1
|
Berar M, Ciocan A, Moiș E, Furcea L, Popa C, Ciocan RA, Zaharie F, Puia C, Al Hajjar N, Caraiani C, Rusu I, Graur F. Comprehensive Overview of Molecular, Imaging, and Therapeutic Challenges in Rectal Mucinous Adenocarcinoma. Int J Mol Sci 2025; 26:432. [PMID: 39859149 PMCID: PMC11764815 DOI: 10.3390/ijms26020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Rectal cancer is one of the most frequent malignancies worldwide. The most common histological type is adenocarcinoma, followed by mucinous adenocarcinoma. The outcome is less favorable for the mucinous type, yet the treatment course is the same. The aim of this systematic literature review is to assess existing information in order to improve survival in rectal mucinous adenocarcinoma (RMA) and establish a starting point for future research. A systematic search of PubMed, Google Scholar, and Web of Science online libraries was performed in October 2024, evaluating studies regarding clinicopathological and genetic features in connection with targeted treatment and survival outcomes in RMA, using the terms "rectal cancer", "rectum", "mucinous adenocarcinoma", or a combination of the terms. We selected 23 studies, 10 of them regarding the diagnostic implications and 13 discussing the treatment strategies and prognosis of this histological subtype. There were six studies addressing the imaging aspects, highlighting the distinct features of mucinous histology in MRI. The molecular specifics were detailed in four studies, outlining the molecular footprint. The prognosis and treatment course were addressed in 12 studies. The inflammation index prognosis, complete response to neoadjuvant chemotherapy, and surgical aspects were addressed individually in each study. We encapsulated the molecular and clinicopathological characteristics of RMA, as well as diagnostic and treatment approaches, to establish a baseline of references for the benefit of daily practice and further research.
Collapse
Affiliation(s)
- Mihaela Berar
- 3rd Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (M.B.); (E.M.); (L.F.); (C.P.); (F.Z.); (C.P.); (N.A.H.); (F.G.)
- Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Andra Ciocan
- 3rd Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (M.B.); (E.M.); (L.F.); (C.P.); (F.Z.); (C.P.); (N.A.H.); (F.G.)
- Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Emil Moiș
- 3rd Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (M.B.); (E.M.); (L.F.); (C.P.); (F.Z.); (C.P.); (N.A.H.); (F.G.)
- Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Luminița Furcea
- 3rd Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (M.B.); (E.M.); (L.F.); (C.P.); (F.Z.); (C.P.); (N.A.H.); (F.G.)
- Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Călin Popa
- 3rd Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (M.B.); (E.M.); (L.F.); (C.P.); (F.Z.); (C.P.); (N.A.H.); (F.G.)
- Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Răzvan Alexandru Ciocan
- Department of Surgery-Practical Abilities, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Florin Zaharie
- 3rd Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (M.B.); (E.M.); (L.F.); (C.P.); (F.Z.); (C.P.); (N.A.H.); (F.G.)
- Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Cosmin Puia
- 3rd Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (M.B.); (E.M.); (L.F.); (C.P.); (F.Z.); (C.P.); (N.A.H.); (F.G.)
- Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Nadim Al Hajjar
- 3rd Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (M.B.); (E.M.); (L.F.); (C.P.); (F.Z.); (C.P.); (N.A.H.); (F.G.)
- Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Cosmin Caraiani
- Department of Medical Imaging, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Ioana Rusu
- Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Florin Graur
- 3rd Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (M.B.); (E.M.); (L.F.); (C.P.); (F.Z.); (C.P.); (N.A.H.); (F.G.)
- Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| |
Collapse
|
2
|
English KJ. Anal carcinoma - exploring the epidemiology, risk factors, pathophysiology, diagnosis, and treatment. World J Exp Med 2024; 14:98525. [PMID: 39312693 PMCID: PMC11372733 DOI: 10.5493/wjem.v14.i3.98525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Anal carcinoma is a relatively rare tumor that accounts for approximately 2% of gastrointestinal malignancies and less than 7% of anorectal cancers. Most anal tumors originate between the anorectal junction and the anal verge. Risk factors for the disease include human papillomavirus infection, human immunodeficiency virus, tobacco use, immunosuppression, female sex, and older age. The pathogenesis of anal carcinoma is believed to be linked to human papillomavirus-related inflammation, leading to dysplasia and progression to cancer. Squamous cell carcinoma is the most common type of anal tumor, with an annual incidence of approximately 1 to 2 per 100000 persons. Treatment regarding anal cancer has emerged over time. However, chemoradiation therapy remains the mainstay approach for early localized disease. Patients with metastatic disease are treated with systemic therapy, and salvage surgery is reserved for disease recurrence following chemoradiation. This article aims to provide background information on the epidemiology, risk factors, pathology, diagnosis, and current trends in the management of anal cancer. Future directions are briefly discussed.
Collapse
Affiliation(s)
- Kevan J English
- Department of Medicine, Division of Gastroenterology & Hepatology, Saint George’s University School of Medicine, Saint George 33334, Saint George, Grenada
| |
Collapse
|
3
|
Fernandes MC, Charbel C, Romesser PB, Ucpinar BA, Homsi ME, Yildirim O, Fuqua JL, Rodriguez LA, Zheng J, Capanu M, Gollub MJ, Horvat N. Accuracy and Clinical Impact of Persistent Disease Diagnosed on Diffusion-Weighted Imaging and Accuracy of Pelvic Nodal Assessment on Magnetic Resonance Imaging for Squamous Cell Carcinoma of the Anus in the 6-Month Interval Post Chemoradiotherapy. Int J Radiat Oncol Biol Phys 2024; 120:120-129. [PMID: 38462017 DOI: 10.1016/j.ijrobp.2024.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE To evaluate the diagnostic performance of diffusion-weighted imaging (DWI) in the 6-month interval post chemoradiation therapy (CRT) in determining persistent disease and whether persistent diffusion restriction on DWI at 6 months is associated with overall survival; and secondarily, to investigate the accuracy of pelvic lymph node assessment on T2-weighted imaging and DWI in the 6-month interval post CRT, in patients with squamous cell carcinoma of the anus. METHODS AND MATERIALS This retrospective study included patients with squamous cell carcinoma of the anus who underwent CRT followed by restaging rectal MRI from January 2010 to April 2020, with ≥1 year of follow-up after CRT. DW images were qualitatively evaluated by 2 junior and 2 senior abdominal radiologists to determine anal persistent disease. The reference standard for anal persistent disease was digital rectal examination/endoscopy and histopathology. Diagnostic performance was estimated using sensitivity, specificity, negative predictive value, and positive predictive value. Survival outcomes were evaluated via Kaplan-Meier analysis, and associations between survival outcomes and DWI status were tested for significance using the log-rank test. Additionally, DW and T2-weighted images were evaluated to determine lymph node status. RESULTS Among 84 patients (mean age, 63 ± 10.2 years; 64/84 [76%] female), 14 of 84 (17%) had confirmed persistent disease. Interreader agreement on DWI between all 4 radiologists was moderate (Light's κ = 0.553). Overall, DWI had a sensitivity of 71.4%, specificity of 72.1%, positive predictive value of 34.5%, and negative predictive value of 92.5%. Patients with a negative DWI showed better survival than patients with a positive DWI (3-year overall survival of 92% vs 79% and 5-year overall survival of 87% vs 74%), although the difference did not reach statistical significance (P = .063). All patients with suspicious lymph nodes (14/14, 100%) showed negative pathology or decreased size during follow-up. CONCLUSIONS At 6 months post CRT, DWI showed value in excluding anal persistent disease. Persistent diffusion restriction on DWI was not significantly associated with overall survival. Pelvic nodal assessment on DWI and T2-weighted imaging was limited in predicting persistent nodal metastases.
