1
|
Ghalavand MA, Asghari A, Jahanbakhshi A, Falavarjani KG, Eftekharian A, Farhadi M, Emamdjomeh H, Garshasbi M, Falah M. High de novo mutation rate in Iranian NF2-related schwannomatosis patients with a report of a novel NF2 mutation. Mol Biol Rep 2025; 52:402. [PMID: 40249415 DOI: 10.1007/s11033-025-10431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/10/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND NF2-related schwannomatosis (NF2) is a rare genetic disease that significantly impacts patients' quality of life due to the occurrence of multiple tumors within the nervous system. The high clinical heterogeneity in tumor number, location, and size makes predicting each patient's clinical outcome impossible. Genetic investigation can be crucial in diagnosis, prognosis, and management. This study aims to explore the genetic basis of eight Iranian patients with NF2. METHODS AND RESULTS To investigate potential genetic causes, we conducted comprehensive medical evaluations, whole-exome sequencing (WES), and multiplex ligation-dependent probe amplification (MLPA) on the probands of each family. The identified variants in the family members were confirmed using Sanger sequencing and MLPA. The variants were classified according to the American College of Medical Genetics and Genomics guidelines. Seven distinct variants linked to the NF2 gene were identified as causes of NF2-related schwannomatosis in these patients, among which the c.862_863del frameshift was a novel variant not previously reported. Seventy-five percent of these mutations were de novo. The mean diagnostic age was lower among patients with truncating mutations compared to other patients. CONCLUSIONS This study identified a novel mutation in the NF2 gene and showed a high rate of de novo mutations in Iranian NF2 patients. Moreover, patients with truncating mutations experienced earlier symptoms than others. Comparing the manifestations of each patient with similar mutations to previous reports expands our understanding of the phenotype of NF2. These results can provide more comprehensive insights into prognosis and early interventions.
Collapse
Affiliation(s)
- Mohammad Amin Ghalavand
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alimohamad Asghari
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Jahanbakhshi
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khalil Ghasemi Falavarjani
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Eftekharian
- Department of Otolaryngology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hessamaldin Emamdjomeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Jones AP, Haley MJ, Meadows MH, Gregory GE, Hannan CJ, Simmons AK, Bere LD, Lewis DG, Oliveira P, Smith MJ, King AT, Evans DGR, Paszek P, Brough D, Pathmanaban ON, Couper KN. Spatial mapping of immune cell environments in NF2-related schwannomatosis vestibular schwannoma. Nat Commun 2025; 16:2944. [PMID: 40140675 PMCID: PMC11947219 DOI: 10.1038/s41467-025-57586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
NF2-related Schwannomatosis (NF2 SWN) is a rare disease characterised by the growth of multiple nervous system neoplasms, including bilateral vestibular schwannoma (VS). VS tumours are characterised by extensive leucocyte infiltration. However, the immunological landscape in VS and the spatial determinants within the tumour microenvironment that shape the trajectory of disease are presently unknown. In this study, to elucidate the complex immunological networks across VS, we performed imaging mass cytometry (IMC) on clinically annotated VS samples from NF2 SWN patients. We reveal the heterogeneity in neoplastic cell, myeloid cell and T cell populations that co-exist within VS, and that distinct myeloid cell and Schwann cell populations reside within varied spatial contextures across characteristic Antoni A and B histomorphic niches. Interestingly, T-cell populations co-localise with tumour-associated macrophages (TAMs) in Antoni A regions, seemingly limiting their ability to interact with tumorigenic Schwann cells. This spatial landscape is altered in Antoni B regions, where T-cell populations appear to interact with PD-L1+ Schwann cells. We also demonstrate that prior bevacizumab treatment (VEGF-A antagonist) preferentially reduces alternatively activated-like TAMs, whilst enhancing CD44 expression, in bevacizumab-treated tumours. Together, we describe niche-dependent modes of T-cell regulation in NF2 SWN VS, indicating the potential for microenvironment-altering therapies for VS.
Collapse
Affiliation(s)
- Adam P Jones
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Michael J Haley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Miriam H Meadows
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Grace E Gregory
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Cathal J Hannan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Ana K Simmons
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Leoma D Bere
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Daniel G Lewis
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Pedro Oliveira
- Department of Pathology, The Christie Hospital, Manchester, UK
| | - Miriam J Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Andrew T King
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - D Gareth R Evans
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Pawel Paszek
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
| | - Omar N Pathmanaban
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK.
