1
|
Pastras P, Aggeletopoulou I, Papantoniou K, Triantos C. Targeting the IL-23 Receptor Gene: A Promising Approach in Inflammatory Bowel Disease Treatment. Int J Mol Sci 2025; 26:4775. [PMID: 40429917 PMCID: PMC12112539 DOI: 10.3390/ijms26104775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's Disease (CD) and ulcerative colitis (UC), is characterized by chronic inflammation of the gastrointestinal tract. A key component of the inflammatory pathway in IBD is interleukin 23 (IL-23), which promotes the differentiation and maintenance of Th17 cells. These cells are major contributors to intestinal inflammation and the release of pro-inflammatory cytokines. A dysregulated IL-23/Th17 axis can lead to excessive gut inflammation. Notably, IL-23 affects Th17 cell responses differently in UC and CD, fostering IL-17 production in UC and interferon-gamma (IFN-γ) production in CD. Genetic studies have pinpointed specific variants of the IL-23 receptor (IL23R) gene that confer protection against IBD. The R381Q (rs11209026) variant has been linked to a reduced risk of developing both CD and UC. Additionally, other variants, such as G149R (rs76418789) and V362I (rs41313262), inhibit IL23R function by disrupting intracellular trafficking and protein stability. This disruption results in decreased phosphorylation of downstream signal transducers, such as STAT3 and STAT4, and reduced IL23R expression on the cell surface, ultimately dampening the activation of pro-inflammatory pathways. The protective effects of these genetic variants underscore the IL-23/IL23R pathway as a significant therapeutic target in IBD management. Therapies designed to modulate this pathway have the potential to reduce pro-inflammatory cytokine production and enhance anti-inflammatory mechanisms. Ongoing research into the IL23R gene and its variants continues to provide valuable insights, paving the way for more targeted and effective treatments for IBD patients.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University of Patras, 26504 Patras, Greece; (P.P.); (K.P.); (C.T.)
| | | | | |
Collapse
|
2
|
Yang X, Xu J, Ji H, Li J, Yang B, Wang L. Early prediction of colorectal adenoma risk: leveraging large-language model for clinical electronic medical record data. Front Oncol 2025; 15:1508455. [PMID: 40444092 PMCID: PMC12119310 DOI: 10.3389/fonc.2025.1508455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
Objective To develop a non-invasive, radiation-free model for early colorectal adenoma prediction using clinical electronic medical record (EMR) data, addressing limitations in current diagnostic approaches for large-scale screening. Design Retrospective analysis utilized 92,681 cases with EMR, spanning from 2012 to 2022, as the training cohort. Testing was performed on an independent test cohort of 19,265 cases from 2023. Several classical machine learning algorithms were applied in combination with the BGE-M3 large-language model (LLM) for enhanced semantic feature extraction. Area under the receiver operating characteristic curve (AUC) is the major metric for evaluating model performance. The Shapley additive explanations (SHAP) method was employed to identify the most influential risk factors. Results XGBoost algorithm, integrated with BGE-M3, demonstrated superior performance (AUC = 0.9847) in the validation cohort. Notably, when applied to the independent test cohort, XGBoost maintained its strong predictive ability with an AUC of 0.9839 and an average advance prediction time of 6.88 hours, underscoring the effectiveness of the BGE-M3 model. The SHAP analysis further identified 16 high-impact risk factors, highlighting the interplay of genetic, lifestyle, and environmental influences on colorectal adenoma risk. Conclusion This study developed a robust machine learning-based model for colorectal adenoma risk prediction, leveraging clinical EMR and LLM. The proposed model demonstrates high predictive accuracy and has the potential to enhance early detection, making it well-suited for large-scale screening programs. By facilitating early identification of individuals at risk, this approach may contribute to reducing the incidence and mortality associated with colorectal cancer.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Information Management and Big Data Center, Peking University Third Hospital, Beijing, China
| | - Jinjian Xu
- Information Management and Big Data Center, Peking University Third Hospital, Beijing, China
| | - Hong Ji
- Information Management and Big Data Center, Peking University Third Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Bingqing Yang
- Goodwill Hessian Health Technology Co. Ltd, Beijing, China
| | - Liye Wang
- Goodwill Hessian Health Technology Co. Ltd, Beijing, China
| |
Collapse
|
3
|
Taş Ö, Aydın F, Kuloğlu Z, Kırsaçlıoğlu CT, Bahçeci O, Aydın BÖ, Sarısoy D, Özçakar ZB. Inflammatory bowel disease in paediatric rheumatological diseases. Clin Rheumatol 2025; 44:2043-2052. [PMID: 40186043 PMCID: PMC12078415 DOI: 10.1007/s10067-025-07424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
INTRODUCTION Rheumatological diseases (RD) in childhood are systemic diseases that occur on the basis of auto-immunity or inflammation, and they can be accompanied by inflammatory bowel disease (IBD). When there is no knowledge of this association, the treatments applied may not be sufficient and/or treatments given for RD may even lead to aggrevation of IBD findings. Thus, early identification of an association is crucial for the correct management of the diseases. OBJECTIVES The aim of this study is to show the frequency of IBD in patients with RDs. We also aimed to investigate in which cases IBD should be suspected in children with RDs. METHODS Electronic medical records of the patients who were followed up between 2012 and 2024 with a diagnosis of RD in our Paediatric Rheumatology Unit and diagnosed with IBD were reviewed retrospectively. RESULTS Between 2012 and 2024, 20 (3%) of 650 familial Mediterranean fever (FMF) patients, 3 (7.5%) of 40 chronic nonbacterial osteomyelitis (CNO) patients (one of them also had FMF) and 2 (1.2%) of 170 juvenile idiopathic arthritis (JIA) patients were diagnosed with IBD. While 15 (62.5%) of the patients received a RD as the initial diagnosis, 9 (37.5%) of them were initially diagnosed with IBD and then referred to rheumatology for their symptoms. The median age at the diagnosis of RD was 9 years (inter quartile range (IQR), 14.5). The median age at the diagnosis of IBD was 12 years (IQR, 13), and 12 patients (50%) had Crohn's disease (CD), 10 patients (41.6%) ulcerative colitis (UC) and 2 patients (8.4%) undeterminated disease. Although majority of the patients had classical findings of IBD, 4 patients presented with more vague symptoms including treatment-resistant iron deficiency anaemia, perianal abscess, weight loss and growth retardation. CONCLUSIONS RD and IBD share similar pathological pathways and clinical findings, and IBD can accompany to various RD. The diagnosis of IBD should be considered in the presence of rare and atypical symptoms. Furthermore, RD should also be considered in children with IBD who have complex extraintestinal symptoms. Key Points • RD, especially FMF, JIA and CNO, may be associated with IBD. • Paediatric rheumatologists should consider IBD as a potential diagnosis in the presence of atypical findings that may develop during the course of RD. • The co-existence of RD and IBD is important both in terms of disease progression and treatment decisions.
Collapse
Affiliation(s)
- Özen Taş
- Division of Pediatric Rheumatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Fatma Aydın
- Division of Pediatric Rheumatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Zarife Kuloğlu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Ceyda Tuna Kırsaçlıoğlu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Onur Bahçeci
- Division of Pediatric Rheumatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Betül Öksüz Aydın
- Division of Pediatric Rheumatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Doğacan Sarısoy
- Division of Pediatric Rheumatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Zeynep Birsin Özçakar
- Division of Pediatric Nephrology and Rheumatology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey.
| |
Collapse
|
4
|
Li H, Chen S, Li Y, Sang Z, Chen Z, Mei X, Ren X. Preparation of gastrointestinal pH-responsive zein coated tea polyphenol-heparin hydrocolloids using for inflammatory bowel disease therapy. Int J Biol Macromol 2025; 309:143135. [PMID: 40233898 DOI: 10.1016/j.ijbiomac.2025.143135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/09/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
In the pathogenesis of inflammatory bowel disease (IBD), overstimulation of inflammatory factors can trigger a coagulation cascade, increase the risk of intestinal micro-thrombosis and lead to microcirculation disorders. However, prevention of microcirculation pathways has not received enough attention. Heparin is commonly used in anticoagulant therapy, but oral delivery does not have an excellent anticoagulant effect. To improve the stability of heparin (HEP) in the gastrointestinal tract, zein/tea polyphenol nanospheres with a core-shell structure (EGNs@Z) were developed for oral administration of heparin (HEGNs@Z). The Zein shell has pH-responsive properties and is effective in preventing premature dissolution of heparin. At the same time, EGCG nanospheres (EGNs) play an anti-inflammatory role, jointly improve the vicious cycle between inflammation and microthrombosis. The results of SEM, TEM and FTIR showed that EGNs successfully encapsulated heparin and formed zein shells on the surface of microspheres with a thickness of 50-100 nm. In vitro simulated digestion experiments showed that zein shells prevented the breakdown of microspheres and heparin in a simulated gastric environment, whereas EGNs and HEP were slowly degraded and released in a simulated intestinal environment. Coagulation analysis showed that HEGNs@Z was effective in delaying clotting time. A mouse model of acute colitis has also shown that HEGNs@Z robust promotes colonic epithelial regeneration, inhibits malignant microcirculation, and reduces bleeding risk. These findings reveal that this orally bioavailable multifunctional material may provide a novel, effective and convenient treatment for inflammatory bowel disease.
Collapse
Affiliation(s)
- Hui Li
- Pharmaceutical Sciences School, Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Shuangshuang Chen
- Pharmaceutical Sciences School, Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yumei Li
- Pharmaceutical Sciences School, Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zelin Sang
- Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhenhua Chen
- Pharmaceutical Sciences School, Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, China; The Third Affiliated Hospital of Jinzhou Medical University, 121000 Jinzhou, China.
| | - Xiuli Ren
- Pharmaceutical Sciences School, Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
5
|
Ahmadi A, Yousefimashouf R, Mohammadi A, Nikkhoo B, Shokoohizadeh L, Khan Mirzaei M, Alikhani MY, Sheikhesmaili F, Khodaei H. Investigating the expression of anti/pro-inflammatory cytokines in the pathogenesis and treatment of ulcerative colitis and its association with serum level of vitamin D. Sci Rep 2025; 15:7569. [PMID: 40038357 PMCID: PMC11880460 DOI: 10.1038/s41598-025-87551-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/20/2025] [Indexed: 03/06/2025] Open
Abstract
Ulcerative colitis is an idiopathic gastrointestinal disease described by chronic inflammation of the digestive system. Cytokines may be responsible for immunopathogenesis, mucosal and tissue damage, and even treatment response. In addition to its role in calcium and phosphorus homeostasis and bone health, vitamin D is an immunomodulatory and anti-inflammatory agent. Understanding the role of cytokines may lead to improving the pathogenesis and treatment of this disease, therefore we aimed to investigate the relative gene expression of pro- and anti-inflammatory cytokines in biopsy samples taken from the affected area in the colon of ulcerative colitis patients and its association with serum vitamin D levels. A total of 47 ulcerative colitis patients were enrolled in this case-control study. The case group consisted of 23 patients with treatment-resistant ulcerative colitis, and the control group consisted of 24 ulcerative colitis patients responding to routine treatment. Serum vitamin D levels were measured by ELISA method. Real-time PCR was employed to quantify the relative expression of pro- and anti-inflammatory cytokines in colon biopsy samples from case and control groups. The pro-inflammatory cytokines included tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), interleukin-1β (IL-1β), IL-6, IL-8, IL-17 A, and IL-33, while the anti-inflammatory cytokines were IL-10, IL-35, and TGF-β. Data are showed as mean ± standard deviation (SD), and p values < 0.05 were considered statistically significant. The mean age of the control group was 45.88 ± 18.51 years, while that of the case group was 41.30 ± 13.01 years. The relative gene expression of TNF-α, IFN-γ, IL-1β, IL-6, IL-8, IL-17 A, IL-33, TGF-β, IL-10, and IL-35, in the case and control groups did not exhibit statistically significant differences (p > 0.05). However, the gene expression levels of the principal pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-α, were elevated in treatment-resistant patients compared to patients who responded to treatments. No correlation was observed between serum vitamin D levels and the gene expression of pro- and anti-inflammatory cytokines (p > 0.05). The present study did not identify a statistically significant correlation between the expression of pro- or anti-inflammatory cytokines and treatment response. Therefore, routine treatments had no effect on the expression of these cytokines in treatment-resistant patients. Additionally, serum vitamin D levels were not related to the relative expression of pro- and anti-inflammatory cytokines in the affected area of the colon of these patients. Despite the need for further research on the protective and pathological roles of cytokines and vitamin D, regular screening and early and complementary treatment may be beneficial in reducing inflammatory symptoms in these patients.