Collapse
Affiliation(s)
| | - Charlotte Charbel
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul B Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Maria El Homsi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Onur Yildirim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James L Fuqua
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lee A Rodriguez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Junting Zheng
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc J Gollub
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
4
|
Gkegkes ID, Milionis V, Goutas N, Stamatiadis AP. Perianal Angioleiomyoma: A Case Report and Review of the Literature. J Med Ultrasound 2024; 32:179-182. [PMID: 38882621 PMCID: PMC11175385 DOI: 10.4103/jmu.jmu_107_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2024] Open
Abstract
Angioleiomyomas are rare benign tumors, which take origin from smooth muscle fibers of the tunica media of veins. Even though angioleiomyomas can appear anywhere in the body, these masses are rarely occurred in the gastrointestinal system. This is the first reported case of perianal angioleiomyomas, where the tumor in close relation with the anal canal was investigated with endoanal ultrasonography. Local excision of such lesion is generally curative.
Collapse
Affiliation(s)
- Ioannis D Gkegkes
- Department of Colorectal Surgery, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Athens Colorectal Laboratory, Athens, Greece
| | | | - Nikolaos Goutas
- Laboratory of Forensic Medicine and Toxicology, The National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
5
|
El Homsi M, Sheedy SP, Rauch GM, Ganeshan DM, Ernst RD, Golia Pernicka JS. Follow-up imaging of anal cancer after treatment. Abdom Radiol (NY) 2023; 48:2888-2897. [PMID: 37024606 DOI: 10.1007/s00261-023-03895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Anal cancer treatment response assessment can be challenging with both magnetic resonance imaging (MRI) and clinical evaluation considered essential. MRI, in particular, has shown to be useful for the assessment of treatment response, the detection of recurrent disease in follow up and surveillance, and the evaluation of possible post-treatment complications as well as complications from the tumor itself. In this review, we focus on the role of imaging, mainly MRI, in anal cancer treatment response assessment. We also describe the treatment complications that can occur, and the imaging findings associated with those complications.
Collapse
Affiliation(s)
- Maria El Homsi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - Gaiane M Rauch
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhakshina M Ganeshan
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Randy D Ernst
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer S Golia Pernicka
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Chen D, Niu Y, Chen H, Liu D, Guo R, Yao N, Li Z, Luo X, Li H, Tang S. Three-dimensional ultrasound integrating nomogram and the blood flow image for prostate cancer diagnosis and biopsy: A retrospective study. Front Oncol 2022; 12:994296. [DOI: 10.3389/fonc.2022.994296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundsProstate cancer (PCa) is the second most common male cancer in the world and based on its high prevalence and overwhelming effect on patients, more precise diagnostic and therapeutic methods are essential research topics. As such, this study aims to evaluate the value of three-dimensional transrectal ultrasound (3D-TRUS) in the detection, diagnosis and biopsy of PCa, and to provide a basis for clinical practice of PCa.MethodsRetrospective analysis and comparison of a total of 401 male patients who underwent prostate TRUS in our hospital from 2019 to 2020 were conducted, with all patients having prostate biopsy. Nomogram was used to estimate the probability of different ultrasound signs in diagnosing prostate cancer. The ROC curve was used to estimate the screening and diagnosis rates of 3D-TRUS, MRI and TRUS for prostate cancer.ResultsA total of 401 patients were randomly divided into two groups according to different methods of prostate ultrasonography, namely the TRUS group (251 patients) and the 3D-TRUS group (150 patients). Of these cases, 111 patients in 3D-TRUS group underwent MRI scan. The nomogram further determined the value of 3D-TRUS for prostate cancer. The ROC AUC of prostate cancer detected by TRUS, MRI and 3D-TRUS was 0.5580, 0.6216 and 0.6267 respectively. Biopsy complications were lower in 3D-TRUS group than TRUS group, which was statistically significant (P<0.005).ConclusionsThe accuracy of 3D-TRUS was higher in diagnosis and biopsy of prostate cancer. Meanwhile, the positive rate of biopsy could be improved under direct visualization of 3D-TRUS, and the complications could be decreased markedly. Therefore, 3D-TRUS was of high clinical value in diagnosis and biopsy of prostate cancer.
