1
|
Parrales V, Arcile G, Laserre L, Normant S, Le Goff G, Da Costa Noble C, Ouazzani J, Callizot N, Haïk S, Rabhi C, Bizat N. Neuroprotective Effect of Withaferin Derivatives toward MPP + and 6-OHDA Toxicity to Dopaminergic Neurons. ACS Chem Neurosci 2025; 16:802-817. [PMID: 39946298 DOI: 10.1021/acschemneuro.4c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease is a neurodegenerative proteinopathy that primarily affects mesencephalic dopaminergic neurons. This dopaminergic depletion can be phenotypically reproduced in various experimental models through the administration of two neurotoxins: N-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA). The mechanisms underlying the cell death processes induced by these toxins remain a subject of debate. In this context, studies suggest that oxidative-stress-related processes may contribute to the dysfunction and death of dopaminergic neurons. Therefore, investigating pharmacological compounds that can counteract these processes remains crucial for developing therapeutic strategies targeting these neuropathological mechanisms. Withania somnifera (L.) Dunal, commonly known as ashwagandha, is a plant whose roots are used in Ayurvedic medicine to treat various ailments, including those affecting the central nervous system. The active compound Withaferin-A (WFA), a steroid lactone from the withanolide group, is reported to possess antioxidant properties. In this study, we explored the potential neuroprotective effects of WFA and two of its molecular derivatives, cr-591 and cr-777, which contain, respectively, an additional cysteine or glutathione chemical group, known for their antiradical properties. We demonstrated that WFA and its two derivatives, cr-591 and cr-777, protect the integrity and function of dopaminergic neurons exposed to the neurotoxins MPP+ and 6-OHDA both in vitro, using primary mesencephalic neuron cultures from rodents, and in vivo, using the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Valeria Parrales
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Guillaume Arcile
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Louise Laserre
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
| | - Sébastien Normant
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | | | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Noelle Callizot
- Neuro-Sys, 410 Chemin Départemental 60, Gardanne 13120, France
| | - Stéphane Haïk
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- AP-HP, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, University Hospital Pitié-Salpêtrière, Paris 75013, France
| | - Chérif Rabhi
- Institut de Chimie des Substances Naturelles (ICSN, UPR2301), University Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
- Laboratoire Ethnodyne, 151 Boulevard Haussmann, Paris 75008, France
| | - Nicolas Bizat
- Paris Brain Institute, Inserm U1127, CNRS Sorbonne University, Hospital Pitié-Salpêtrière, UMR7225, Paris 75013, France
- Faculté de Pharmacie de Paris, Paris University, 4 Avenue de l'Observatoire, Paris 75006, France
| |
Collapse
|
2
|
Coope OC, Reales Salguero A, Spurr T, Páez Calvente A, Domenech Farre A, Jordán Fisas E, Lloyd B, Gooderick J, Abad Sangrà M, Roman‐Viñas B. Effects of Root Extract of Ashwagandha (Withania somnifera) on Perception of Recovery and Muscle Strength in Female Athletes. Eur J Sport Sci 2025; 25:e12265. [PMID: 39954269 PMCID: PMC11829707 DOI: 10.1002/ejsc.12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Ashwagandha is a supplement with the potential to improve exercise performance. However, research on its impact on female athletes remains limited. This study investigates the effects of ashwagandha on exercise recovery and muscle strength in professional female athletes, addressing a gap in understanding its role in this underrepresented population. Female footballers were randomly assigned to a 600 mg/day ashwagandha root extract group (ASH, n = 15; age: 26.0 ± 4.9 years, height: 1.66 ± 0.1 m, body mass: 61.5 ± 7.5 kg, and career: 15.2 ± 7.4 years) or a placebo group (PLA, n = 15; age: 23.5 ± 5.5 years, height: 1.66 ± 0.1 m, body mass: 61.5 ± 6.0 kg, and career: 13.1 ± 4.9 years). Recovery was assessed with total quality recovery (TQR), Hooper Index (HI) and rate of perceived exertion (RPE). Strength was assessed by hand grip, medicine ball throw (MBT), countermovement jump (CMJ) and peak power. Dietary intake was recorded prior to baseline measurements. Repeated measures ANOVA, Bonferroni test, independent t-tests and ANCOVA were used in the analysis. A significant group × time interaction effect was found for TQR (p = 0.026), with the post-hoc analysis revealing a significant difference between ASH and PLA at 28 days (p = 0.039). Perceived sleep quality from HI improved significantly in ASH compared to PLA (p = 0.038), with a significant change at 14 days. The ANCOVA analysis highlighted the significant influence of carbohydrate intake on hand grip strength (p = 0.005), MBT (p < 0.001) and body mass (p < 0.001). A dosage of 600 mg of ashwagandha root extract for 28 days may improve TQR and enhance perceived sleep quality in female footballers. Future research should investigate the optimal dosage and test across a broader range of athletic populations. Trials Registration: The trial is registered on ClinicalTrials.gov with the ID NCT06264986.
