1
|
Balaji S, Jeyaraman N, Jeyaraman M, Ramasubramanian S, Muthu S, Santos GS, da Fonseca LF, Lana JF. Impact of curcumin on gut microbiome. World J Exp Med 2025; 15:100275. [PMID: 40115756 PMCID: PMC11718586 DOI: 10.5493/wjem.v15.i1.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 12/26/2024] Open
Abstract
The intricate interplay between natural compounds like curcumin and the gut microbiome has gained significant attention in recent years due to their potential therapeutic implications in various health conditions. Curcumin, a polyphenolic compound derived from turmeric, exhibits diverse pharmacological properties, including anti-inflammatory, antioxidant, and anticancer effects. Understanding how curcumin modulates gut microbiota composition and function is crucial for elucidating its therapeutic mechanisms. This review examines the current literature on the interactions between curcumin and the gut microbiome. A systematic search of relevant databases was conducted to identify studies investigating the effects of curcumin on gut microbial diversity and abundance. Key findings from studies exploring curcumin's efficacy in neurological disorders, gastrointestinal diseases, and metabolic dysfunction are synthesized and discussed. Studies have demonstrated that curcumin supplementation can modulate gut microbiota composition and function, leading to beneficial effects on gut health and homeostasis. Mechanisms underlying curcumin's therapeutic effects include immune modulation, neuroprotection, and inflammation regulation. However, challenges such as poor bioavailability and safety concerns remain significant hurdles to overcome. The interactions between curcumin and the gut microbiome hold promise for therapeutic interventions in a diverse range of health conditions. Further research is needed to optimize curcumin formulations, improve bioavailability, and address safety concerns.
Collapse
Affiliation(s)
- Sangeetha Balaji
- Department of General Medicine, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Swaminathan Ramasubramanian
- Department of General Medicine, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College and Hospital, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
2
|
Gao X, Feng X, Hou T, Huang W, Ma Z, Zhang D. The roles of flavonoids in the treatment of inflammatory bowel disease and extraintestinal manifestations: A review. FOOD BIOSCI 2024; 62:105431. [DOI: 10.1016/j.fbio.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Ng CYJ, Zhong L, Ng HS, Goh KS, Zhao Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients 2024; 16:3935. [PMID: 39599721 PMCID: PMC11597546 DOI: 10.3390/nu16223935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One such approach is Chinese Medicine (CM), a complementary therapy widely used in T2DM treatment. Given the emphasis on gut microbiota in current research, studying CM in the treatment of T2DM via gut microbiota modulation could be beneficial. Scope and approach: The use of various CM methods for managing T2DM via gut microbiota modulation is highlighted in this review. Following an introduction of the gut microbiota and its role in T2DM pathogenesis, we will review the potential interactions between gut microbiota and T2DM. Thereafter, we will review various CM treatment modalities that modulate gut microbiota and provide perspectives for future research. Key findings and discussion: In T2DM, Akkermansia, Bifidobacterium, and Firmicutes are examples of gut microbiota commonly imbalanced. Studies have shown that CM therapies can modulate gut microbiota, leading to beneficial effects such as reduced inflammation, improved metabolism, and improved immunity. Among these treatment modalities, Chinese Herbal Medicine and acupuncture are the most well-studied, and several in vivo studies have demonstrated their potential in managing T2DM by modulating gut microbiota. However, the underlying biomolecular mechanisms of actions are not well elucidated, which is a key area for future research. Future studies could also investigate alternate CM therapies such as moxibustion and CM exercises and conduct large-scale clinical trials to validate their effectiveness in treatment.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Linda Zhong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Seong Ng
- Singapore General Hospital, Outram Rd., Singapore 169608, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| | - Kia Seng Goh
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
- Singapore College of Traditional Chinese Medicine, 640 Lor 4 Toa Payoh, Singapore 319522, Singapore
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| |
Collapse
|
4
|
Zhang J, Zhang R, Jin S, Feng X. Curcumin, a plant polyphenol with multiple physiological functions of improving antioxidation, anti-inflammation, immunomodulation and its application in poultry production. J Anim Physiol Anim Nutr (Berl) 2024; 108:1890-1905. [PMID: 39081000 DOI: 10.1111/jpn.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/11/2024] [Accepted: 07/18/2024] [Indexed: 11/07/2024]
Abstract
Finding environmentally friendly, effective and residue-free alternatives to antibiotics has become a research priority. This is due to the ban on antibiotics in animal feed. Curcumin is a polyphenol extracted from the rhizome of turmeric that has antioxidant, anti-inflammatory and immunomodulatory properties. Curcumin has been widely demonstrated as a traditional flavoured agent and herbal medicine in the fight against diseases. In recent years, curcumin has been extensively studied in animal production, especially in poultry production. This article reviews the source, structure, metabolism and biological functions of curcumin and focuses on the application of curcumin in poultry production. In terms of production performance, curcumin can improve the growth performance of poultry, increase the egg production rate of laying hens and alleviate the negative effects of heat stress on the production performance of poultry and livestock. In terms of meat quality, curcumin can improve poultry meat quality by regulating lipid metabolism and antioxidant capacity. In terms of health, curcumin can improve immunity. Since mycotoxins have been a major problem in poultry production, this article also reviews the role of curcumin in helping poultry resist toxins. It is hoped that the review in this article can provide a concrete theoretical basis and research ideas for the research and application of curcumin in the field of poultry.
