1
|
Joy-Thomas A, Lalwani Z, Guajardo L, Valenza J, Fakhouri WD. The Role of Genetics in Human Oral Health: A Systematic-Narrative Review. Dent J (Basel) 2025; 13:133. [PMID: 40136761 PMCID: PMC11941287 DOI: 10.3390/dj13030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives: An individual's genetic makeup influences their organ development, orofacial structures, and overall health. Though many studies have been conducted to determine the inheritance of oral diseases and conditions, there is a lack of comprehensive research classifying these disorders based on the genetic and environmental etiology. Methods: This systematic review aimed to analyze the existing body of literature using the PubMed and Cochrane databases and answer the following question: "What evidence exists supporting the role of genetic factors in oral conditions?" This systematic-narrative review methodically categorizes oral diseases and conditions based on their genetic or environmental linkages. Each classification is rigorously supported by the peer-reviewed articles and evidence strength, affirming the sufficient validity of the identified associations. Results: This study provides an overview of how genetics can influence oral health, from predisposition to susceptibility to various oral diseases, and the impact of genetic alterations on dental and oral conditions. Additionally, this study discusses the importance of understanding the interplay between genetic and environmental factors to improve oral health outcomes. An enhanced understanding of the impact of genetics on oral health will provide a better understanding of the implications of inherited or de novo genetic mutations and their potential interactions with environmental factors. Conclusions: The data collection and analysis indicate 25 oral conditions with strong genetic components and 2 with moderate genetic contributions (fibrous dysplasia and impacted teeth), while 14 oral conditions seem to have weak genetic contributions. Treatment planning that includes genetic testing and counseling as an approach of precision oral healthcare is encouraged to develop appropriate preventative and timely treatment plans to provide the effective management of patients' symptoms.
Collapse
Affiliation(s)
- Anita Joy-Thomas
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
| | - Zarna Lalwani
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
| | - Leticia Guajardo
- Department of Endodontics, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
| | - John Valenza
- Department of General Practice and Dental Public Health, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
| | - Walid D. Fakhouri
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| |
Collapse
|
2
|
Ukita N, Ogawa T, Yamada M, Takeuchi C, Kosaki K, Moriyama K. Functional Analyses of SATB2 Variants Reveal Pathogenicity Mechanisms Linked With SATB2-Associated Syndrome. Am J Med Genet A 2025:e64005. [PMID: 39887889 DOI: 10.1002/ajmg.a.64005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
SATB2-associated syndrome (SAS) is characterized by intellectual disability, neurodevelopmental disorders, cleft palate, and dental abnormalities. SAS is caused by variants in the special AT-rich sequence-binding protein 2 (SATB2), which encodes a transcription factor containing two CUT domains and a homeobox (HOX) domain. Here, we report the case of a 16-year-old male diagnosed with SAS using exome sequencing and investigate the functional consequences of previously reported SATB2 variants, including those in this case. The patient carried a heterozygous missense variant (c.1147G>C, p.A383P) in SATB2, which was predicted to be pathogenic in silico but was absent from public databases. Immunofluorescence assays demonstrated that SATB2 proteins with variants in the CUT2 domain predominantly localized to the cytoplasm. Functional analysis further revealed that wild-type SATB2 increased the activity of the Msx1 promoter, which is involved in palatogenesis and tooth development, whereas variants in the CUT1 domain disrupted this transcriptional activation. These findings suggest that the nuclear localization signal of SATB2 resides in the CUT2 domain and that Msx1 promoter impairment owing to SATB2 variants may contribute to the pathogenesis of cleft palate and tooth agenesis in SAS. This research highlights a novel pathogenic variant and the functional implications for understanding SAS.