Collapse
Affiliation(s)
- Olivia C. Coope
- Blanquerna School of Health SciencesRamon Llull UniversityBarcelonaSpain
| | | | - Tilly Spurr
- Institute of SportUniversity of ChichesterChichesterUK
| | | | | | | | - Beth Lloyd
- Faculty of Social and Behavioural SciencesLeiden UniversityLeidenNetherlands
| | - Julie Gooderick
- School of Sport and Exercise Sciences, University of KentCanterburyUK
| | - Maria Abad Sangrà
- Faculty of Pharmacy and Food SciencesUniversity of BarcelonaBarcelonaSpain
| | - Blanca Roman‐Viñas
- Blanquerna School of Health SciencesRamon Llull UniversityBarcelonaSpain
- Faculty of Psychology, Education and Sport SciencesRamon Llull UniversityBarcelonaSpain
| |
Collapse
|
3
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman D, Karaman R. Promising Natural Remedies for Alzheimer's Disease Therapy. Molecules 2025; 30:922. [PMID: 40005231 PMCID: PMC11858286 DOI: 10.3390/molecules30040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the intricacies of Alzheimer's disease (AD), its origins, and the potential advantages of various herbal extracts and natural compounds for enhancing memory and cognitive performance. Future studies into AD treatments are encouraged by the review's demonstration of the effectiveness of phytoconstituents that were extracted from a number of plants. In addition to having many beneficial effects, such as improved cholinergic and cognitive function, herbal medicines are also much less harmful, more readily available, and easier to use than other treatments. They also pass without difficulty through the blood-brain barrier (BBB). This study focused on natural substances and their effects on AD by using academic databases to identify peer-reviewed studies published between 2015 and 2024. According to the literature review, 66 phytoconstituents that were isolated from 21 distinct plants have shown efficacy, which could be encouraging for future research on AD therapies. Since most clinical trials produce contradictory results, the study suggests that larger-scale studies with longer treatment durations are necessary to validate or refute the therapeutic efficacy of herbal AD treatments.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, West Bank, Ramallah 00972, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, West Bank, Ramallah 00972, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Donia Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
4
|
Nie HJ, Fu YJ, Long S, Wang JY, Zhao WS, Zhai LH, Yang YL, Tan MJ, Hu H, Chen XH. Chemoproteomics reveals proteome-wide covalent and non-covalent targets of withaferin A. Acta Pharmacol Sin 2025:10.1038/s41401-024-01468-5. [PMID: 39900821 DOI: 10.1038/s41401-024-01468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/22/2024] [Indexed: 02/05/2025]
Abstract
Withaferin A (WA), a natural product used in traditional medicine, has recently garnered attention because of its diverse pharmacological effects. However, the direct targets responsible for these effects remain elusive. The discovery of targets is usually serendipitous and research has predominantly concentrated on covalent interactions, overlooking non-covalent targets. The unbiased and proteome-wide mapping of WA-interacting proteins in living cells remains largely unexplored. We have developed a chemical proteomics platform that enabled profiling of the covalent/non-covalent interactome and target occupancy in disease-related cells, which was used to reveal the landscape of the targets of WA in triple-negative breast cancer (TNBC) cells. Analysis of the discovered high-occupancy targets suggested that WA was substantially involved in the RNA metabolism pathway, in addition to other biological processes. Moreover, we biochemically validated a selection of previously unknown high-occupancy targets from various important biological pathways, including the non-covalent target MVK and covalent targets HNRNPF and CKAP4, which all play critical roles in TNBC. Collectively, these findings provided a target map for comprehensive understanding of the anti-TNBC activity of WA, and present WA-targetable proteins as new avenues for pharmacological intervention in TNBC. We anticipate that this platform will be applicable for the unbiased profiling of the targets of WA in various other disease-related cell models, as well as for other bioactive electrophilic natural products in different pathophysiological systems.
Collapse
Affiliation(s)
- Hui-Jun Nie
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying-Jie Fu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Shang Long
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Si Zhao
- School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lin-Hui Zhai
- School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yin-Long Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Hu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiao-Hua Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Antonelli A, Bianchi M, Fear EJ, Giorgi L, Rossi L. Management of Fibromyalgia: Novel Nutraceutical Therapies Beyond Traditional Pharmaceuticals. Nutrients 2025; 17:530. [PMID: 39940388 PMCID: PMC11820827 DOI: 10.3390/nu17030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The pathophysiology of fibromyalgia, a condition that causes chronic pain throughout the body, involves abnormal pain signaling, genetic predispositions, and abnormal neuroendocrine function, significantly impairing quality of life. Fibromyalgia is commonly characterized by musculoskeletal pain, chronic fatigue, and severe sleep alterations. Changes in the central processing of sensory input and defects in endogenous pain inhibition could be the basis of enhanced and persistent pain sensitivity in individuals with fibromyalgia. The term central sensitivity syndrome was chosen as an umbrella term for fibromyalgia and related illnesses, including myalgic encephalomyelitis/chronic fatigue syndrome, migraine, and irritable bowel syndrome. Given the substantial impact of fibromyalgia on health, there is a need for new prevention and treatment strategies, particularly those involving bioavailable nutraceuticals and/or phytochemicals. This approach is particularly important considering the adverse effects of current fibromyalgia pharmaceutical treatments, such as antidepressants and anticonvulsants, which can lead to physical dependence and tolerance. Natural products have recently been considered for the design of innovative analgesics and antinociceptive agents to manage fibromyalgia pain. Polyphenols show promise in the management of neuropathic pain and fibromyalgia, especially considering how anti-inflammatory treatments, including corticosteroids and nonsteroidal medical drugs, are effective only when inflammatory processes coexist and are not recommended as the primary treatment for fibromyalgia.
Collapse
Affiliation(s)
- Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy; (M.B.); (L.R.)
| | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy; (M.B.); (L.R.)
| | - Elizabeth Jane Fear
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy;
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy; (M.B.); (L.R.)