Collapse
Affiliation(s)
- Jingyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ruoshi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Sanjun Jin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Feng Y, Pan M, Li R, He W, Chen Y, Xu S, Chen H, Xu H, Lin Y. Recent developments and new directions in the use of natural products for the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155812. [PMID: 38905845 DOI: 10.1016/j.phymed.2024.155812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) represents a significant global health challenge, and there is an urgent need to explore novel therapeutic interventions. Natural products have demonstrated highly promising effectiveness in the treatment of IBD. PURPOSE This study systematically reviews the latest research advancements in leveraging natural products for IBD treatment. METHODS This manuscript strictly adheres to the PRISMA guidelines. Relevant literature on the effects of natural products on IBD was retrieved from the PubMed, Web of Science and Cochrane Library databases using the search terms "natural product," "inflammatory bowel disease," "colitis," "metagenomics", "target identification", "drug delivery systems", "polyphenols," "alkaloids," "terpenoids," and so on. The retrieved data were then systematically summarized and reviewed. RESULTS This review assessed the different effects of various natural products, such as polyphenols, alkaloids, terpenoids, quinones, and others, in the treatment of IBD. While these natural products offer promising avenues for IBD management, they also face challenges in terms of clinical translation and drug discovery. The advent of metagenomics, single-cell sequencing, target identification techniques, drug delivery systems, and other cutting-edge technologies heralds a new era in overcoming these challenges. CONCLUSION This paper provides an overview of current research progress in utilizing natural products for the treatment of IBD, exploring how contemporary technological innovations can aid in discovering and harnessing bioactive natural products for the treatment of IBD.
Collapse
Affiliation(s)
- Yaqian Feng
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Mengting Pan
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruiqiong Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weishen He
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yangyang Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shaohua Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Hui Chen
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China.
| | - Huilong Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
7
|
Ghoushi E, Poudineh M, Parsamanesh N, Jamialahmadi T, Sahebkar A. Curcumin as a regulator of Th17 cells: Unveiling the mechanisms. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100198. [PMID: 38525269 PMCID: PMC10959653 DOI: 10.1016/j.fochms.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Curcumin, a polyphenol natural product derived from turmeric, possesses diverse pharmacological effects due to its interactions with various cells and molecules. Recent studies have highlighted its immunomodulatory properties, including its impact on immune cells and mediators involved in immune responses. Th17 cells play a crucial role in promoting immune responses against extracellular pathogens by recruiting neutrophils and inducing inflammation. These cells produce inflammatory cytokines such as TNF-α, IL-21, IL-17A, IL-23, IL-17F, IL-22, and IL-26. Curcumin has been shown to significantly inhibit the proliferation of Th17 cells and reduce the production of inflammatory cytokines, including TNF-α, IL-22, and IL-17. This review aims to assess the effectiveness of curcumin and its underlying mechanisms in modulating Th17 cells.
Collapse
Affiliation(s)
- Ehsan Ghoushi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Ma L, Li M, Lv J, Yuan Q, Yin X, Lu W, Lin W, Wang P, Cui J, Lv Q, Liu J, Hu L. Design, synthesis, and biological evaluation of novel sesquiterpene lactone derivatives as PKM2 activators with potent anti-ulcerative colitis activities. Eur J Med Chem 2024; 272:116426. [PMID: 38718622 DOI: 10.1016/j.ejmech.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/27/2024]
Abstract
Pyruvate kinase isoform 2 (PKM2) is closely related to the regulation of Th17/Treg balance, which is considered to be an effective strategy for UC therapy. Parthenolide (PTL), a natural product, only possesses moderate PKM2-activating activity. Thus, five series of PTL derivatives are designed and synthesized to improve PKM2-activated activities and anti-UC abilities. Through detailed structure optimization, B4 demonstrates potent T-cell anti-proliferation activity (IC50 = 0.43 μM) and excellent PKM2-activated ability (AC50 = 0.144 μM). Subsequently, through mass spectrometry analysis, B4 is identified to interact with Cys423 of PKM2 via covalent-bond. Molecular docking and molecular dynamic simulation results reveal that the trifluoromethoxy of B4 forms a stronger hydrophobic interaction with Ala401, Pro402, and Ile403. In addition, B4 has a significant effect only on Th17 cell differentiation, thereby regulating the Th17/Treg balance. The effect of B4 on Th17/Treg imbalance can be attributed to inhibition of PKM2 dimer translocation and suppression of glucose metabolism. Finally, B4 can notably ameliorate the symptoms of dextran sulfate sodium (DSS)-induced colitis in mouse model in vivo. Thus, B4 is confirmed as a potent PKM2 activator, and has the potential to develop as a novel anti-UC agent.