Collapse
|
7
|
Granata V, Fusco R, Belli A, Danti G, Bicci E, Cutolo C, Petrillo A, Izzo F. Diffusion weighted imaging and diffusion kurtosis imaging in abdominal oncological setting: why and when. Infect Agent Cancer 2022; 17:25. [PMID: 35681237 PMCID: PMC9185934 DOI: 10.1186/s13027-022-00441-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
This article provides an overview of diffusion kurtosis (DKI) imaging in abdominal oncology. DKI allows for more data on tissue structures than the conventional diffusion model (DWI). However, DKI requires high quality images at b-values greater than 1000 s/mm2 and high signal-to-noise ratio (SNR) that traditionally MRI systems are not able to acquire and therefore there are generally amplified anatomical distortions on the images due to less homogeneity of the field. Advances in both hardware and software on modern MRI scanners have currently enabled ultra-high b-value imaging and offered the ability to apply DKI to multiple extracranial sites. Previous studies have evaluated the ability of DKI to characterize and discriminate tumor grade compared to conventional DWI. Additionally, in several studies the DKI sequences used were based on planar echo (EPI) acquisition, which is susceptible to motion, metal and air artefacts and prone to low SNRs and distortions, leading to low quality images for some small lesions, which may affect the accuracy of the results. Another problem is the optimal b-value of DKI, which remains to be explored and not yet standardized, as well as the manual selection of the ROI, which could affect the accuracy of some parameters.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", I-80131, Naples, Italy.
| | | | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", I-80131, Naples, Italy
| | - Ginevra Danti
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology, SIRM Foundation, Milan, Italy
| | - Eleonora Bicci
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", I-80131, Naples, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", I-80131, Naples, Italy
| |
Collapse
|
8
|
Eng C, Ciombor KK, Cho M, Dorth JA, Rajdev LN, Horowitz DP, Gollub MJ, Jácome AA, Lockney NA, Muldoon RL, Washington MK, O'Brian BA, Benny A, Lebeck Lee CM, Benson AB, Goodman KA, Morris VK. Anal Cancer: Emerging Standards in a Rare Rare Disease. J Clin Oncol 2022; 40:2774-2788. [PMID: 35649196 DOI: 10.1200/jco.21.02566] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The social stigma surrounding an anal cancer diagnosis has traditionally prevented open discussions about this disease. However, as recent treatment options and an increasing rate of diagnoses are made worldwide, awareness is growing. In the United States alone, 9,090 individuals were expected to be diagnosed with anal cancer in 2021. The US annual incidence of squamous cell carcinoma of the anus continues to increase by 2.7% yearly, whereas the mortality rate increases by 3.1%. The main risk factor for anal cancer is a human papillomavirus infection; those with chronic immunosuppression are also at risk. Patients with HIV are 19 times more likely to develop anal cancer compared with the general population. In this review, we have provided an overview of the carcinoma of the anal canal, the role of screening, advancements in radiation therapy, and current trials investigating acute and chronic treatment-related toxicities. This article is a comprehensive approach to presenting the existing data in an effort to encourage continuous international interest in anal cancer.
Collapse
Affiliation(s)
- Cathy Eng
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Kristen K Ciombor
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - May Cho
- Division of Hematology and Oncology, Department of Medicine, University of California- Irvine School of Medicine, Irvine, CA
| | - Jennifer A Dorth
- Department of Radiation Oncology, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Lakshmi N Rajdev
- Division for Hematology and Oncology, Department of Medicine, Northwell Health/Lenox Hill Hospital, New York, NY
| | - David P Horowitz
- Department of Radiation Oncology, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Marc J Gollub
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alexandre A Jácome
- OncoBio Comprehensive Cancer Center, Department of Gastrointestinal Medical Oncology, Nova Lima, Brazil
| | - Natalie A Lockney
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Roberta L Muldoon
- Division of Colon and Rectal Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Mary Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Brittany A O'Brian
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Amala Benny
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Cody M Lebeck Lee
- VA Tennessee Valley Healthcare System, Department of Internal Medicine, Nashville, TN
| | - Al B Benson
- Division of Hematology-Oncology, Northwestern University, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Karyn A Goodman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Van Karlyle Morris
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
9
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Strahlenther Onkol 2021; 197:1-23. [PMID: 34259912 DOI: 10.1007/s00066-021-01812-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Christoph Henkenberens
- Department of Radiotherapy and Special Oncology, Medical School Hannover, Hannover, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany.