Collapse
Affiliation(s)
- Amjad Ahmadi
- Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leili Shokoohizadeh
- Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Munich, German Research Centre for Environmental Health, Neuherberg, Germany
- Chair of Prevention of Microbial Infectious Diseases, Central Institute of Disease Prevention and School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mohammad Yousef Alikhani
- Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Farshad Sheikhesmaili
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Hakim Khodaei
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
6
|
Wen X, Li W, Li S, Chen D, Zheng J, Wang X, Zhang C, Liu Y, Ning Y, Jia R, Li P, Ji M, Ji C, Li J, Guo W. Longitudinal single-cell RNA sequencing reveals a heterogeneous response of plasma cells to colonic inflammation. Int J Biol Macromol 2025; 294:139307. [PMID: 39753172 DOI: 10.1016/j.ijbiomac.2024.139307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
A comprehensive understanding of the dynamic changes in plasma cells (PCs) during inflammation remains elusive. In this study, we analyzed the distinct responses of PCs across different phases of inflammation in a dextran sodium sulfate (DSS)-induced mouse colitis model. Six-week-old male C57BL/6 mice were treated with 2.2 % DSS in distilled water for 5 days to induce colitis, and colonic tissues were collected at the peak of inflammation, during recovery, and at the end of the recovery phase. Single-cell RNA sequencing was performed to investigate temporal changes in the gut immune environment. PCs were categorized into six subsets, with Ube2c + PCs displaying notable alterations during various inflammatory phases. Genes such as Pycard, Gpx1, Lgals3, and Chchd10 were significantly expressed in Ube2c + PCs and appeared critical in resolving DSS-induced inflammation. Transcription factors (TFs), including Atf4, Cebpg, Jund, and Klf6, exhibited high regulatory activity in Ube2c + PCs across inflammatory stages. Additionally, we identified an interaction between Chchd10 and C1qbp in PCs, which stabilized C1qbp, reduced reactive oxygen species (ROS) production, and potentially enhanced PC survival and function under inflammatory conditions. This study highlights dynamic quasi-temporal gene expression and TF regulation in PCs during colitis, providing insights for future PC-targeted immunotherapy research.
Collapse
Affiliation(s)
- Xin Wen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shifang Li
- Laboratory of Immunology and Vaccinology, FARAH, ULiège, Liège 4000, Belgium
| | - Dawei Chen
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junjie Zheng
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xia Wang
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Cuiyu Zhang
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yanting Liu
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yao Ning
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ruinan Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Peng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Wei Guo
- Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
7
|
Song CH, Kim N, Nam RH, Choi SI, Jang JY, Kim EH, Ha S, Shin E, Choi H, Kim KW, Jeon S, Oh GT, Seok YJ. Ninjurin1 deficiency differentially mitigates colorectal cancer induced by azoxymethane and dextran sulfate sodium in male and female mice. Int J Cancer 2025; 156:826-839. [PMID: 39417611 DOI: 10.1002/ijc.35225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024]
Abstract
This study investigated the role of Ninjurin1 (Ninj1), encoding a small transmembrane protein, in colitis-associated colon tumorigenesis in relation to sex hormones. Male and female wild-type (WT) and Ninj1 knockout (KO) mice were treated with azoxymethane (AOM) and dextran sulfate sodium (DSS), with or without testosterone propionate (TP). At week 2 (acute colitis stage), Ninj1 KO exhibited an alleviation in the colitis symptoms in both male and female mice. The M2 macrophage population increased and CD8+ T cell population decreased only in the female Ninj1 KO than in the female WT AOM/DSS group. In the female AOM/DSS group, TP treatment exacerbated colon shortening in the Ninj1 KO than in the WT. At week 13 (tumorigenesis stage), male Ninj1 KO mice had fewer tumors, but females showed similar tumors. In the WT AOM/DSS group, females had more M2 macrophages and fewer M1 macrophages than males, but this difference was absent in Ninj1 KO mice. In the Ninj1 KO versus WT group, the expression of pro-inflammatory mediators and Ho-1 and CD8+ T cell populations decreased in both female and male Ninj1 KO mice. In the WT group, M2 macrophage populations were increased by AOM/DSS treatment and decreased by TP treatment. However, neither treatment changed the cell populations in the Ninj1 KO group. These results suggest that Ninj1 is involved in colorectal cancer development in a testosterone-dependent manner, which was different in male and female. This highlights the importance of considering sex disparities in understanding Ninj1's role in cancer pathogenesis.
Collapse
Affiliation(s)
- Chin-Hee Song
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Nayoung Kim
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Soo In Choi
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Jae Young Jang
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Eun Hye Kim
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Sungchan Ha
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Eun Shin
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi-do, South Korea
| | - Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sejin Jeon
- Department of Vaccine Biothechnology, Andong National University, Andong, South Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, South Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea
| |
Collapse
|
8
|
Fonseca-Camarillo G, Furuzawa-Carballeda J, Miguel-Cruz E, Barreto-Zuñiga R, Martínez-Benítez B, Yamamoto-Furusho JK. Protective role of ABCC drug subfamily resistance transporters (ABCC1-7) in intestinal inflammation. Immunol Res 2025; 73:33. [PMID: 39808251 DOI: 10.1007/s12026-024-09583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
The ABCC subfamily contains thirteen members. Nine of these transporters are called multidrug resistance proteins (MRPs). The MRPs have been associated with developing ulcerative colitis (UC). This study aimed to evaluate the ABCC expression in UC patients and its role in a dextran sulfate sodium (DSS)-induced colitis mice model under 5-aminosalicylates or methylprednisolone treatment and compared with control without inflammation. DSS-induced colitis mice were treated with 5-aminosalicylates (50 mg/kg 24 h) or methylprednisolone (2 mg/kg 24 h). Human rectal biopsies were obtained from UC patients. The abcc-relative mRNA levels and protein expression were determined by RT-PCR and immunohistochemistry. abcc4, abcc5, and abcc6 mRNA levels were significantly increased in DSS-induced colitis compared to the other groups. The 5-aminosalicylate treatment dramatically increased the abcc2 and abcc3 mRNA levels vs. control. Methylprednisolone treatment increased abcc1 vs. DSS-induced colitis and colitis treated with 5-aminosalicylate. Immunohistochemical analysis revealed down-regulation of ABCC1/ABCC2/ABCC5/ABCC7 in mice colitis vs. control. Treatment with 5-aminosalicylate restored ABCC5 levels, while methylprednisolone restored ABCC2/ABCC5/ABCC7 in colitis mice at similar control levels. Relative mRNA levels of mrp1-5 were increased in active UC patients vs. control. ABCC2/ABCC4/ABCC7 were conspicuously expressed in the mucosa of 5-aminosalicylate and/or methylprednisolone-treated UC patients, while ABCC2/ABCC4/ABCC5/ABCC7 in submucosa, ABCC1/ABCC5/ABCC7 in muscular, and ABCC1/ABCC4/ABCC5/ABCC7 in serosa were expressed vs. controls. This is the first report about the differential up-regulation of the ABCC subfamily gene and protein expression in DSS-induced colitis under aminosalicylates or methylprednisolone treatment.
Collapse
Affiliation(s)
- Gabriela Fonseca-Camarillo
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga #15, Col. Belisario Domínguez Sección XVI, 14080, Mexico City, CPCDMX, Mexico
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, México
| | - Janette Furuzawa-Carballeda
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico City, Mexico, and Escuela de Medicina, Universidad Panamericana, Mexico City, Mexico
| | - Erika Miguel-Cruz
- Department of Experimental Research and Bioterium, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Rafel Barreto-Zuñiga
- Department of Endoscopy, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Braulio Martínez-Benítez
- Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Jesus K Yamamoto-Furusho
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga #15, Col. Belisario Domínguez Sección XVI, 14080, Mexico City, CPCDMX, Mexico.
| |
Collapse
|
9
|
Carreras J, Roncador G, Hamoudi R. Ulcerative Colitis, LAIR1 and TOX2 Expression, and Colorectal Cancer Deep Learning Image Classification Using Convolutional Neural Networks. Cancers (Basel) 2024; 16:4230. [PMID: 39766129 PMCID: PMC11674594 DOI: 10.3390/cancers16244230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Ulcerative colitis is a chronic inflammatory bowel disease of the colon mucosa associated with a higher risk of colorectal cancer. OBJECTIVE This study classified hematoxylin and eosin (H&E) histological images of ulcerative colitis, normal colon, and colorectal cancer using artificial intelligence (deep learning). METHODS A convolutional neural network (CNN) was designed and trained to classify the three types of diagnosis, including 35 cases of ulcerative colitis (n = 9281 patches), 21 colon control (n = 12,246), and 18 colorectal cancer (n = 63,725). The data were partitioned into training (70%) and validation sets (10%) for training the network, and a test set (20%) to test the performance on the new data. The CNNs included transfer learning from ResNet-18, and a comparison with other CNN models was performed. Explainable artificial intelligence for computer vision was used with the Grad-CAM technique, and additional LAIR1 and TOX2 immunohistochemistry was performed in ulcerative colitis to analyze the immune microenvironment. RESULTS Conventional clinicopathological analysis showed that steroid-requiring ulcerative colitis was characterized by higher endoscopic Baron and histologic Geboes scores and LAIR1 expression in the lamina propria, but lower TOX2 expression in isolated lymphoid follicles (all p values < 0.05) compared to mesalazine-responsive ulcerative colitis. The CNN classification accuracy was 99.1% for ulcerative colitis, 99.8% for colorectal cancer, and 99.1% for colon control. The Grad-CAM heatmap confirmed which regions of the images were the most important. The CNNs also differentiated between steroid-requiring and mesalazine-responsive ulcerative colitis based on H&E, LAIR1, and TOX2 staining. Additional classification of 10 new cases of colorectal cancer (adenocarcinoma) were correctly classified. CONCLUSIONS CNNs are especially suited for image classification in conditions such as ulcerative colitis and colorectal cancer; LAIR1 and TOX2 are relevant immuno-oncology markers in ulcerative colitis.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain;
| | - Rifat Hamoudi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Biomedically Informed Artificial Intelligence Laboratory (BIMAI-Lab), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
10
|
Paydaş Hataysal E, Körez MK, Guler EM, Vatansev H, Bozalı K, Basaranoglu M, Vatansev H. Impaired Kynurenine Pathway in Inflammatory Bowel Disease. J Clin Med 2024; 13:6147. [PMID: 39458097 PMCID: PMC11508637 DOI: 10.3390/jcm13206147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Inflammatory bowel diseases primarily encompass Crohn's disease and ulcerative colitis. Insufficient levels of tryptophan cause an imbalance in the gut microbiota, leading to inflammation in the gastrointestinal tract. The main catabolic pathway of tryptophan is the kynurenine pathway. Our study aims to evaluate serum tryptophan, the kynurenine pathway, and oxidative stress parameters, including total oxidant status and total antioxidant capacity, in patients with Crohn's disease and ulcerative colitis. Methods: The study included 80 follow-up patients in remission diagnosed with Crohn's disease and ulcerative colitis who attended the Gastroenterology Outpatient Clinic, as well as 78 healthy controls. Serum tryptophan, kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid, and kynurenic acid levels were measured with liquid chromatography and tandem mass spectrometry (LC-MS/MS). All statistical analysis was performed using R version 4.2.1. Statistical Language. Results: Serum tryptophan, 3-hydroxyanthranilic acid, and total antioxidant capacity were lower in patients with ulcerative colitis and Crohn's disease compared to those in the control group. The serum total oxidant status in the control group was significantly lower than in patients with Crohn's disease and ulcerative colitis. Conclusions: The results of our research indicate that tryptophan and kynurenine pathway metabolites could potentially contribute to the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Esra Paydaş Hataysal
- Department of Biochemistry, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, 34722 Istanbul, Türkiye
| | - Muslu Kazım Körez
- Department of Biostatistics, Faculty of Medicine, Selcuk University, 42250 Konya, Türkiye
| | - Eray Metin Guler
- Department of Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences, 34480 Istanbul, Türkiye
| | - Hakan Vatansev
- Department of Food Processing, Meram Vocational School, Necmettin Erbakan University, 42092 Konya, Türkiye
| | - Kubra Bozalı
- Department of Biochemistry, Hamidiye Faculty of Medicine, University of Health Sciences, 34480 Istanbul, Türkiye
| | - Metin Basaranoglu
- Department of Gastroenterology, Faculty of Medicine, Bezmialem University, 34093 Istanbul, Türkiye
| | - Husamettin Vatansev
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42250 Konya, Türkiye
| |
Collapse
|
11
|
Ronsini C, Iavarone I, Braca E, Vastarella MG, Della Corte L, Vitale C, Andreoli G, La Mantia E, Cobellis L, de Franciscis P. Deep Myometrial Infiltration leads to a measurable Inflammatory Response in Endometrial Cancer. A Prospective Observational Study. Semin Oncol 2024; 51:149-153. [PMID: 39537472 DOI: 10.1053/j.seminoncol.2024.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUNDS This study aims to evaluate the correlation between inflammation indices, such as neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), platelet-lymphocyte ratio (PLR) and deep myometrial infiltration (≥50%) prospectively in patients with endometrial carcinoma, providing insights into the interaction between these parameters MATERIAL AND METHODS: A prospective observational cohort study was conducted at AOU Vanvitelli in Naples, Italy, from August 2023 to March 2024. Data from 161 patients undergoing surgery for endometrial cancer, including preoperative blood counts and histopathological information, were collected. Statistical analyses were performed using R software. RESULTS After logistic regression, NLR and MLR showed a statistically significant association with deep myometrial infiltration (NLR log(OR) 0.15, P = .040; MLR log(OR) 0.30, P = .008). However, after multivariate logistic regression which included other risk factors such as grading, histotype, and MSI only NLR retained statistical significance, (Log(Or) 0.18, P = .031). CONCLUSION Our results demonstrate noticeable changes in inflammation indices associated with deep myometrial infiltration in endometrial carcinoma. Moreover, a correlation between NLR and deep myometrial infiltration exists regardless of microsatellite instability, histotype, and grading.