Collapse
Affiliation(s)
- Lingyu Ma
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengting Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiahao Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingxin Yuan
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xunkai Yin
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenyu Lu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijiang Lin
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ping Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Cui
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
9
|
Odriozola A, González A, Odriozola I, Álvarez-Herms J, Corbi F. Microbiome-based precision nutrition: Prebiotics, probiotics and postbiotics. ADVANCES IN GENETICS 2024; 111:237-310. [PMID: 38908901 DOI: 10.1016/bs.adgen.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
10
|
Ji J, Ma Z, Wang Y. Advancing Gastrointestinal Health: Curcumin's Efficacy and Nanopreparations. Molecules 2024; 29:1659. [PMID: 38611938 PMCID: PMC11013328 DOI: 10.3390/molecules29071659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Curcumin (CCM) is a polyphenol compound extracted from the turmeric rhizome. It has various biological activities, including antibacterial, anti-inflammatory, anti-cancer, and antioxidant. Due to its diverse activities, it is often used by researchers to study the therapeutic effects on various diseases. However, its poor solubility leads to poor bioavailability, and it is necessary to increase the water solubility with the help of carriers to improve the therapeutic effect. Gastrointestinal disease is a major global health problem that continues to affect human health. In this review, we have summarized the possible mechanism and therapeutic effect of CCM in various gastrointestinal diseases, and the improvement in the curative effect of CCM with nanopreparation. Finally, we concluded that there have been many clinical trials of CCM in combination with other drugs for the treatment of gastrointestinal disease, but so far, few have used CCM nanomaterials for treatment. Although in vitro and preclinical experiments have shown that nanopreparations can improve the efficacy of CCM, there are still insufficient studies on the safety of carriers.
Collapse
Affiliation(s)
- Jialin Ji
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China;
| | - Zhaojie Ma
- School of Humanities and Medicine, Shandong Second Medical University, Weifang 261053, China;
| | - Yingshuai Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
11
|
Tong A, Li Z, Liu X, Ge X, Zhao R, Liu B, Zhao L, Zhao C. Laminaria japonica polysaccharide alleviates type 2 diabetes by regulating the microbiota-gut-liver axis: A multi-omics mechanistic analysis. Int J Biol Macromol 2024; 258:128853. [PMID: 38134985 DOI: 10.1016/j.ijbiomac.2023.128853] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The hypoglycemic effects of low-molecular-weight Laminaria japonica polysaccharide (LJO) were investigated in type 2 diabetes mellitus (T2DM) mice, focusing on its effect on the microbiome, metabolome, and transcriptome. The findings demonstrated that LJO significantly reduced fasting blood glucose levels, insulin levels, and inflammatory factors. Additionally, LJO induced changes in gut microbiota composition and increased the concentrations of cecal short-chain fatty acids. Analysis of transcriptomics and metabolomics data revealed that LJO primarily altered the endocrine and digestive systems, signal transduction, and lipid metabolism. It led to a decrease in palmitic acid levels and an increase in glutathione levels. Real-time quantitative polymerase chain reaction assay suggested that LJO upregulated Irs1 expression, consequently reducing insulin resistance. These findings strongly suggest that LJO holds promise in ameliorating T2DM and may serve as a potential dietary supplement for patients with T2DM.
Collapse
Affiliation(s)
- Aijun Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqun Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health; Beijing Technology and Business University, Beijing 100048, China
| | - Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Runfan Zhao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lina Zhao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Zheng LX, Guo KE, Huang JQ, Liu MH, Deng BL, Liu DY, Zhou BG, Zhou W, Zhong YB, Zhao HM. Curcumin alleviated dextran sulfate sodium-induced colitis by recovering memory Th/Tfh subset balance. World J Gastroenterol 2023; 29:5226-5239. [PMID: 37901446 PMCID: PMC10600958 DOI: 10.3748/wjg.v29.i36.5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Restoration of immune homeostasis by targeting the balance between memory T helper (mTh) cells and memory follicular T helper (mTfh) cells is a potential therapeutic strategy against ulcerative colitis (UC). Because of its anti-inflammatory and immunomodulatory properties, curcumin (Cur) is a promising drug for UC treatment. However, fewer studies have demonstrated whether Cur can modulate the mTh/mTfh subset balance in mice with colitis. AIM To explore the potential mechanism underlying Cur-mediated alleviation of colitis induced by dextran sulfate sodium (DSS) in mice by regulating the mTh and mTfh immune homeostasis. METHODS Balb/c mice were administered 3% and 2% DSS to establish the UC model and treated with Cur (200 mg/kg/d) by gavage on days 11-17. On the 18th d, all mice were anesthetized and euthanized, and the colonic length, colonic weight, and colonic weight index were evaluated. Histomorphological changes in the mouse colon were observed through hematoxylin-eosin staining. Levels of Th/mTh and Tfh/mTfh cell subsets in the spleen were detected through flow cytometry. Western blotting was performed to detect SOCS-1, SOCS-3, STAT3, p-STAT3, JAK1, p-JAK1, and NF-κB p65 protein expression levels in colon tissues. RESULTS Cur effectively mitigates DSS-induced colitis, facilitates the restoration of mouse weight and colonic length, and diminishes the colonic weight and colonic weight index. Simultaneously, it hinders ulcer development and inflammatory cell infiltration in the colonic mucous membrane. While the percentage of Th1, mTh1, Th7, mTh7, Th17, mTh17, Tfh1, mTfh1, Tfh7, mTfh7, Tfh17, and mTfh17 cells decreased after Cur treatment of the mice for 7 d, and the frequency of mTh10, Th10, mTfh10, and Tfh10 cells in the mouse spleen increased. Further studies revealed that Cur administration prominently decreased the SOCS-1, SOCS-3, STAT3, p-STAT3, JAK1, p-JAK1, and NF-κB p65 protein expression levels in the colon tissue. CONCLUSION Cur regulated the mTh/mTfh cell homeostasis to reduce DSS-induced colonic pathological damage, potentially by suppressing the JAK1/STAT3/SOCS signaling pathway.
