chikungunya virus was recently approved, no vaccines currently exist for other alphaviruses, nor are there antiviral drugs for the treatment of alphavirus infections. Alphaviruses have positive-strand RNA genomes, and their RNA replication is coordinated by activities of the multifunctional nonstructural protein 2 (nsP2), a helicase-protease and a subunit of viral RNA replicase. We provide a comprehensive overview of nsP2 functions and inhibitors of its activities for their potential as effective antivirals. Furthermore, analysis of nsP2 activities suggests that it could be targeted to develop advanced live attenuated vaccines and strategies for controlling alphavirus transmission by mosquito vectors.
Collapse
Affiliation(s)
- Sainan Wang
- Institute of BioengineeringUniversity of TartuTartuEstonia
| | - Suresh Mahalingam
- Institute for Biomedicine and GlycomicsGriffith UniversityGold CoastAustralia
- Global Virus Network (GVN) Centre of Excellence in ArbovirusesGriffith UniversityGold CoastAustralia
- School of Pharmacy and Medical SciencesGriffith UniversityGold CoastAustralia
| | - Andres Merits
- Institute of BioengineeringUniversity of TartuTartuEstonia
| |
Collapse
|
13
|
Carvalho AS, Pereira-Silva GC, Andrade JMP, Ferreira WS, Weissmüller G, Saraiva EM, Da Poian AT. DNA Extracellular Traps Released by Mayaro Virus-Infected Macrophages Act as a Platform for Virus Dissemination. J Med Virol 2025; 97:e70262. [PMID: 40007117 DOI: 10.1002/jmv.70262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Mayaro virus (MAYV) is an arthritogenic arbovirus that causes a debilitating illness that can progress to a chronic rheumatic disease characterized by persistent viral replication in macrophages within joint tissues. Here, we report that MAYV-infected macrophages release decondensed DNA traps (DNA extracellular traps, DETs) through a mechanism driven by the production of reactive oxygen species and peptidyl arginine deiminase activation, resembling the classical mechanism of pathogen clearance by activated neutrophils. Unlike traditional pathogen clearance observed for NETs released by neutrophils, MAYV-induced DETs did not inactivate the virus. Instead, DET-ensnared viruses are internalized by neighboring uninfected macrophages, increasing the number of infected cells. Collectively, these findings suggest that MAYV-containing DETs act as a "Trojan horse" that facilitates viral dissemination within inflamed tissues, connecting macrophage-mediated inflammatory response to viral persistence in the articular tissue in chronic MAYV disease.
Collapse
Affiliation(s)
- Ana S Carvalho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gean Carlo Pereira-Silva
- Institudo de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia M P Andrade
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wellington S Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Weissmüller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Institudo de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Ramundo MS, da Fonseca GC, Ten-Caten F, Gerber AL, Guimarães AP, Manuli ER, Côrtes MF, Pereira GM, Brustolini O, Cabral MG, Dos Santos Lázari C, Brasil P, da Silveira Bressan C, Nakaya HI, Paranhos-Baccalà G, Vasconcelos ATR, Sabino EC. Transcriptomic insights into early mechanisms underlying post-chikungunya chronic inflammatory joint disease. Sci Rep 2025; 15:6745. [PMID: 40000671 PMCID: PMC11861634 DOI: 10.1038/s41598-025-86761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Chikungunya virus (CHIKV) infection often results in a chronic joint condition known as Post-Chikungunya Chronic Inflammatory Joint Disease (pCHIKV-CIJD). This condition disrupts individuals' daily lives and contributes to increased healthcare expenditure. This study investigated the molecular mechanisms underlying pCHIKV-CIJD development by analyzing RNA transcripts, including small RNAs, of whole blood from CHIKV-infected patients. By comparing patients who evolved to pCHIKV-CIJD with those who did not, we identified molecular signatures associated with chronification in acute and post-acute disease phases. These molecules were primarily associated with an altered immune response regulation. Notably, LIFR, an immune receptor that enhanced IL-6 transcription, was down-regulated in the acute phase of pCHIKV-CIJD patients, while its inhibitor, hsa-miR-98-5p, was up-regulated in these individuals. Other downregulated genes include members of immune mechanisms whose impairment can lead to a reduction in the first line of antiviral response, thereby promoting virus persistence for a longer period in these patients. Additionally, pCHIKV-CIJD patients exhibited reduced transcript levels of MMP8, LFT, and DDIT4, genes already implicated in the pathological process of other types of inflammatory arthritis and seemingly relevant for pCHIKV-CIJD development. Overall, our findings provide insights into the early molecular mechanisms involved in the chronification and highlight potential targets for further investigation.
Collapse
Affiliation(s)
- Mariana Severo Ramundo
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
- Laboratório de Imunologia, LIM-19, Instituto do Coração (INCOR), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil, 05403-900.
| | | | - Felipe Ten-Caten
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra L Gerber
- LABINFO, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Paula Guimarães
- LABINFO, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Erika Regina Manuli
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratorio de Investigaçao Medica LIM-46, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Universidade Municipal de São Caetano do Sul, São Caetano do Sul, Brazil
| | - Marina Farrel Côrtes
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Geovana Maria Pereira
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Otavio Brustolini
- LABINFO, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Milena Gomes Cabral
- Departamento de Moléstias Infecciosas e Parasitárias e Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carolina Dos Santos Lázari
- Fleury Medicina e Saúde, São Paulo, Brazil
- Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Brasil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Helder I Nakaya
- Scientific Platform Pasteur, Universidade de São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Instituto Todos Pela Saúde, São Paulo, Brazil
| | | | | | - Ester Cerdeira Sabino
- Laboratorio de Investigaçao Medica LIM-46, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
- Universidade Municipal de São Caetano do Sul, São Caetano do Sul, Brazil
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Santiago RA, Bavaresco SPP, Citrangulo SG, Medronho RDA, Sampaio V, Costa AJL. Clinical manifestations associated with the chronic phase of Chikungunya Fever: A systematic review of prevalence. PLoS Negl Trop Dis 2025; 19:e0012810. [PMID: 39899618 PMCID: PMC11825093 DOI: 10.1371/journal.pntd.0012810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 02/13/2025] [Accepted: 12/26/2024] [Indexed: 02/05/2025] Open
Abstract
INTRODUCTION The aim of this systematic review of prevalence is to observe and discuss the clinical manifestations of Chikungunya Virus disease in its chronic phase. METHODS To be eligible, the observational studies should accompany the individuals for at least six months. The research was conducted using electronic databases MEDLINE and EMBASE. The methodological quality was evaluated using the "Joanna Briggs Institute's critical appraisal checklist for studies reporting prevalence data" tool. RESULTS The search has found 175 articles. The application of the inclusion criteria defined a total of 29 selected studies. From the included studies, only one did not present arthralgia as a prevalent symptom in the chronic phase. Other signs and symptoms observed were: fatigue; sleep disorders; myalgia; skin lesions; depression; digestive disorders. CONCLUSION Because it is an often incapacitating symptom, arthralgia can affect the individuals' quality of life, with implications in their social and work life. Since the chronic phase is common in infected individuals, all levels of health care should be prepared to monitor, in the medium to long term, the patients affected by this condition.
Collapse
Affiliation(s)
- Raphael Augusto Santiago
- Institute of Studies in Collective Health, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | | | - Sheyla Goulart Citrangulo
- Institute of Studies in Collective Health, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Roberto de Andrade Medronho
- Institute of Studies in Collective Health, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Vanderson Sampaio
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, State of Amazonas, Brazil
| | - Antônio José Leal Costa
- Institute of Studies in Collective Health, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Shahrtash SA, Ghnim ZS, Ghaheri M, Adabi J, Hassanzadeh MA, Yasamineh S, Afkhami H, Kheirkhah AH, Gholizadeh O, Moghadam HZ. Recent Advances in the Role of Different Nanoparticles in the Various Biosensors for the Detection of the Chikungunya Virus. Mol Biotechnol 2025; 67:54-79. [PMID: 38393630 DOI: 10.1007/s12033-024-01052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024]
Abstract
Humans contract the Chikungunya virus (CHIKV), an alphavirus transmitted by mosquitoes that induces acute and chronic musculoskeletal discomfort and fever. Millions of cases of the disease have been attributed to CHIKV in the Indian Ocean region since 2004, and the virus has since spread to Europe, the Middle East, and the Pacific. The exponential proliferation of CHIKV in recent times underscores the critical nature of implementing preventative measures and exploring potential control strategies. The principal laboratory test employed to diagnose infection in serum samples collected over six days after the onset of symptoms is the detection of CHIKV or viral RNA. Although two commercially available real-time reverse transcription-polymerase chain reaction products exist, data on their validity are limited. A diagnostic instrument that is rapid, sensitive, specific, and cost-effective is, therefore an absolute necessity, particularly in developing nations. Biosensors have demonstrated considerable potential in the realm of pathogen detection. The rapid and sensitive detection of viruses has been facilitated by the development of numerous types of biosensors, including affinity-based nano-biosensors, graphene affinity-based biosensors, optical nano-biosensors, surface Plasmon Resonance-based optical nano-biosensors, and electrochemical nano-biosensors. Furthermore, the utilization of nanomaterials for signal extension, including but not limited to gold and silver nanoparticles, quantum dots, and iron oxide NPs, has enhanced the precision and sensitivity of biosensors. The developed innovative diagnostic method is time-efficient, precise, and economical; it can be implemented as a point-of-care device. The technique may be implemented in diagnostic laboratories and hospitals to identify patients infected with CHIKV. Throughout this article, we have examined a multitude of CHIKV nano-biosensors and their respective properties. Following a discussion of representative nanotechnologies for biosensors, numerous NPs-assisted CHIKV nano-biosensors are summarized in this article. As a result, we anticipate that this review will furnish a significant foundation for advancing innovative CHIKV nano-biosensors.