Collapse
Affiliation(s)
- Carlo Ronsini
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Irene Iavarone
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Eleonora Braca
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Giovanna Vastarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Della Corte
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples, Naples, Italy
| | - Clorinda Vitale
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giada Andreoli
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Elvira La Mantia
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Cobellis
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Pasquale de Franciscis
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
12
|
Mandal M, Rakib A, Mamun MAA, Kumar S, Park F, Hwang DJ, Li W, Miller DD, Singh UP. DJ-X-013 reduces LPS-induced inflammation, modulates Th17/ myeloid-derived suppressor cells, and alters NF-κB expression to ameliorate experimental colitis. Biomed Pharmacother 2024; 179:117379. [PMID: 39255739 PMCID: PMC11479677 DOI: 10.1016/j.biopha.2024.117379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
SCOPE Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition of unknown etiology, although recent evidence suggests that it is caused by an excessive immune response to mucosal antigens. We determined the anti-inflammatory properties of novel compound DJ-X-013 in vitro in lipopolysaccharide (LPS)-induced macrophages and in an in vivo dextran sodium sulfate (DSS)-induced model of colitis. METHODS AND RESULTS To evaluate the anti-inflammatory properties of DJ-X-013, we used LPS-activated RAW 264.7 macrophages in vitro and a DSS-induced experimental model of colitis in vivo. We examine cellular morphology, and tissue architecture by histology, flow cytometry, RT-qPCR, multiplex, and immunoblot analysis to perform cellular and molecular studies. DJ-X-013 treatment altered cell morphology and expression of inflammatory cytokines in LPS-activated macrophages as compared to cells treated with LPS alone. DJ-X-013 also impeded the migration of RAW 264.7 macrophages by modulating cytoskeletal organization and suppressed the expression of NF-κB and inflammatory markers as compared to LPS alone. DJ-X-013 treatment improved body weight, and colon length and attenuated inflammation in the colon of DSS-induced colitis. Intriguingly, DSS-challenged mice treated with DJ-X-013 induced the numbers of myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and natural killer T cells (NKT) in the colon lamina propria (LP) relative to DSS. DJ-X-013 also reduced the influx of neutrophils, TNF-α producing macrophages, restricted the number of Th17 cells, and suppressed inflammatory cytokines and NF-κB in the LP relative to DSS. CONCLUSION DJ-X-013 is proposed to be a therapeutic strategy for ameliorating inflammation and experimental colitis.
Collapse
Affiliation(s)
- Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Md Abdullah Al Mamun
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
13
|
Jo K, Kim KW, Lee HJ, Im JP, Kim JS, Koh SJ. Predictors of histologic remission in patients with biologic-naïve, moderate-to-severe ulcerative colitis treated with first-line biologic agents and small-molecule drugs: a single-center, retrospective cohort study. Intest Res 2024; 22:453-463. [PMID: 38772863 PMCID: PMC11534449 DOI: 10.5217/ir.2024.00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND/AIMS The prevalence and incidence of ulcerative colitis (UC) in Korea is increasing. Each patient has a different disease course and treatment response. Recently, with the development of biologic agents, histological remission has become a treatment goal. In this study, we aimed to identify the predictors of histological remission after first-line biologic agent treatment in patients with biologic agent-naïve UC. METHODS We retrospectively analyzed the medical records of 92 patients who had been diagnosed with UC and treated with first-line biologic agent treatment at our center, between 2015 and 2022. The clinical characteristics, laboratory test results, and endoscopic and biopsy findings were analyzed. Histological remission was defined as the absence of cryptitis, crypt abscesses, and inflammatory cells on histology. Univariate and multivariate logistic regression analyses were performed to identify the predictors of histological remission after first-line treatment. RESULTS Of the total 92 patients, 25 (27.2%) achieved histological remission. Each cohort had a varied body mass index (BMI) distribution, with a statistically significant overweight ratio, as defined by the Asian-Pacific BMI category of 23-25 kg/m2, of 48.0% in the histological remission cohort (P= 0.026). A causal correlation between the overweight category and histological remission was confirmed (odds ratio, 3.883; 95% confidence interval, 1.141-13.212; P= 0.030). CONCLUSIONS We confirmed that the overweight category was a predictor of histological remission after first-line treatment with a biological agent. However, as BMI does not account for skeletal muscle mass, future studies are required to confirm the correlation between skeletal muscle mass and histological remission.
Collapse
Affiliation(s)
- Kijae Jo
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kwang Woo Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Viti V, Zanetta C, Capra R, Municchi A, Rocca MA, Filippi M. Ocrelizumab-associated enteritis in patients with multiple sclerosis: an emerging safety issue. J Neurol 2024; 271:6368-6376. [PMID: 38992209 DOI: 10.1007/s00415-024-12553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Vittorio Viti
- Neurology Unit and Multiple Sclerosis Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Chiara Zanetta
- Neurology Unit and Multiple Sclerosis Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ruggero Capra
- Centro Regionale Per La Sclerosi Multipla, ASST Spedali Civili Di Brescia, Montichiari, Brescia, Italy
| | - Andrea Municchi
- Vita-Salute San Raffaele University, Milan, Italy
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neurology Unit and Multiple Sclerosis Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit and Multiple Sclerosis Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
15
|
Gnanapandithan K, Stuessel LG, Shen B, Mourad FH, Peng Z, Farraye FA, Hashash JG. Pelvic Radiation Therapy Increases Risk of Pouch Failure in Patients with Inflammatory Bowel Disease and Ileal Pouch. Dig Dis Sci 2024; 69:3392-3401. [PMID: 39090446 DOI: 10.1007/s10620-024-08576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The effect of radiation on the ileal pouch is less well studied in patients with inflammatory bowel disease (IBD) and ileal pouch-anal anastomosis. AIMS This retrospective study investigates the impact of external radiation therapy on the outcomes of ileal pouches. METHODS The study included 82 patients with IBD and ileal pouches, of whom 12 received pelvic radiation, 16 abdominal radiation, 14 radiation in other fields, and 40 served as controls with no radiation. Pouch-related outcomes, including pouch failure, worsening of symptoms, pouchitis, and development of strictures, along with changes in Pouch Disease Activity Index (PDAI) scores pre- and post-radiation were assessed. RESULTS The pelvic radiation group exhibited a significantly higher rate of pouch failure (25%, p < 0.004) and worsening pouch-related symptoms (75%, p = 0.012) compared to other groups. Although not statistically significant, a higher incidence of pouchitis was observed in the pelvic radiation group (45.5%, p = 0.071). Strictures were more common in the pelvic radiation group (25%, p = 0.043). Logistic regression analysis revealed that pelvic radiation significantly increased the odds of pouch-related adverse outcomes (OR 5.66; 95% confidence interval: 1.61-21.5). CONCLUSION Pelvic radiation significantly impacts the outcomes of ileal pouches in patients with IBD, increasing the risk of pouch failure, symptom exacerbation, and structural complications. These findings underscore the need for careful consideration of radiation therapy in this patient population and highlight the importance of closely monitoring and managing radiation-induced pouch dysfunction.
Collapse
Affiliation(s)
| | - Laura G Stuessel
- Division of Gastroenterology and Hepatology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Bo Shen
- Center for Inflammatory Bowel Disease, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Fadi H Mourad
- Division of Gastroenterology and Hepatology, American University of Beirut, Beirut, Lebanon
| | - Zhongwei Peng
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Francis A Farraye
- Division of Gastroenterology and Hepatology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Jana G Hashash
- Division of Gastroenterology and Hepatology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| |
Collapse
|
16
|
Yue C, Xue H. Identification and immune landscape of sarcopenia-related molecular clusters in inflammatory bowel disease by machine learning and integrated bioinformatics. Sci Rep 2024; 14:17603. [PMID: 39079987 PMCID: PMC11289443 DOI: 10.1038/s41598-024-68198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Sarcopenia, a prevalent comorbidity of inflammatory bowel disease (IBD), is characterized by diminished skeletal muscle mass and strength. Nevertheless, the underlying interconnected mechanisms remain elusive. This study identified distinct expression patterns of sarcopenia-associated genes (SRGs) across individuals with IBD and in samples of normal tissue. By analyzing SRG expression profiles, we effectively segregated 541 IBD samples into three distinct clusters, each marked by its unique immune landscape. To unravel the transcriptional disruptions underlying these clusters, the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm was employed to spotlight key genes linked to each cluster. A diagnostic model based on four key genes (TIMP1, PLAU, PHLDA1, TGFBI) was established using Random Forest and LASSO (least absolute shrinkage and selection operator) algorithms, and validated with the GSE179285 dataset. Moreover, the GSE112366 dataset facilitated the exploration of gene expression dynamics within the ileum mucosa of UC patients pre- and post-Ustekinumab treatment. Additionally, insights into the intricate relationship between immune cells and these pivotal genes were gleaned from the single-cell RNA dataset GSE162335. In conclusion, our findings collectively underscored the pivotal role of sarcopenia-related genes in the pathogenesis of IBD. Their potential as robust biomarkers for future diagnostic and therapeutic strategies is particularly promising, opening avenues for a deeper understanding and improved management of these interconnected conditions.