Collapse
Affiliation(s)
- Lin-Xin Zheng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Kai-En Guo
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jia-Qi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Miao-Hua Liu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Bai-Ling Deng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Bu-Gao Zhou
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wen Zhou
- Nanchang Medical College, Nanchang 330052, Jiangxi Province, China
| | - You-Bao Zhong
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| |
Collapse
|
13
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
14
|
Liang Y, Ju D, Liu W, Wu D, Zhao Y, Du Y, Li X, Zhao M. Natural Shikonin Potentially Alters Intestinal Flora to Alleviate Acute Inflammation. Microorganisms 2023; 11:2139. [PMID: 37763983 PMCID: PMC10534322 DOI: 10.3390/microorganisms11092139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
Shikonin, derived from the herb Lithospermum erythrorhizon (Purple Cromwell), is extensively utilized in traditional Chinese medicine as an anti-inflammatory agent; however, its effect on the intestinal flora is not yet known. Herein, we demonstrate that, compared to a blank control group, the intragastric administration of shikonin suppressed the swelling rate of ears in a mouse model of acute inflammation in a dose-dependent manner via animal experiments; furthermore, the 20 mg/kg shikonin treatment exhibited the highest inhibitory effect. In formal animal experimentation, we discovered that the inhibitory effect of shikonin with 20 mg/kg on inflammation was closely linked to the intestinal flora, whereby the microbiota phylum was altered in feces through a 16S rDNA sequencing analysis, implying that shikonin improves gut microbiota structures and compositions to counteract inflammation. Notably, using a real-time quantitative polymerase chain reaction (RT-qPCR), a Western blotting assay, and an immunohistochemistry (IHC) assay, we found that inflammatory cytokines such as TNF-α, IL-6, and IL-1β reduced in both the shikonin-administration group and the positive control group than those in the blank control group, as expected. To the best of our knowledge, this is the first study to outline the underlying mechanism through which shikonin acts on gut microbes to alleviate acute inflammation, providing an alternative mechanism for shikonin to become a preventive agent in countering inflammation.
Collapse
Affiliation(s)
- Ying Liang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Wenna Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| | - Dan Wu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| | - Yujia Zhao
- Department of Oncology, The First Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710086, China;
| | - Yaya Du
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| | - Xi Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| |
Collapse
|
15
|
Wen Z, Kang L, Fu H, Zhu S, Ye X, Yang X, Zhang S, Hu J, Li X, Chen L, Hu Y, Yang X. Oral delivery of porous starch-loaded bilayer microgels for controlled drug delivery and treatment of ulcerative colitis. Carbohydr Polym 2023; 314:120887. [PMID: 37173037 DOI: 10.1016/j.carbpol.2023.120887] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
We prepared one type of bilayer microgels for oral administration with three effects: pH responsiveness, time lag, and colon enzyme degradation. Combined with the dual biological effects of curcumin (Cur) for reducing inflammation and promoting repair of colonic mucosal injury, targeted colonic localization and release of Cur according to the colonic microenvironment were enhanced. The inner core, derived from guar gum and low-methoxyl pectin, afforded colonic adhesion and degradation behavior; the outer layer, modified by alginate and chitosan via polyelectrolyte interaction, achieved colonic localization. The porous starch (PS)-mediated strong adsorption allowed Cur loading in inner core to achieve a multifunctional delivery system. In vitro, the formulations exhibited good bioresponses at different pH conditions, potentially delaying Cur release in the upper gastrointestinal tract. In vivo, dextran sulfate sodium-induced ulcerative colitis (UC) symptoms were significantly alleviated after oral administration, accompanied by reduced levels of inflammatory factors. The formulations facilitated colonic delivery, allowing Cur accumulation in colonic tissue. Moreover, the formulations could alter gut microbiota composition in mice. During Cur delivery, each formulation increased species richness, decreased pathogenic bacterial content, and afforded synergistic effects against UC. These PS-loaded bilayer microgels, exhibiting excellent biocompatibility, multi-bioresponsiveness, and colon targeting, could be beneficial in UC therapy, allowing development into a novel oral formulation.