Collapse
Affiliation(s)
- Nao Ukita
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takuya Ogawa
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Chisen Takeuchi
- Department of Clinical Genetics, Jikei University Hospital, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Schuch LF, Silveira FM, Pereira-Prado V, Sicco E, Pandiar D, Villarroel-Dorrego M, Bologna-Molina R. Clinicopathological and molecular insights into odontogenic tumors associated with syndromes: A comprehensive review. World J Exp Med 2024; 14:98005. [PMID: 39713074 PMCID: PMC11551705 DOI: 10.5493/wjem.v14.i4.98005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/31/2024] Open
Abstract
The association between genetic syndromes and odontogenic tumors encompasses several entities, reflecting the intricate interplay between genetic factors and the development of these lesions. The present study aimed to comprehensively investigate the associations between genetic syndromes and odontogenic tumors. We delineated the diverse spectrum of syndromic connections, including key syndromes such as Gardner syndrome, Gorlin syndrome, Schimmelpenning syndrome, and others. Our findings underscore the clinical significance of recognizing odontogenic tumors associated with genetic syndromes as diagnostic indicators for early intervention. We advocate for multidisciplinary collaboration among clinicians, geneticists, and researchers to deepen our understanding of the underlying mechanisms driving these syndromic associations. In light of this, our study contributes to the growing body of knowledge in dentistry and medical genetics, offering insights that may inform clinical practice and enhance patient care for individuals affected by genetic syndromes and odontogenic tumors.
Collapse
Affiliation(s)
- Lauren Frenzel Schuch
- Department of Diagnosis in Pathology and Oral Medicine, Faculty of Dentistry, Universidad de la República, Montevideo 1600, Uruguay
| | - Felipe Martins Silveira
- Department of Diagnosis in Pathology and Oral Medicine, Faculty of Dentistry, Universidad de la República, Montevideo 1600, Uruguay
| | - Vanesa Pereira-Prado
- Department of Diagnosis in Pathology and Oral Medicine, Faculty of Dentistry, Universidad de la República, Montevideo 1600, Uruguay
| | - Estefania Sicco
- Department of Diagnosis in Pathology and Oral Medicine, Faculty of Dentistry, Universidad de la República, Montevideo 1600, Uruguay
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals Chennai, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Chennai 600077, Tamil Nādu, India
| | - Mariana Villarroel-Dorrego
- Department of Oral Pathology, Oral Medicine, School of Dentistry, Universidad Central de Venezuela, Venezuela, Caracas 1051, Distrito Capital, Venezuela
| | - Ronell Bologna-Molina
- Department of Diagnosis in Pathology and Oral Medicine, Faculty of Dentistry, Universidad de la República, Montevideo 1600, Uruguay
| |
Collapse
|
4
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
5
|
Liu Q, Feng NN, Chen LJ. Genetic analysis of a child with SATB2‑associated syndrome and literature study. Exp Ther Med 2023; 26:372. [PMID: 37415841 PMCID: PMC10320656 DOI: 10.3892/etm.2023.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/23/2023] [Indexed: 07/08/2023] Open
Abstract
The present study aimed to investigate clinical phenotype and genotype characteristics of a male child with SATB2-associated syndrome (SAS) and analyzed the relationship between these characteristics and the possible underlying genetic mechanism. His clinical phenotype was analyzed. Using a high-throughput sequencing platform, his DNA samples were subjected to medical exome sequencing, screened for suspected variant loci and analyzed for chromosomal copy number variations. The suspected pathogenic loci were verified by Sanger sequencing. He presented with phenotypic anomalies of delayed growth, delayed speech and mental development, facial dysmorphism showing the typical manifestation of SAS and motor retardation symptoms. Gene sequencing result analyses revealed a de novo heterozygous repeat insertion shift mutation in the SATB2 gene (NM_015265.3) c.771dupT (p.Met258Tyrfs*46), resulting in a frameshift mutation from methionine to tyrosine at the amino acid site 258 and a truncated protein with 46 amino acids missing. The parents showed no mutation at this locus. This mutation was identified as the nosogenesis of this syndrome in children. To the best of the authors' knowledge, this is the first report on this mutation. The clinical manifestations and gene variation characteristics of 39 previously reported SAS cases were analyzed together with this case. The findings of the present study suggested severely impaired language development, facial dysmorphism and varying degrees of delayed intellectual development as the characteristic clinical manifestations of SAS.