Collapse
Affiliation(s)
- Chongkang Yue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China
- Department of Gastroenterology, Shanghai Punan Hospital of Pudong New District, Shanghai, China, 200120
| | - Huiping Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
17
|
Liu J. Aged garlic therapeutic intervention targeting inflammatory pathways in pathogenesis of bowel disorders. Heliyon 2024; 10:e33986. [PMID: 39130474 PMCID: PMC11315124 DOI: 10.1016/j.heliyon.2024.e33986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, manifest as a result of intricate interactions involving genetic predisposition, environmental factors, intestinal microbiota dynamics, and immune dysregulation, ultimately leading to persistent mucosal inflammation. Addressing this complex pathology requires a nuanced understanding to inform targeted therapeutic strategies. Consequently, our study explored the viability of Aged Garlic Extract (AGE) as an alternative therapeutic regimen for IBD management. Utilizing gas chromatography-mass spectrometry (GC-MS) and scanning electron microscopy (SEM), we characterized AGE, revealing distinctions from Fresh Garlic Extract (FGE), particularly the absence of allicin in AGE and accompanying structural alterations. In In-Vivo experiments employing an IBD rat model, AGE intervention exhibited remarkable antioxidant, antibacterial, and anti-inflammatory properties. Noteworthy outcomes included improved survival rates, mitigation of intestinal damage, restoration of gut microbial diversity, reinforcement of tight junctions, and reversal of mitochondrial dysfunction. Collectively, these effects contributed to the preservation of enterocyte integrity and the attenuation of inflammation. In conclusion, the unique chemical composition of AGE, coupled with its substantial influence on gut microbiota, antioxidant defenses, and inflammatory pathways, positions it as a promising adjunctive therapy for the management of IBD. These observations, synergistically considered with existing research, provide significant insights into the potential utility of AGE in addressing the intricate pathophysiology inherent to IBD. The potential strength of study and rationale of using AGE against IBD includes exploring alternative therapeutic regimens if conventional treatments are associated with side effects, identification of potential hotspots/pathways involved in disease progression and study can provide economically cheaper and naturally occurring alternative to patient community who are struggling to afford expensive medications. These promising findings underscore the necessity for additional investigations to ascertain the feasibility of clinical translation, thereby substantiating the potential therapeutic role of AGE in the management of IBD.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| |
Collapse
|
18
|
Agrawal G, Borody TJ, Aitken JM. Mapping Crohn's Disease Pathogenesis with Mycobacterium paratuberculosis: A Hijacking by a Stealth Pathogen. Dig Dis Sci 2024; 69:2289-2303. [PMID: 38896362 DOI: 10.1007/s10620-024-08508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) has been implicated in the development of Crohn's disease (CD) for over a century. Similarities have been noted between the (histo)pathological presentation of MAP in ruminants, termed Johne's disease (JD), and appearances in humans with CD. Analyses of disease presentation and pathology suggest a multi-step process occurs that consists of MAP infection, dysbiosis of the gut microbiome, and dietary influences. Each step has a role in the disease development and requires a better understanding to implementing combination therapies, such as antibiotics, vaccination, faecal microbiota transplants (FMT) and dietary plans. To optimise responses, each must be tailored directly to the activity of MAP, otherwise therapies are open to interpretation without microbiological evidence that the organism is present and has been influenced. Microscopy and histopathology enables studies of the mycobacterium in situ and how the associated disease processes manifest in the patient e.g., granulomas, fissuring, etc. The challenge for researchers has been to prove the relationship between MAP and CD with available laboratory tests and methodologies, such as polymerase chain reaction (PCR), MAP-associated DNA sequences and bacteriological culture investigations. These have, so far, been inconclusive in revealing the relationship of MAP in patients with CD. Improved and accurate methods of detection will add to evidence for an infectious aetiology of CD. Specifically, if the bacterial pathogen can be isolated, identified and cultivated, then causal relationships to disease can be confirmed, especially if it is present in human gut tissue. This review discusses how MAP may cause the inflammation seen in CD by relating its known pathogenesis in cattle, and from examples of other mycobacterial infections in humans, and how this would impact upon the difficulties with diagnostic tests for the organism.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Division of Diabetes & Nutritional Sciences, King's College London, Franklin-Wilkins Building, London, SE1 9NH, UK.
- , Sydney, Australia.
| | | | | |
Collapse
|
19
|
Jarmakiewicz-Czaja S, Gruszecka J, Filip R. The Diagnosis of Intestinal Fibrosis in Crohn's Disease-Present and Future. Int J Mol Sci 2024; 25:6935. [PMID: 39000043 PMCID: PMC11241173 DOI: 10.3390/ijms25136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Crohn's disease (CD) progresses with periods of remission and exacerbations. During exacerbations, chronic inflammation leads to tissue destruction. As a result, intestinal fibrosis may develop in response to the ongoing inflammatory process. Fibrosis in CD should be considered the result of the response of the intestinal wall (over) to the presence of inflammation in the deep structures of the intestinal wall. In the absence of ideal noninvasive methods, endoscopic evaluation in combination with biopsy, histopathological analysis, stool analysis, and blood analysis remains the gold standard for assessing both inflammation and fibrosis in CD. On the contrary, the ability to identify markers of intestinal fibrosis would help to develop new diagnostic and therapeutic methods to detect early stages of fibrosis. It is speculated that miRNAs may, in the future, become biomarkers for early noninvasive diagnosis in the treatment of intestinal fibrosis. The purpose of this review is to summarise existing diagnostic methods for Crohn's disease and present recent scientific reports on molecular testing.
Collapse
Affiliation(s)
| | - Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
20
|
Bravo Iniguez A, Du M, Zhu MJ. α-Ketoglutarate for Preventing and Managing Intestinal Epithelial Dysfunction. Adv Nutr 2024; 15:100200. [PMID: 38438107 PMCID: PMC11016550 DOI: 10.1016/j.advnut.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
The epithelium lining the intestinal tract serves a multifaceted role. It plays a crucial role in nutrient absorption and immune regulation and also acts as a protective barrier, separating underlying tissues from the gut lumen content. Disruptions in the delicate balance of the gut epithelium trigger inflammatory responses, aggravate conditions such as inflammatory bowel disease, and potentially lead to more severe complications such as colorectal cancer. Maintaining intestinal epithelial homeostasis is vital for overall health, and there is growing interest in identifying nutraceuticals that can strengthen the intestinal epithelium. α-Ketoglutarate, a metabolite of the tricarboxylic acid cycle, displays a variety of bioactive effects, including functioning as an antioxidant, a necessary cofactor for epigenetic modification, and exerting anti-inflammatory effects. This article presents a comprehensive overview of studies investigating the potential of α-ketoglutarate supplementation in preventing dysfunction of the intestinal epithelium.
Collapse
Affiliation(s)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States.
| |
Collapse
|
21
|
Wilson NC, Dilsaver DB, Walters RW, Nandipati KC. Bariatric Surgery Outcomes in Patients with Inflammatory Bowel Disease in the United States: An Analysis of the Nationwide Readmissions Database. Obes Surg 2024; 34:1279-1285. [PMID: 38413497 PMCID: PMC11026179 DOI: 10.1007/s11695-024-07111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE Bariatric surgery has been reported to produce durable weight loss in the management of obesity; sleeve gastrectomy (SG) is the most common bariatric procedure. Obesity is a common comorbidity of inflammatory bowel disease (IBD), and the impact of IBD on short-term SG outcomes has not been widely reported. This study assessed whether IBD was associated with adverse post-SG outcomes. MATERIALS AND METHODS Hospitalizations of patients undergoing SG in the United States were identified using the 2010-2020 Nationwide Readmissions Database (NRD) and stratified by IBD diagnosis. The SG cohort was propensity-matched based on age, biological sex, body mass index (BMI), comorbid diabetes, hypertension, depression, chronic obstructive pulmonary disease, and discharge in quarter four. Primary aims were to compare in-hospital mortality, post-operative complications, and all-cause 90-day readmission between patients with and without IBD. Secondary outcomes were length of stay (LOS) and total hospital cost. RESULTS A total of 2030 hospitalizations were matched. The odds of complication were 48% higher for hospitalizations of patients with IBD (11.1% vs. 7.8%; aOR 1.48, aOR 95% CI 1.10-2.00, p = .009). The most common complication was nausea (4.9% vs. 3.7%, p = .187). No statistically significant difference was observed for all-cause 90-day readmissions, LOS, or hospital cost. CONCLUSION Hospitalizations of patients with IBD who underwent SG experienced significantly higher post-operative complication rates. However, the similar lengths of stay and readmission rates compared to propensity-matched SG hospitalizations without IBD suggest many complications were minor. SG remains a safe weight loss procedure for patients suffering from IBD and obesity.
Collapse
Affiliation(s)
- Noah C Wilson
- School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Danielle B Dilsaver
- Department of Clinical Research and Public Health, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 502, Omaha, NE, 68124, USA
| | - Ryan W Walters
- Department of Clinical Research and Public Health, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 502, Omaha, NE, 68124, USA
| | - Kalyana C Nandipati
- Department of Surgery, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 501, Omaha, NE, 68124, USA.
| |
Collapse
|
22
|
Ugolkov Y, Nikitich A, Leon C, Helmlinger G, Peskov K, Sokolov V, Volkova A. Mathematical modeling in autoimmune diseases: from theory to clinical application. Front Immunol 2024; 15:1371620. [PMID: 38550585 PMCID: PMC10973044 DOI: 10.3389/fimmu.2024.1371620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
The research & development (R&D) of novel therapeutic agents for the treatment of autoimmune diseases is challenged by highly complex pathogenesis and multiple etiologies of these conditions. The number of targeted therapies available on the market is limited, whereas the prevalence of autoimmune conditions in the global population continues to rise. Mathematical modeling of biological systems is an essential tool which may be applied in support of decision-making across R&D drug programs to improve the probability of success in the development of novel medicines. Over the past decades, multiple models of autoimmune diseases have been developed. Models differ in the spectra of quantitative data used in their development and mathematical methods, as well as in the level of "mechanistic granularity" chosen to describe the underlying biology. Yet, all models strive towards the same goal: to quantitatively describe various aspects of the immune response. The aim of this review was to conduct a systematic review and analysis of mathematical models of autoimmune diseases focused on the mechanistic description of the immune system, to consolidate existing quantitative knowledge on autoimmune processes, and to outline potential directions of interest for future model-based analyses. Following a systematic literature review, 38 models describing the onset, progression, and/or the effect of treatment in 13 systemic and organ-specific autoimmune conditions were identified, most models developed for inflammatory bowel disease, multiple sclerosis, and lupus (5 models each). ≥70% of the models were developed as nonlinear systems of ordinary differential equations, others - as partial differential equations, integro-differential equations, Boolean networks, or probabilistic models. Despite covering a relatively wide range of diseases, most models described the same components of the immune system, such as T-cell response, cytokine influence, or the involvement of macrophages in autoimmune processes. All models were thoroughly analyzed with an emphasis on assumptions, limitations, and their potential applications in the development of novel medicines.
Collapse
Affiliation(s)
- Yaroslav Ugolkov
- Research Center of Model-Informed Drug Development, Ivan Mikhaylovich (I.M.) Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
| | - Antonina Nikitich
- Research Center of Model-Informed Drug Development, Ivan Mikhaylovich (I.M.) Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
| | - Cristina Leon
- Modeling and Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
| | | | - Kirill Peskov
- Research Center of Model-Informed Drug Development, Ivan Mikhaylovich (I.M.) Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
- Modeling and Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
- Sirius University of Science and Technology, Sirius, Russia
| | - Victor Sokolov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
- Modeling and Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
| | - Alina Volkova
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
- Modeling and Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
| |
Collapse
|
23
|
Mamun MAA, Rakib A, Mandal M, Kumar S, Singla B, Singh UP. Polyphenols: Role in Modulating Immune Function and Obesity. Biomolecules 2024; 14:221. [PMID: 38397458 PMCID: PMC10887194 DOI: 10.3390/biom14020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Polyphenols, long-used components of medicinal plants, have drawn great interest in recent years as potential therapeutic agents because of their safety, efficacy, and wide range of biological effects. Approximately 75% of the world's population still use plant-based medicinal compounds, indicating the ongoing significance of phytochemicals for human health. This study emphasizes the growing body of research investigating the anti-adipogenic and anti-obesity functions of polyphenols. The functions of polyphenols, including phenylpropanoids, flavonoids, terpenoids, alkaloids, glycosides, and phenolic acids, are distinct due to changes in chemical diversity and structural characteristics. This review methodically investigates the mechanisms by which naturally occurring polyphenols mediate obesity and metabolic function in immunomodulation. To this end, hormonal control of hunger has the potential to inhibit pro-obesity enzymes such as pancreatic lipase, the promotion of energy expenditure, and the modulation of adipocytokine production. Specifically, polyphenols affect insulin, a hormone that is essential for regulating blood sugar, and they also play a role, in part, in a complex web of factors that affect the progression of obesity. This review also explores the immunomodulatory properties of polyphenols, providing insight into their ability to improve immune function and the effects of polyphenols on gut health, improving the number of commensal bacteria, cytokine production suppression, and immune cell mediation, including natural killer cells and macrophages. Taken together, continuous studies are required to understand the prudent and precise mechanisms underlying polyphenols' therapeutic potential in obesity and immunomodulation. In the interim, this review emphasizes a holistic approach to health and promotes the consumption of a wide range of foods and drinks high in polyphenols. This review lays the groundwork for future developments, indicating that the components of polyphenols and their derivatives may provide the answer to urgent worldwide health issues. This compilation of the body of knowledge paves the way for future discoveries in the global treatment of pressing health concerns in obesity and metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.); (S.K.); (B.S.)