Collapse
Affiliation(s)
- Zhijie Wen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Hudie Fu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Shengpeng Zhu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xuexin Ye
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xuedan Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xiaojun Li
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Lvyi Chen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Yan Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China.
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China.
| |
Collapse
|
16
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
17
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
18
|
Matsumura Y, Kitabatake M, Kayano SI, Ito T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants (Basel) 2023; 12:antiox12040880. [PMID: 37107256 PMCID: PMC10135282 DOI: 10.3390/antiox12040880] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Oxidative stress causes various diseases, such as type II diabetes and dyslipidemia, while antioxidants in foods may prevent a number of diseases and delay aging by exerting their effects in vivo. Phenolic compounds are phytochemicals such as flavonoids which consist of flavonols, flavones, flavanonols, flavanones, anthocyanidins, isoflavones, lignans, stilbenoids, curcuminoids, phenolic acids, and tannins. They have phenolic hydroxyl groups in their molecular structures. These compounds are present in most plants, are abundant in nature, and contribute to the bitterness and color of various foods. Dietary phenolic compounds, such as quercetin in onions and sesamin in sesame, exhibit antioxidant activity and help prevent cell aging and diseases. In addition, other kinds of compounds, such as tannins, have larger molecular weights, and many unexplained aspects still exist. The antioxidant activities of phenolic compounds may be beneficial for human health. On the other hand, metabolism by intestinal bacteria changes the structures of these compounds with antioxidant properties, and the resulting metabolites exert their effects in vivo. In recent years, it has become possible to analyze the composition of the intestinal microbiota. The augmentation of the intestinal microbiota by the intake of phenolic compounds has been implicated in disease prevention and symptom recovery. Furthermore, the “brain–gut axis”, which is a communication system between the gut microbiome and brain, is attracting increasing attention, and research has revealed that the gut microbiota and dietary phenolic compounds affect brain homeostasis. In this review, we discuss the usefulness of dietary phenolic compounds with antioxidant activities against some diseases, their biotransformation by the gut microbiota, the augmentation of the intestinal microflora, and their effects on the brain–gut axis.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shin-ichi Kayano
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
19
|
Zhou Y, Wang D, Yan W. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments. Nutrients 2023; 15:nu15041031. [PMID: 36839389 PMCID: PMC9967064 DOI: 10.3390/nu15041031] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory disease of the intestine that can be classified as ulcerative colitis (UC) and Crohn's disease (CD). Currently, the incidence of IBD is still increasing in developing countries. However, current treatments for IBD have limitations and do not fully meet the needs of patients. There is a growing demand for new, safe, and highly effective alternative drugs for IBD patients. Natural products (NPs) are used in drug development and disease treatment because of their broad biological activity, low toxicity, and low side effects. Numerous studies have shown that some NPs have strong therapeutic effects on IBD. In this paper, we first reviewed the pathogenesis of IBD as well as current therapeutic approaches and drugs. Further, we summarized the therapeutic effects of 170 different sources of NPs on IBD and generalized their modes of action and therapeutic effects. Finally, we analyzed the potential mechanisms of NPs for the treatment of IBD. The aim of our review is to provide a systematic and credible summary, thus supporting the research on NPs for the treatment of IBD and providing a theoretical basis for the development and application of NPs in drugs and functional foods.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Correspondence: ; Tel.: +86-010-6238-8926
| |
Collapse
|
20
|
Huang J, Wu T, Zhong Y, Huang J, Kang Z, Zhou B, Zhao H, Liu D. Effect of curcumin on regulatory B cells in chronic colitis mice involving TLR/MyD88 signaling pathway. Phytother Res 2023; 37:731-742. [PMID: 36196887 DOI: 10.1002/ptr.7656] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Curcumin (Cur) is a natural active phenolic compound extracted from the root of Curcuma Longa L. It has anti-inflammatory, anti-tumor and other pharmacological activities, and is commonly used to treat ulcerative colitis (UC). However, it is not clear whether curcumin regulates the function and differentiation of Breg cells to treat UC. In this study, mice with chronic colitis were induced by dextran sulfate sodium (DSS), and treated with curcumin for 12 days. Curcumin effectively improved the body weight, colonic weight, colonic length, decreased colonic weight index and pathological injury score under colonoscopy in mice with chronic colitis, and significantly inhibited the production of IL-1β, IL-6, IL-33, CCL-2, IFN-γ, TNF-α, and promoted the secretion of IL-4, IL-10, IL-13 and IgA. Importantly, curcumin markedly upregulated CD3- CD19+ CD1d+ , CD3- CD19+ CD25+ , CD3- CD19+ Foxp3+ Breg cells level and significantly down-regulated CD3- CD19+ PD-L1+ , CD3- CD19+ tim-1+ , CD3- CD19+ CD27+ Breg cells level. In addition, our results also showed that curcumin observably inhibited TLR2, TLR4, TLR5, MyD88, IRAK4, p-IRAK4, NF-κB P65, IRAK1, TRAF6, TAB1, TAB2, TAK1, MKK3, MKK6, p38MAPK, p-p38MAPK and CREB expression in TLR/MyD88 signaling pathway. These results suggest that curcumin can regulate the differentiation and function of Breg cell to alleviate DSS-induced colitis, which may be realized by inhibiting TLR/MyD88 pathway.