Collapse
Affiliation(s)
- Qian Liu
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Nan-Nan Feng
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin-Jiao Chen
- Center for Reproductive Medicine, Center for Prenatal Genetics, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
6
|
Kurosaka H, Yamamoto S, Hirasawa K, Yanagishita T, Fujioka K, Yagasaki H, Nagata M, Ishihara Y, Yonei A, Asano Y, Nagata N, Tsujimoto T, Inubushi T, Yamamoto T, Sakai N, Yamashiro T. Craniofacial and dental characteristics of three Japanese individuals with genetically diagnosed SATB2-associated syndrome. Am J Med Genet A 2023. [PMID: 37141439 DOI: 10.1002/ajmg.a.63225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Craniofacial defects are one of the most frequent phenotypes in syndromic diseases. More than 30% of syndromic diseases are associated with craniofacial defects, which are important for the precise diagnosis of systemic diseases. Special AT-rich sequence-binding protein 2 (SATB2)-associated syndrome (SAS) is a rare syndromic disease associated with a wide variety of phenotypes, including intellectual disability and craniofacial defects. Among them, dental anomalies are the most frequently observed phenotype and thus becomes an important diagnostic criterion for SAS. In this report, we demonstrate three Japanese cases of genetically diagnosed SAS with detailed craniofacial phenotypes. The cases showed multiple dental problems, which have been previously reported to be linked to SAS, including abnormal crown morphologies and pulp stones. One case showed a characteristic enamel pearl at the root furcation. These phenotypes add new insights for differentiating SAS from other disorders.
Collapse
Affiliation(s)
- Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Sayuri Yamamoto
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kyoko Hirasawa
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoe Yanagishita
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kaoru Fujioka
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hideaki Yagasaki
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuki Ishihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Yonei
- Department of Genetic Counseling Osaka University Hospital, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Namiki Nagata
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takayuki Tsujimoto
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Norio Sakai
- Department of Genetic Counseling Osaka University Hospital, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Health Science, Child Healthcare and Genetic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
7
|
Soliman N, Al-Khanati NM, Alkhen M. Rare giant complex composite odontoma of mandible in mixed dentition: Case report with 3-year follow-up and literature review. Ann Med Surg (Lond) 2022; 74:103355. [PMID: 35198177 PMCID: PMC8844788 DOI: 10.1016/j.amsu.2022.103355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction and importance: Complex odontomas are hamartomas representing a conglomeration of all dental tissues. When developed, they rarely become giant and even more rare to become giant in children. This report presented an unusual giant mandibular complex odontoma in very young patient. It also provided a literature analysis and better understanding of clinical features of such giant lesions in the mandible. Case presentation An 8-year-old boy presented with swelling in the right side of the mandible. After clinical and radiological exams, a provisional diagnosis of giant composite odontoma was made. This lesion led to jaw expansion, asymmetrical face, and teeth eruption alterations. Surgical excision of the lesion was performed, and histopathological examination confirmed the diagnosis. The patient's follow-up showed that normal jaw size and facial symmetry was restored with no evidence of recurrence for 3 years. Clinical discussion A literature review of reported mandibular large odontomas was made. All published reported cases of giant odontoma in the mandible caused bone expansion with or without pain. According to the literature, this paper described the youngest patient with giant complex odontoma in the mandible. This was also the first reported case from Syria. Conclusion Giant complex composite odontoma of the mandible can develop at any age causing facial asymmetry, however, with good prognosis and predictable surgical treatment.
This report presented an unusual giant mandibular complex odontoma in a young patient. It provided a literature analysis and better understanding of clinical features of such giant lesions in the mandible. According to literature, this is the youngest patient with giant odontoma in the mandible, and the first from Syria. Odontomas tend to expand the jaw when they become giant.