| |
Collapse
|
6
|
Almasri RS, Bedir AS, Al Raish SM. Comprehensive Ethnopharmacological Analysis of Medicinal Plants in the UAE: Lawsonia inermis, Nigella sativa, Ziziphus spina-christi, Allium cepa, Allium sativum, Cymbopogon schoenanthus, Matricaria aurea, Phoenix dactylifera, Portulaca oleracea, Reichardia tingitana, Salvadora persica, Solanum lycopersicum, Trigonella foenum-graecum, Withania somnifera, and Ziziphus lotus. Nutrients 2025; 17:411. [PMID: 39940269 PMCID: PMC11820108 DOI: 10.3390/nu17030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
The United Arab Emirates (UAE) is home to diverse indigenous medicinal plants traditionally used for centuries. This study systematically evaluates the pharmacological and nutritional potential of key medicinal plants, including Lawsonia inermis, Nigella sativa, Ziziphus spina-christi, Allium cepa, Allium sativum, Cymbopogon schoenanthus, Matricaria aurea, Phoenix dactylifera, Portulaca oleracea, Reichardia tingitana, Salvadora persica, Solanum lycopersicum, Trigonella foenum-graecum, Withania somnifera, and Ziziphus lotus. Comprehensive literature searches were conducted using PubMed, Scopus, and Web of Science to identify studies relevant to their nutritional and pharmacological uses. The findings highlight the therapeutic roles of these plants in managing global health challenges such as gastrointestinal diseases, and antimicrobial resistance through bioactive compounds like flavonoids, polyphenols, and antioxidants. Additionally, their contributions to nutrition, including essential vitamins and minerals, are emphasized for disease prevention and health promotion. While this research focuses on the UAE, the implications are globally relevant, as many of these plants are also found in traditional medicine across Asia, Africa, and Europe. Integrating these findings into global nutritional and healthcare systems offers potential solutions for pressing public health concerns, reduces reliance on synthetic pharmaceuticals, and promotes sustainable healthcare practices. This work is a valuable reference for researchers, healthcare professionals, and policymakers, bridging traditional knowledge and modern scientific applications globally.
Collapse
Affiliation(s)
- Razan S. Almasri
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Alaa S. Bedir
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Seham M. Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
7
|
Speers AB, Lozano-Ortiz A, Soumyanath A. Quantifying Withanolides in Plasma: Pharmacokinetic Studies and Analytical Methods. Nutrients 2024; 16:3836. [PMID: 39599622 PMCID: PMC11597739 DOI: 10.3390/nu16223836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Withania somnifera (common name: ashwagandha; WS) is an Ayurvedic botanical that has become popular for its reputed effects on stress and insomnia. Research into the bioactive compounds responsible for the biological effects of WS has largely focused on withanolides, a group of steroidal lactones commonly found in the Solanaceae family. Until recently, however, it was unclear which, if any, withanolides were present in the plasma after the ingestion of WS products. The aim of this review is to summarize current knowledge regarding the plasma pharmacokinetics of withanolides found in WS and the analytical methods developed to detect them in plasma. Twenty studies (sixteen animal, four human) were identified in which isolated withanolides or withanolide-containing products were administered to animals or humans and quantified in plasma. Withanolides were commonly analyzed using reversed-phase liquid chromatography coupled to mass spectrometry. Plasma concentrations of withanolides varied significantly depending on the substance administered, withanolide dose, and route of administration. Plasma pharmacokinetics of withaferin A, withanolide A, withanolide B, withanoside IV, 12-deoxywithastramonolide, and withanone have been reported in rodents (Cmax range: 5.6-8410 ng/mL), while withaferin A, withanolide A, 12-deoxywithastramonolide, and withanoside IV pharmacokinetic parameters have been described in humans (Cmax range: 0.1-49.5 ng/mL).
Collapse
Affiliation(s)
- Alex B Speers
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (A.L.-O.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Axel Lozano-Ortiz
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (A.L.-O.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA; (A.L.-O.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Mathe E, Sethoga L, Mapfumari S, Adeniran O, Mokgotho P, Shai J, Gololo S. Phytochemical Screening and Characterization of Volatile Compounds from Three Medicinal Plants with Reported Anticancer Properties Using GC-MS. Life (Basel) 2024; 14:1375. [PMID: 39598174 PMCID: PMC11595905 DOI: 10.3390/life14111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Annona senegalensis pers, Sutherlandia frutescens (L.), and Withania somnifera (L.) are abundant plants and widely distributed in the Limpopo, Gauteng, Kwazulu-Natal, North West and Mpumalanga provinces in South Africa. The three plants are among those used by traditional healers and herbalists in South Africa for the treatment of a variety of diseases, including cancer. The current study aimed at the phytochemical screening and characterization of volatile compounds from the three medicinal plants using GC-MS. The methanol leaf extracts were subjected to phytochemical screening using standard chemical tests to detect the presence of different classes of compounds. Volatile compounds were detected by GC-MS analysis, and detected compounds were identified by comparing the MS spectral data with those of compounds deposited in the NIST Library (NIST08). Phytochemical screening indicated the presence of different secondary metabolites such as alkaloids, quinones, steroids, cardiac glycosides, coumarins, and terpenoids in all plants. GC-MS chromatograms allowed the detection and identification of 19 volatile compounds among the three plants with known bioactivities that are important in the management of life-threatening diseases such as cancer and diabetes. The results confirm the leaves of Annona senegalensis, Sutherlandia frutescens, and Withania somnifera as sources of important phytochemicals and therefore justify their use for the treatment of various diseases by traditional healers.
Collapse
Affiliation(s)
- Emelinah Mathe
- Department of Biochemistry and Biotechnology, School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (O.A.); (S.G.)
| | - Lesibana Sethoga
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa;
| | - Sipho Mapfumari
- Department of Biochemistry and Biotechnology, School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (O.A.); (S.G.)
| | - Oluwaseyefunmi Adeniran
- Department of Biochemistry and Biotechnology, School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (O.A.); (S.G.)
| | - Phineas Mokgotho
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (P.M.); (J.S.)
| | - Jerry Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria 0183, South Africa; (P.M.); (J.S.)
| | - Stanley Gololo
- Department of Biochemistry and Biotechnology, School of Science and Technology, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (O.A.); (S.G.)