Collapse
Affiliation(s)
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Javid Adabi
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Science, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Omid Gholizadeh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Azad Researcher, Virology and Biotechnology, Tehran, Iran.
| | - Hesam Zendehdel Moghadam
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
17
|
Andrew A, Sum MSH, Ch'ng ES, Tang TH, Citartan M. Selection of DNA aptamers against Chikungunya virus Envelope 2 Protein and their application in sandwich ELASA. Talanta 2025; 281:126842. [PMID: 39305759 DOI: 10.1016/j.talanta.2024.126842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024]
Abstract
Chikungunya fever, caused by Chikungunya virus (CHIKV) exhibits clinical features that mimic that of other arbovirus infections such as dengue. CHIKV Envelope 2 (E2) protein, an antigenic epitope of CHIKV, has been identified as an ideal marker for diagnostics. The current CHIKV antigen detection tests are largely based on antibodies but are beleaguered by issues such as sensitivity to high temperature, expensive and prone to batch-to-batch variations. Aptamers are suitable alternatives to antibodies as they are cheaper and have no batch-to-batch variations compared to antibodies. In this study, DNA aptamer selection against CHIKV E2 proteins was performed using two different randomized ssDNA libraries. Chik-2 (96-mer) and Chik-3 (76-mer) were isolated from these two libraries and were identified as the potential aptamers against CHIKV E2 protein. The binding affinity of Chik-2 and Chik-3 against CHIKV E2 protein was estimated at 177.5 ± 32.69 nM and 30.01 ± 3.60 nM, respectively. A sandwich ELASA was developed, and this assay showed a detection limit of 2.17 x 103 PFU/mL. The sensitivity and specificity of the assay were 80 % and 100 %, respectively. The assay showed no cross-reactivity with dengue-positive samples, demonstrating the enormous diagnostic potential of these aptamers for the detection of CHIKV.
Collapse
Affiliation(s)
- Anna Andrew
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia; Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Magdline S H Sum
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
18
|
Tong Jia Ming S, Tan Yi Jun K, Carissimo G. Pathogenicity and virulence of O'nyong-nyong virus: A less studied Togaviridae with pandemic potential. Virulence 2024; 15:2355201. [PMID: 38797948 PMCID: PMC11135837 DOI: 10.1080/21505594.2024.2355201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
O'nyong-nyong virus (ONNV) is a neglected mosquito-borne alphavirus belonging to the Togaviridae family. ONNV is known to be responsible for sporadic outbreaks of acute febrile disease and polyarthralgia in Africa. As climate change increases the geographical range of known and potential new vectors, recent data indicate a possibility for ONNV to spread outside of the African continent and grow into a greater public health concern. In this review, we summarise the current knowledge on ONNV epidemiology, host-pathogen interactions, vector-virus responses, and insights into possible avenues to control risk of further epidemics. In this review, the limited ONNV literature is compared and correlated to other findings on mainly Old World alphaviruses. We highlight and discuss studies that investigate viral and host factors that determine viral-vector specificity, along with important mechanisms that determine severity and disease outcome of ONNV infection.
Collapse
Affiliation(s)
- Samuel Tong Jia Ming
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Katrina Tan Yi Jun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technical University, Singapore, Singapore
| |
Collapse
|
19
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
20
|
Metibemu DS, Adeyinka OS, Falode J, Hampton T, Crown O, Ojobor JC, Narayanan A, Julander J, Ogungbe IV. Inhibitor of the non-structural protein 2 protease shows promising efficacy in mouse models of chikungunya. Eur J Med Chem 2024; 278:116808. [PMID: 39236495 PMCID: PMC11440364 DOI: 10.1016/j.ejmech.2024.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Chikungunya virus (CHIKV) is responsible for the most endemic alphavirus infections called Chikungunya. The endemicity of Chikungunya has increased over the past two decades, and it is a pathogen with pandemic potential. There is currently no approved direct-acting antiviral to treat the disease. As part of our antiviral drug discovery program focused on alphaviruses and the non-structural protein 2 protease, we discovered that J12 and J13 can inhibit CHIKV nsP2 protease and block the replication of CHIKV in cell cultures. Both compounds are metabolically stable to human liver microsomal and S9 enzymes. J13 has excellent oral bioavailability in pharmacokinetics studies in mice and ameliorated Chikungunya symptoms in preliminary efficacy studies in mice. J13 exhibited an excellent safety profile in in vitro safety pharmacology and off-target screening assays, making J13 and its analogs good candidates for drug development against Chikungunya.
Collapse
Affiliation(s)
- Damilohun S Metibemu
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Olawale S Adeyinka
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - John Falode
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Tamia Hampton
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Olamide Crown
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - J Chinenye Ojobor
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA, 22030, USA
| | - Justin Julander
- Institute for Antiviral Research and the Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Ifedayo Victor Ogungbe
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
21
|
Herrmann C, Zaldana K, Agostino EL, Koralov SB, Cadwell K. Stress from environmental change drives clearance of a persistent enteric virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622373. [PMID: 39574746 PMCID: PMC11580998 DOI: 10.1101/2024.11.06.622373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Persistent viral infections are associated with long-term health issues and prolonged transmission. How external perturbations after initial exposure affect the duration of infection is unclear. We discovered that murine astrovirus, an enteric RNA virus, persists indefinitely when mice remain unperturbed but is cleared rapidly after cage change. Besides eliminating the external viral reservoir, cage change also induced a transcriptional defense response in the intestinal epithelium. We further identified that displacing infected animals initially caused a temporary period of immune suppression through the stress hormone corticosterone, which was followed by an immune rebound characterized by an increase in CD8 T cells responsible for the epithelial antiviral responses. Our findings show how viral persistence can be disrupted by preventing re-exposure and activating immunity upon stress recovery, indicating that external factors can be manipulated to shorten the duration of a viral infection.
Collapse
|
22
|
Castro ÍA, Yang Y, Gnazzo V, Kim DH, Van Dyken SJ, López CB. Murine parainfluenza virus persists in lung innate immune cells sustaining chronic lung pathology. Nat Microbiol 2024; 9:2803-2816. [PMID: 39358466 DOI: 10.1038/s41564-024-01805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/06/2024] [Indexed: 10/04/2024]
Abstract
Common respiratory viruses, including the human parainfluenza viruses, threaten human health seasonally and associate with the development of chronic lung diseases. Evidence suggests that these viruses can persist, but the sources of viral products in vivo and their impact on chronic respiratory diseases remain unknown. Using the murine parainfluenza virus Sendai, we demonstrate that viral protein and RNA persist in lung macrophages, type 2 innate lymphoid cells (ILC2s) and dendritic cells long after the infectious virus is cleared. Cells containing persistent viral protein expressed Th2 inflammation-related transcriptomic signatures associated with the development of chronic lung diseases, including asthma. Lineage tracing demonstrated that distinct functional groups of cells contribute to the chronic pathology. Importantly, targeted ablation of infected cells significantly ameliorated chronic lung disease. Overall, we identified persistent infection of innate immune cells as a key factor in the progression from acute to chronic lung disease after infection with parainfluenza virus.
Collapse
Affiliation(s)
- Ítalo Araújo Castro
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yanling Yang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Victoria Gnazzo
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carolina B López
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
23
|
Fritsch H, Giovanetti M, Clemente LG, da Rocha Fernandes G, Fonseca V, de Lima MM, Falcão M, de Jesus N, de Cerqueira EM, Venâncio da Cunha R, de Oliveira Francisco MVL, de Siqueira IC, de Oliveira C, Xavier J, Ferreira JGG, Queiroz FR, Smith E, Tisoncik-Go J, Van Voorhis WC, Rabinowitz PM, Wasserheit JN, Gale M, de Filippis AMB, Alcantara LCJ. Unraveling the Complexity of Chikungunya Virus Infection Immunological and Genetic Insights in Acute and Chronic Patients. Genes (Basel) 2024; 15:1365. [PMID: 39596565 PMCID: PMC11593632 DOI: 10.3390/genes15111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The chikungunya virus (CHIKV), transmitted by infected Aedes mosquitoes, has caused a significant number of infections worldwide. In Brazil, the emergence of the CHIKV-ECSA genotype in 2014 posed a major public health challenge due to its association with more severe symptoms. Objectives/Methods: This study aimed to shed new light on the host immune response by examining the whole-blood transcriptomic profile of both CHIKV-acute and chronically infected individuals from Feira de Santana, Bahia, Brazil, a region heavily affected by CHIKV, Dengue, and Zika virus epidemics. Results: Our data reveal complex symptomatology characterized by arthralgia and post-chikungunya neuropathy in individuals with chronic sequelae, particularly affecting women living in socially vulnerable situations. Analysis of gene modules suggests heightened metabolic processes, represented by an increase in NADH, COX5A, COA3, CYC1, and cap methylation in patients with acute disease. In contrast, individuals with chronic manifestations exhibit a distinct pattern of histone methylation, probably mediated by NCOA3 in the coactivation of different nuclear receptors, KMT2 genes, KDM3B and TET2, and with alterations in the immunological response, majorly led by IL-17RA, IL-6R, and STAT3 Th17 genes. Conclusion: Our results emphasize the complexity of CHIKV disease progression, demonstrating the heterogeneous gene expression and symptomatologic scenario across both acute and chronic phases. Moreover, the identification of specific gene modules associated with viral pathogenesis provides critical insights into the molecular mechanisms underlying these distinct clinical manifestations.