Collapse
Affiliation(s)
- Nour Soliman
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Syrian Private University, Damascus, Syria
- Department of Oral and Maxillofacial Surgery, Damascus Hospital, Damascus, Syria
| | - Nuraldeen Maher Al-Khanati
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Syrian Private University, Damascus, Syria
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Damascus University, Damascus, Syria
- Corresponding author. Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Syrian Private University, P.O. Box 36822, Damascus, Syria.
| | - Moutaz Alkhen
- Department of Oral and Maxillofacial Surgery, Damascus Hospital, Damascus, Syria
| |
Collapse
|
8
|
Zhu YY, Sun GL, Yang ZL. SATB2-associated syndrome caused by a novel SATB2 mutation in a Chinese boy: A case report and literature review. World J Clin Cases 2021; 9:6081-6090. [PMID: 34368330 PMCID: PMC8316932 DOI: 10.12998/wjcc.v9.i21.6081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Special AT-rich sequence binding protein 2 (SATB2)-associated syndrome (SAS; OMIM 612313) is an autosomal dominant disorder. Alterations in the SATB2 gene have been identified as causative.
CASE SUMMARY We report a case of a 13-year-old Chinese boy with lifelong global developmental delay, speech and language delay, and intellectual disabilities. He had short stature and irregular dentition, but no other abnormal clinical findings. A de novo heterozygous nonsense point mutation was detected by genetic analysis in exon 6 of SATB2, c.687C>A (p.Y229X) (NCBI reference sequence: NM_001172509.2), and neither of his parents had the mutation. This mutation is the first reported and was evaluated as pathogenic according to the guidelines from the American College of Medical Genetics and Genomics. SAS was diagnosed, and special education performed. Our report of a SAS case in China caused by a SATB2 mutation expanded the genotype options for the disease. The heterogeneous manifestations can be induced by complicated pathogenic involvements and functions of SATB2 from reviewed literatures: (1) SATB2 haploinsufficiency; (2) the interference of truncated SATB2 protein to wild-type SATB2; and (3) different numerous genes regulated by SATB2 in brain and skeletal development in different developmental stages.
CONCLUSION Global developmental delays are usually the initial presentations, and the diagnosis was challenging before other presentations occurred. Regular follow-up and genetic analysis can help to diagnose SAS early. Verification for genes affected by SATB2 mutations for heterogeneous manifestations may help to clarify the possible pathogenesis of SAS in the future.
Collapse
Affiliation(s)
- Yan-Yan Zhu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Gui-Lian Sun
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Zhi-Liang Yang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
9
|
Chen Q, Zheng L, Zhang Y, Huang X, Wang F, Li S, Yang Z, Liang F, Hu J, Jiang Y, Li Y, Zhou P, Luo W, Zhang H. Special AT-rich sequence-binding protein 2 (Satb2) synergizes with Bmp9 and is essential for osteo/odontogenic differentiation of mouse incisor mesenchymal stem cells. Cell Prolif 2021; 54:e13016. [PMID: 33660290 PMCID: PMC8016638 DOI: 10.1111/cpr.13016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Mouse incisor mesenchymal stem cells (MSCs) have self-renewal ability and osteo/odontogenic differentiation potential. However, the mechanism controlling the continuous self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs remains unclear. Special AT-rich sequence-binding protein 2 (SATB2) positively regulates craniofacial patterning, bone development and regeneration, whereas SATB2 deletion or mutation leads to craniomaxillofacial dysplasia and delayed tooth and root development, similar to bone morphogenetic protein (BMP) loss-of-function phenotypes. However, the detailed mechanism underlying the SATB2 role in odontogenic MSCs is poorly understood. The aim of this study was to investigate whether SATB2 can regulate self-renewal and osteo/odontogenic differentiation of odontogenic MSCs. MATERIALS AND METHODS Satb2 expression was detected in the rapidly renewing mouse incisor mesenchyme by immunofluorescence staining, quantitative RT-PCR and Western blot analysis. Ad-Satb2 and Ad-siSatb2 were constructed to evaluate the effect of Satb2 on odontogenic MSCs self-renewal and osteo/odontogenic differentiation properties and the potential role of Satb2 with the osteogenic factor bone morphogenetic protein 9 (Bmp9) in vitro and in vivo. RESULTS Satb2 was found to be expressed in mesenchymal cells and pre-odontoblasts/odontoblasts. We further discovered that Satb2 effectively enhances mouse incisor MSCs self-renewal. Satb2 acted synergistically with the potent osteogenic factor Bmp9 in inducing osteo/odontogenic differentiation of mouse incisor MSCs in vitro and in vivo. CONCLUSIONS Satb2 promotes self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs. Thus, Satb2 can cooperate with Bmp9 as a new efficacious bio-factor for osteogenic regeneration and tooth engineering.