| |
Collapse
|
9
|
Singh N, Singh AK. Phytoconstituents of Withania somnifera (L.) Dunal (Ashwagandha) unveiled potential cerebroside sulfotransferase inhibitors: insight through virtual screening, molecular dynamics, toxicity, and reverse pharmacophore analysis. J Biol Eng 2024; 18:59. [PMID: 39444022 PMCID: PMC11515467 DOI: 10.1186/s13036-024-00456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Cerebroside sulfotransferase (CST) is considered as therapeutic target for substrate reduction therapy (SRT) for metachromatic leukodystrophy (MLD). The present study evaluates the therapeutic potential of 57 phytoconstituents of Withania somnifera against CST. Using binding score cutoff ≤-7.0 kcal/mol, top 10 compounds were screened and after ADME and toxicity-based screening, Withasomidienone, 2,4-methylene-cholesterol, and 2,3-Didehydrosomnifericin were identified as safe and potent drug candidates for CST inhibition. Key substrate binding site residues involved in interaction were LYS82, LYS85, SER89, TYR176, PHE170, PHE177. Four steroidal Lactone-based withanolide backbone of these compounds played a critical role in stabilizing their position in the active site pocket. 100 ns molecular dynamics simulation and subsequent trajectory analysis through structural deviation and compactness, principal components, free energy landscape and correlation matrix confirmed the stability of CST-2,3-Didehydrosomnifericin complex throughout the simulation and therefore is considered as the most potent drug candidate for CST inhibition and Withasomidienone as the second most potent drug candidate. The reverse pharmacophore analysis further confirmed the specificity of these two compounds towards CST as no major cross targets were identified. Thus, identified compounds in this study strongly present their candidature for oral drug and provide route for further development of more specific CST inhibitors.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
10
|
Narayanan AK, Nagegowda DA. Biosynthesis of the triterpenoid withanolides in Withaniasomnifera. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102576. [PMID: 38878523 DOI: 10.1016/j.pbi.2024.102576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 09/14/2024]
Abstract
Ashwagandha (Withania somnifera L. Dunal) is a versatile medicinal plant of Solanaceae family, renowned for its potent therapeutic properties, due to which it is extensively used in Indian traditional systems of medicine such as Ayurveda. The medicinal properties are attributed to specialized metabolites known as withanolides, which are chemically triterpenoid steroidal lactones. Despite their significance, the biosynthetic pathway of withanolides remains poorly understood. It is hypothesized that withanolides are synthesized through the universal sterol pathway, wherein sterol precursors undergo various biochemical modifications such as hydroxylation, oxidation, cyclization, and glycosylation, yielding a diverse array of downstream withanolides and withanosides. Consequently, comprehending the biosynthetic pathway of withanolides is crucial to facilitate advancements in withanolides productivity through metabolic engineering or synthetic biology approaches. This article aims to provide an update on the efforts made toward understanding withanolides formation and regulation and highlights gaps and approaches to elucidate the withanolides biosynthesis in W. somnifera.
Collapse
Affiliation(s)
- Ananth Krishna Narayanan
- Molecular Plant Biology and Biotechnology Lab, CSIR- Central Institute of Medicinal Aromatic Plants, Research Centre, Bengaluru 560065, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR- Central Institute of Medicinal Aromatic Plants, Research Centre, Bengaluru 560065, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
11
|
Rai P, Garain T, Gupta D. Phytochemical analysis of Tinospora cordifolia and Withania somnifera and their therapeutic activities with special reference to COVID-19. World J Exp Med 2024; 14:95512. [PMID: 39312696 PMCID: PMC11372741 DOI: 10.5493/wjem.v14.i3.95512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Various important medicines make use of secondary metabolites that are produced by plants. Medicinal plants, such as Withania somnifera and Tinospora cordifolia, are rich sources of chemically active compounds and are reported to have numerous therapeutic applications. The therapeutic use of medicinal plants is widely mentioned in Ayurveda and has folkloric importance in different parts of the world. The aim of this review is to summarize the phytochemical profiles, folkloric importance, and primary pharmacological activity of W. somnifera and T. cordifolia with emphasis on their action against the novel coronavirus.
Collapse
Affiliation(s)
- Prateek Rai
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Tanya Garain
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Deepshikha Gupta
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
12
|
Shehata FA, Hamdy R, Hafez RM. Biosystematic studies of genus Withania Pauquy in Egypt. Sci Rep 2024; 14:21754. [PMID: 39294207 PMCID: PMC11410952 DOI: 10.1038/s41598-024-71500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Withania (Solanaceae, Solanoideae) is a widespread genus. Comparative macro-, micro-morphological, anatomical, and molecular features of this genus in Egypt were examined using light and scanning electron microscopy to reassess the conflicted taxonomic relationships between the two studied species. The most significant morphological differences that have been found were: the shape of the lamina, apex, anther, and stigma, and the ratio of calyx tube/lobe; anatomical examination of taxonomic interest are as follows: number of vascular bundles, presence of ears and distribution of accessory vascular bundles in petiole and shape of spongy cells, and number of lower parenchyma in the midrib region of the leaf; trichomes of both species showed no significant differences; pollen, and seed characters are of taxonomic significance in differentiation and characterization between them. Protein profiling revealed that W. somnifera has only conserved proteins, while W. obtusifolia possessed both conserved and additional proteins in their SDS-PAGE banding patterns. Eleven starts codon-targeted (ScoT) primers were applied and produced 96 amplicons with an average of 70.83% polymorphism/primer. W. obtusifolia generated more polymorphic bands and maintained monomorphic ones. SDS-PAGE disclosed that both Withania species were 50% related. While Scot-Dendrogram revealed that both Withania species were poorly related. So, protein and molecular analyses showed considerable genetic variations between these two species.