Collapse
Affiliation(s)
- Hegger Fritsch
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (H.F.); (J.X.)
- Institut National de la Santé et de la Recherche Médicale, U1259—MAVIVHe, Université de Tours, 37032 Tours, France
| | - Marta Giovanetti
- Department of Science and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| | - Luan Gaspar Clemente
- Escola Superior de Agricultura Luiz de Queiroz, Departamento de Zootecnia, Universidade de São Paulo, Piracicaba 13418-900, Brazil;
| | | | - Vagner Fonseca
- Departamento de Ciências Exatas e da Terra, Universidade Estadual da Bahia, Salvador 41150-000, Brazil;
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Maricelia Maia de Lima
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Brazil; (M.M.d.L.); (E.M.d.C.)
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Melissa Falcão
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Neuza de Jesus
- Secretaria de Municipal de Saúde de Feira de Santana, Divisão de Vigilância Epidemiológica, Feira de Santana 44027-010, Brazil; (M.F.); (N.d.J.)
| | - Erenilde Marques de Cerqueira
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Brazil; (M.M.d.L.); (E.M.d.C.)
| | | | | | | | - Carla de Oliveira
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Joilson Xavier
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (H.F.); (J.X.)
| | - Jorge Gomes Goulart Ferreira
- Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (J.G.G.F.); (F.R.Q.)
| | - Fábio Ribeiro Queiroz
- Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (J.G.G.F.); (F.R.Q.)
| | - Elise Smith
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | | | - Peter M. Rabinowitz
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | | | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA 98109, USA; (E.S.); (J.T.-G.); (M.G.J.)
| | - Ana Maria Bispo de Filippis
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Luiz Carlos Junior Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil;
- Climate Amplified Diseases and Epidemics (CLIMADE)—CLIMADE Americas, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
24
|
Lozano-Parra A, Herrera V, Calderón C, Badillo R, Gélvez Ramírez RM, Estupiñán Cárdenas MI, Lozano Jiménez JF, Villar LÁ, Rojas Garrido EM. Chronic Rheumatologic Disease in Chikungunya Virus Fever: Results from a Cohort Study Conducted in Piedecuesta, Colombia. Trop Med Infect Dis 2024; 9:247. [PMID: 39453274 PMCID: PMC11511048 DOI: 10.3390/tropicalmed9100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
This study aimed to determine the incidence of post-chikungunya chronic rheumatism (pCHIK-CR) and its impact on quality of life (QoL) and chronic fatigue in adults seven years after the 2014-2015 CHIKV outbreak in Piedecuesta, Colombia. We evaluated 78 adults (median age: 30 years, IQR: 21.0; women 60.3%) with confirmed CHIKV infection. In 2022, participants underwent a GALS examination and completed surveys on disability, stiffness, health status, and fatigue. A rheumatologist evaluated patients who reported arthralgia, morning stiffness, and abnormal GALS examination. Chronic fatigue was defined as fatigue persisting for over six months. Seven years after infection, 14.1% of participants were classified as pCHIK-CR cases, 41.0% as having non-inflammatory pain, likely degenerative (NIP-LD), and 44.9% without rheumatic disease (Wo-RM). Patients with pCHIK-CR and NIP-LD exhibited significantly worse QoL compared to Wo-RM cases. Chronic fatigue prevalence increased from 8.6% in Wo-RM patients to 25.0% in NIP-LD and 54.6% in pCHIK-CR cases. This study implemented a comprehensive clinical assessment to objectively estimate and characterize the incidence of chronic rheumatological disease attributed to CHIKV infection. One in seven cases with CHIKV infection develops pCHIK-CR, which impacts both QoL and chronic fatigue. This study contributes to understanding the burden of these arboviruses in the medium term.
Collapse
Affiliation(s)
- Anyela Lozano-Parra
- Grupo Epidemiología Clínica, Escuela de Medicina, Universidad Industrial de Santander UIS, Calle 9 Carrera 27, Bucaramanga 680002, Colombia; (A.L.-P.); (V.H.)
| | - Víctor Herrera
- Grupo Epidemiología Clínica, Escuela de Medicina, Universidad Industrial de Santander UIS, Calle 9 Carrera 27, Bucaramanga 680002, Colombia; (A.L.-P.); (V.H.)
| | - Carlos Calderón
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| | - Reynaldo Badillo
- Departamento Medicina Interna, Universidad de Santander-UDES, Calle 35 # 10-43, Bucaramanga 680006, Colombia;
| | - Rosa Margarita Gélvez Ramírez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| | - María Isabel Estupiñán Cárdenas
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| | - José Fernando Lozano Jiménez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| | - Luis Ángel Villar
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| | - Elsa Marina Rojas Garrido
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI), Fundación INFOVIDA, Cra. 37 No. 51-126, Bucaramanga 680003, Colombia; (C.C.); (R.M.G.R.); (M.I.E.C.); (J.F.L.J.); (L.Á.V.)
| |
Collapse
|
25
|
Hameed M, Daamen AR, Hossain MS, Coutermarsh-Ott S, Lipsky PE, Weger-Lucarelli J. Obesity-Associated Changes in Immune Cell Dynamics During Alphavirus Infection Revealed by Single Cell Transcriptomic Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617696. [PMID: 39416014 PMCID: PMC11482886 DOI: 10.1101/2024.10.10.617696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Obesity induces diverse changes in host immunity, resulting in worse disease outcomes following infection with various pathogens, including arthritogenic alphaviruses. However, the impact of obesity on the functional landscape of immune cells during arthritogenic alphavirus infection remains unexplored. Here, we used single-cell RNA sequencing (scRNA-seq) to dissect the blood and tissue immune responses to Mayaro virus (MAYV) infection in lean and obese mice. Footpad injection of MAYV caused significant shifts in immune cell populations and induced robust expression of interferon response and proinflammatory cytokine genes and related pathways in both blood and tissue. In MAYV-infected lean mice, analysis of the local tissue response revealed a unique macrophage subset with high expression of IFN response genes that was not found in obese mice. This was associated with less severe inflammation in lean mice. These results provide evidence for a unique macrophage population that may contribute to the superior capacity of lean mice to control arthritogenic alphavirus infection.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Pathology & Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Md Shakhawat Hossain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
26
|
Mahendradas P, Patil A, Kawali A, Rathinam SR. Systemic and Ophthalmic Manifestations of Chikungunya Fever. Ocul Immunol Inflamm 2024; 32:1796-1803. [PMID: 37773977 DOI: 10.1080/09273948.2023.2260464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE Chikungunya is a re-emerging viral infection across the globe. The purpose of this article is to review the systemic and ophthalmic manifestations associated with chikungunya fever. METHOD A review of literature was conducted using online databases. RESULTS In this report, we have reviewed the presently available literature on uveitis caused by chikungunya and highlighted the current knowledge of its clinical manifestations, imaging features, laboratory diagnostics, and the available therapeutic modalities from the systemic and ophthalmic standpoint. CONCLUSIONS Ocular involvement in chikungunya infection may occur at the time of systemic manifestations or it may occur as a delayed presentation many weeks after the fever. Treatment relies on a supportive therapy for systemic illness. Treatment of ocular manifestation depends on the type of manifestations and usually includes a combination of topical and oral steroids.