Collapse
Affiliation(s)
- Qiuman Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Liwen Zheng
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Xia Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Feilong Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Shuang Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Zhuohui Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Fang Liang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Jing Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yucan Jiang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yeming Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Pengfei Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Wenping Luo
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| |
Collapse
|
10
|
Fazio M, van Rooijen E, Dang M, van de Hoek G, Ablain J, Mito JK, Yang S, Thomas A, Michael J, Fabo T, Modhurima R, Pessina P, Kaufman CK, Zhou Y, White RM, Zon LI. SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance. eLife 2021; 10:64370. [PMID: 33527896 PMCID: PMC7880683 DOI: 10.7554/elife.64370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Recent genomic and scRNA-seq analyses of melanoma demonstrated a lack of recurrent genetic drivers of metastasis, while identifying common transcriptional states correlating with invasion or drug resistance. To test whether transcriptional adaptation can drive melanoma progression, we made use of a zebrafish mitfa:BRAFV600E;tp53-/- model, in which malignant progression is characterized by minimal genetic evolution. We undertook an overexpression-screen of 80 epigenetic/transcriptional regulators and found neural crest-mesenchyme developmental regulator SATB2 to accelerate aggressive melanoma development. Its overexpression induces invadopodia formation and invasion in zebrafish tumors and human melanoma cell lines. SATB2 binds and activates neural crest-regulators, including pdgfab and snai2. The transcriptional program induced by SATB2 overlaps with known MITFlowAXLhigh and AQP1+NGFR1high drug-resistant states and functionally drives enhanced tumor propagation and resistance to Vemurafenib in vivo. In summary, we show that melanoma transcriptional rewiring by SATB2 to a neural crest mesenchyme-like program can drive invasion and drug resistance in autochthonous tumors.
Collapse
Affiliation(s)
- Maurizio Fazio
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Ellen van Rooijen
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Michelle Dang
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Glenn van de Hoek
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Julien Ablain
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Jeffrey K Mito
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Brigham and Women's Hospital, Department of Pathology, Boston, United States
| | - Song Yang
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Andrew Thomas
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Jonathan Michael
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Tania Fabo
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Rodsy Modhurima
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Patrizia Pessina
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Charles K Kaufman
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, United States.,Department of Developmental Biology, Washington University in Saint Louis, St. Louis, United States
| | - Yi Zhou
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Richard M White
- Memorial Sloan Kettering Cancer Center and Weill-Cornell Medical College, New York, United States
| | - Leonard I Zon
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
11
|
Huang X, Chen Q, Luo W, Pakvasa M, Zhang Y, Zheng L, Li S, Yang Z, Zeng H, Liang F, Zhang F, Hu DA, Qin KH, Wang EJ, Qin DS, Reid RR, He TC, Athiviraham A, El Dafrawy M, Zhang H. SATB2: A versatile transcriptional regulator of craniofacial and skeleton development, neurogenesis and tumorigenesis, and its applications in regenerative medicine. Genes Dis 2020; 9:95-107. [PMID: 35005110 PMCID: PMC8720659 DOI: 10.1016/j.gendis.2020.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/30/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
SATB2 (special AT-rich sequence-binding protein 2) is a member of the special AT-rich binding protein family. As a transcription regulator, SATB2 mainly integrates higher-order chromatin organization. SATB2 expression appears to be tissue- and stage-specific, and is governed by several cellular signaling molecules and mediators. Expressed in branchial arches and osteoblast-lineage cells, SATB2 plays a significant role in craniofacial pattern and skeleton development. In addition to regulating osteogenic differentiation, SATB2 also displays versatile functions in neural development and cancer progression. As an osteoinductive factor, SATB2 holds great promise in improving bone regeneration toward bone defect repair. In this review, we have summarized our current understanding of the physiological and pathological functions of SATB2 in craniofacial and skeleton development, neurogenesis, tumorigenesis and regenerative medicine.
