1
|
Zhu Z, Song J, Zhang C, Zhang J, Shan Z. Rapamycin alleviates irradiation-induced parotid injury by enhancing the whole gland homeostasis. Oral Dis 2024; 30:5050-5061. [PMID: 38569076 DOI: 10.1111/odi.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVES Salivary gland injury is one of the most common complications of radiotherapy in head-and-neck cancers. This study investigated the mechanism by which rapamycin prevents irradiation (IR)-induced injury in the parotid glands. MATERIALS AND METHODS Miniature pigs either received (a) no treatment (NT), (b) IR in the right parotid gland for 5 consecutive days (IR), or intraperitoneal administration of rapamycin (Rap) 1 h prior to IR (IR + Rap). Tissues were collected at three distinct time points (24 h, 4 weeks, and 16 weeks) after IR. Histological analyses, western blot, and real-time reverse transcriptase-polymerase chain reaction were performed to explore the mechanisms of IR-induced injury in the parotid gland. RESULTS Rapamycin treatment maintained parotid salivary flow 16 weeks post-IR, preserved the number of acinar cells, and reduced parotid tissue fibrosis, as well as reduced apoptosis levels, decreased cleaved caspase-3 expression, and increased the Bcl-2/Bax ratio in the parotid glands. Autophagy marker LC3B was upregulated by rapamycin after IR, while P62 expression was downregulated. Rapamycin reduced the expression of pro-inflammatory factors and the mesenchymal tissue fibrosis following IR. CONCLUSIONS Rapamycin maintains gland homeostasis after IR by decreasing apoptosis, reducing the expression of pro-inflammatory factors, and enhancing autophagy.
Collapse
Affiliation(s)
- Zhao Zhu
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jiaxin Song
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhaochen Shan
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Demyashkin G, Parshenkov M, Koryakin S, Skovorodko P, Shchekin V, Yakimenko V, Uruskhanova Z, Ugurchieva D, Pugacheva E, Ivanov S, Shegay P, Kaprin A. Targeting Oxidative Stress: The Potential of Vitamin C in Protecting against Liver Damage after Electron Beam Therapy. Biomedicines 2024; 12:2195. [PMID: 39457507 PMCID: PMC11504655 DOI: 10.3390/biomedicines12102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Radiation-induced liver disease (RILD) is a severe complication arising from radiotherapy, particularly when treating abdominal malignancies such as hepatocellular carcinoma. The liver's critical role in systemic metabolism and its proximity to other abdominal organs make it highly susceptible to radiation-induced damage. This vulnerability significantly limits the maximum safe therapeutic dose of radiation, thereby constraining the overall efficacy of radiotherapy. Among the various modalities, electron beam therapy has gained attention due to its ability to precisely target tumors while minimizing exposure to surrounding healthy tissues. However, despite its advantages, the long-term impacts of electron beam exposure on liver tissue remain inadequately understood, particularly concerning chronic injury and fibrosis driven by sustained oxidative stress. Objectives: to investigate the molecular and cellular mechanisms underlying the radioprotective effects of vitamin C in a model of radiation-induced liver disease. Methods: Male Wistar rats (n = 120) were randomly assigned to four groups: control, fractionated local electron irradiation (30 Gy), pre-treatment with vitamin C before irradiation, and vitamin C alone. The study evaluated the effects of electron beam radiation and vitamin C on liver tissue through a comprehensive approach, including biochemical analysis of serum enzymes (ALT, AST, ALP, and bilirubin), cytokine levels (IL-1β, IL-6, IL-10, and TNF-α), and oxidative stress markers (MDA and SOD). Histological and morphometric analyses were conducted on liver tissue samples collected at 7, 30, 60, and 90 days, which involved standard staining techniques and advanced imaging, including light and electron microscopy. Gene expression of Bax, Bcl-2, and caspase-3 was analyzed using real-time PCR. Results: The present study demonstrated that fractional local electron irradiation led to significant reductions in body weight and liver mass, as well as marked increases in biochemical markers of liver damage (ALT, AST, ALP, and bilirubin), inflammatory cytokines (IL-1β, IL-6, and TNF-α), and oxidative stress markers (MDA) in the irradiated group. These changes were accompanied by substantial histopathological alterations, including hepatocyte degeneration, fibrosis, and disrupted microvascular circulation. Pre-treatment with vitamin C partially mitigated these effects, reducing the severity of the liver damage, oxidative stress, and inflammation, and preserving a more favorable balance between hepatocyte proliferation and apoptosis. Overall, the results highlight the potential protective role of vitamin C in reducing radiation-induced liver injury, although the long-term benefits require further investigation. Conclusions: The present study highlights vitamin C's potential as a radioprotective agent against electron beam-induced liver damage. It effectively reduced oxidative stress, apoptosis, and inflammation, particularly in preventing the progression of radiation-induced liver fibrosis. These findings suggest that vitamin C could enhance radiotherapy outcomes by minimizing liver damage, warranting further exploration into its broader clinical applications.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Sergey Koryakin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Polina Skovorodko