Collapse
Affiliation(s)
| | - Aditya Patil
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, India
| | - Ankush Kawali
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, India
| | | |
Collapse
|
27
|
Yao Z, Ramachandran S, Huang S, Kim E, Jami-Alahmadi Y, Kaushal P, Bouhaddou M, Wohlschlegel JA, Li MM. Interaction of chikungunya virus glycoproteins with macrophage factors controls virion production. EMBO J 2024; 43:4625-4655. [PMID: 39261662 PMCID: PMC11480453 DOI: 10.1038/s44318-024-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024] Open
Abstract
Despite their role as innate sentinels, macrophages can serve as cellular reservoirs of chikungunya virus (CHIKV), a highly-pathogenic arthropod-borne alphavirus that has caused large outbreaks among human populations. Here, with the use of viral chimeras and evolutionary selection analysis, we define CHIKV glycoproteins E1 and E2 as critical for virion production in THP-1 derived human macrophages. Through proteomic analysis and functional validation, we further identify signal peptidase complex subunit 3 (SPCS3) and eukaryotic translation initiation factor 3 subunit K (eIF3k) as E1-binding host proteins with anti-CHIKV activities. We find that E1 residue V220, which has undergone positive selection, is indispensable for CHIKV production in macrophages, as its mutation attenuates E1 interaction with the host restriction factors SPCS3 and eIF3k. Finally, we show that the antiviral activity of eIF3k is translation-independent, and that CHIKV infection promotes eIF3k translocation from the nucleus to the cytoplasm, where it associates with SPCS3. These functions of CHIKV glycoproteins late in the viral life cycle provide a new example of an intracellular evolutionary arms race with host restriction factors, as well as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zhenlan Yao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sangeetha Ramachandran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erin Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Prashant Kaushal
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melody Mh Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Urbanski AH, Maso VE, Martins FM, da Costa-Martins AG, do Nascimento Oliveira APB, Nakaya HI. Chikungunya-Driven Gene Expression Linked to Osteoclast Survival and Chronic Arthralgia. Infect Dis Rep 2024; 16:914-922. [PMID: 39311214 PMCID: PMC11417755 DOI: 10.3390/idr16050073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Chikungunya fever (CHIKF), caused by the Chikungunya virus (CHIKV), manifests as acute febrile illness often associated with polyarthritis and polyarthralgia. Although the acute symptoms resolve within two weeks, many patients experience prolonged joint pain and inflammation, resembling rheumatoid arthritis (RA). This study aimed to identify molecular markers related to joint pain and chronicity in CHIKV-infected individuals by analyzing blood transcriptomes using bulk RNA sequencing. B- and T-cell receptor (BCR and TCR) diversity was assessed through computational analysis of RNA-seq data, revealing a significant reduction in CDR3 diversity in CHIKV-infected individuals compared to healthy controls. This reduced diversity was associated with the upregulation of genes involved in osteoclast differentiation and activation, particularly through the RANK/RANKL signaling pathway. These findings suggest a potential link between immune dysregulation and enhanced osteoclast activity, which may contribute to the persistence of joint pain in chronic CHIKF. Targeting osteoclast-related pathways could offer therapeutic strategies for managing chronic symptoms in CHIKF patients.
Collapse
Affiliation(s)
- Alysson Henrique Urbanski
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-020, Brazil (V.E.M.); (F.M.M.); (A.G.d.C.-M.); (A.P.B.d.N.O.)
| | - Vanessa E. Maso
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-020, Brazil (V.E.M.); (F.M.M.); (A.G.d.C.-M.); (A.P.B.d.N.O.)
| | - Felipe M. Martins
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-020, Brazil (V.E.M.); (F.M.M.); (A.G.d.C.-M.); (A.P.B.d.N.O.)
| | - André Guilherme da Costa-Martins
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-020, Brazil (V.E.M.); (F.M.M.); (A.G.d.C.-M.); (A.P.B.d.N.O.)
- Micromanufacturing Laboratory, Institute for Technological Research—IPT, São Paulo 05508-901, Brazil
| | | | - Helder I. Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-020, Brazil (V.E.M.); (F.M.M.); (A.G.d.C.-M.); (A.P.B.d.N.O.)
- Hospital Israelita Albert Einstein, São Paulo 05653-000, Brazil
| |
Collapse
|
29
|
Brito RMDM, de Melo MF, Fernandes JV, Valverde JG, Matta Guedes PM, de Araújo JMG, Nascimento MSL. Acute Chikungunya Virus Infection Triggers a Diverse Range of T Helper Lymphocyte Profiles. Viruses 2024; 16:1387. [PMID: 39339863 PMCID: PMC11437511 DOI: 10.3390/v16091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus causing acute febrile illness with severe joint pain, often leading to chronic arthralgia. This study investigated the adaptive immune responses during the early stages of symptomatic acute CHIKV infection, focusing on the transcription factors and cytokines linked to Th1, Th2, Th17, and Treg cells. Thirty-six individuals were enrolled: nine healthy controls and 27 CHIKV-positive patients confirmed by qRT-PCR. Blood samples were analyzed for the mRNA expression of transcription factors (Tbet, GATA3, FoxP3, STAT3, RORγt) and cytokines (IFN-γ, IL-4, IL-17, IL-22, TGF-β, IL-10). The results showed the significant upregulation of Tbet, GATA3, FoxP3, STAT3, and RORγt in CHIKV-positive patients, with RORγt displaying the highest increase. Correspondingly, cytokines IFN-γ, IL-4, IL-17, and IL-22 were upregulated, while TGF-β was downregulated. Principal component analysis (PCA) confirmed the distinct immune profiles between CHIKV-positive and healthy individuals. A correlation analysis indicated that higher Tbet expression correlated with a lower viral load, whereas FoxP3 and TGF-β were associated with higher viral loads. Our study sheds light on the intricate immune responses during acute CHIKV infection, characterized by a mixed Th1, Th2, Th17, and Treg response profile. These results emphasize the complex interplay between different adaptive immune responses and how they may contribute to the pathogenesis of Chikungunya fever.
Collapse
Affiliation(s)
| | - Marília Farias de Melo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Joanna Gardel Valverde
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Josélio Maria Galvão de Araújo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
30
|
Zheng X, He Y, Xia B, Tang W, Zhang C, Wang D, Tang H, Zhao P, Peng H, Liu Y. Etravirine Prevents West Nile Virus and Chikungunya Virus Infection Both In Vitro and In Vivo by Inhibiting Viral Replication. Pharmaceutics 2024; 16:1111. [PMID: 39339151 PMCID: PMC11435157 DOI: 10.3390/pharmaceutics16091111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Diseases transmitted by arthropod-borne viruses such as West Nile virus (WNV) and chikungunya virus (CHIKV) pose threat to global public health. Unfortunately, to date, there is no available approved drug for severe symptoms caused by both viruses. It has been reported that reverse transcriptase inhibitors can effectively inhibit RNA polymerase activity of RNA viruses. We screened the anti-WNV activity of the FDA-approved reverse transcriptase inhibitor library and found that 4 out of 27 compounds showed significant antiviral activity. Among the candidates, etravirine markedly inhibited WNV infection in both Huh 7 and SH-SY5Y cells. Further assays revealed that etravirine inhibited the infection of multiple arboviruses, including yellow fever virus (YFV), tick-borne encephalitis virus (TBEV), and CHIKV. A deeper study at the phase of action showed that the drug works primarily during the viral replication process. This was supported by the strong interaction potential between etravirine and the RNA-dependent RNA polymerase (RdRp) of WNV and alphaviruses, as evaluated using molecular docking. In vivo, etravirine significantly rescued mice from WNV infection-induced weight loss, severe neurological symptoms, and death, as well as reduced the viral load and inflammatory cytokines in target tissues. Etravirine showed antiviral effects in both arthrophlogosis and lethal mouse models of CHIKV infection. This study revealed that etravirine is an effective anti-WNV and CHIKV arbovirus agent both in vitro and in vivo due to the inhibition of viral replication, providing promising candidates for clinical application.
Collapse
Affiliation(s)
- Xu Zheng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Yanhua He
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Binghui Xia
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Wanda Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Congcong Zhang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Dawei Wang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Hailin Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Haoran Peng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| | - Yangang Liu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.Z.); (Y.H.); (B.X.); (W.T.); (C.Z.); (D.W.); (H.T.); (P.Z.)
- Key Laboratory of Biological Defense, Ministry of Education, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
31
|
da Silva MOL, Figueiredo CM, Neris RLS, Guimarães-Andrade IP, Gavino-Leopoldino D, Miler-da-Silva LL, Valença HDM, Ladislau L, de Lima CVF, Coccarelli FM, Benjamim CF, Assunção-Miranda I. Chikungunya and Mayaro Viruses Induce Chronic Skeletal Muscle Atrophy Triggered by Pro-Inflammatory and Oxidative Response. Int J Mol Sci 2024; 25:8909. [PMID: 39201595 PMCID: PMC11354814 DOI: 10.3390/ijms25168909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 09/02/2024] Open
Abstract
Chikungunya (CHIKV) and Mayaro (MAYV) viruses are arthritogenic alphaviruses that promote an incapacitating and long-lasting inflammatory muscle-articular disease. Despite studies pointing out the importance of skeletal muscle (SkM) in viral pathogenesis, the long-term consequences on its physiology and the mechanism of persistence of symptoms are still poorly understood. Combining molecular, morphological, nuclear magnetic resonance imaging, and histological analysis, we conduct a temporal investigation of CHIKV and MAYV replication in a wild-type mice model, focusing on the impact on SkM composition, structure, and repair in the acute and late phases of infection. We found that viral replication and induced inflammation promote a rapid loss of muscle mass and reduction in fiber cross-sectional area by upregulation of muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1 expression, both key regulators of SkM fibers atrophy. Despite a reduction in inflammation and clearance of infectious viral particles, SkM atrophy persists until 30 days post-infection. The genomic CHIKV and MAYV RNAs were still detected in SkM in the late phase, along with the upregulation of chemokines and anti-inflammatory cytokine expression. In agreement with the involvement of inflammatory mediators on induced atrophy, the neutralization of TNF and a reduction in oxidative stress using monomethyl fumarate, an agonist of Nrf2, decreases atrogen expression and atrophic fibers while increasing weight gain in treated mice. These data indicate that arthritogenic alphavirus infection could chronically impact body SkM composition and also harm repair machinery, contributing to a better understanding of mechanisms of arthritogenic alphavirus pathogenesis and with a description of potentially new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Mariana Oliveira Lopes da Silva
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Camila Menezes Figueiredo
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Rômulo Leão Silva Neris
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Iris Paula Guimarães-Andrade
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Daniel Gavino-Leopoldino
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Leonardo Linhares Miler-da-Silva
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| | - Helber da Maia Valença
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (H.d.M.V.)
| | - Leandro Ladislau
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (H.d.M.V.)
| | - Caroline Victorino Felix de Lima
- National Center for Structural Biology and Bioimaging (CENABio), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (C.V.F.d.L.); (F.M.C.)