Collapse
Affiliation(s)
- Faiza A Shehata
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shibin El Kom, Egypt
| | - Rim Hamdy
- Botany and Microbiology Department, FacultyofScience, Cairo University, Giza, 12613, Egypt
| | - Rehab M Hafez
- Botany and Microbiology Department, FacultyofScience, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
13
|
Mishra DN, Kumar M. Shoden promotes Relief from stress and anxiety: A randomized, double-blind, placebo-controlled study on healthy subjects with high stress levels. Heliyon 2024; 10:e36885. [PMID: 39286132 PMCID: PMC11402924 DOI: 10.1016/j.heliyon.2024.e36885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Background This randomized placebo-controlled study examined the effect of ashwagandha root and leaf extract 60 mg (AE60) and 120 mg (AE120) (35 % withanolide glycosides, Shoden) in physically healthy subjects with higher stress and anxiety. It is hypothesized that a low dose extract with higher withanolide glycosides would decrease cortisol and increase testosterone thereby reducing stress and anxiety. Methods This parallel arm study recruited 60 subjects with an allocation ratio of 1:1:1 (AE60:AE120: placebo) for 60 days. Subjects who fulfilled the DSM -IV Criteria for generalized anxiety disorder (GAD) with a Hamilton Anxiety Rating Scale, HAMA score >20, and morning serum cortisol >25 mcg/dl were included in the study. The participants did not have depression symptoms and were screened using Montgomery-Asberg Depression Rating Scale. The primary outcome measure was HAMA and the secondary measures were morning serum cortisol, testosterone, perceived stress scale (PSS), clinical global impressions scale (CGI), and patient's global impression of change scale (PGIC). Results After 60 days, significant differences were observed between the treatment groups and placebo. HAMA scores decreased by 59 % in both AE60 and AE120 groups compared to a negligible increase of 0.83 % in the placebo group (p < 0.0001). Morning serum cortisol levels decreased by 66 % in AE60 and 67 % in AE120, compared to a 2.22 % change in the placebo group (p < 0.0001). Testosterone levels increased by 22 % in AE60 and 33 % in AE120, compared to a 4 % increase in males in the placebo group (p < 0.0001). PSS scores decreased by 53 % in AE60 and 62 % in AE120, CGI-severity scores decreased by 72 % in AE60 and 68 % in AE120, and PGIC scores improved by 60 % in both AE60 and AE120 groups, all showing significant differences compared to the placebo group. Conclusion Ashwagandha extract with 35 % withanolide glycosides (Shoden) at 60 mg and 120 mg was significantly effective in reduced morning serum cortisol and increasing total testosterone. Therefore, it can be recommended for reducing high stress and anxiety. Clinical trial registration The study was prospectively registered in Clinical Trial Registry, India with registration number CTRI/2022/04/042133 [Registered on: April 25, 2022].
Collapse
Affiliation(s)
- Deo Nidhi Mishra
- Department of Internal Medicine, Nirmal Hospital, Jhansi, Uttar Pradesh, 284128, India
| | - Manoj Kumar
- Department of Internal Medicine, Nirmal Hospital, Jhansi, Uttar Pradesh, 284128, India
| |
Collapse
|
14
|
Rodriguez-Sánchez AJ, Meza-Herrera CA, De Santiago-Miramontes A, Navarrete-Molina C, Veliz-Deras FG, Ordoñez-Morales JZ, Flores-Salas JM, Marin-Tinoco RI. Circular Economy, Dairy Cow Feed Leftovers, and Withania somnifera Supplementation: Effects on Black Belly Ram's Libido, Sperm Quality, Sexual Behavior, and Hemogram Values. BIOLOGY 2024; 13:656. [PMID: 39336084 PMCID: PMC11428648 DOI: 10.3390/biology13090656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
Considering a circular economy perspective, this study evaluates the possible effect of targeted short-term supplementation with Withania somnifera L. (WS; Ashwagandha) on ram's seminal quality, socio-sexual behaviors, and blood constituents. Black Belly rams (n = 20) received a basal diet comprising feed-leftovers from dairy cows in the north-arid Mexico (i.e., Comarca Lagunera CL). The experimental units, with proven libido and fertility, were homogeneous in terms of age (3.41 ± 0.21 yr.), live weight (LW; 53.8 ± 3.3 kg), body condition (BC; 2.96 ± 0.01 units), initial sperm concentration (2387 ± 804 × 106), and viability (23.9 ± 15.6%). Rams were randomly assigned during the transition reproductive period (i.e., May to Jun; 25° NL) to three treatment groups: non-supplemented control group (CONT; n = 6), low WS-supplemented (LWS; i.e., 100 mg kg LW-1 d-1 × 40 d; n = 7), and high-WS-supplemented (HWS; i.e., 200 mg kg LW-1 d-1 × 40 d; n = 7). The basal leftover diet was offered twice daily (0700 and 1600 h); the experimental period (EP) lasted 47 d. No differences (p > 0.05) among treatments occurred regarding LW and BCS at the onset of the EP. Whereas the greater scrotal circumference (SCRC, cm) arose in the LWS and CONT rams, an increased ejaculated volume (VOLEJA, mL) occurred in the WS-rams. A total of 5/9 (i.e., 55%) appetitive and 3/3 (i.e., 100%) consummatory sexual behaviors favored (p < 0.05) the WS-rams, particularly the HWS rams, towards the final EP. The same was true (p < 0.05) regarding the hemogram variables white blood cell count (×109 cells L-1), hemoglobin concentration (g dL-1), and medium corpuscular volume (fL). This study, based on a rethink-reuse-reduce enquiry approach, enabled connectedness between two noteworthy animal systems in the CL: dairy cows and meat sheep schemes. Certainly, the use of dairy cow feed-leftovers aligned with the short-term supplementation with WS promoted enhanced testicular function, augmented seminal volume, and an increased sexual behavior in Black Belly rams in northern Mexico. Finally, while our research outcomes should enhance not only the resilience and sustainability of sheep production and the well-being of sheep-producers and their families, it may also embrace clinical translational applications.