Collapse
Affiliation(s)
- Xia Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Qiuman Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Wenping Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Shuang Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Zhuohui Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Huan Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fang Liang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fugui Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Daniel A Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin H Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric J Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - David S Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, PR China
| |
Collapse
|
12
|
Brooks JK, Tran LT, Basile JR, Khoury ZH, Wu LL, Price JB. Synchronous gubernacular canals with compound odontoma associated with a calcifying odontogenic cyst and transmigrated canine: An extremely rare event. PEDIATRIC DENTAL JOURNAL 2020. [DOI: 10.1016/j.pdj.2019.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Mishima H, Suzuki H, Doi M, Miyazaki M, Watanabe S, Matsumoto T, Morifuji K, Moriuchi H, Yoshiura KI, Kondoh T, Kosaki K. Evaluation of Face2Gene using facial images of patients with congenital dysmorphic syndromes recruited in Japan. J Hum Genet 2019; 64:789-794. [PMID: 31138847 DOI: 10.1038/s10038-019-0619-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 11/09/2022]
Abstract
An increasing number of genetic syndromes present a challenge to clinical geneticists. A deep learning-based diagnosis assistance system, Face2Gene, utilizes the aggregation of "gestalt," comprising data summarizing features of patients' facial images, to suggest candidate syndromes. Because Face2Gene's results may be affected by ethnicity and age at which training facial images were taken, the system performance for patients in Japan is still unclear. Here, we present an evaluation of Face2Gene using the following two patient groups recruited in Japan: Group 1 consisting of 74 patients with 47 congenital dysmorphic syndromes, and Group 2 consisting of 34 patients with Down syndrome. In Group 1, facial recognition failed for 4 of 74 patients, while 13-21 of 70 patients had a diagnosis for which Face2Gene had not been trained. Omitting these 21 patients, for 85.7% (42/49) of the remainder, the correct syndrome was identified within the top 10 suggested list. In Group 2, for the youngest facial images taken for each of the 34 patients, Down syndrome was successfully identified as the highest-ranking condition using images taken from newborns to those aged 25 years. For the oldest facial images taken at ≥20 years in each of 17 applicable patients, Down syndrome was successfully identified as the highest- and second-highest-ranking condition in 82.2% (14/17) and 100% (17/17) of the patients using images taken from 20 to 40 years. These results suggest that Face2Gene in its current format is already useful in suggesting candidate syndromes to clinical geneticists, using patients with congenital dysmorphic syndromes in Japan.
Collapse
Affiliation(s)
- Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Michiko Doi
- Department of Pediatrics, Nagasaki University Hospital, Nagasaki, Japan
| | - Mutsuko Miyazaki
- Department of Pediatrics, Nagasaki Prefectural Children Medical Welfare Center, Isahaya, Japan
| | - Satoshi Watanabe
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tadashi Matsumoto
- Division of Developmental Disabilities, Misakaenosono Mutsumi Developmental, Medical and Welfare Center, Isahaya, Japan
| | - Kanako Morifuji
- Department of Nursing, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Moriuchi
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuro Kondoh
- Division of Developmental Disabilities, Misakaenosono Mutsumi Developmental, Medical and Welfare Center, Isahaya, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|