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro 22281-100, Brazil
| | - Fernanda Meireles Coccarelli
- National Center for Structural Biology and Bioimaging (CENABio), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (C.V.F.d.L.); (F.M.C.)
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro 22281-100, Brazil
| | - Claudia Farias Benjamim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| | - Iranaia Assunção-Miranda
- Department of Virology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.O.L.d.S.); (C.M.F.); (R.L.S.N.); (I.P.G.-A.); (D.G.-L.)
| |
Collapse
|
32
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
33
|
Ng WH, Amaral K, Javelle E, Mahalingam S. Chronic chikungunya disease (CCD): clinical insights, immunopathogenesis and therapeutic perspectives. QJM 2024; 117:489-494. [PMID: 38377410 PMCID: PMC11290245 DOI: 10.1093/qjmed/hcae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Chikungunya virus, an arthropod-borne pathogen is recognized by the World Health Organization as a top priority Emerging Infectious Disease and is ranked fourth in public health needs according to the Coalition for Epidemic Preparedness Innovations. Despite its substantial impact, as evidenced by an annual estimate of 120 274 disability-adjusted life years, our understanding of the chronic aspects of chikungunya disease remains limited. This review focuses on chronic chikungunya disease, emphasizing its clinical manifestations, immunopathogenesis, therapeutic options and disease burden.
Collapse
Affiliation(s)
- W H Ng
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - K Amaral
- Department of Health Sciences, Federal University of Cariri, Barbalha, Ceará, Brazil
| | - E Javelle
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France
- Unit of Infectious Diseases and Tropical Medicine, IHU Méditerranée Infection, Marseille, France
- Service de Pathologie Infectieuse et Tropicale, Hôpital d'Instruction des Armées Laveran, Marseille, France
| | - S Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
34
|
Silveira-Freitas JEP, Campagnolo ML, dos Santos Cortez M, de Melo FF, Zarpelon-Schutz AC, Teixeira KN. Long chikungunya? An overview to immunopathology of persistent arthralgia. World J Virol 2024; 13:89985. [PMID: 38984075 PMCID: PMC11229846 DOI: 10.5501/wjv.v13.i2.89985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 06/24/2024] Open
Abstract
Chikungunya fever (CF) is caused by an arbovirus whose manifestations are extremely diverse, and it has evolved with significant severity in recent years. The clinical signs triggered by the Chikungunya virus are similar to those of other arboviruses. Generally, fever starts abruptly and reaches high levels, followed by severe polyarthralgia and myalgia, as well as an erythematous or petechial maculopapular rash, varying in severity and extent. Around 40% to 60% of affected individuals report persistent arthralgia, which can last from months to years. The symptoms of CF mainly represent the tissue tropism of the virus rather than the immunopathogenesis triggered by the host's immune system. The main mechanisms associated with arthralgia have been linked to an increase in T helper type 17 cells and a consequent increase in receptor activator of nuclear factor kappa-Β ligand and bone resorption. This review suggests that persistent arthralgia results from the presence of viral antigens post-infection and the constant activation of signaling lymphocytic activation molecule family member 7 in synovial macrophages, leading to local infiltration of CD4+ T cells, which sustains the inflammatory process in the joints through the secretion of pro-inflammatory cytokines. The term "long chikungunya" was used in this review to refer to persistent arthralgia since, due to its manifestation over long periods after the end of the viral infection, this clinical condition seems to be characterized more as a sequel than as a symptom, given that there is no active infection involved.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa de Pós-graduação em Biotecnologia, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| |
Collapse
|
35
|
Rozmyslowicz T, Arévalo-Romero H, Conover DO, Fuentes-Pananá EM, León-Juárez M, Gaulton GN. A Highly Sensitive Molecular Technique for RNA Virus Detection. Cells 2024; 13:804. [PMID: 38786028 PMCID: PMC11120490 DOI: 10.3390/cells13100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Zika (ZIKV) and Chikungunya (CHIKV) viruses are mosquito-transmitted infections, or vector-borne pathogens, that emerged a few years ago. Reliable diagnostic tools for ZIKV and CHIKV-inexpensive, multiplexed, rapid, highly sensitive, and specific point-of-care (POC) systems-are vital for appropriate risk management and therapy. We recently studied a detection system with great success in Mexico (Villahermosa, state of Tabasco), working with human sera from patients infected with those viruses. The research conducted in Mexico validated the efficacy of a novel two-step rapid isothermal amplification technique (RAMP). This approach, which encompasses recombinase polymerase amplification (RPA) followed by loop-mediated isothermal amplification (LAMP), had been previously established in the lab using lab-derived Zika (ZIKV) and Chikungunya (CHIKV) viruses. Crucially, our findings confirmed that this technique is also effective when applied to human sera samples collected from locally infected individuals in Mexico.
Collapse
Affiliation(s)
- Tomasz Rozmyslowicz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.O.C.); (G.N.G.)
| | - Haruki Arévalo-Romero
- Laboratorio de Inmunología y Microbiología Molecular, División Académica Multidisciplinaria de Jalpa de Méndez, Departamento de Genómica, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Mexico;
| | - Dareus O. Conover
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.O.C.); (G.N.G.)
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Moisés León-Juárez
- Laboratorio de Virología Perinatal, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 06720, Mexico;
| | - Glen N. Gaulton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.O.C.); (G.N.G.)
| |
Collapse
|
36
|
Marques RE, Shimizu JF, Nogueira ML, Vasilakis N. Current challenges in the discovery of treatments against Mayaro fever. Expert Opin Ther Targets 2024; 28:345-356. [PMID: 38714500 PMCID: PMC11189740 DOI: 10.1080/14728222.2024.2351504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/01/2024] [Indexed: 05/10/2024]
Abstract
INTRODUCTION Mayaro fever is an emerging viral disease that manifests as an acute febrile illness. The disease is self-limiting, however joint pain can persist for months leading to chronic arthralgia. There is no specific treatment available, which ultimately leads to socioeconomic losses in populations at risk as well as strains to the public health systems. AREAS COVERED We reviewed the candidate treatments proposed for Mayaro virus (MAYV) infection and disease, including antiviral compounds targeting viral or host mechanisms, and pathways involved in disease development and pathogenicity. We assessed compound screening technologies and experimental infection models used in these studies and indicated the advantages and limitations of available technologies and intended therapeutic strategies. EXPERT OPINION Although several compounds have been suggested as candidate treatments against MAYV infection, notably those with antiviral activity, most compounds were assessed only in vitro. Compounds rarely progress toin vivo or preclinical studies, and such difficulty may be associated with limited experimental models. MAYV biology is largely inferred from related alphaviruses and reflected by few studies focusing on target proteins or mechanisms of action for MAYV. Therapeutic strategies targeting pathogenic inflammatory responses have shown potential against MAYV-induced disease in vivo, which might reduce long-term sequelae.