Collapse
Affiliation(s)
- Jie Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Tiantian Wu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Youbao Zhong
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Zengping Kang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Bugao Zhou
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
21
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Asai T, Tsuji A, Matsuda S. Metabolic Associated Fatty Liver Disease as a Risk Factor for the Development of Central Nervous System Disorders. LIVERS 2023; 3:21-32. [DOI: 10.3390/livers3010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
MAFLD/NAFLD is the most ordinary liver disease categorized by hepatic steatosis with the increase of surplus fat in the liver and metabolic liver dysfunction, which is associated with bigger mortality and a high medical burden. An association between MAFLD/NAFLD and central nervous system disorders including psychological disorders has been demonstrated. Additionally, MAFLD/NAFLD has been correlated with various types of neurodegenerative disorders such as amyotrophic lateral sclerosis or Parkinson’s disease. Contrasted to healthy controls, patients with MAFLD/NAFLD have a greater prevalence risk of extrahepatic complications within multiple organs. Dietary interventions have emerged as effective strategies for MAFLD/NAFLD. The PI3K/AKT/mTOR signaling pathway involved in the regulation of Th17/Treg balance might promote the pathogenesis of several diseases including MAFLD/NAFLD. As extrahepatic complications may happen across various organs including CNS, cooperative care with individual experts is also necessary for managing patients with MAFLD/NAFLD.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Tomoko Asai
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
22
|
Bao Y, Han X, Liu D, Tan Z, Deng Y. Gut microbiota: The key to the treatment of metabolic syndrome in traditional Chinese medicine - a case study of diabetes and nonalcoholic fatty liver disease. Front Immunol 2022; 13:1072376. [PMID: 36618372 PMCID: PMC9816483 DOI: 10.3389/fimmu.2022.1072376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Metabolic syndrome mainly includes obesity, type 2 diabetes (T2DM), alcoholic fatty liver (NAFLD) and cardiovascular diseases. According to the ancient experience philosophy of Yin-Yang, monarch-minister compatibility of traditional Chinese medicine, prescription is given to treat diseases, which has the advantages of small toxic and side effects and quick effect. However, due to the diversity of traditional Chinese medicine ingredients and doubts about the treatment theory of traditional Chinese medicine, the mechanism of traditional Chinese medicine is still in doubt. Gastrointestinal tract is an important part of human environment, and participates in the occurrence and development of diseases. In recent years, more and more TCM researches have made intestinal microbiome a new frontier for understanding and treating diseases. Clinically, nonalcoholic fatty liver disease (NAFLD) and diabetes mellitus (DM) often co-occur. Our aim is to explain the mechanism of interaction between gastrointestinal microbiome and traditional Chinese medicine (TCM) or traditional Chinese medicine formula to treat DM and NAFLD. Traditional Chinese medicine may treat these two diseases by influencing the composition of intestinal microorganisms, regulating the metabolism of intestinal microorganisms and transforming Chinese medicinal compounds.
Collapse
Affiliation(s)
- Yang Bao
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiao Han
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Zhaolin Tan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Yongzhi Deng
- Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| |
Collapse
|
23
|
Chen K, Gao Z, Ding Q, Tang C, Zhang H, Zhai T, Xie W, Jin Z, Zhao L, Liu W. Effect of natural polyphenols in Chinese herbal medicine on obesity and diabetes: Interactions among gut microbiota, metabolism, and immunity. Front Nutr 2022; 9:962720. [PMID: 36386943 PMCID: PMC9651142 DOI: 10.3389/fnut.2022.962720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
With global prevalence, metabolic diseases, represented by obesity and type 2 diabetes mellitus (T2DM), have a huge burden on human health and medical expenses. It is estimated that obese population has doubled in recent 40 years, and population with diabetes will increase 1.5 times in next 25 years, which has inspired the pursuit of economical and effective prevention and treatment methods. Natural polyphenols are emerging as a class of natural bioactive compounds with potential beneficial effects on the alleviation of obesity and T2DM. In this review, we investigated the network interaction mechanism of "gut microbial disturbance, metabolic disorder, and immune imbalance" in both obesity and T2DM and systemically summarized their multiple targets in the treatment of obesity and T2DM, including enrichment of the beneficial gut microbiota (genera Bifidobacterium, Akkermansia, and Lactobacillus) and upregulation of the levels of gut microbiota-derived metabolites [short-chain fatty acids (SCFAs)] and bile acids (BAs). Moreover, we explored their effect on host glucolipid metabolism, the AMPK pathway, and immune modulation via the inhibition of pro-inflammatory immune cells (M1-like Mϕs, Th1, and Th17 cells); proliferation, recruitment, differentiation, and function; and related cytokines (TNF-α, IL-1β, IL-6, IL-17, and MCP-1). We hope to provide evidence to promote the clinical application of natural polyphenols in the management of obesity and T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiyou Ding