| |
Collapse
|
10
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Nuklearmedizin 2021; 60:326-343. [PMID: 34261141 DOI: 10.1055/a-1525-7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.,Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | | | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | | |
Collapse
|
11
|
|
12
|
Granata V, Fusco R, Setola SV, Avallone A, Palaia R, Grassi R, Izzo F, Petrillo A. Radiological assessment of secondary biliary tree lesions: an update. J Int Med Res 2021; 48:300060519850398. [PMID: 32597280 PMCID: PMC7432986 DOI: 10.1177/0300060519850398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective To conduct a systematic literature review of imaging techniques and findings
in patients with peribiliary liver metastasis. Methods Several electronic datasets were searched from January 1990 to June 2017 to
identify studies assessing the use of different imaging techniques for the
detection and staging of peribiliary metastases. Results The search identified 44 studies, of which six met the inclusion criteria and
were included in the systematic review. Multidetector computed tomography
(MDCT) is the technique of choice in the preoperative setting and during the
follow-up of patients with liver tumors. However, the diagnostic performance
of MDCT for the assessment of biliary tree neoplasms was low compared with
magnetic resonance imaging (MRI). Ultrasound (US), without and with contrast
enhancement (CEUS), is commonly employed as a first-line tool for evaluating
focal liver lesions; however, the sensitivity and specificity of US and CEUS
for both the detection and characterization are related to operator
expertise and patient suitability. MRI has thus become the gold standard
technique because of its ability to provide morphologic and functional data.
MRI showed the best diagnostic performance for the detection of peribiliary
metastases. Conclusions MRI should be considered the gold standard technique for the radiological
assessment of secondary biliary tree lesions.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Roberta Fusco
- Radiology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Sergio Venanzio Setola
- Radiology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Raffaele Palaia
- Abdominal Surgical Oncology Division, Hepatobiliary Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Roberto Grassi
- Radiology Unit, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Francesco Izzo
- Abdominal Surgical Oncology Division, Hepatobiliary Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
13
|
Challenges in Crohn's Disease Management after Gastrointestinal Cancer Diagnosis. Cancers (Basel) 2021; 13:cancers13030574. [PMID: 33540674 PMCID: PMC7867285 DOI: 10.3390/cancers13030574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Crohn’s disease (CD) is a chronic inflammatory bowel disease affecting both young and elderly patients, involving the entire gastrointestinal tract from the mouth to anus. The chronic transmural inflammation can lead to several complications, among which gastrointestinal cancers represent one of the most life-threatening, with a higher risk of onset as compared to the general population. Moreover, diagnostic and therapeutic strategies in this subset of patients still represent a significant challenge for physicians. Thus, the aim of this review is to provide a comprehensive overview of the current evidence for an adequate diagnostic pathway and medical and surgical management of CD patients after gastrointestinal cancer onset. Abstract Crohn’s disease (CD) is a chronic inflammatory bowel disease with a progressive course, potentially affecting the entire gastrointestinal tract from mouth to anus. Several studies have shown an increased risk of both intestinal and extra-intestinal cancer in patients with CD, due to long-standing transmural inflammation and damage accumulation. The similarity of symptoms among CD, its related complications and the de novo onset of gastrointestinal cancer raises difficulties in the differential diagnosis. In addition, once a cancer diagnosis in CD patients is made, selecting the appropriate treatment can be particularly challenging. Indeed, both surgical and oncological treatments are not always the same as that of the general population, due to the inflammatory context of the gastrointestinal tract and the potential exacerbation of gastrointestinal symptoms of patients with CD; moreover, the overlap of the neoplastic disease could lead to adjustments in the pharmacological treatment of the underlying CD, especially with regard to immunosuppressive drugs. For these reasons, a case-by-case analysis in a multidisciplinary approach is often appropriate for the best diagnostic and therapeutic evaluation of patients with CD after gastrointestinal cancer onset.
Collapse
|
14
|
|
15
|
Abstract
Anal canal cancer is a rare disease and squamous cell carcinoma is the most common histologic subtype. Traditionally, anal cancer is imaged with CT and PET/CT for purposes of TNM staging. With the increased popularity of MRI for rectal cancer evaluation, MRI has become increasingly utilized for local staging of anal cancer. In this review, we focus on the necessary information radiologists need to know to understand this rare and unique disease and to be familiar with staging of anal cancer on MRI.