Collapse
Affiliation(s)
- Rafael Elias Marques
- Brazilian Biosciences National Laboratory – LNBio, Brazilian Center for Research in Energy and Materials – CNPEM, Campinas, São Paulo, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory – LNBio, Brazilian Center for Research in Energy and Materials – CNPEM, Campinas, São Paulo, Brazil
| | - Maurício Lacerda Nogueira
- Faculdade de Medicina de São Jose do Rio Preto - FAMERP, São Jose do Rio Preto, São Paulo, Brazil
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Nikos Vasilakis
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
37
|
Lum FM, Chan YH, Teo TH, Becht E, Amrun SN, Teng KW, Hartimath SV, Yeo NK, Yee WX, Ang N, Torres-Ruesta AM, Fong SW, Goggi JL, Newell EW, Renia L, Carissimo G, Ng LF. Crosstalk between CD64 +MHCII + macrophages and CD4 + T cells drives joint pathology during chikungunya. EMBO Mol Med 2024; 16:641-663. [PMID: 38332201 PMCID: PMC10940729 DOI: 10.1038/s44321-024-00028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Communications between immune cells are essential to ensure appropriate coordination of their activities. Here, we observed the infiltration of activated macrophages into the joint-footpads of chikungunya virus (CHIKV)-infected animals. Large numbers of CD64+MHCII+ and CD64+MHCII- macrophages were present in the joint-footpad, preceded by the recruitment of their CD11b+Ly6C+ inflammatory monocyte precursors. Recruitment and differentiation of these myeloid subsets were dependent on CD4+ T cells and GM-CSF. Transcriptomic and gene ontology analyses of CD64+MHCII+ and CD64+MHCII- macrophages revealed 89 differentially expressed genes, including genes involved in T cell proliferation and differentiation pathways. Depletion of phagocytes, including CD64+MHCII+ macrophages, from CHIKV-infected mice reduced disease pathology, demonstrating that these cells play a pro-inflammatory role in CHIKV infection. Together, these results highlight the synergistic dynamics of immune cell crosstalk in driving CHIKV immunopathogenesis. This study provides new insights in the disease mechanism and offers opportunities for development of novel anti-CHIKV therapeutics.
Collapse
Affiliation(s)
- Fok-Moon Lum
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
| | - Yi-Hao Chan
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Teck-Hui Teo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Etienne Becht
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Siti Naqiah Amrun
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Karen Ww Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siddesh V Hartimath
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Kw Yeo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Wearn-Xin Yee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Anthony M Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Julian L Goggi
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research, Singapore, 138648, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillaume Carissimo
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Lisa Fp Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research, Singapore, 138648, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
38
|
Sagar R, Raghavendhar S, Jain V, Khan N, Chandele A, Patel AK, Kaja M, Ray P, Kapoor N. Viremia and clinical manifestations in acute febrile patients of Chikungunya infection during the 2016 CHIKV outbreak in Delhi, India. INFECTIOUS MEDICINE 2024; 3:100088. [PMID: 38444748 PMCID: PMC10914418 DOI: 10.1016/j.imj.2024.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Background Chikungunya virus (CHIKV) is an infectious agent that caused several outbreaks among different countries and affected approximately 1.3 million Indian populations. It is transmitted by Aedes mosquito-either A. albopictus or A. aegypti. Generally, the clinical manifestations of CHIKV infection involve high-grade fever, joint pain, skin rashes, headache, and myalgia. The present study aims to investigate the relationship between the CHIKV virus load and clinical symptoms of the CHIKV infection so that better patient management can be done in the background of the CHIKV outbreak as there is no licensed anti-viral drug and approved vaccines available against CHIKV. Methods CHIKV RTPCR positive samples (n = 18) (Acute febrile patients having D.O.F ≤ 7 days) were taken for the quantification of CHIKV viremia by Real-Time PCR. Clinical features of the febrile patients were recorded during the collection of blood samples. Results The log mean virus load of 18 RT-PCR-positive samples was 1.3 × 106 copies/mL (1.21 × 103-2.33 × 108 copies/mL). Among the observed clinical features, the log mean virus load (CHIKV) of the patients without skin rash is higher than in the patients with skin rash (6.61 vs 5.5, P = 0.0435). Conclusion The conclusion of the study was that the patients with skin rashes had lower viral load and those without skin rashes had higher viral load.
Collapse
Affiliation(s)
- Rohit Sagar
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
- Department of Life Sciences, School of Sciences, IGNOU, New Delhi 110068, India
| | - Siva Raghavendhar
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India
| | - Vineet Jain
- HAH Centenary Hospital, Jamia Hamdard, New Delhi 110062, India
| | - Naushad Khan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, ICGEB, New Delhi 110067, India
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India
| | - Murali Kaja
- ICGEB-Emory Vaccine Center, ICGEB, New Delhi 110067, India
- Department of Pediatrics, Emory University School of Medicine, 30322 Atlanta, GA, USA
| | - Pratima Ray
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Neera Kapoor
- Department of Life Sciences, School of Sciences, IGNOU, New Delhi 110068, India
| |
Collapse
|
39
|
Jacob-Nascimento LC, Portilho MM, Anjos RO, Moreira PSS, Stauber C, Weaver SC, Kitron U, Reis MG, Ribeiro GS. Detection of Chikungunya Virus RNA in Oral Fluid and Urine: An Alternative Approach to Diagnosis? Viruses 2024; 16:235. [PMID: 38400011 PMCID: PMC10891727 DOI: 10.3390/v16020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
To evaluate whether oral fluids (OF) and urine can serve as alternative, non-invasive samples to diagnose chikungunya virus (CHIKV) infection via RT-qPCR, we employed the same RNA extraction and RT-qPCR protocols on paired serum, OF and urine samples collected from 51 patients with chikungunya during the acute phase of the illness. Chikungunya patients were confirmed through RT-qPCR in acute-phase sera (N = 19), IgM seroconversion between acute- and convalescent-phase sera (N = 12), or IgM detection in acute-phase sera (N = 20). The controls included paired serum, OF and urine samples from patients with non-arbovirus acute febrile illness (N = 28) and RT-PCR-confirmed dengue (N = 16). Nine (47%) of the patients with positive RT-qPCR for CHIKV in sera and two (17%) of those with CHIKV infection confirmed solely via IgM seroconversion had OF positive for CHIKV in RT-qPCR. One (5%) patient with CHIKV infection confirmed via serum RT-qPCR was positive in the RT-qPCR performed on urine. None of the negative control group samples were positive. Although OF may serve as an alternative sample for diagnosing acute chikungunya in specific settings, a negative result cannot rule out an infection. Further research is needed to investigate whether OF and urine collected later in the disease course when serum becomes RT-qPCR-negative may be helpful in CHIKV diagnosis and surveillance, as well as to determine whether urine and OF pose any risk of CHIKV transmission.
Collapse
Affiliation(s)
- Leile Camila Jacob-Nascimento
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (L.C.J.-N.); (M.M.P.); (R.O.A.); (P.S.S.M.); (M.G.R.)
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador 40026-010, Brazil
| | - Moyra M. Portilho
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (L.C.J.-N.); (M.M.P.); (R.O.A.); (P.S.S.M.); (M.G.R.)
| | - Rosângela O. Anjos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (L.C.J.-N.); (M.M.P.); (R.O.A.); (P.S.S.M.); (M.G.R.)
| | - Patrícia S. S. Moreira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (L.C.J.-N.); (M.M.P.); (R.O.A.); (P.S.S.M.); (M.G.R.)
| | - Christine Stauber
- School of Public Health, Georgia State University, Atlanta, GA 30303, USA;
| | - Scott C. Weaver
- Department of Microbiology & Immunology and World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA;
| | - Mitermayer G. Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (L.C.J.-N.); (M.M.P.); (R.O.A.); (P.S.S.M.); (M.G.R.)
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador 40026-010, Brazil
- Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
| | - Guilherme S. Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (L.C.J.-N.); (M.M.P.); (R.O.A.); (P.S.S.M.); (M.G.R.)
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador 40026-010, Brazil
| |
Collapse
|
40
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BA, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. JCI Insight 2024; 9:e176537. [PMID: 38194268 PMCID: PMC11143926 DOI: 10.1172/jci.insight.176537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we found that, during the first 24 hours of infection, CHIKV RNA accumulated in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response - including recruitment of myeloid cells to the LN - was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
Affiliation(s)
- Cormac J. Lucas
- Department of Immunology & Microbiology and
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryan M. Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Glennys V. Reynoso
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | | | | | - Aspen Martin
- Department of Biochemistry & Molecular Genetics and
| | - Jay R. Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry & Molecular Genetics and
| | - Heather D. Hickman
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | - Beth A.J. Tamburini
- Department of Immunology & Microbiology and
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
41
|
Amaral JK, Lucena G, Schoen RT. Chikungunya Arthritis Treatment with Methotrexate and Dexamethasone: A Randomized, Double-blind, Placebo-controlled Trial. Curr Rheumatol Rev 2024; 20:337-346. [PMID: 38173199 DOI: 10.2174/0115733971278715231208114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Chikungunya fever is a reemerging epidemic disease caused by a single-stranded RNA alphavirus transmitted throughout by Aedes mosquitoes. Chikungunya virus infection is a biphasic disease in which 72% to 95% of affected individuals manifest acute chikungunya fever. Following the acute phase, more than 40% of affected individuals develop arthritis, often lasting more than 3 months, referred to as chronic chikungunya arthritis, which frequently mimics rheumatoid arthritis. OBJECTIVE This study aimed to evaluate the efficacy and safety of treatment of chronic chikungunya arthritis with methotrexate and dexamethasone in a randomized, double-blind, placebo-controlled clinical trial. METHODS The patients were reassessed for treatment response by the DAS28-ESR, tender joint count and swollen joint count, Patient Global Assessment, and for secondary measures, including the Health Assessment Questionnaire Disability Index and Pain Visual Analog Scale. RESULTS Thirty-one subjects were randomized (placebo, n = 16; methotrexate, n = 15); 27 completed treatment and 4 discontinued during the 8-week blinded period. Among the participants, 96.8% were female, with mean ± SD age was 52.9 ± 13. The mean ± SD disease duration prior to treatment was 220.9 ± 51.2 days. At 8 weeks, methotrexate-treated subjects showed a greater numerical trend towards improvement, but there were no significant differences between methotrexate- dexamethasone group and dexamethasone (placebo) group. CONCLUSION In this relatively small cohort, all of whom received background dexamethasone, there was a greater numerical improvement trend in prespecified outcome measures, but methotrexate in combination with dexamethasone was not superior to dexamethasone in chronic chikungunya arthritis.