| |
Collapse
|
24
|
Mairal A, Mehrotra S, Kumar A, Maiwal R, Marsal J, Kumar A. Hyaluronic Acid-Conjugated Thermoresponsive Polymer-Based Bioformulation Enhanced Wound Healing and Gut Barrier Repair of a TNBS-Induced Colitis Injury Ex Vivo Model in a Dynamic Perfusion Device. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5382-5400. [PMID: 38266010 DOI: 10.1021/acsami.3c14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Impairment of intestinal epithelium is a typical feature of inflammatory bowel disease (IBD) that causes leakage of bacteria and antigens from the intestinal lumen and thus results in persistent immune activation. Hence, healing and regeneration of the damaged gut mucosa is a promising therapeutic approach to achieve deep remission in IBD. Currently, available systemic therapies have moderate effects and are often associated with numerous side effects and malignancies. In this study, we aimed to develop a topical therapy by chemically conjugating a temperature-responsive polymer, i.e., poly(N-isopropylacrylamide), along with hyaluronic acid to obtain a sprayable therapeutic formulation that upon colon instillation adheres to the damaged gut mucosa due to its temperature-induced phase transition and mucoadhesive properties. An ex vivo adhesion experiment demonstrates that this therapeutic formulation forms a thin physical coating on the mucosal lining at a physiological temperature within 5 min. Physicochemical characterization of (P(NIPAM-co-NTBAM)-HA) established this formulation to be biocompatible, hemo-compatible, and non-immunogenic. Prednisolone was encapsulated within the polymer formulation to achieve maximum therapeutic efficacy in the case of IBD-like conditions as assessed in a custom-fabricated perfusion-based ex vivo model system. Histological analysis suggests that the prednisolone-encapsulated polymer formulation nearly restored the mucosal architecture after 2,4,6-trinitrobenzenesulfonic acid-induced damage. Furthermore, a significant (p ≤ 0.001) increase in mRNA levels of Muc-2 and ZO-1 in treated groups further confirmed the mucosal epithelial barrier restoration.
Collapse
Affiliation(s)
- Ayushi Mairal
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi 110070, Delhi, India
| | - Rakhi Maiwal
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi 110070, Delhi, India
| | - Jan Marsal
- Department of Clinical Sciences, Lund University and Skåne University Hospital, SE-22185 Lund, Sweden
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
25
|
Hassan HA, Mohamed Abdelhamid A, Samy W, Osama Mohammed H, Mortada Mahmoud S, Fawzy Abdel Mageed A, Abbas NAT. Ameliorative effects of androstenediol against acetic acid-induced colitis in male wistar rats via inhibiting TLR4-mediated PI3K/Akt and NF-κB pathways through estrogen receptor β activation. Int Immunopharmacol 2024; 127:111414. [PMID: 38141404 DOI: 10.1016/j.intimp.2023.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
5-androstenediol (ADIOL) functions as a selective estrogen receptor β (ERβ) ligand with a protective effect against many diseases. So, we conducted a novel insight into its role in acetic acid (AA)-induced colitis and investigated its effect on TLR4-Mediated PI3K/Akt and NF-κB Pathways and the potential role of ERβ as contributing mechanisms. METHODS Rats were randomized into 5 Groups; Control, Colitis, Colitis + mesalazine (MLZ), Colitis + ADIOL, and Colitis + ADIOL + PHTPP (ER-β antagonist). The colitis was induced through a rectal enema of acetic acid (AA) on the 8th day. At the end of treatment, colons were collected for macroscopic assessment. Tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor kappa b (NF-κB), toll-like receptor (TLR4), and phosphorylated Protein kinase B (pAKT) were measured. Besides, Gene expression of interleukin-1beta (IL-1β), metalloproteases 9 (Mmp9), inositol 3 phosphate kinase (PI3K), Neutrophil gelatinase-associated lipocalin (NGAL), ERβ and NLRP6 were assessed. Histopathological and immunohistochemical studies were also investigated. RESULTS Compared to the untreated AA group, the disease activity index (DAI) and macroscopic assessment indicators significantly decreased with ADIOL injections. Indeed, ADIOL significantly decreased colonic tissue levels of MDA, TLR4, pAKT, and NF-κB immunostainig while increased SOD activity and β catenin immunostainig. ADIOL mitigated the high genetic expressions of IL1β, NGAL, MMP9, and PI3K while increased ERβ and NLRP6 gene expression. Also, the pathological changes detected in AA groups were markedly ameliorated with ADIOL. The specific ERβ antagonist, PHTPP, largely diminished these protective effects of ADIOL. CONCLUSION ADIOL could be beneficial against AA-induced colitis mostly through activating ERβ.
Collapse
Affiliation(s)
- Heba A Hassan
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Pharmacology Department, Faculty of Medicine, Mutah University, Mutah, Al-karak 61710, Jordan.
| | - Amira Mohamed Abdelhamid
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Walaa Samy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine -Zagazig University, Zagazig 45519, Egypt.
| | - Heba Osama Mohammed
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Samar Mortada Mahmoud
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Amal Fawzy Abdel Mageed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine -Zagazig University, Zagazig 45519, Egypt.
| | - Noha A T Abbas
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
26
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Fuloria S, Sekar M, Abida. Non-coding RNAs: Emerging biomarkers and therapeutic targets in ulcerative colitis. Pathol Res Pract 2024; 253:155037. [PMID: 38160482 DOI: 10.1016/j.prp.2023.155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
27
|
Tzaneti A, Athanasopoulou E, Fessatou S, Fotis L. Chronic Nonbacterial Osteomyelitis in Inflammatory Bowel Disease. Life (Basel) 2023; 13:2347. [PMID: 38137947 PMCID: PMC10745028 DOI: 10.3390/life13122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic nonbacterial osteomyelitis (CNO), also known as chronic recurrent multifocal osteomyelitis (CRMO), is a rare autoinflammatory bone disease primarily affecting children and adolescents. This review presents a comprehensive analysis of the intricate relationship between CNO and inflammatory bowel disease (IBD), shedding light on shared pathophysiological mechanisms and clinical management. A thorough literature review was conducted, encompassing 24 case reports involving 40 patients. The demographic distribution of patients revealed a near-equal gender ratio, with a median age of diagnosis at 12 years. The diagnosis patterns showed a higher proportion of CNO as the initial diagnosis, while Crohn's disease was more prevalent than ulcerative colitis. The time interval between the clinical presentations varied, ranging from simultaneous detection to a substantial 15-year gap. Treatment modalities included nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, aminosalicylates, and biologic agents, such as infliximab, often overlapping in their use and suggesting shared pathophysiological pathways. Both conditions displayed systemic manifestations, and patients often responded well to immunosuppressive medications. The pathophysiology of CNO involves a genetic predisposition, cytokine dysregulation, and osteoclast activation. Dysregulated innate immunity results in immune cell infiltration into bones, causing sterile bone lesions. Notably, emerging evidence hints at a potential link between the microbiome and CNO. In contrast, IBD results from imbalanced mucosal immune responses to the intestinal microbiota. Polymorphisms in the promotor region of IL-10, common cytokines, immune cells, and genetic markers indicate shared immunological and genetic factors between CNO and IBD. Both conditions also involve extraintestinal symptoms. This analysis underscores the need for clinical awareness of the co-occurrence of CNO and IBD, especially among pediatric patients. A deepened understanding of the connections between these seemingly distinct diseases could lead to more effective management and improved patient outcomes.
Collapse
Affiliation(s)
- Ariadni Tzaneti
- Department of Pediatrics, Attikon General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Elli Athanasopoulou
- Department of Pediatrics, Attikon General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Smaragdi Fessatou
- Division of Pediatric Gastroenterology, Department of Pediatrics, Attikon General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece;
| | - Lampros Fotis
- Division of Pediatric Rheumatology, Department of Pediatrics, Attikon General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| |
Collapse
|
28
|
Di Petrillo A, Kumar A, Onali S, Favale A, Fantini MC. GPR120/FFAR4: A Potential New Therapeutic Target for Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:1981-1989. [PMID: 37542525 DOI: 10.1093/ibd/izad161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 08/07/2023]
Abstract
Inflammatory bowel disease, whose major forms are Crohn's disease and ulcerative colitis, is characterized by chronic inflammation of the gut due to the loss of tolerance toward antigens normally contained in the gut lumen. G protein-coupled receptor (GPR) 120 has gained considerable attention as a potential therapeutic target for metabolic disorders due to its implication in the production of the incretin hormone glucagon-like peptide 1 and the secretion of cholecystokinin. Recent studies have also highlighted the role of GPR120 in regulating immune system activity and inflammation. GPR120, expressed by intestinal epithelial cells, proinflammatory macrophages, enteroendocrine L cells, and CD4+ T cells, suppresses proinflammatory and enhances anti-inflammatory cytokine production, suggesting that GPR120 might have a pivotal role in intestinal inflammation and represent a possible therapeutic target in inflammatory bowel disease. This narrative review aims at summarizing the role of GPR120 in the maintenance of intestinal homeostasis through the analysis of the most recent studies.
Collapse
Affiliation(s)
- Amalia Di Petrillo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Sara Onali
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Agnese Favale
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | | |
Collapse
|
29
|
Chen M, Lan H, Jin K, Chen Y. Responsive nanosystems for targeted therapy of ulcerative colitis: Current practices and future perspectives. Drug Deliv 2023; 30:2219427. [PMID: 37288799 PMCID: PMC10405869 DOI: 10.1080/10717544.2023.2219427] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
The pharmacological approach to treating gastrointestinal diseases is suffering from various challenges. Among such gastrointestinal diseases, ulcerative colitis manifests inflammation at the colon site specifically. Patients suffering from ulcerative colitis notably exhibit thin mucus layers that offer increased permeability for the attacking pathogens. In the majority of ulcerative colitis patients, the conventional treatment options fail in controlling the symptoms of the disease leading to distressing effects on the quality of life. Such a scenario is due to the failure of conventional therapies to target the loaded moiety into specific diseased sites in the colon. Targeted carriers are needed to address this issue and enhance the drug effects. Conventional nanocarriers are mostly readily cleared and have nonspecific targeting. To accumulate the desired concentration of the therapeutic candidates at the inflamed area of the colon, smart nanomaterials with responsive nature have been explored recently that include pH responsive, reactive oxygen species responsive (ROS), enzyme responsive and thermo - responsive smart nanocarrier systems. The formulation of such responsive smart nanocarriers from nanotechnology scaffolds has resulted in the selective release of therapeutic drugs, avoiding systemic absorption and limiting the undesired delivery of targeting drugs into healthy tissues. Recent advancements in the field of responsive nanocarrier systems have resulted in the fabrication of multi-responsive systems i.e. dual responsive nanocarriers and derivitization that has increased the biological tissues and smart nanocarrier's interaction. In addition, it has also led to efficient targeting and significant cellular uptake of the therapeutic moieties. Herein, we have highlighted the latest status of the responsive nanocarrier drug delivery system, its applications for on-demand delivery of drug candidates for ulcerative colitis, and the prospects are underpinned.