Collapse
Affiliation(s)
- Andrés J. Rodriguez-Sánchez
- Programa de Posgrado en Ciencias en Producción Agropecuaria, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreon 27054, Mexico
| | - Cesar A. Meza-Herrera
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Mapimí 35230, Mexico
| | - Angeles De Santiago-Miramontes
- Programa de Posgrado en Ciencias en Producción Agropecuaria, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreon 27054, Mexico
| | - Cayetano Navarrete-Molina
- Departmento de Química Area Tecnología Ambiental, Universidad Tecnológica de Rodeo, Rodeo 35760, Mexico; (C.N.-M.)
| | - Francisco G. Veliz-Deras
- Programa de Posgrado en Ciencias en Producción Agropecuaria, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreon 27054, Mexico
| | - Julieta Z. Ordoñez-Morales
- Programa de Posgrado en Ciencias en Producción Agropecuaria, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreon 27054, Mexico
| | - Jessica M. Flores-Salas
- Programa de Posgrado en Ciencias en Producción Agropecuaria, Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreon 27054, Mexico
| | - Ruben I. Marin-Tinoco
- Departmento de Química Area Tecnología Ambiental, Universidad Tecnológica de Rodeo, Rodeo 35760, Mexico; (C.N.-M.)
- Hospital Rural no. 162 Instituto Mexicano del Seguro Social, Rodeo 35760, Mexico
| |
Collapse
|
15
|
Bailly C. Covalent binding of withanolides to cysteines of protein targets. Biochem Pharmacol 2024; 226:116405. [PMID: 38969301 DOI: 10.1016/j.bcp.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Withanolides represent an important category of natural products with a steroidal lactone core. Many of them contain an α,β-unsaturated carbonyl moiety with a high reactivity toward sulfhydryl groups, including protein cysteine thiols. Different withanolides endowed with marked antitumor and anti-inflammatory have been shown to form stable covalent complexes with exposed cysteines present in the active site of oncogenic kinases (BTK, IKKβ, Zap70), metabolism enzymes (Prdx-1/6, Pin1, PHGDH), transcription factors (Nrf2, NFκB, C/EBPβ) and other structural and signaling molecules (GFAP, β-tubulin, p97, Hsp90, vimentin, Mpro, IPO5, NEMO, …). The present review analyzed the covalent complexes formed through Michael addition alkylation reactions between six major withanolides (withaferin A, physalin A, withangulatin A, 4β-hydroxywithanolide E, withanone and tubocapsanolide A) and key cysteine residues of about 20 proteins and the resulting biological effects. The covalent conjugation of the α,β-unsaturated carbonyl system of withanolides with reactive protein thiols can occur with a large set of soluble and membrane proteins. It points to a general mechanism, well described with the leading natural product withaferin A, but likely valid for most withanolides harboring a reactive (electrophilic) enone moiety susceptible to react covalently with cysteinyl residues of proteins. The multiplicity of reactive proteins should be taken into account when studying the mechanism of action of new withanolides. Proteomic and network analyses shall be implemented to capture and compare the cysteine covalent-binding map for the major withanolides, so as to identify the protein targets at the origin of their activity and/or unwanted effects. Screening of the cysteinome will help understanding the mechanism of action and designing cysteine-reactive electrophilic drug candidates.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
16
|
Tiwari DD, Thorat VM, Pakale PV, Patil S, Chavan D. Evaluation of Lipid Profile Modulation by Berberis asiatica, Withania somnifera, and Their Synergy in Type 2 Diabetic Wistar Rats. Cureus 2024; 16:e67974. [PMID: 39347326 PMCID: PMC11433459 DOI: 10.7759/cureus.67974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and hyperglycemia, leading to complications such as dyslipidemia, which increases cardiovascular risks. Current treatments for dyslipidemia often have undesirable side effects. This study aims to evaluate the effects of Berberis asiatica (BA), Withania somnifera (WS), and their combination in the ratio of 1:1 on the lipid profile in T2DM-induced Wistar rats. Additionally, the study investigates the potential synergistic effects of these two herbs. Materials and methods Mature albino Wistar rats of both sexes were employed, weighing 150-250 g. Rats were obtained from the Central Animal House of Krishna Institute of Medical Sciences and kept under standard laboratory conditions. The study was conducted per the guidelines set by the Committee for Control and Supervision of Experiments on Animals (CCSEA). T2DM was induced using streptozotocin (STZ) and nicotinamide (NIC). Thirteen groups of rats were formed, including normal control (NC), diabetic control (DC), and various treatment groups received varying dosages of BA, WS, their polyherbal combination (PHC), and the conventional medications metformin (MET) and glimepiride (GLI). Lipid profiles were measured, and the data were analyzed using one-way ANOVA, followed by the Tukey-Kramer post-hoc test. Results The study revealed that both BA and WS showed statistically significant lipid-lowering effects in diabetic rats. The BA-treated groups displayed a statistically significant and considerable decrease in total cholesterol (TC) and low-density lipoprotein (LDL) levels compared to the DC group. Similarly, WS-treated groups also showed statistically significant reduced levels of TC and LDL, along with an increase in high-density lipoprotein (HDL). The PHC of BA and WS exhibited enhanced lipid-lowering effects compared to individual treatments. No significant differences in triglyceride (TG) levels were observed among the treatment groups. Conclusion BA and WS, individually and in combination, effectively modulate lipid profiles in T2DM rats. Their synergistic effects provide a promising alternative for managing dyslipidemia in diabetic patients. Further research is needed to determine the clinical consequences of these findings.