Collapse
Affiliation(s)
- José Kennedy Amaral
- Department of Rheumatology, Institute of Diagnostic Medicine of Cariri, Juazeiro do Norte, Ceará, Brazil
| | | | - Robert Taylor Schoen
- Section of Rheumatology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
42
|
Martins EB, Quintana MSB, Silva MFB, de Bruycker-Nogueira F, Moraes ICV, Rodrigues CDS, Santos CC, Sampaio SA, Pina-Costa A, Fabri AA, Guerra-Campos V, Faria NRC, Filippis AMB, Brasil P, Calvet GA. Predictors of chronic joint pain after Chikungunya virus infection in the INOVACHIK prospective cohort study. J Clin Virol 2023; 169:105610. [PMID: 37837869 DOI: 10.1016/j.jcv.2023.105610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Chikungunya can cause persistent chronic joint pain. Knowledge of the risk factors for disease progression is important for preventing and controlling complications. This study aimed to identify factors associated with chronic joint pain. METHODS This prospective cohort study was conducted at a reference center in Rio de Janeiro. Men and women (aged ≥ 18 years) in the acute phase of Chikungunya were included. Clinical data and samples were collected over three months. Risk factors were evaluated using multivariate and logistic regression analyses. RESULTS A total of 107 patients were followed up. The incidence rate of joint tenderness was 61.7 %. Female sex (adjusted odds ratio [AOR] 3.24, 95 % confidence interval [CI]:1.07-9.77), diarrhea (AOR 5.08, 95 % CI:1.55-16.67), severe joint pain (AOR 4.26, 95 % CI:1.06-17.06), and CHIKV real-time reverse transcription polymerase chain reaction positivity up to 5 days after the onset of symptoms in urine or saliva (AOR 4.56, 95 % CI:1.41-14.77) were identified as predictors of persistent chronic pain. CONCLUSIONS In a predominantly female population, musculoskeletal symptoms are not the sole determinant of chronic pain, and careful evaluation of CHIKV detection in alternative body fluids (such as saliva and urine) during the early phase of the disease is warranted.
Collapse
Affiliation(s)
- Ezequias B Martins
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro 21045-900, Brazil.
| | - Marcel S B Quintana
- Clinical Research Platform, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michele F B Silva
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro 21045-900, Brazil
| | | | - Isabella C V Moraes
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro 21045-900, Brazil
| | - Cintia D S Rodrigues
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina C Santos
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone A Sampaio
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anielle Pina-Costa
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro 21045-900, Brazil
| | - Allison A Fabri
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Guerra-Campos
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nieli R C Faria
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria B Filippis
- Flavivirus Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Brasil
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro 21045-900, Brazil
| | - Guilherme A Calvet
- Acute Febrile Illnesses Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro 21045-900, Brazil
| |
Collapse
|
43
|
Castro ÍA, Yang Y, Gnazzo V, Kim DH, Van Dyken SJ, López CB. Murine Parainfluenza Virus Persists in Lung Innate Immune Cells Sustaining Chronic Lung Pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566103. [PMID: 37986974 PMCID: PMC10659393 DOI: 10.1101/2023.11.07.566103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Respiratory viruses including the human parainfluenza viruses (hPIVs) are a constant burden to human health, with morbidity and mortality frequently increased after the acute phase of the infection. Although is proven that respiratory viruses can persist in vitro, the mechanisms of virus or viral products persistence, their sources, and their impact on chronic respiratory diseases in vivo are unknown. Here, we used Sendai virus (SeV) to model hPIV infection in mice and test whether virus persistence associates with the development of chronic lung disease. Following SeV infection, virus products were detected in lung macrophages, type 2 innate lymphoid cells (ILC2s) and dendritic cells for several weeks after the infectious virus was cleared. Cells containing viral protein showed strong upregulation of antiviral and type 2 inflammation-related genes that associate with the development of chronic post-viral lung diseases, including asthma. Lineage tracing of infected cells or cells derived from infected cells suggests that distinct functional groups of cells contribute to the chronic pathology. Importantly, targeted ablation of infected cells or those derived from infected cells significantly ameliorated chronic lung disease. Overall, we identified persistent infection of innate immune cells as a critical factor in the progression from acute to chronic post viral respiratory disease.
Collapse
Affiliation(s)
- Ítalo Araujo Castro
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Yanling Yang
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Victoria Gnazzo
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Do-Hyun Kim
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Steven J Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Carolina B López
- Department of Molecular Microbiology and Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
44
|
Payet M, Septembre-Malaterre A, Gasque P, Guillot X. Human Synovial Mesenchymal Stem Cells Expressed Immunoregulatory Factors IDO and TSG6 in a Context of Arthritis Mediated by Alphaviruses. Int J Mol Sci 2023; 24:15932. [PMID: 37958918 PMCID: PMC10649115 DOI: 10.3390/ijms242115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Infection by arthritogenic alphaviruses (aavs) can lead to reactive arthritis, which is characterized by inflammation and persistence of the virus; however, its mechanisms remain ill-characterized. Intriguingly, it has been shown that viral persistence still takes place in spite of robust innate and adaptive immune responses, characterized notably by the infiltration of macrophages (sources of TNF-alpha) as well as T/NK cells (sources of IFN-gamma) in the infected joint. Aavs are known to target mesenchymal stem cells (MSCs) in the synovium, and we herein tested the hypothesis that the infection of MSCs may promote the expression of immunoregulators to skew the anti-viral cellular immune responses. We compared the regulated expression via human synovial MSCs of pro-inflammatory mediators (e.g., IL-1β, IL6, CCL2, miR-221-3p) to that of immunoregulators (e.g., IDO, TSG6, GAS6, miR146a-5p). We used human synovial tissue-derived MSCs which were infected with O'Nyong-Nyong alphavirus (ONNV, class II aav) alone, or combined with recombinant human TNF-α or IFN-γ, to mimic the clinical settings. We confirmed via qPCR and immunofluorescence that ONNV infected human synovial tissue-derived MSCs. Interestingly, ONNV alone did not regulate the expression of pro-inflammatory mediators. In contrast, IDO, TSG6, and GAS6 mRNA expression were increased in response to ONNV infection alone, but particularly when combined with both recombinant cytokines. ONNV infection equally decreased miR-146a-5p and miR-221-3p in the untreated cells and abrogated the stimulatory activity of the recombinant TNF-α but not the IFN-gamma. Our study argues for a major immunoregulatory phenotype of MSCs infected with ONNV which may favor virus persistence in the inflamed joint.
Collapse
Affiliation(s)
- Melissa Payet
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
| | - Axelle Septembre-Malaterre
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
| | - Philippe Gasque
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
- Immunology Laboratory (LICE-OI), CHU Bellepierre, Reunion University Hospital, 97400 Saint-Denis, La Réunion, France
| | - Xavier Guillot
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
- Rheumatology Clinical Department, CHU Bellepierre, Reunion University Hospital, 97400 Saint-Denis, La Réunion, France
| |
Collapse
|
45
|
Weber WC, Labriola CS, Kreklywich CN, Ray K, Haese NN, Andoh TF, Denton M, Medica S, Streblow MM, Smith PP, Mizuno N, Frias N, Fisher MB, Barber-Axthelm AM, Chun K, Uttke S, Whitcomb D, DeFilippis V, Rakshe S, Fei SS, Axthelm MK, Smedley JV, Streblow DN. Mayaro virus pathogenesis and immunity in rhesus macaques. PLoS Negl Trop Dis 2023; 17:e0011742. [PMID: 37983245 PMCID: PMC10695392 DOI: 10.1371/journal.pntd.0011742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/04/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes debilitating and persistent arthritogenic disease. While MAYV was previously reported to infect non-human primates (NHP), characterization of MAYV pathogenesis is currently lacking. Therefore, in this study we characterized MAYV infection and immunity in rhesus macaques. To inform the selection of a viral strain for NHP experiments, we evaluated five MAYV strains in C57BL/6 mice and showed that MAYV strain BeAr505411 induced robust tissue dissemination and disease. Three male rhesus macaques were subcutaneously challenged with 105 plaque-forming units of this strain into the arms. Peak plasma viremia occurred at 2 days post-infection (dpi). NHPs were taken to necropsy at 10 dpi to assess viral dissemination, which included the muscles and joints, lymphoid tissues, major organs, male reproductive tissues, as well as peripheral and central nervous system tissues. Histological examination demonstrated that MAYV infection was associated with appendicular joint and muscle inflammation as well as presence of perivascular inflammation in a wide variety of tissues. One animal developed a maculopapular rash and two NHP had viral RNA detected in upper torso skin samples, which was associated with the presence of perivascular and perifollicular lymphocytic aggregation. Analysis of longitudinal peripheral blood samples indicated a robust innate and adaptive immune activation, including the presence of anti-MAYV neutralizing antibodies with activity against related Una virus and chikungunya virus. Inflammatory cytokines and monocyte activation also peaked coincident with viremia, which was well supported by our transcriptomic analysis highlighting enrichment of interferon signaling and other antiviral processes at 2 days post MAYV infection. The rhesus macaque model of MAYV infection recapitulates many of the aspects of human infection and is poised to facilitate the evaluation of novel therapies and vaccines targeting this re-emerging virus.