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haiyu Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiangang Zhai
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Weinan Xie
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenke Liu
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Wang J, Zhong Y, Zhu H, Mahgoub OK, Jian Z, Gu L, Xiong X. Different gender-derived gut microbiota influence stroke outcomes by mitigating inflammation. J Neuroinflammation 2022; 19:245. [PMID: 36195899 PMCID: PMC9531521 DOI: 10.1186/s12974-022-02606-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background and purpose Stroke is associated with high disability and mortality rates and increases the incidence of organ-related complications. Research has revealed that the outcomes and prognosis of stroke are regulated by the state of the intestinal microbiota. However, the possibility that the manipulation of the intestinal microbiota can alter sex-related stroke outcomes remain unknown. Methods To verify the different effects of microbiota from different sexes on stroke outcomes, we performed mouse fecal microbiota transplantation (FMT) and established a model of ischemic stroke. Male and female mice received either male or female microbiota through FMT. Ischemic stroke was triggered by MCAO (middle cerebral artery occlusion), and sham surgery served as a control. Over the next few weeks, the mice underwent neurological evaluation and metabolite and inflammatory level detection, and we collected fecal samples for 16S ribosomal RNA analysis. Results We found that when the female mice were not treated with FMT, the microbiota (especially the Firmicutes-to-Bacteroidetes ratio) and the levels of three main metabolites tended to resemble those of male mice after experimental stroke, indicating that stroke can induce an ecological imbalance in the biological community. Through intragastric administration, the gut microbiota of male and female mice was altered to resemble that of the other sex. In general, in female mice after MCAO, the survival rate was increased, the infarct area was reduced, behavioral test performance was improved, the release of beneficial metabolites was promoted and the level of inflammation was mitigated. In contrast, mice that received male microbiota were much more hampered in terms of protection against brain damage and the recovery of neurological function. Conclusion A female-like biological community reduces the level of systemic proinflammatory cytokines after ischemic stroke. Poor stroke outcomes can be positively modulated following supplementation with female gut microbiota.
Collapse
Affiliation(s)
- Jinchen Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China.,Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Omer Kamal Mahgoub
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China.
| |
Collapse
|
25
|
Wu Y, Pei C, Wang X, Wang Y, Huang D, Shi S, Shen Z, Li S, He Y, Wang Z, Wang J. Probiotics ameliorates pulmonary inflammation via modulating gut microbiota and rectifying Th17/Treg imbalance in a rat model of PM2.5 induced lung injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114060. [PMID: 36115151 DOI: 10.1016/j.ecoenv.2022.114060] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The imbalance of intestinal microbiota and inflammatory response is crucial in the development of lung injury induced by PM2.5. In recent years, probiotics have attracted great attention for their health benefits in inflammatory diseases and regulating intestinal balance, but their intricate mechanisms need further experiments to elucidate. In our research, a rat lung damage model induced by PM2.5 exposure in real environment was established to explore the protective properties of probiotics on PM2.5 exposure injury and its related mechanism. The results indicated that compared with the AF control group, rats in the PM2.5 group gained weight slowly, ate less and had yellow hair. The results of pathological and immunohistochemical examinations showed that the inflammatory infiltration of lung tissue was alleviated after probiotic treatment. The Lung function results also showed the improvement effects of probiotics administration. In addition, probiotics could promote the balance of Th17 and Treg cells, inhibit cytokines expression (TNF-α, IL-6, IL-1β, IL-17A), and increase the concentration of anti-inflammatory factors (IL-10, TGF-β). In addition, 16 S rRNA sequence analysis showed that probiotic treatment could reduce microbiota abundance and diversity, increase the abundance of possible beneficial bacteria, and decrease the abundance of bacteria associated with inflammation. In general, probiotic intervention was found to have preventive effects on the occurrence of PM2.5 induced pathological injury, and the mechanism was associate with to the inhibition of inflammatory response, regulation of Th17/Treg balance and maintenance of intestinal internal environment stability.
Collapse
Affiliation(s)
- Yongcan Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, PR China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu 611137, PR China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China.