Collapse
Affiliation(s)
- Min Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
30
|
Rayner CL, Bottle SE, Martyn AP, Barnett NL. Preserving Retinal Structure and Function with the Novel Nitroxide Antioxidant, DCTEIO. Neurochem Res 2023; 48:3402-3419. [PMID: 37450210 PMCID: PMC10514139 DOI: 10.1007/s11064-023-03978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Oxidative stress is a major contributor to progressive neurodegenerative disease and may be a key target for the development of novel preventative and therapeutic strategies. Nitroxides have been successfully utilised to study changes in redox status (biological probes) and modulate radical-induced oxidative stress. This study investigates the efficacy of DCTEIO (5,6-dicarboxy-1,1,3,3-tetraethyllisoindolin-2-yloxyl), a stable, kinetically-persistent, nitroxide-based antioxidant, as a retinal neuroprotectant. The preservation of retinal function following an acute ischaemic/reperfusion (I/R) insult in the presence of DCTEIO was quantified by electroretinography (ERG). Inflammatory responses in retinal glia were analysed by GFAP and IBA-1 immunohistochemistry, and retinal integrity assessed by histology. A nitroxide probe combined with flow cytometry provided a rapid technique to assess oxidative stress and the mitigation offered by antioxidant compounds in cultured 661W photoreceptor cells. DCTEIO protected the retina from I/R-induced damage, maintaining retinal function. Histological analysis showed preservation of retinal integrity with reduced disruption and disorganisation of the inner and outer nuclear layers. I/R injury upregulated GFAP expression, indicative of retinal stress, which was significantly blunted by DCTEIO. The number of 'activated' microglia, particularly in the outer retina, in response to cellular stress was also significantly reduced by DCTEIO, potentially suggesting reduced inflammasome activation and cell death. DCTEIO mitigated oxidative stress in 661W retinal cell cultures, in a dose-dependent fashion. Together these findings demonstrate the potential of DCTEIO as a neuroprotective therapeutic for degenerative diseases of the CNS that involve an ROS-mediated component, including those of the retina e.g. age-related macular degeneration and glaucoma.
Collapse
Affiliation(s)
- Cassie L Rayner
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, Gold Coast, QLD, 4226, Australia
- Queensland Eye Institute, South Brisbane, QLD, 4101, Australia
| | - Steven E Bottle
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Alexander P Martyn
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Cancer and Ageing Research Program (CARP), Princess Alexandra Hospital, Brisbane, QLD, 4102, Australia
| | - Nigel L Barnett
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, Gold Coast, QLD, 4226, Australia.
- Queensland Eye Institute, South Brisbane, QLD, 4101, Australia.
| |
Collapse
|
31
|
Mohebali N, Weigel M, Hain T, Sütel M, Bull J, Kreikemeyer B, Breitrück A. Faecalibacterium prausnitzii, Bacteroides faecis and Roseburia intestinalis attenuate clinical symptoms of experimental colitis by regulating Treg/Th17 cell balance and intestinal barrier integrity. Biomed Pharmacother 2023; 167:115568. [PMID: 37793274 DOI: 10.1016/j.biopha.2023.115568] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Ulcerative colitis (UC) is a severe inflammatory bowel disease (IBD) characterized by multifactorial complex disorders triggered by environmental factors, genetic susceptibility, and also gut microbial dysbiosis. Faecalibacterium prausnitzii, Bacteroides faecis, and Roseburia intestinalis are underrepresented species in UC patients, leading to the hypothesis that therapeutic application of those bacteria could ameliorate clinical symptoms and disease severity. Acute colitis was induced in mice by 3.5% DSS, and the commensal bacterial species were administered by oral gavage simultaneously with DSS treatment for up to 7 days. The signs of colonic inflammation, the intestinal barrier integrity, the proportion of regulatory T cells (Tregs), and the expression of pro-inflammatory and anti-inflammatory cytokines were quantified. The concentrations of SCFAs in feces were measured using Gas-liquid chromatography. The gut microbiome was analyzed in all treatment groups at the endpoint of the experiment. Results were benchmarked against a contemporary mesalazine treatment regime. We show that commensal species alone and in combination reduced disease activity index scores, inhibited colon shortening, strengthened the colonic epithelial barrier, and positively modulated tight junction protein expression. The expression level of pro-inflammatory cytokines was significantly reduced. Immune modulation occurred via inhibition of the loss of CD4 +CD25 +Treg cells in the spleen. Our study proofed that therapeutic application of F. prausnitzii, B. faecis, and R. intestinalis significantly ameliorated DSS-induced colitis at the level of clinical symptoms, histological inflammation, and immune status. Our data suggest that these positive effects are mediated by immune-modulatory pathways and influence on Treg/Th17 balance.
Collapse
Affiliation(s)
- Nooshin Mohebali
- Molecular Bacteriology, Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany; German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| | - Mona Sütel
- IMD Institut für Medizinische Diagnostik, Berlin-Potsdam GbR, 12247 Berlin, Germany
| | - Jana Bull
- Molecular Bacteriology, Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Molecular Bacteriology, Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany.
| | - Anne Breitrück
- Molecular Bacteriology, Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
32
|
Sun C, Zhang L, Zhang M, Wang J, Rong S, Lu W, Dong H. Zinc pyrithione induces endothelium-dependent hyperpolarization-mediated mesenteric vasorelaxation in healthy and colitic mice. Biochem Pharmacol 2023; 217:115828. [PMID: 37774954 DOI: 10.1016/j.bcp.2023.115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Although Zinc pyrithione (ZPT) could lower blood pressure by inducing vasorelaxation, it is unclear if it is able to induce vasorelaxation of mesenteric arterioles in health and ulcerative colitis (UC) to exert anti-colitic action. METHODS The vasorelaxation of the second-order branch of the mesenteric artery from wide type (WT) mice, TRPV1-/-(KO) mice, and TRPV4-/-(KO) mice was determined using a Mulvany-style wire myograph. Calcium imaging and patch clamp were applied to analyze the actions of ZPT in human vascular endothelial cells. Mouse model of UC was used to evaluate the anti-colitic action of ZPT. RESULTS ZPT dose-dependently induced mesenteric vasorelaxation predominately through endothelium-dependent hyperpolarization (EDH), which could be attenuated by intracellular Zn2+ and Ca2+ chelators TPEN and BAPTA-AM. The ZPT/EDH-mediated vasorelaxation via TRPV1, TRPV4 and TRPA1 channels was verified by a combination of selective pharmacological inhibitors and TRPV1-KO and TRPV4-KO mice. Moreover. ZPT induced Ca2+ entry via vascular endothelial TRPV1/4 and TRPA1 channels and enhanced membrane non-selective currents through these channels. Notably, ZPT exerted anti-colitic effects by rescuing the impaired acetylcholine (ACh)-induced mesenteric vasorelaxation in colitic mice. CONCLUSIONS ZPT/Zn2+ induces EDH-mediated mesenteric vasorelaxation through activating endothelial multiple TRPV1/4 and TPPA1 channels in health, and rescues the impaired ACh-induced vasorelaxation to exert anti-colitic action. Our study may open a new avenue of potential vessel-specific targeted therapy for UC.
Collapse
Affiliation(s)
- Chensijin Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Luyun Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China; Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mengting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Jianxin Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Shaoya Rong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
33
|
Zhang C, Zeng F, Fan Z, He Z, Tai L, Peng Q, Zhang Y, Chao Z, Jiang W, Jia L, Han L. An oral polyphenol host-guest nanoparticle for targeted therapy of inflammatory bowel disease. Acta Biomater 2023; 169:422-433. [PMID: 37597682 DOI: 10.1016/j.actbio.2023.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Inflammatory bowel disease (IBD) is a global public health challenge that affects millions of people. Current medical treatments for IBD are not fully effective and may cause undesirable side effects on patients. Thus, there is an urgent need for safe, simple, and efficacious strategies to treat IBD in clinical settings. Here, we develop an oral polyphenol nanoparticle (PDT) by assembling dexamethasone sodium phosphate (DSP)-loaded poly-β-cyclodextrin with tannic acid via host-guest interactions for treating IBD. This one-step assembly process is rapid (within 10 s), reproducible, and free of harmful chemical agents, which can facilitate its clinical translation. PDT is negatively charged due to the three components, which enable it to specifically target the positively charged inflamed colonic mucosa through electrostatic attraction, thus localizing the drug at the inflamed site to reduce systemic exposure and side effects. Furthermore, PDT exhibits a strong reactive oxygen species (ROS)-scavenging ability derived from the tannic acid component, which can alleviate ROS-mediated inflammatory responses and ameliorate IBD symptoms. Compared with free DSP, PDT demonstrates sustained DSP release behavior in vitro and in vivo, as well as enhanced therapeutic efficacy in a colitis mouse model. These results suggest that PDT might be a potential therapeutic agent for the treatment of IBD. Moreover, this facile polyphenol host-guest assembly strategy may provide a promising drug-delivery platform for treating various diseases STATEMENT OF SIGNIFICANCE: To develop safe and effective treatments for inflammatory bowel disease (IBD), we have designed an oral polyphenol nanoparticle (PDT) using the host-guest assembly of dexamethasone sodium phosphate (DSP)-loaded poly-β-cyclodextrin with tannic acid. Through in vitro and in vivo experiments, PDT has demonstrated remarkable inflammation-targeting, ROS-scavenging, and anti-inflammatory properties, along with sustained release of DSP. Moreover, in an IBD mouse model, PDT has shown significantly improved therapeutic efficacy compared to free DSP. The host-guest assembly strategy employed for PDT is noteworthy for its rapidity, reproducibility, and safety due to the absence of harmful chemicals, holding great promise for designing a diverse range of nanomedicines customized for treating various diseases.
Collapse
Affiliation(s)
- Chong Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Fen Zeng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Zhengyang Fan
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Zhen He
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Liang Tai
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Qiang Peng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yixin Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Zhenhua Chao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Wenning Jiang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
34
|
Guo N, Lv L. Mechanistic insights into the role of probiotics in modulating immune cells in ulcerative colitis. Immun Inflamm Dis 2023; 11:e1045. [PMID: 37904683 PMCID: PMC10571014 DOI: 10.1002/iid3.1045] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a persistent inflammatory disorder that affects the gastrointestinal tract, mainly the colon, which is defined by inflammatory responses and the formation of ulcers. Probiotics have been shown to directly impact various immune cells, including dendritic cells (DCs), macrophages, natural killer (NK) cells, and T and B cells. By interacting with cell surface receptors, they regulate immune cell activity, produce metabolites that influence immune responses, and control the release of cytokines and chemokines. METHODS This article is a comprehensive review wherein we conducted an exhaustive search across published literature, utilizing reputable databases like PubMed and Web of Science. Our focus centered on pertinent keywords, such as "UC," 'DSS," "TNBS," "immune cells," and "inflammatory cytokines," to compile the most current insights regarding the therapeutic potential of probiotics in managing UC. RESULTS This overview aims to provide readers with a comprehensive understanding of the effects of probiotics on immune cells in relation to UC. Probiotics have a crucial role in promoting the proliferation of regulatory T cells (Tregs), which are necessary for preserving immunological homeostasis and regulating inflammatory responses. They also decrease the activation of pro-inflammatory cells like T helper 1 (Th1) and Th17 cells, contributing to UC development. Thus, probiotics significantly impact both direct and indirect pathways of immune cell regulation in UC, promoting Treg differentiation, inhibiting pro-inflammatory cell activation, and regulating cytokine and chemokine release. CONCLUSION Probiotics demonstrate significant potential in modulating the immune reactions in UC. Their capacity to modulate different immune cells and inflammation-related processes makes them a promising therapeutic approach for managing UC. However, further studies are warranted to optimize their use and fully elucidate the molecular mechanisms underlying their beneficial effects in UC treatment.
Collapse
Affiliation(s)
- Ni Guo
- Department of GastroenterologyShengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch)ShengzhouZhejiang ProvinceChina
| | - Lu‐lu Lv
- Department of GastroenterologyShengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch)ShengzhouZhejiang ProvinceChina
| |
Collapse
|
35
|
Cohen G, Gover O, Schwartz B. Phytocannabinoids Reduce Inflammation of Primed Macrophages and Enteric Glial Cells: An In Vitro Study. Int J Mol Sci 2023; 24:14628. [PMID: 37834076 PMCID: PMC10572654 DOI: 10.3390/ijms241914628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved in the disease. Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative anti-inflammatory effect of nine selected pure cannabinoids in J774A1 macrophage cells and EGCs triggered to undergo inflammation with lipopolysaccharide (LPS). The anti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNFα transcription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and transcription in EGCs. Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti-inflammatory effect in both J774A1 macrophages and EGCs compared to the other phytocannabinoids tested herein. We then performed RNA-seq analysis of EGCs exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGCs revealed 23 differentially expressed genes (DEG) compared to the treatment with only LPS. Pretreatment with THC resulted in 26 DEG, and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments, we used the Ingenuity platform. We show that THC treatment affects the mTOR and RAR signaling pathway, while THC-COOH mainly affects the IL6 signaling pathway.