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Vladimir Shchekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Vladislav Yakimenko
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Zhanna Uruskhanova
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Dali Ugurchieva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Ekaterina Pugacheva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Sergey Ivanov
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Andrey Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, 117198 Moscow, Russia
| |
Collapse
|
3
|
Zhou M, Li TS, Abe H, Akashi H, Suzuki R, Bando Y. Expression levels of K ATP channel subunits and morphological changes in the mouse liver after exposure to radiation. World J Exp Med 2024; 14:90374. [PMID: 38948415 PMCID: PMC11212743 DOI: 10.5493/wjem.v14.i2.90374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND ATP sensitive K+ (KATP) channels are ubiquitously distributed in various of cells and tissues, including the liver. They play a role in the pathogenesis of myocardial and liver ischemia. AIM To evaluate the radiation-induced changes in the expression of KATP channel subunits in the mouse liver to understand the potential role of KATP channels in radiation injury. METHODS Adult C57BL/6 mice were randomly exposed to γ-rays at 0 Gy (control, n = 2), 0.2 Gy (n = 6), 1 Gy (n = 6), or 5 Gy (n = 6). The livers were removed 3 and 24 h after radiation exposure. Hematoxylin and eosin staining was used for morphological observation; immunohistochemical staining was applied to determine the expression of KATP channel subunits in the liver tissue. RESULTS Compared with the control group, the livers exposed to 0.2 Gy γ-ray showed an initial increase in the expression of Kir6.1 at 3 h, followed by recovery at 24 h after exposure. Exposure to a high dose of 5.0 Gy resulted in decreased expression of Kir6.1 and increased expression of SUR2B at 24 h. However, the expression of Kir6.2, SUR1, or SUR2A had no remarkable changes at 3 and 24 h after exposure to any of these doses. CONCLUSION The expression levels of Kir6.1 and SUR2B in mouse liver changed differently in response to different radiation doses, suggesting a potential role for them in radiation-induced liver injury.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroshi Abe
- Sendai Old Age Refresh Station, A Long-term Care Health Facility, Sendai 981-1105, Japan
| | - Hideo Akashi
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Ryoji Suzuki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yoshio Bando
- Department of Anatomy, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
4
|
Aziz MM, El-Sheikh MM, Mohamed MA, Abdelrahman SS, Mekkawy MH. The senomorphic impact of astaxanthin on irradiated rat spleen: STING, TLR4 and mTOR contributed pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241297342. [PMID: 39475763 PMCID: PMC11528771 DOI: 10.1177/03946320241297342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVES Exposure of spleen tissues to ionizing radiation during radiotherapy can induce cellular stress and immune-dysfunction leading to cellular senescence. INTRODUCTION The process of a cancerous development is facilitated by the accumulation of senescent cells. This justifies the incorporation of anti-senescent medications during splenic irradiation (SI). METHODS In this study senescence was induced in the spleen of male albino rats by radiation exposure (5Gy-single whole body gamma-irradiation) then after 2 weeks, oral astaxanthin regimen was started once daily in a dose of 25 mg/kg for 7 consecutive days. Concurrent control groups were carried out. RESULTS the present data reflected that irradiation provoked an increase in the oxidative stress biomarkers (nitric oxide, lipid peroxidation and total reactive oxygen species levels)and the inflammatory biomarkers (Myeloperoxidase and interleukin-6). In addition irradiation led to the over expression of stimulator of interferon genes (cGAS-STING), mammalian target of rapamycin (mTOR) and Toll-like receptor 4 (TLR4) along with the lactate dehydrogenase (LDH), cyclin-dependent kinase inhibitor 1 (p21) cyclin-dependent kinase inhibitor 2A (p16) increment with elevation of tumor suppressor protein (p53) level. However, reduced glutathione contents and catalase activity were reduced post irradiation in spleen tissues, all these changes reflecting induction of cellular senescence. Astaxanthin treatment showed an improvement in the antioxidant/oxidative stress balance, inflammatory biomarkers, histopathological examination and immunohistochemical expressions of the tested proteins in the irradiated rats. CONCLUSION the current findings offer a new insight into the senomorphic effect of astaxanthin following radiation-induced spleen senescence via STING, mTOR, and TLR4 signalling pathways.