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
26
|
Yang Z, Lin S, Feng W, Liu Y, Song Z, Pan G, Zhang Y, Dai X, Ding X, Chen L, Wang Y. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization. Front Pharmacol 2022; 13:999179. [PMID: 36147340 PMCID: PMC9486102 DOI: 10.3389/fphar.2022.999179] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal macrophages are the main participants of intestinal immune homeostasis and intestinal inflammation. Under different environmental stimuli, intestinal macrophages can be polarized into classical activated pro-inflammatory phenotype (M1) and alternative activated anti-inflammatory phenotype (M2). Its different polarization state is the “guide” to promoting the development and regression of inflammation. Under normal circumstances, intestinal macrophages can protect the intestine from inflammatory damage. However, under the influence of some genetic and environmental factors, the polarization imbalance of intestinal M1/M2 macrophages will lead to the imbalance in the regulation of intestinal inflammation and transform the physiological inflammatory response into pathological intestinal injury. In UC patients, the disorder of intestinal inflammation is closely related to the imbalance of intestinal M1/M2 macrophage polarization. Therefore, restoring the balance of M1/M2 macrophage polarization may be a potentially valuable therapeutic strategy for UC. Evidence has shown that traditional Chinese medicine (TCM) has positive therapeutic effects on UC by restoring the balance of M1/M2 macrophage polarization. This review summarizes the clinical evidence of TCM for UC, the vital role of macrophage polarization in the pathophysiology of UC, and the potential mechanism of TCM regulating macrophage polarization in the treatment of UC. We hope this review may provide some new enlightenment for the clinical treatment, fundamental research, and research and development of new Chinese medicine of UC.
Collapse
Affiliation(s)
- Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Lin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangxi Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiyun Pan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiangdong Dai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinya Ding
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Chen, ; Yi Wang,
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Chen, ; Yi Wang,
| |
Collapse
|
27
|
Zhong Y, Liu W, Xiong Y, Li Y, Wan Q, Zhou W, Zhao H, Xiao Q, Liu D. Astragaloside Ⅳ alleviates ulcerative colitis by regulating the balance of Th17/Treg cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154287. [PMID: 35752072 DOI: 10.1016/j.phymed.2022.154287] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Restoring immune homeostasis by targeting the Th17/Treg response is a potentially valuable therapeutic strategy for ulcerative colitis (UC). Astragaloside IV (AS-Ⅳ) is a phytochemical naturally occurring in Astragalus membranaceus that has good anti-inflammatory, anti-oxidant and anti-stress properties. However, the effects of AS-IV on the homeostasis of Th17/Treg cells in colitis mice remains unknown. PURPOSE To investigate the protective effects and potential immunomodulatory mechanisms of AS-IV on UC. METHODS This study was constructed for DSS-induced acute colitis and recurrent colitis, with AS-IV administered prophylactically and therapeutically, respectively. The balance of Th17/Treg cells was analyzed by flow cytometry, their specific nuclear transcription factors were detected by RT-PCR as well as their secreted inflammatory cytokines were detected by ELISA and RT-PCR. Notch signaling-related proteins were detected by RT-PCR and Western blotting. Oxidative stress indicators were measured by biochemical technology. RESULTS In this study, AS-IV treatment not only effectively prevented and alleviated the clinical symptoms of DSS-induced colitis mice, including weight loss, DAI soaring, colon length shortening and colon weight gain, but also significantly improved ulcer formation, inflammatory cell infiltration and index, and regulated the expression of inflammatory cytokines in colon tissues. Importantly, the efficacy of high-dose AS-IV (100 mg/kg/day) in mice with recurrent colitis in this study was comparable to that of 5-ASA. AS-IV early administration was able to reshape the homeostasis of Th17/Treg cells in mice with acute colitis; meanwhile, AS-IV inhibited Th17 cell responses and promoted Treg cell responses in mice with recurrent colitis. Moreover, AS-IV not only inhibited the activation of Notch signaling pathway in colitis mice, but also prevented and ameliorated DSS-induced oxidative stress injury. CONCLUSION In conclusion, AS-IV effectively prevented and alleviated UC by reshaping Th17/Treg cell homeostasis and anti-oxidative stress.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Yanxia Xiong
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Yingmeng Li
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China
| | - Qi Wan
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Wen Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China; Nanchang Medical college, Nanchang, Jiangxi 330004, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China
| | - Qiuping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, Jiangxi 330004, China.
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, Jiangxi 330004, China.
| |
Collapse
|
28
|
Jiang X, Sun B, Zhou Z. Preclinical Studies of Natural Products Targeting the Gut Microbiota: Beneficial Effects on Diabetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8569-8581. [PMID: 35816090 DOI: 10.1021/acs.jafc.2c02960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a serious metabolic disease characterized by persistent hyperglycemia, with a continuously increasing morbidity and mortality. Although traditional treatments including insulin and oral hypoglycemic drugs maintain blood glucose levels within the normal range to a certain extent, there is an urgent need to develop new drugs that can effectively improve glucose metabolism and diabetes-related complications. Notably, accumulated evidence implicates that the gut microbiota is unbalanced in DM individuals and is involved in the physiological and pathological processes of this metabolic disease. In this review, we introduce the molecular mechanisms by which the gut microbiota contributes to the development of DM. Furthermore, we summarize the preclinical studies of bioactive natural products that exert antidiabetic effects by modulating the gut microbiota, aiming to expand the novel therapeutic strategies for DM prevention and management.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Boyu Sun
- The Third People's Hospital of Qingdao, Qingdao 266000, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|