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Sakai K, Hayashi K. Death in a bathtub of an adolescent with neurofibromatosis type 2 exhibiting meningioangiomatosis with white matter involvement. Forensic Sci Med Pathol 2025; 21:283-289. [PMID: 39180653 DOI: 10.1007/s12024-024-00867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Neurofibromatosis type 2 (NF2) is a neurocutaneous syndrome characterized by the development of multiple benign tumors, including vestibular schwannomas and meningiomas, in the nervous system. Seizures are rarely associated with NF2, and the lethality of this condition typically stems from tumor growth and related complications, leaving the incidence of sudden death largely unreported. This report discribes a 16-year-old girl with a history of NF2 and occasional seizures who died unexpectedly in a bathtub. Postmortem examination revealed multiple tumors in the cranial nerves (schwannoma), under the dura mater (meningioma), and in the upper cervical cord (neurofibroma). Typical signs of drowning, such as foam in the airways, were not present. Upon histological examination, meningioangiomatosis (MA) was observed in the cerebellum and the cerebral cortex, specifically in the frontal lobe, temporal lobe, and insula. The MA extended into the white matter, exhibiting severe perivascular fibrosis and cystic dilatation of perivascular spaces in the frontal lobe and cerebellum. Additionally, glial microhamartomas were detected both around and separate from the MA. These autopsy findings suggest that sudden unexpected death in epilepsy (SUDEP) was the cause of death rather than drowning. Moreover, while NF2-associated MA is typically asymptomatic, unlike sporadic MA, which commonly presents with seizures, the spread of MA into the white matter is unusual in an NF2 patient. Therefore, MA with the white matter involvement could have been a factor causing the seizures and the occurrence of SUDEP in this NF2 patient.
Collapse
Affiliation(s)
- Kentaro Sakai
- Tokyo Medical Examiner's Office, Tokyo Metropolitan Government, 4-21-18 Otsuka, Bunkyo-ku, Tokyo, 112-0012, Japan.
- Department of Forensic Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Kino Hayashi
- Tokyo Medical Examiner's Office, Tokyo Metropolitan Government, 4-21-18 Otsuka, Bunkyo-ku, Tokyo, 112-0012, Japan
| |
Collapse
|
4
|
Jester N, Singh M, Lorr S, Tommasini SM, Wiznia DH, Buono FD. The development of an artificial intelligence auto-segmentation tool for 3D volumetric analysis of vestibular schwannomas. Sci Rep 2025; 15:5918. [PMID: 39966622 PMCID: PMC11836447 DOI: 10.1038/s41598-025-88589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Linear and volumetric analysis are the typical methods to measure tumor size. 3D volumetric analysis has risen in popularity; however, this is very time and labor intensive limiting its implementation in clinical practice. This study aims to show that an AI-led approach can shorten the length of time required to conduct 3D volumetric analysis of VS tumors and improve image processing accuracy. From Yale New Haven Hospital and public patient recruitment, 143 MRIs were included in the ground truth dataset. To create the tumor models for the ground truth dataset, an image processing software (Simpleware ScanIP, Synopsys) was used. The helper (DPP V1.0) was trained using proprietary AI- and ML-based algorithms and information. A proof-of-concept AI model achieved a mean DICE score of 0.76 (standard deviation 0.21). After the final testing stage, the model improved to a final mean DICE score of 0.88 (range 0.74-0.93, standard deviation 0.04). Our study has demonstrated an efficient, accurate AI for 3D volumetric analysis of vestibular schwannomas. The use of this AI will enable faster 3D volumetric analysis compared to manual segmentation. Additionally, the overlay function would allow visualization of growth patterns. The tool will be a method of assessing tumor growth and allow clinicians to make more informed decisions.
Collapse
Affiliation(s)
- Noemi Jester
- School of Medicine, Sheffield University, Sheffield, UK
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
| | - Manwi Singh
- School of Medicine, Sheffield University, Sheffield, UK
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
| | - Samantha Lorr
- School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | - Steven M Tommasini
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
| | - Daniel H Wiznia
- Department of Mechanical Engineering, Yale University, New Haven, CT, USA
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
| | - Frank D Buono
- Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT, 06510, USA.