Collapse
Affiliation(s)
- Maha M Aziz
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa M El-Sheikh
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa A Mohamed
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Sahar S Abdelrahman
- Department of Pathology, College of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mai H Mekkawy
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| |
Collapse
|
5
|
Liu P, Li H, Xu H, Gong J, Jiang M, Xu Z, Shi J. Aggravated hepatic fibrosis induced by phenylalanine and tyrosine was ameliorated by chitooligosaccharides supplementation. iScience 2023; 26:107754. [PMID: 37731617 PMCID: PMC10507131 DOI: 10.1016/j.isci.2023.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/21/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Hepatic fibrosis is a classic pathological manifestation of metabolic chronic hepatopathy. The pathological process might either gradually deteriorate into cirrhosis and ultimately liver cancer with inappropriate nutrition supply, or be slowed down by several multifunctional nutrients, alternatively. Herein, we found diet with excessive phenylalanine (Phe) and tyrosine (Tyr) exacerbated hepatic fibrosis symptoms of liver dysfunction and gut microflora dysbiosis in mice. Chitooligosaccharides (COS) could ameliorate hepatic fibrosis with the regulation of amino acid metabolism by downregulating the mTORC1 pathway, especially that of Phe and Tyr, and also with the alleviation of the dysbiosis of gut microbiota, simultaneously. Conclusively, this work presents new insight into the role of Phe and Tyr in the pathologic process of hepatic fibrosis, while revealing the effectiveness and molecular mechanism of COS in improving hepatic fibrosis from the perspective of metabolites.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongyu Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jinsong Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Yang F, Wan Y, Shen X, Wu Y, Xu L, Meng J, Wang J, Liu Z, Chen J, Lu D, Wen X, Zheng S, Niu T, Xu X. Application of multi-modality MRI-based radiomics in the pre-treatment prediction of RPS6K expression in hepatocellular carcinoma. MOLECULAR BIOMEDICINE 2023; 4:22. [PMID: 37482600 PMCID: PMC10363521 DOI: 10.1186/s43556-023-00133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/20/2023] [Indexed: 07/25/2023] Open
Abstract
In this study, we aim to develop and validate a radiomics model for pretreatment prediction of RPS6K expression in hepatocellular carcinoma (HCC) patients, thus helping clinical decision-making of mTOR-inhibitor (mTORi) therapy. We retrospectively enrolled 147 HCC patients, who underwent curative hepatic resection at First Affiliated Hospital Zhejiang University School of Medicine. RPS6K expression was determined with immunohistochemistry staining. Patients were randomly split into training or validation cohorts on a 7:3 ratio. Radiomics features were extracted from T2-weighted and diffusion-weighted images. Machine learning algorithms including multiple logistic regression (MLR), supporting vector machine (SVM), random forest (RF), and artificial neural network (ANN) were applied to construct the predictive model. A nomogram was further built to visualize the possibility of RPS6K expression. The area under the receiver operating characteristic (AUC) was used to evaluate the performance of diagnostic models. 174 radiomics features were confirmed correlated with RPS6K expression. Amongst all built models, the ANN-based hybrid model exhibited best predictive ability with AUC of 0.887 and 0.826 in training and validation cohorts. ALB was identified as the key clinical index, and the nomogram displayed further improved ability with AUC of 0.917 and 0.845. In this study, we proved MRI-based radiomics model and nomogram can accurately predict RPS6K expression non-invasively, thus providing help for clinical decision making for mTORi therapy.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yidong Wan
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Xiaoyong Shen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, China
| | - Yichao Wu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lei Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Jinwen Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jianguo Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhikun Liu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jun Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xue Wen
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan Health Hangzhou Hospital, Hangzhou, 310004, Zhejiang, China