Collapse
Affiliation(s)
- Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Karina Ray
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Takeshi F. Andoh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Magdalene M. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Patricia P. Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nobuyo Mizuno
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nina Frias
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Miranda B. Fisher
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Aaron M. Barber-Axthelm
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Kimberly Chun
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Samantha Uttke
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Danika Whitcomb
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Shauna Rakshe
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Suzanne S. Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|
46
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BAJ, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561615. [PMID: 37873393 PMCID: PMC10592756 DOI: 10.1101/2023.10.12.561615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we find that during the first 24 h of infection, CHIKV RNA accumulates in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response, including recruitment of myeloid cells to the LN, was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, we find that antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
|
47
|
Schmitz KS, Comvalius AD, Nieuwkoop NJ, Geers D, Weiskopf D, Ramsauer K, Sette A, Tschismarov R, de Vries RD, de Swart RL. A measles virus-based vaccine induces robust chikungunya virus-specific CD4 + T-cell responses in a phase II clinical trial. Vaccine 2023; 41:6495-6504. [PMID: 37726181 DOI: 10.1016/j.vaccine.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that causes a debilitating disease characterized by fever and long-lasting polyarthralgia. To date, no vaccine has been licensed, but multiple vaccine candidates are under evaluation in clinical trials. One of these vaccines is based on a measles virus vector encoding for the CHIKV structural genes C, E3, E2, 6K, and E1 (MV-CHIK), which proved safe in phase I and II clinical trials and elicited CHIKV-specific antibody responses in adult measles seropositive vaccine recipients. Here, we predicted T-cell epitopes in the CHIKV structural genes and investigated whether MV-CHIK vaccination induced CHIKV-specific CD4+ and/or CD8+ T-cell responses. Immune-dominant regions containing multiple epitopes in silico predicted to bind to HLA class II molecules were found for four of the five structural proteins, while no such regions were predicted for HLA class I. Experimentally, CHIKV-specific CD4+ T-cells were detected in six out of twelve participants after a single MV-CHIK vaccination and more robust responses were found 4 weeks after two vaccinations (ten out of twelve participants). T-cells were mainly directed against the three large structural proteins C, E2 and E1. Next, we sorted and expanded CHIKV-specific T cell clones (TCC) and identified human CHIKV T-cell epitopes by deconvolution. Interestingly, eight out of nine CD4+ TCC recognized an epitope in accordance with the in silico prediction. CHIKV-specific CD8+ T-cells induced by MV-CHIK vaccination were inconsistently detected. Our data show that the MV-CHIK vector vaccine induced a functional transgene-specific CD4+ T cell response which, together with the evidence of neutralizing antibodies as correlate of protection for CHIKV, makes MV-CHIK a promising vaccine candidate in the prevention of chikungunya.
Collapse
Affiliation(s)
| | | | | | - Daryl Geers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Daniela Weiskopf
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Katrin Ramsauer
- Themis Bioscience GmbH, Vienna, Austria, a Subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Roland Tschismarov
- Themis Bioscience GmbH, Vienna, Austria, a Subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Ravindran S, Lahon A. Tropism and immune response of chikungunya and zika viruses: An overview. Cytokine 2023; 170:156327. [PMID: 37579710 DOI: 10.1016/j.cyto.2023.156327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Zika virus (ZIKV) and chikungunya virus (CHIKV) are two medically important vector-borne viruses responsible for causing significant disease burden in humans, including neurological sequelae/complications. Besides sharing some common clinical features, ZIKV has major shares in causing microcephaly and brain malformations in developing foetus, whereas CHIKV causes chronic joint pain/swelling in infected individuals. Both viruses have a common route of entry to the host body. i.e., dermal site of inoculation through the bite of an infected mosquito and later taken up by different immune cells for further dissemination to other areas of the host body that lead to a range of immune responses via different pathways. The immune responses generated by both viruses have similar characteristics with varying degrees of inflammation and activation of immune cells. However, the overall response of immune cells is not fully explored in the context of ZIKV and CHIKV infection. The knowledge of cellular tropism and the immune response is the key to understanding the mechanisms of viral immunity and pathogenesis, which may allow to develop novel therapeutic strategies for these viral infections. This review aims to discuss recent advancements and identify the knowledge gaps in understanding the mechanism of cellular tropism and immune response of CHIKV and ZIKV.
Collapse
Affiliation(s)
- Shilpa Ravindran
- Institute of Advanced Virology, Thiruvananthapuram, Kerala 695317, India
| | - Anismrita Lahon
- Institute of Advanced Virology, Thiruvananthapuram, Kerala 695317, India.
| |
Collapse
|
49
|
de Brito MSAG, de Marchi MS, Perin MY, Côsso IDS, Bumlai RUM, da Silva WV, Prado AYM, da Cruz TCD, Avila ETP, Damazo AS, Slhessarenko RD. Inflammation, fibrosis and E1 glycoprotein persistence in joint tissue of patients with post-Chikungunya chronic articular disease. Rev Soc Bras Med Trop 2023; 56:e02782023. [PMID: 37792834 PMCID: PMC10550088 DOI: 10.1590/0037-8682-0278-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION Chikungunya chronic joint disease causes debilitating arthralgia, significantly impacting the quality of life of affected individuals. METHODS In this study, patients underwent clinical follow-ups, joint biopsies, and pre-biopsy and 24 months post-biopsy serum dosage of cytokines. RESULTS All participants were female and had pain in 12 joints on average, with 41.17% exhibiting moderate disease activity. Histopathological analysis revealed collagen deposition. Indirect immunofluorescence detected the CHIKV glycoprotein E1 antigen, and an increase in cytokines. CONCLUSIONS Persistent inflammation and ineffective antiviral immune responses leading to antigen persistence may contribute to chronic CHIKV arthritis.
Collapse
Affiliation(s)
- Maíra Sant Anna Genaro de Brito
- Universidade de Cuiabá, Faculdade de Medicina, Departamento de Clínica Médica, Cuiabá, MT, Brasil
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | - Micheli Said de Marchi
- Universidade de Cuiabá, Faculdade de Medicina, Departamento de Clínica Médica, Cuiabá, MT, Brasil
| | - Matheus Yung Perin
- Universidade de Cuiabá, Faculdade de Medicina, Departamento de Clínica Médica, Cuiabá, MT, Brasil
| | - Isabelle da Silva Côsso
- Universidade de Cuiabá, Faculdade de Medicina, Departamento de Clínica Médica, Cuiabá, MT, Brasil
| | - Renan Urt Mansur Bumlai
- Universidade de Cuiabá, Faculdade de Medicina, Departamento de Clínica Médica, Cuiabá, MT, Brasil
| | - Waldemar Vaz da Silva
- Universidade de Cuiabá, Faculdade de Medicina, Departamento de Clínica Médica, Cuiabá, MT, Brasil
| | - Adriana Yuki Mello Prado
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | - Thais Campos Dias da Cruz
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | - Eudes Thiago Pereira Avila
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | - Amílcar Sabino Damazo
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| | - Renata Dezengrini Slhessarenko
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil
| |
Collapse
|
50
|
Taylor M, Rayner JO. Immune Response to Chikungunya Virus: Sex as a Biological Variable and Implications for Natural Delivery via the Mosquito. Viruses 2023; 15:1869. [PMID: 37766276 PMCID: PMC10538149 DOI: 10.3390/v15091869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus with significant public health implications around the world. Climate change, as well as rapid urbanization, threatens to expand the population range of Aedes vector mosquitoes globally, increasing CHIKV cases worldwide in return. Epidemiological data suggests a sex-dependent response to CHIKV infection. In this review, we draw attention to the importance of studying sex as a biological variable by introducing epidemiological studies from previous CHIKV outbreaks. While the female sex appears to be a risk factor for chronic CHIKV disease, the male sex has recently been suggested as a risk factor for CHIKV-associated death; however, the underlying mechanisms for this phenotype are unknown. Additionally, we emphasize the importance of including mosquito salivary components when studying the immune response to CHIKV. As with other vector-transmitted pathogens, CHIKV has evolved to use these salivary components to replicate more extensively in mammalian hosts; however, the response to natural transmission of CHIKV has not been fully elucidated.
Collapse
Affiliation(s)
| | - Jonathan O. Rayner
- Department of Microbiology & Immunology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA;
| |
Collapse
|