| |
Collapse
|
5
|
Tops AL, Schopman JE, Koot RW, Gelderblom H, Putri NA, Rahmi LNA, Jansen JC, Hensen EF. Efficacy and Toxicity of Bevacizumab in Children with NF2-Related Schwannomatosis: A Systematic Review. Cancers (Basel) 2025; 17:519. [PMID: 39941885 PMCID: PMC11817438 DOI: 10.3390/cancers17030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES NF2-related schwannomatosis (NF2) is a tumor predisposition syndrome that typically presents with bilateral vestibular schwannomas, together with other intracranial and spinal schwannomas, meningiomas, and/or ependymomas. Bevacizumab, a VEGF inhibitor, has the potential to decrease schwannoma volume and improve hearing in adults, but the literature on the effects in children is sparse. This narrative review aims to evaluate the use of bevacizumab in pediatric NF2 patients, focusing on hearing, tumor progression, and toxicity. METHODS A literature review was conducted following PRISMA guidelines. Articles were searched in PubMed, Embase, Web of Science, Cochrane Library, Emcare, and Academic Search Premier on 18 July 2024. Inclusion criteria were patients ≤ 18 years, diagnosed with NF2 and treated with bevacizumab. Two authors independently assessed the quality of the evidence and extracted relevant data from the included articles. RESULTS Seventeen articles including 62 pediatric NF2 patients met the inclusion criteria. Studies varied widely in treatment regimens and outcome parameters. Tumor regression was reported in 6/56 patients (11%) and 38/56 (68%) remained stable. Hearing improved in 15/45 patients (33%) and did not further deteriorate in 27/45 (60%). An improvement in other symptoms was seen in 6/29 patients (28%). Toxicity was reported in five studies, documenting 13 adverse events in 28 patients ranging from grade 1 to grade 3. Treatment was discontinued in both patients who experienced grade 3 toxicity. CONCLUSIONS Bevacizumab seems to be a viable treatment option for pediatric NF2 patients. Tumor regression or stabilization is achieved in the majority of patients (77%). Moreover, a considerable number of pediatric patients experience hearing stabilization or improvement (93%). Bevacizumab appears to be relatively well tolerated, offering a non-invasive therapeutic option for children with NF2 suffering from progressive vestibular schwannomas and hearing loss.
Collapse
Affiliation(s)
- Annemijn L. Tops
- Department of Otorhinolaryngology—Head and Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (E.F.H.)
| | - Josefine E. Schopman
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.E.S.); (H.G.)
| | - Radboud W. Koot
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.E.S.); (H.G.)
| | - Nabila A. Putri
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta 14440, Indonesia
| | | | - Jeroen C. Jansen
- Department of Otorhinolaryngology—Head and Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (E.F.H.)
| | - Erik F. Hensen
- Department of Otorhinolaryngology—Head and Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands (E.F.H.)
| |
Collapse
|
6
|
Fialho MC, Garrido PM, Santos-Coelho M, Ferreirinha A, Martins BD, Passos J, Moura C. Spectrum of cutaneous lesions in a cohort of patients with neurofibromatosis type 2. Int J Dermatol 2025; 64:390-398. [PMID: 38955458 DOI: 10.1111/ijd.17354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Neurofibromatosis type 2 (NF2) is a rare autosomal dominant syndrome with a predisposition to the development of central nervous system tumors, ophthalmic manifestations, and dermatological lesions. The latter are present in 70-95% of patients and can precede the evolution of other tumors. However, they are not included in the diagnostic criteria and are frequently undervalued during follow-up. METHODS An observational cross-sectional study characterizing cutaneous lesions in a cohort of NF2 patients was carried out. Dermatological examinations were performed, and lesions were classified into neural cutaneous tumors (superficial, SNCT, and deep, DNCT), hyperpigmented patches (HyperP), and hypopigmented patches (HypoP). The Dermatology Life Quality Index (DLQI) and EQ-5D questionnaires were applied to evaluate the impact on quality of life. RESULTS Nineteen patients with a mean age of 36 years were included. Sixteen (84%) patients had cutaneous lesions, mostly developed 10 or more years before the diagnosis. SNCT, DNCT, and HyperP showed similar frequencies (58%). HypoP were observed in only one patient. HyperP developed, on average, earlier than NCT (9.6 vs. 16.5 SNCT, 17.0 DNCT; years). The excised lesions had different histological patterns, including neurofibromas, schwannomas, and a hybrid tumor. Most patients reported a low impact of cutaneous manifestations on the quality of life (DLQI 0 or 1). CONCLUSIONS Cutaneous lesions are frequent in NF2 and may precede the diagnosis by several years. Their identification is important to establish the diagnosis earlier and potentially reduce morbidity and mortality.