| | - Tianye Niu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| |
Collapse
|
7
|
Abdelrahman SA, Abdelfatah MM, Keshta AT. Rapamycin-filgrastim combination therapy ameliorates portal hypertension-induced splenomegaly: Role of β actin and S100A9 proteins modulation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:732-744. [PMID: 35949314 PMCID: PMC9320204 DOI: 10.22038/ijbms.2022.64034.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/07/2022] [Indexed: 11/06/2022]
Abstract
Objectives Thioacetamide (TAA) was administered to induce an animal model of liver disease with secondary splenomegaly to assess the mechanisms underlying the effects of rapamycin and filgrastim when taken separately or in combination on the biochemical and histopathological aspects of the liver and spleen. Materials and Methods Thirty adult male albino rats were divided into five groups (control, TAA-treated group, TAA+rapamycin, TAA+filgrastim, and TAA+rapamycin+filgrastim group). We measured relative liver and spleen weights, serum levels of alanine transaminase (ALT), aspartate transaminase (AST), and albumin. Molecular docking modeling and histopathological examination of liver and spleen sections with hematoxylin and eosin and Masson trichrome staining with immunohistochemical detection of splenic CD3 and CD20 lymphocytes, S100A9 and β actin antibodies were detected. Morphometric and statistical analyses of the results were performed. Results TAA administration altered the histological structure of the liver and spleen and impaired liver function. It increased the expression of splenic CD3, CD20 lymphocytes, and S100A9 while diminishing the expression of β actin. Each of rapamycin and filgrastim, when administered separately, improved liver and spleen indices and liver function, but rapamycin did not affect the albumin level. They lowered splenic B and T lymphocyte levels. Expression levels of S100A9 showed down-regulation while β actin levels were up-regulated when compared with TAA. Combination therapy improved liver and spleen tissue pathology and significantly ameliorated the expression of splenic lymphocytes through regulation of S100A9 and β actin expression. Conclusion The synergistic effect of combination therapy was dependent on the regulation of splenic S100A9 and β actin levels.
Collapse
Affiliation(s)
- Shaimaa A. Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt,Corresponding author: Shaimaa A. Abdelrahman. Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Mohammed M. Abdelfatah
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Akaber T. Keshta
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Yang J, Xu R, Luan Y, Fan H, Yang S, Liu J, Zeng H, Shao L. Rapamycin Ameliorates Radiation-Induced Testis Damage in Mice. Front Cell Dev Biol 2022; 10:783884. [PMID: 35547814 PMCID: PMC9081527 DOI: 10.3389/fcell.2022.783884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Male infertility is an important problem in human and animal reproduction. The testis is the core of male reproduction, which is very sensitive to radiation. The decline of male reproductive ability is a common trend in the world. Radiation is a physical factor leading to abnormal male reproductive function. To investigate the potential mechanisms of testicular damage induced by radiation and explore effective strategies to alleviate radiation-induced testis injury, C57BL/6 mice were irradiated with 8.0 Gy of X-ray irradiation. Testis and epididymis were collected at days 1, 3, and 7 after radiation exposure to analyze spermatogonia and sperm function. The results showed that radiation significantly destroyed testicular structure and reduced the numbers of spermatogonia. These were associated with mTORC1 signaling activation, decreased cellular proliferation and increased apoptotic cells in the irradiated testis. Rapamycin significantly blocked mTORC1 signaling pathway in the irradiated testis. Inhibition of mTORC1 signaling pathway by rapamycin treatment after radiation could significantly improve cell proliferation in testis and alleviate radiation-induced testicular injury after radiation exposure. Rapamycin treatment benefited cell survival in testis to maintain spermatogenesis cycle at 35 days after irradiation. These findings imply that rapamycin treatment can accelerate testis recovery under radiation condition through inhibiting mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Juan Yang
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Rui Xu