Collapse
Affiliation(s)
- Devkumar D Tiwari
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Prathamesh V Pakale
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Sarika Patil
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Dhanashri Chavan
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
17
|
Kołodziejska R, Tafelska-Kaczmarek A, Pawluk M, Sergot K, Pisarska L, Woźniak A, Pawluk H. Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer. Curr Issues Mol Biol 2024; 46:7668-7685. [PMID: 39057095 PMCID: PMC11275341 DOI: 10.3390/cimb46070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this review is to provide experimental evidence for the programmed-death activity of Ashwagandha (Withania somnifera) in the anti-cancer therapy of breast cancer. The literature search was conducted using online electronic databases (Google Scholar, PubMed, Scopus). Collection schedule data for the review article covered the years 2004-2024. Ashwagandha active substances, especially Withaferin A (WA), are the most promising anti-cancer compounds. WS exerts its effect on breast cancer cells by inducing programmed cell death, especially apoptosis, at the molecular level. Ashwagandha has been found to possess a potential for treating breast cancer, especially estrogen receptor/progesterone receptor (ER/PR)-positive and triple-negative breast cancer.
Collapse
Affiliation(s)
- Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Krzysztof Sergot
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland;
| | - Lucyna Pisarska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| | - Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.P.); (L.P.); (H.P.)
| |
Collapse
|
18
|
Newton HB. Indian Ayurvedic medicine: Overview and application to brain cancer. J Ayurveda Integr Med 2024; 15:101013. [PMID: 39181067 PMCID: PMC11385779 DOI: 10.1016/j.jaim.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/27/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024] Open
Abstract
Ayurveda is the traditional medicine system of India, and has been in practice for millennia. It is a traditional approach that uses 1000's of different plant preparations in various combinations for treatment of human ailments, including cancer. Ethnopharmacological and phytochemical analyses are now elucidating the bioactive constituents of the different plant species and herbal formulations, including ashwagandha, curcumin, guduchi, triphala, and others. To provide an overview of: 1) the ethnopharmacology of Ayurveda and several of its most important plant species and formulations, including pharmacological and molecular mechanisms of its anti-cancer effects; 2) review the literature applying Ayurvedic herbs and formulations to brain tumors. A detailed PubMed search was performed that included publications involving Ayurveda, cancer, ethnopharmacology, phytochemical analysis, molecular analysis, and brain tumors. In recent decades, significant research has begun to elucidate the bioactive compounds of ashwagandha, tumeric, guduchi, and triphala, such as withaferin A, withanolides, curcumin, palmatine, and many others. These compounds and extracts are now being applied to brain tumor cells in vitro and in animal models, with positive signs of anti-cancer activity including reduced cell growth, increased apoptosis, cell cycle arrest, increased differentiation, and inhibition of important internal signal transduction pathways. Several Ayurvedic herbs (ashwagandha, curcumin) have bioactive compounds with significant anti-cancer activity, and are effective in early pre-clinical testing against brain tumor cells in vitro and in animal models. Further pre-clinical testing is warranted, along with advancement into phase I and phase II clinical trials of patients with glioblastoma and other brain tumors.
Collapse
Affiliation(s)
- Herbert B Newton
- Neuro-Oncology Center and Brain Tumor Institute, University Hospitals of Cleveland Medical Center, Seidman Cancer Center, Cleveland, Ohio, USA; Molecular Oncology Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
19
|
Oldoni AA, Bacchi AD, Mendes FR, Tiba PA, Mota-Rolim S. Neuropsychopharmacological Induction of (Lucid) Dreams: A Narrative Review. Brain Sci 2024; 14:426. [PMID: 38790404 PMCID: PMC11119155 DOI: 10.3390/brainsci14050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Lucid dreaming (LD) is a physiological state of consciousness that occurs when dreamers become aware that they are dreaming, and may also control the oneiric content. In the general population, LD is spontaneously rare; thus, there is great interest in its induction. Here, we aim to review the literature on neuropsychopharmacological induction of LD. First, we describe the circadian and homeostatic processes of sleep regulation and the mechanisms that control REM sleep with a focus on neurotransmission systems. We then discuss the neurophysiology and phenomenology of LD to understand the main cortical oscillations and brain areas involved in the emergence of lucidity during REM sleep. Finally, we review possible exogenous substances-including natural plants and artificial drugs-that increase metacognition, REM sleep, and/or dream recall, thus with the potential to induce LD. We found that the main candidates are substances that increase cholinergic and/or dopaminergic transmission, such as galantamine. However, the main limitation of this technique is the complexity of these neurotransmitter systems, which challenges interpreting results in a simple way. We conclude that, despite these promising substances, more research is necessary to find a reliable way to pharmacologically induce LD.
Collapse
Affiliation(s)
- Abel A. Oldoni
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil; (A.A.O.); (P.A.T.)
| | - André D. Bacchi
- Faculty of Health Sciences, Federal University of Rondonópolis, Rondonópolis 78736-900, Brazil;
| | - Fúlvio R. Mendes
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil;
| | - Paula A. Tiba
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil; (A.A.O.); (P.A.T.)