Collapse
|
36
|
Hey GE, Vedam-Mai V, Beke M, Amaris M, Ramirez-Zamora A. The Interface between Inflammatory Bowel Disease, Neuroinflammation, and Neurological Disorders. Semin Neurol 2023; 43:572-582. [PMID: 37562450 DOI: 10.1055/s-0043-1771467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a complex, chronic inflammatory condition affecting the gastrointestinal tract. IBD has been associated with a variety of neurologic manifestations including peripheral nerve involvement, increased risk of thrombotic, demyelinating and events. Furthermore, an evolving association between IBD and neurodegenerative disorders has been recognized, and early data suggests an increased risk of these disorders in patients diagnosed with IBD. The relationship between intestinal inflammatory disease and neuroinflammation is complex, but the bidirectional interaction between the brain-gut-microbiome axis is likely to play an important role in the pathogenesis of these disorders. Identification of common mechanisms and pathways will be key to developing potential therapies. In this review, we discuss the evolving interface between IBD and neurological conditions, with a focus on clinical, mechanistic, and potentially therapeutic implications.
Collapse
Affiliation(s)
- Grace E Hey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Vinata Vedam-Mai
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - Matthew Beke
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida
| | - Manuel Amaris
- Department of Gastroenterology, University of Florida, Gainesville, Florida
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
37
|
Jo KJ, Im JP. Beyond the survey, to the ideal therapy for Asian. Intest Res 2023; 21:280-282. [PMID: 37533263 PMCID: PMC10397544 DOI: 10.5217/ir.2023.00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Affiliation(s)
- Ki Jae Jo
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
39
|
Korta A, Kula J, Gomułka K. The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:10172. [PMID: 37373318 DOI: 10.3390/ijms241210172] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Interleukin-23 (IL-23) is a proinflammatory cytokine produced mainly by macrophages and antigen-presenting cells (APCs) after antigenic stimulation. IL-23 plays a significant role as a mediator of tissue damage. Indeed, the irregularities in IL-23 and its receptor signaling have been implicated in inflammatory bowel disease. IL-23 interacts with both the innate and adaptive immune systems, and IL-23/Th17 appears to be involved in the development of chronic intestinal inflammation. The IL-23/Th17 axis may be a critical driver of this chronic inflammation. This review summarizes the main aspects of IL-23's biological function, cytokines that control cytokine production, effectors of the IL-23 response, and the molecular mechanisms associated with IBD pathogenesis. Although IL-23 modulates and impacts the development, course, and recurrence of the inflammatory response, the etiology and pathophysiology of IBD are not completely understood, but mechanism research shows huge potential for clinical applications as therapeutic targets in IBD treatment.
Collapse
Affiliation(s)
- Aleksandra Korta
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Julia Kula
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
40
|
Tang HJ, Bie CQ, Guo LL, Zhong LX, Tang SH. Efficacy and safety of vedolizumab in the treatment of patients with inflammatory bowel disease: A systematic review and meta‑analysis of randomized controlled trials. Exp Ther Med 2023; 25:298. [PMID: 37229320 PMCID: PMC10203751 DOI: 10.3892/etm.2023.11997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Few studies have thoroughly assessed the efficacy and safety of vedolizumab (VDZ) in the treatment of inflammatory bowel disease (IBD). Therefore, this systematic review and meta-analysis was performed to further evaluate this association. PubMed, Embase, and the Cochrane databases were searched until April 2022. Randomized controlled trials (RCTs) evaluating the efficacy and safety of VDZ in the treatment of IBD were included. The risk ratio (RR) and 95% confidence intervals (CI) were estimated for each outcome using a random effects model. A total of 12 RCTs, including 4,865 patients, met the inclusion criteria. In the induction phase, VDZ was more effective than placebo for patients with ulcerative colitis and Crohn's disease (CD) in clinical remission (RR=2.09; 95% CI=1.66-2.62) and clinical response (RR=1.54; 95% CI=1.34-1.78). In the maintenance therapy group, VDZ reached higher clinical remission (RR=1.98; 95% CI=1.58-2.49) and clinical response (RR=1.78; 95% CI=1.40-2.26) rates compared with the placebo group. VDZ particularly improved clinical remission (RR=2.07; 95% CI=1.48-2.89) and clinical response (RR=1.84; 95% CI=1.54-2.21) in patients with TNF antagonist failure. In terms of corticosteroid-free remission, VDZ was also more effective than placebo in patients with IBD (RR=1.98; 95% CI=1.51-2.59). In Crohn's patients, VDZ was more effective than placebo in terms of mucosal healing (RR=1.78; 95% CI=1.27-2.51). With respect to adverse events, VDZ significantly reduced the risk of IBD exacerbation compared with the placebo (RR=0.60; 95% CI=0.39-0.93; P=0.023). However, when compared with the placebo, VDZ increased the risk of nasopharyngitis in patients with CD (RR=1.77; 95% CI=1.01-3.10; P=0.045). No significant differences in other adverse events were observed. Although there might be underlying risk, such as selection bias, in the present study it can be safely concluded that VDZ is a safe and effective biological agent for IBD, particularly for patients with TNF antagonist failure.
Collapse
Affiliation(s)
- Hui-Jun Tang
- Department of Gastroenterology, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen, Guangdong 518104, P.R. China
| | - Cai-Qun Bie
- Department of Gastroenterology, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen, Guangdong 518104, P.R. China
| | - Li-Liangzi Guo
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Li-Xian Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shao-Hui Tang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
41
|
Alqahtani RM, Alghanemi A, Aljifri AM, Ghulman IM, Ashram SY, Alghamdi EA, Azhar AE, Ibrahim ZA, Alsudais MM, Banaja AW. Public Knowledge of Inflammatory Bowel Diseases in Saudi Arabia: A Cross-Sectional Survey Study. Cureus 2023; 15:e40114. [PMID: 37425509 PMCID: PMC10329281 DOI: 10.7759/cureus.40114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Lack of public understanding and perception may lead to a general downplaying of inflammatory bowel disorder (IBD) symptoms as they affect a less socially acceptable area of the body, which may be a significant component in the everyday struggles of an individual with IBD. AIM The aim is to assess the public knowledge of Crohn's disease and ulcerative colitis in Saudi Arabia. METHOD This was an online survey study that examined public knowledge of IBD in Saudi Arabia for the duration between February and March 2023. Participants were invited to participate in this study using social media websites. The questionnaire tool comprised three sections: a sociodemographic characteristics section (seven questions), an awareness section (two questions), and a knowledge section (24 questions). A binary logistic regression analysis was utilized to identify the factors that influenced the participants' knowledge of Crohn's disease and ulcerative colitis. RESULTS A total of 630 individuals participated in this study. Around 28% of the participants reported that they had never heard of, read about, or dealt with Crohn's disease. Around 16% of them reported that they had never heard of, read about, or dealt with ulcerative colitis. The mean overall knowledge score of the study participants was 8.3 (standard deviation: 2.4) out of 24, which is equal to 34.6% and represents a weak level of knowledge of IBD. The participants showed a weak level of knowledge for all sub-scales of knowledge related to IBD general knowledge, diet, treatments, and complications. The knowledge sub-scale level ranged between 30% and 36.7%. Females, the participants in the moderate and high-income category, those who lived in urban areas, those with a higher level of education, and those who reported having osteoarthritis were more likely to be knowledgeable about IBD compared to others (p≤0.001). CONCLUSION In Saudi Arabia, a low level of IBD awareness was identified among the general population, supporting findings from other countries. Future research should aim to identify effective educational interventions to increase public awareness of this group of diseases, which would ultimately facilitate early diagnosis and improve patient outcomes.
Collapse
Affiliation(s)
- Reem M Alqahtani
- Department of Family Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| | - Aseel Alghanemi
- Department of Family Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| | | | - Ibraheem M Ghulman
- Department of Family Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| | - Saif Y Ashram
- Department of Family Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| | - Essam A Alghamdi
- Department of Family Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| | - Abdulrahman E Azhar
- Department of Family Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| | - Ziad A Ibrahim
- Department of Family Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| | - Meshal M Alsudais
- Department of Family Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| | - Abdulaziz W Banaja
- Department of Family Medicine, King Abdulaziz University Hospital, Jeddah, SAU
| |
Collapse
|
42
|
Mohamad-Fauzi N, Shaw C, Foutouhi SH, Hess M, Kong N, Kol A, Storey DB, Desai PT, Shah J, Borjesson D, Murray JD, Weimer BC. Salmonella enhances osteogenic differentiation in adipose-derived mesenchymal stem cells. Front Cell Dev Biol 2023; 11:1077350. [PMID: 37009487 PMCID: PMC10055666 DOI: 10.3389/fcell.2023.1077350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
The potential of mesenchymal stem cells (MSCs) for tissue repair and regeneration has garnered great attention. While MSCs are likely to interact with microbes at sites of tissue damage and inflammation, like in the gastrointestinal system, the consequences of pathogenic association on MSC activities have yet to be elucidated. This study investigated the effects of pathogenic interaction on MSC trilineage differentiation paths and mechanisms using model intracellular pathogen Salmonella enterica ssp enterica serotype Typhimurium. The examination of key markers of differentiation, apoptosis, and immunomodulation demonstrated that Salmonella altered osteogenic and chondrogenic differentiation pathways in human and goat adipose-derived MSCs. Anti-apoptotic and pro-proliferative responses were also significantly upregulated (p < 0.05) in MSCs during Salmonella challenge. These results together indicate that Salmonella, and potentially other pathogenic bacteria, can induce pathways that influence both apoptotic response and functional differentiation trajectories in MSCs, highlighting that microbes have a potentially significant role as influencers of MSC physiology and immune activity.
Collapse
Affiliation(s)
- Nuradilla Mohamad-Fauzi
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Claire Shaw
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Soraya H. Foutouhi
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Nguyet Kong
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Dylan Bobby Storey
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Prerak T. Desai
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Jigna Shah
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Dori Borjesson
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - James D. Murray
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
- *Correspondence: James D. Murray, ; Bart C. Weimer,
| | - Bart C. Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
- *Correspondence: James D. Murray, ; Bart C. Weimer,
| |
Collapse
|
43
|
Shahini A, Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal 2023; 17:55-74. [PMID: 36112307 PMCID: PMC10030733 DOI: 10.1007/s12079-022-00695-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is considered a chronic inflammatory and multifactorial disease of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two types of chronic IBD. Although there is no accurate information about IBD pathophysiology, evidence suggests that various factors, including the gut microbiome, environment, genetics, lifestyle, and a dysregulated immune system, may increase susceptibility to IBD. Moreover, inflammatory mediators such as interleukin-6 (IL-6) are involved in the immunopathogenesis of IBDs. IL-6 contributes to T helper 17 (Th17) differentiation, mediating further destructive inflammatory responses in CD and UC. Moreover, Th1-mediated responses participate in IBD, and the antiapoptotic IL-6/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signals are responsible for preserving Th1 cells in the site of inflammation. It has been revealed that fecal bacteria isolated from UC-active and UC-remission patients stimulate the hyperproduction of several cytokines, such as IL-6, tumor necrosis factor-α (TNF-α), IL-10, and IL-12. Given the importance of the IL-6/IL-6R axis, various therapeutic options exist for controlling or treating IBD. Therefore, alternative therapeutic approaches such as modulating the gut microbiome could be beneficial due to the failure of the target therapies so far. This review article summarizes IBD immunopathogenesis focusing on the IL-6/IL-6R axis and discusses available therapeutic approaches based on the gut microbiome alteration and IL-6/IL-6R axis targeting and treatment failure.
