Published online Nov 20, 2015. doi: 10.5493/wjem.v5.i4.218
Peer-review started: June 20, 2015
First decision: July 27, 2015
Revised: October 12, 2015
Accepted: November 3, 2015
Article in press: November 4, 2015
Published online: November 20, 2015
Processing time: 159 Days and 17.8 Hours
In biological systems there is a balance between the production and neutralization of reactive oxygen species (ROS). This balance is maintained by the presence of natural antioxidants and antioxidant enzymes such as superoxide dismutase (SOD), catalase and glutathione peroxidase. The enhancement of lipid peroxidation or the decrease of antioxidant protection present in metabolic diseases or bad lifestyle can induce endothelial dysfunction and atherosclerosis. Clinical studies have shown that oxidative stress can increase ROS reducing the formation of antioxidant defences, especially in subjects with coronary artery disease (CAD). Some observation indicated that in the early stages of the disease there is a homeostatic up-regulation of the antioxidant enzyme system in response to increased free radicals to prevent vascular damage. As soon as free radicals get to chronically elevated levels, this compensation ceases. Therefore, SOD and the other enzymes may represent a good therapeutic target against ROS, but they are not useful markers for the diagnosis of CAD. In conclusion antioxidant enzymes are reduced in presence of metabolic disease and CAD. However the existence of genes that promote their enzymatic activity could contribute to create new drugs for the treatment of damage caused by metabolic diseases or lifestyle that increases the plasma ROS levels.
Core tip: This review shows that antioxidant enzymes are very important factors for the prevention and treatment of atherosclerotic disease, but more studies are required to understand whether they can be used as markers for diagnosis of coronary artery disease. The presence of polymorphic genes that increases the activity and expression of these enzymes can be considered important for the development of new therapeutic strategies. In our opinion further efforts should be directed especially on this last point, in order to find new therapies to increase the function of antioxidant enzymes in metabolic disease or other risk factors.