| | - Sérgio Mota-Rolim
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
20
|
Vaidya VG, Naik NN, Ganu G, Parmar V, Jagtap S, Saste G, Bhatt A, Mulay V, Girme A, Modi SJ, Hingorani L. Clinical pharmacokinetic evaluation of Withania somnifera (L.) Dunal root extract in healthy human volunteers: A non-randomized, single dose study utilizing UHPLC-MS/MS analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117603. [PMID: 38122911 DOI: 10.1016/j.jep.2023.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal; (Solanaceae), commonly known as Ashwagandha, is one of the most significant medicinal herbs in 'Ayurveda', a traditional Indian medicine used for centuries with evidence in scriptures. Ashwagandha was mentioned in old Ayurvedic medical literature such as Charaka Samhita and Sushruta Samhita for improving weight and strength, with multiple citations for internal and exterior usage in emaciation and nourishing the body. Ethnopharmacological evidence revealed that it was used to relieve inflammation, reduce abdominal swelling, as a mild purgative, and treat swollen glands. The root was regarded as a tonic, aphrodisiac, and emmenagogue in the Unani tradition of the Indian medicinal system. Further, Ashwagandha has been also described as an Ayurvedic medicinal plant in the Ayurvedic Pharmacopoeia of India extending informed therapeutic usage and formulations. Despite the widespread ethnopharmacological usage of Ashwagandha, clinical pharmacokinetic parameters are lacking in the literature; hence, the findings of this study will be relevant for calculating doses for future clinical evaluations of Ashwagandha root extract. AIM This study aimed to develop a validated and highly sensitive bioanalytical method for quantifying withanosides and withanolides of the Ashwagandha root extract in human plasma to explore its bioaccessibility. Further to apply a developed method to perform pharmacokinetics of standardized Withania somnifera (L.) Dunal root extract (WSE; AgeVel®/Witholytin®) capsules in healthy human volunteers. METHODS A sensitive, reliable, and specific ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS/MS) method was developed and validated for the simultaneous quantification of five major withanosides and withanolides (withanoside IV, withanoside V, withanolide A, withaferin A, and 12-deoxy-withastramonolide) in human plasma. Further for the study, eighteen healthy male volunteers (18-45 years) were enrolled in a non-randomized, open-label, single period, single treatment, clinical pharmacokinetic study and given a single dose (500 mg) of WSE (AgeVel®/Witholytin®) capsules containing not less than 7.5 mg of total withanolides under fasting condition. Later, pharmacokinetic profiles were assessed using the plasma concentration of each bioactive constituent Vs. time data. RESULTS For all five constituents, the bioanalytical method demonstrated high selectivity, specificity, and linearity. There was no carryover, and no matrix effect was observed. Furthermore, the inter-day and intra-day precision and accuracy results fulfilled the acceptance criteria. Upon oral administration of WSE capsules, Cmax was found to be 0.639 ± 0.211, 2.926 ± 1.317, 2.833 ± 0.981, and 5.498 ± 1.986 ng/mL for withanoside IV, withanolide A, withaferin A, and 12-deoxy-withastramonolide with Tmax of 1.639 ± 0.993, 1.361 ± 0.850, 0.903 ± 0.273, and 1.375 ± 0.510 h respectively. Further, withanoside V was also detected in plasma; but its concentration was found below LLOQ. CONCLUSION The novel and first-time developed bioanalytical method was successfully applied for the quantification of five bio-active constituents in human volunteers following administration of WSE capsules, indicating that withanosides and withanolides were rapidly absorbed from the stomach, have high oral bioavailability, and an optimum half-life to produce significant pharmacological activity. Further, AgeVel®/Witholytin® was found safe and well tolerated after oral administration, with no adverse reaction observed at a 500 mg dose.
Collapse
Affiliation(s)
- Vidyadhar G Vaidya
- Lokmanya Medical Research Centre and Hospital, Pune, 411033, Maharashtra, India.
| | - Ninad N Naik
- Lokmanya Medical Research Centre and Hospital, Pune, 411033, Maharashtra, India.
| | - Gayatri Ganu
- Mprex Healthcare Pvt. Ltd., Pune, 411057, Maharashtra, India.
| | - Vijay Parmar
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Shubham Jagtap
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Ganesh Saste
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Ankit Bhatt
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Vallabh Mulay
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | | | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| |
Collapse
|
21
|
Kumar V, Sari AN, Gupta D, Ishida Y, Terao K, Kaul SC, Vrati S, Sundar D, Wadhwa R. Anti-COVID-19 Potential of Withaferin-A and Caffeic Acid Phenethyl Ester. Curr Top Med Chem 2024; 24:830-842. [PMID: 38279743 DOI: 10.2174/0115680266280720231221100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND The recent COVID-19 (coronavirus disease 2019) pandemic triggered research on the development of new vaccines/drugs, repurposing of clinically approved drugs, and assessment of natural anti-COVID-19 compounds. Based on the gender difference in the severity of the disease, such as a higher number of men hospitalized and in intense care units, variations in sex hormones have been predicted to play a role in disease susceptibility. Cell surface receptors (Angiotensin-Converting Enzyme 2; ACE2 and a connected transmembrane protease serine 2- TMPSS2) are upregulated by androgens. Conversely, androgen antagonists have also been shown to lower ACE2 levels, implying their usefulness in COVID-19 management. OBJECTIVES In this study, we performed computational and cell-based assays to investigate the anti- COVID-19 potential of Withaferin-A and Caffeic acid phenethyl ester, natural compounds from Withania somnifera and honeybee propolis, respectively. METHODS Structure-based computational approach was adopted to predict binding stability, interactions, and dynamics of the two test compounds to three target proteins (androgen receptor, ACE2, and TMPRSS2). Further, in vitro, cell-based experimental approaches were used to investigate the effect of compounds on target protein expression and SARS-CoV-2 replication. RESULTS Computation and experimental analyses revealed that (i) CAPE, but not Wi-A, can act as androgen antagonist and hence inhibit the transcriptional activation function of androgen receptor, (ii) while both Wi-A and CAPE could interact with ACE2 and TMPRSS2, Wi-A showed higher binding affinity, and (iii) combination of Wi-A and CAPE (Wi-ACAPE) caused strong downregulation of ACE2 and TMPRSS2 expression and inhibition of virus infection. CONCLUSION Wi-A and CAPE possess multimodal anti-COVID-19 potential, and their combination (Wi-ACAPE) is expected to provide better activity and hence warrant further attention in the laboratory and clinic.
Collapse
Affiliation(s)
- Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Anissa Nofita Sari
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Dharmender Gupta
- Regional Centre for Biotechnology (RCB), Faridabad, 121 001, India
| | - Yoshiyuki Ishida
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Kobe, 6500047, Japan
| | - Keiji Terao
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Kobe, 6500047, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology (RCB), Faridabad, 121 001, India
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 305 8565, Japan
| |
Collapse
|