Collapse
|
16
|
Magnetic-Resonance-Imaging Texture Analysis Predicts Early Progression in Rectal Cancer Patients Undergoing Neoadjuvant Chemoradiation. Gastroenterol Res Pract 2019; 2019:8505798. [PMID: 30847005 PMCID: PMC6360039 DOI: 10.1155/2019/8505798] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/05/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Background We hypothesized that texture analysis (TA) from the preoperative MRI can predict early disease progression (ePD), defined as the percentage of patients who relapsed or showed distant metastasis within three months from the radical surgery, in patients with locally advanced rectal cancer (LARC, stage II and III, AJCC) undergoing neoadjuvant chemoradiotherapy (C-RT). Methods This retrospective monoinstitutional cohort study included 49 consecutive patients in total with a newly diagnosed rectal cancer. All the patients underwent baseline abdominal MRI and CT scan of the chest and abdomen to exclude distant metastasis before C-RT. Texture parameters were extracted from MRI performed before C-RT (T1, DWI, and ADC sequences) using LifeX Software, a dedicated software for extracting texture parameters from radiological imaging. We divided the cohort in a training set of 34 patients and a validation set of 15 patients, and we tested the data sets for homogeneity, considering the clinical variables. Then we performed univariate and multivariate analysis, and a ROC curve was also generated. Results Thirteen patients (26.5%) showed an ePD, three of whom with lung metastases and ten with liver relapse. The model was validated based on the prediction accuracy calculated in a previously unseen set of 15 patients. The prediction accuracy of the generated model was 82% (AUC = 0.853) in the training and 80% (AUC = 0.833) in the validation cohort. The only significant features at multivariate analysis was DWI GLCM Correlation (OR: 0.239, p < 0.001). Conclusion Our results suggest that TA could be useful to identify patients that may develop early progression.
Collapse
|
17
|
Martin D, Balermpas P, Winkelmann R, Rödel F, Rödel C, Fokas E. Anal squamous cell carcinoma - State of the art management and future perspectives. Cancer Treat Rev 2018; 65:11-21. [PMID: 29494827 DOI: 10.1016/j.ctrv.2018.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
Anal squamous cell carcinoma (ASCC) is associated with infection with high-risk strains of human papilloma virus (HPV) in 70-90% of cases and a rise in incidence has been observed in the last decades. Definitive chemoradiotherapy (CRT) using 5-fluorouracil and mitomycin C constitutes the standard treatment for localized disease, but about 30% of patients do not respond or relapse locally. Phase I/II trials testing targeted agents, such as epidermal-growth-factor receptor (EGFR) inhibitors, have failed to improve clinical outcome and resulted in increased toxicities. Modern imaging methods and biomarkers, also in the context of HPV status, should be further explored to improve patient stratification. In the present review, we will discuss the current clinical evidence and future perspectives in the management of ASCC. HPV-positive ASCC is more immunogenic with a higher density of tumor infiltrating lymphocytes that correlate with better response to CRT and more favorable prognosis compared to HPV-negative tumors. Immunotherapies including immune checkpoint inhibitors have brought new hope and promising results were recently demonstrated in metastatic ASCC. The addition of immunotherapies to CRT for localized disease is tested in early phase trials, and these results could have a profound impact on the way we treat ASCC in near future. Further research and novel approaches are expected to enhance our understanding of tumor biology and immunology, and improve patient stratification and treatment adaptation in the context of personalized medicine.
Collapse
Affiliation(s)
- Daniel Martin
- Department of Radiotherapy and Oncology, University of Frankfurt, Germany
| | - Panagiotis Balermpas
- Department of Radiotherapy and Oncology, University of Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site: Frankfurt a. M., Germany
| | - Ria Winkelmann
- Senckenberg Institute for Pathology, University of Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University of Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site: Frankfurt a. M., Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, University of Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site: Frankfurt a. M., Germany
| | - Emmanouil Fokas
- Department of Radiotherapy and Oncology, University of Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site: Frankfurt a. M., Germany.
| |
Collapse
|