- Department of Blood Transfusion, Affiliated Hospital of Chengde Medical College, Chengde, China
- School of Basic Medicine, Nanchang University, Nanchang, China
| | - Yingying Luan
- School of Basic Medicine, Nanchang University, Nanchang, China
| | - Hancheng Fan
- School of Basic Medicine, Nanchang University, Nanchang, China
| | - Shuo Yang
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Jun Liu
- The Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huihong Zeng
- School of Basic Medicine, Nanchang University, Nanchang, China
| | - Lijian Shao
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
- *Correspondence: Lijian Shao,
| |
Collapse
|
9
|
Erfan OS, Sonpol HMA, Abd El-Kader M. Protective effect of rapamycin against acrylamide-induced hepatotoxicity: The associations between autophagy, apoptosis, and necroptosis. Anat Rec (Hoboken) 2021; 304:1984-1998. [PMID: 33480149 DOI: 10.1002/ar.24587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/28/2022]
Abstract
Acrylamide (ACRL) was demonstrated to induce hepatotoxicity and programmed cell death (PCD). Rapamycin (RAPA)-induced autophagy had been reported to limit the progression of hepatocellular injury in experimental models. This research was designed to study two death pathways involved in ACRL-induced hepatotoxicity and the modulating effect of RAPA on the resulting hepatic injury. Thirty-six adult male rats were divided into three groups: control group, ACRL-treated group (20 mg kg/day), and the last group co-treated with ACRL plus RAPA (0.5 mg kg/day). Drugs were administered for 21 days via oral gavage. Blood samples were collected to assess alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Livers were dissected; parts were used for detection of superoxide dismutase (SOD) and malondialdehyde (MDA) tissue levels. Other parts were processed for hematoxylin and eosin, Masson's trichrome staining, immunostaining for microtubule-associated proteins 1A/1B light chain 3B (LC3), ubiquitin-binding protein (p62), caspase-3, and receptor-interacting protein kinase 1 (RIPK1). ACRL induced a significant elevation in ALT, AST, MDA levels, and reduction in the SOD level. ACRL also induced hepatocellular injury, fibrosis, and defective autophagy indicated by elevation of LC3 and p62 and increased p62/LC3 ratio. Moreover, it increased the apoptotic (caspase-3) and necroptotic (RIPK1) markers expression. RAPA significantly reduced liver enzymes, oxidative stress, fibrosis, and improved liver histology. Moreover, RAPA decreased p62/LC3 ratio indicated enhanced autophagy, and significantly reduced caspase-3 and RIPK1 expression. In conclusion, RAPA maintained autophagic activity which may save the hepatocytes from PCD and enhance cell viability.
Collapse
Affiliation(s)
- Omnia S Erfan
- Anatomy and embryology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hany M A Sonpol
- Anatomy and embryology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Basic medical sciences department, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Marwa Abd El-Kader
- Anatomy and embryology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Wang H, Li X, Peng R, Wang Y, Wang J. Stereotactic ablative radiotherapy for colorectal cancer liver metastasis. Semin Cancer Biol 2020; 71:21-32. [PMID: 32629077 DOI: 10.1016/j.semcancer.2020.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
Survival improvement of colorectal liver metastasis (CRLM) benefits from systemic therapy and metastasis-directed local therapy. Stereotactic ablative body radiotherapy (SABR), as a new efficient metastasis-directed local therapy with a systematic impact, plays a vital role in CRLM multidisciplinary treatment. SABR leads to a dramatic immunological change in the tumor microenvironment (TME) via differential activation of cytoprotective and cytotoxic pathways in malignant and non-malignant cells, in addition to direct tumor cell death. The synergy of SABR and immunotherapy might increase the abscopal response rate of out-field lesions by targeting different steps of the immune-mediated response, in addition to direct intratumoral cell death. The clinical treatment and efficacy of SABR, its influence on TME, and potential molecular underpinnings of which are the topic of this review.
Collapse
Affiliation(s)
- Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Xuemin Li
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Ran Peng
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yuxia Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|