Collapse
Affiliation(s)
- Arshia Shahini
- Department of Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Wang J, Gao H, Xie Y, Wang P, Li Y, Zhao J, Wang C, Ma X, Wang Y, Mao Q, Xia H. Lycium barbarum polysaccharide alleviates dextran sodium sulfate-induced inflammatory bowel disease by regulating M1/M2 macrophage polarization via the STAT1 and STAT6 pathways. Front Pharmacol 2023; 14:1044576. [PMID: 37144216 PMCID: PMC10151498 DOI: 10.3389/fphar.2023.1044576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization contributes to the development of inflammatory bowel disease (IBD). Lycium barbarum polysaccharide (LBP) is the primary active constituent of traditional Chinese herbal Lycium barbarum L., which has been widely demonstrated to have important functions in regulating immune activity and anti-inflammatory. Thus, LBP may protect against IBD. To test this hypothesis, the DSS-induced colitis model was established in mice, then the mice were treated with LBP. The results indicated that LBP attenuated the weight loss, colon shortening, disease activity index (DAI), and histopathological scores of colon tissues in colitis mice, suggesting that LBP could protect against IBD. Besides, LBP decreased the number of M1 macrophages and the protein level of Nitric oxide synthase 2(NOS2) as a marker of M1 macrophages and enhanced the number of M2 macrophages and the protein level of Arginase 1(Arg-1) as a marker of M2 macrophages in colon tissues from mice with colitis, suggesting that LBP may protect against IBD by regulating macrophage polarization. Next, the mechanistic studies in RAW264.7 cells showed that LBP inhibited M1-like phenotype by inhibiting the phosphorylation of STAT1, and promoted M2-like phenotype by promoting the phosphorylation of STAT6. Finally, immunofluorescence double-staining results of colon tissues showed that LBP regulated STAT1 and STAT6 pathways in vivo. The results in the study demonstrated that LBP could protect against IBD by regulating macrophage polarization through the STAT1 and STAT6 pathways.
Collapse
Affiliation(s)
- Juan Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huiying Gao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yuan Xie
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Peng Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yu Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Chunlin Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xin Ma
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yuwen Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qinwen Mao
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Haibin Xia, ,
| |
Collapse
|
45
|
Lim JS, Kim CR, Shin KS, Park HJ, Yoon TJ. Red Ginseng Extract and γ-Aminobutyric Acid Synergistically Enhance Immunity Against Cancer Cells and Antitumor Metastasis Activity in Mice. J Med Food 2023; 26:27-35. [PMID: 36576794 DOI: 10.1089/jmf.2022.k.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The effects of combined administration of red ginseng (RG) extracts and gamma-aminobutyric acid (GABA) on immunostimulatory activity and tumor metastasis inhibition were investigated in mice. For the immunostimulatory activity, splenocyte proliferation, natural killer (NK) cell activity, including the production of granzyme B (GrB) and interferon gamma (IFN-γ), and serum level of cytokine such as IFN-γ, interleukin (IL)-17, and IL-21 were assessed. Peyer's patch cells obtained from mice administered with RG+GABA were cultured, and the cytokine level in the culture supernatant and bone marrow (BM) cell proliferation activity were examined. The proliferative activity of splenocytes was significantly higher in the RG-GABA treatment group than in RG or GABA alone (P < .05). In the experimental tumor metastasis model, oral administration of RG+GABA showed a higher antitumor metastatic effect compared to that of RG or GABA alone. Oral administration of RG+GABA significantly augmented NK cell-mediated cytotoxicity against YAC-1 tumor cells. In addition, the production of GrB and IFN-γ was stimulated in the culture supernatant of NK cells and YAC-1 cells. Serum concentrations of IFN-γ, IL-17, and IL-21 in mice with RG+GABA were significantly higher compared to the corresponding blood levels in mice administered with RG or GABA alone. The RG+GABA group showed significant BM cell proliferation and increased production of IL-6 and granulocyte-macrophage colony-stimulating factor compared to that in the monotherapy groups. Therefore, RG may have a synergistic effect with GABA for enhancing the host defense system such as BM proliferation and NK cell activity in a tumor metastasis model.
Collapse
Affiliation(s)
- Jung Sik Lim
- Department of Food and Nutrition, Yuhan University, Buchoen, Korea
| | - Chae Rim Kim
- Department of Food and Nutrition, Yuhan University, Buchoen, Korea.,DoGenBio Co., Seoul, Korea
| | - Kwang Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Yeongtong-gu, Korea
| | - Hee Jung Park
- Department of Food and Nutrition, Sangmyung University, Seoul, Korea
| | | |
Collapse
|
46
|
Wang M, Li Y, Su J, Bai J, Zhao Z, Sun Z. Protective effects of 4‐geranyloxy‐2,6‐dihydroxybenzophenonel on
DSS
‐induced ulcerative colitis in mice via regulation of
cAMP
/
PKA
/
CREB
and
NF‐κB
signaling pathways. Phytother Res 2022; 37:1330-1345. [PMID: 36428266 DOI: 10.1002/ptr.7689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/13/2022] [Accepted: 11/05/2022] [Indexed: 11/27/2022]
Abstract
Hypericum sampsonii Hance has traditionally been used to treat enteritis and diarrhea. As one of the main benzophenones isolated from H. sampsonii, 4-geranyloxy-2,6-dihydroxybenzophenonel (4-GDB) has been shown to possess anti-inflammatory effects. However, the therapeutic effect and potential mechanisms of 4-GDB in ulcerative colitis (UC) remain unclear. This study aimed to evaluate the role of 4-GDB in UC using a dextran sulfate sodium-induced colitis mouse model. Intragastric administration of 4-GDB (20 mg/kg/day) for 8 days significantly attenuated colonic injury, reduced the expression of inflammatory mediators, and improved colonic barrier function in mice with colitis. Furthermore, in vivo and in vitro experiments indicated that 4-GDB could activate cAMP/PKA/CREB and inhibit the NF-κB pathway. Collectively, 4-GDB may be a potential agent for treating UC by regulating the cAMP/PKA/CREB and NF-κB pathways.
Collapse
Affiliation(s)
- Mingqiang Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| | - Yanzhen Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| | - Jianhui Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| | - Jingyan Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhanghua Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
47
|
Li Y, Law HKW. Deciphering the role of autophagy in the immunopathogenesis of inflammatory bowel disease. Front Pharmacol 2022; 13:1070184. [DOI: 10.3389/fphar.2022.1070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a typical immune-mediated chronic inflammatory disorder. Following the industrialization and changes in lifestyle, the incidence of IBD in the world is rising, which makes health concerns and heavy burdens all over the world. However, the pathogenesis of IBD remains unclear, and the current understanding of the pathogenesis involves dysregulation of mucosal immunity, gut microbiome dysbiosis, and gut barrier defect based on genetic susceptibility and environmental triggers. In recent years, autophagy has emerged as a key mechanism in IBD development and progression because Genome-Wide Association Study revealed the complex interactions of autophagy in IBD, especially immunopathogenesis. Besides, autophagy markers are also suggested to be potential biomarkers and target treatment in IBD. This review summarizes the autophagy-related genes regulating immune response in IBD. Furthermore, we explore the evolving evidence that autophagy interacts with intestinal epithelial and immune cells to contribute to the inflammatory changes in IBD. Finally, we discuss how novel discovery could further advance our understanding of the role of autophagy and inform novel therapeutic strategies in IBD.
Collapse
|
48
|
Fonseca S, Carvalho AL, Miquel-Clopés A, Jones EJ, Juodeikis R, Stentz R, Carding SR. Extracellular vesicles produced by the human gut commensal bacterium Bacteroides thetaiotaomicron elicit anti-inflammatory responses from innate immune cells. Front Microbiol 2022; 13:1050271. [PMID: 36439842 PMCID: PMC9684339 DOI: 10.3389/fmicb.2022.1050271] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 07/24/2023] Open
Abstract
Bacterial extracellular vesicles (BEVs) produced by gut commensal bacteria have been proposed to play an important role in maintaining host homeostasis via interactions with the immune system. Details of the mediators and pathways of BEV-immune cell interactions are however incomplete. In this study, we provide evidence for the anti-inflammatory and immunomodulatory properties of extracellular vesicles produced by the prominent human gut commensal bacterium Bacteroides thetaiotaomicron (Bt BEVs) and identify the molecular mechanisms underlying their interaction with innate immune cells. Administration of Bt BEVs to mice treated with colitis-inducing dextran sodium sulfate (DSS) ameliorates the symptoms of intestinal inflammation, improving survival rate and reducing weight loss and disease activity index scores, in association with upregulation of IL-10 production in colonic tissue and in splenocytes. Pre-treatment (conditioning) of murine bone marrow derived monocytes (BMDM) with Bt BEVs resulted in higher ratio of IL-10/TNFα production after an LPS challenge when compared to LPS pre-conditioned or non-conditioned BMDM. Using the THP-1 monocytic cell line the interactions between Bt BEVs and monocytes/macrophages were shown to be mediated primarily by TLR2. Histone (H3K4me1) methylation analysis showed that Bt BEVs induced epigenetic reprogramming which persisted after infectious challenge, as revealed by increased levels of H3K4me1 in Bt BEV-conditioned LPS-challenged BMDM. Collectively, our findings highlight the important role of Bt BEVs in maintaining host immune homeostasis and raise the promising possibility of considering their use in immune therapies.
Collapse
Affiliation(s)
- Sonia Fonseca
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Ana L. Carvalho
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Emily J. Jones
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Rokas Juodeikis
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Régis Stentz
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Simon R. Carding
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
49
|
Michaudel C, Danne C, Agus A, Magniez A, Aucouturier A, Spatz M, Lefevre A, Kirchgesner J, Rolhion N, Wang Y, Lavelle A, Galbert C, Da Costa G, Poirier M, Lapière A, Planchais J, Nádvorník P, Illes P, Oeuvray C, Creusot L, Michel ML, Benech N, Bourrier A, Nion-Larmurier I, Landman C, Richard ML, Emond P, Seksik P, Beaugerie L, Arguello RR, Moulin D, Mani S, Dvorák Z, Bermúdez-Humarán LG, Langella P, Sokol H. Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases. Gut 2022:gutjnl-2022-327337. [PMID: 36270778 DOI: 10.1136/gutjnl-2022-327337] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.
Collapse
Affiliation(s)
- Chloé Michaudel
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Camille Danne
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Allison Agus
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Aurélie Magniez
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Anne Aucouturier
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Madeleine Spatz
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Antoine Lefevre
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France
| | - Julien Kirchgesner
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Nathalie Rolhion
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Yazhou Wang
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Aonghus Lavelle
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Chloé Galbert
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Gregory Da Costa
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Maxime Poirier
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Alexia Lapière
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Julien Planchais
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Petr Nádvorník
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Peter Illes
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Cyriane Oeuvray
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Laura Creusot
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
| | - Marie-Laure Michel
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Nicolas Benech
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Anne Bourrier
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Isabelle Nion-Larmurier
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Cecilia Landman
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Patrick Emond
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France.,CHRU Tours, Medical Biology Center, Tours, France
| | - Philippe Seksik
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Laurent Beaugerie
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| | - Rafael Rose Arguello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - David Moulin
- CNRS, IMoPA, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sridhar Mani
- Molecular Pharmacology, Genetics and Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Zdenek Dvorák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Luis G Bermúdez-Humarán
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Philippe Langella
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Harry Sokol
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis institute, Jouy-en-Josas, France .,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France.,Gastroenterology department, Saint Antoine Hospital, APHP, Paris, France
| |
Collapse
|
50
|
Khalid W, Arshad MS, Ranjha MMAN, Różańska MB, Irfan S, Shafique B, Rahim MA, Khalid MZ, Abdi G, Kowalczewski PŁ. Functional constituents of plant-based foods boost immunity against acute and chronic disorders. Open Life Sci 2022; 17:1075-1093. [PMID: 36133422 PMCID: PMC9462539 DOI: 10.1515/biol-2022-0104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-based foods are becoming an increasingly frequent topic of discussion, both scientific and social, due to the dissemination of information and exchange of experiences in the media. Plant-based diets are considered beneficial for human health due to the supply of many valuable nutrients, including health-promoting compounds. Replacing meat-based foods with plant-based products will provide many valuable compounds, including antioxidants, phenolic compounds, fibers, vitamins, minerals, and some ω3 fatty acids. Due to their high nutritional and functional composition, plant-based foods are beneficial in acute and chronic diseases. This article attempts to review the literature to present the most important data on nutrients of plant-based foods that can then help in the prevention of many diseases, such as different infections, such as coronavirus disease, pneumonia, common cold and flu, asthma, and bacterial diseases, such as bronchitis. A properly structured plant-based diet not only provides the necessary nutrients but also can help in the prevention of many diseases.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Maria Barbara Różańska
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Shafeeqa Irfan
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | | |
Collapse
|