Collapse
Affiliation(s)
- Maria C Fialho
- Dermatovenereology Department, Santo António dos Capuchos Hospital, Local Health Unit São José, Lisbon, Portugal
| | - Pedro M Garrido
- Dermatology Department, Portuguese Institute of Oncology Francisco Gentil, Lisbon, Portugal
| | - Miguel Santos-Coelho
- Dermatovenereology Department, Santo António dos Capuchos Hospital, Local Health Unit São José, Lisbon, Portugal
| | - Ana Ferreirinha
- Dermatovenereology Department, Santo António dos Capuchos Hospital, Local Health Unit São José, Lisbon, Portugal
| | - Bárbara D Martins
- Pathological Anatomy Department, Portuguese Institute of Oncology Francisco Gentil, Lisbon, Portugal
| | - João Passos
- Neurology Department, Portuguese Institute of Oncology Francisco Gentil, Lisbon, Portugal
| | - Cecília Moura
- Dermatology Department, Portuguese Institute of Oncology Francisco Gentil, Lisbon, Portugal
| |
Collapse
|
7
|
Kuhlen M, Weins AB, Stadler N, Angelova-Toshkina D, Frühwald MC. Non-malignant features of cancer predisposition syndromes manifesting in childhood and adolescence: a guide for the general pediatrician. World J Pediatr 2025; 21:131-148. [PMID: 39641826 PMCID: PMC11885337 DOI: 10.1007/s12519-024-00853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Cancer predisposition syndromes are genetic disorders that significantly raise the risk of developing malignancies. Although the malignant manifestations of cancer predisposition syndromes are well-studied, recognizing their non-malignant features is crucial for early diagnosis, especially in children and adolescents. METHODS A comprehensive literature search was conducted using the PubMed database, focusing on non-malignant manifestations of cancer predisposition syndromes in children and adolescents. Key sources included the Clinical Cancer Research pediatric oncology series and ORPHANET. Studies that described clinical signs and symptoms affecting specific organ systems were included. RESULTS Non-malignant dermatological features often serve as early indicators of cancer predisposition syndromes, including café-au-lait spots in Neurofibromatosis Type 1 and facial angiofibromas in Tuberous Sclerosis Complex. Neurological and developmental anomalies such as cerebellar ataxia in ataxia-telangiectasia and intellectual disabilities in neurofibromatosis type 1 and tuberous sclerosis complex are significant indicators. Growth and metabolic anomalies are also notable, including overgrowth in Beckwith-Wiedemann syndrome and growth hormone deficiency in neurofibromatosis Type 1. In addition, facial anomalies, ocular manifestations, hearing issues, and thyroid anomalies are prevalent across various cancer predisposition syndromes. For instance, hearing loss may be significant in neurofibromatosis Type 2, while thyroid nodules are common in PTEN hamartoma tumor syndrome and DICER1 syndrome. Cardiovascular, abdominal, musculoskeletal, pulmonary, genitourinary manifestations, and prenatal deviations further complicate the clinical picture. CONCLUSIONS Recognizing non-malignant features of cancer predisposition syndromes is essential for early diagnosis and management. This organ-specific overview furthers awareness among healthcare providers, facilitating timely genetic counseling, surveillance programs, and preventive measures, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Michaela Kuhlen
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany.
| | - Andreas B Weins
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
- Augsburger Zentrum für Seltene Erkrankungen, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Nicole Stadler
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Daniela Angelova-Toshkina
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Michael C Frühwald
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| |
Collapse
|
8
|
Wang M, Han Y, An W, Wang X, Chen F, Lu J, Meng Y, Li Y, Wang Y, Li J, Zhao C, Chai R, Wang H, Liu W, Xu L. Wnt signalling facilitates neuronal differentiation of cochlear Frizzled10-positive cells in mouse cochlea via glypican 6 modulation. Cell Commun Signal 2025; 23:50. [PMID: 39871249 PMCID: PMC11771042 DOI: 10.1186/s12964-025-02039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025] Open
Abstract
Degeneration of cochlear spiral ganglion neurons (SGNs) leads to irreversible sensorineural hearing loss (SNHL), as SGNs lack regenerative capacity. Although cochlear glial cells (GCs) have some neuronal differentiation potential, their specific identities remain unclear. This study identifies a distinct subpopulation, Frizzled10 positive (FZD10+) cells, as an important type of GC responsible for neuronal differentiation in mouse cochlea. FZD10 + cells can differentiate into various SGN subtypes in vivo, adhering to natural proportions. Wnt signaling enhances the ability of FZD10 + cells to function as neural progenitors and increases the neuronal excitability of the FZD10-derived neurons. Single-cell RNA sequencing analysis characterizes FZD10-derived differentiating cell populations, while crosstalk network analysis identifies multiple signaling pathways and target genes influenced by Wnt signaling that contribute to the function of FZD10 + cells as neural progenitors. Pseudotime analysis maps the differentiation trajectory from proliferated GCs to differentiating neurons. Further experiments indicate that glypican 6 (GPC6) may regulate this neuronal lineage, while GPC6 deficiency diminishes the effects of Wnt signaling on FZD10-derived neuronal differentiation and synapse formation. These findings suggest the critical role of Wnt signaling in the neuronal differentiation derived from cochlear FZD10 + cells and provide insights into the mechanisms potentially involved in this process.
Collapse
Affiliation(s)
- Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Weibin An
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Fang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Junze Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yu Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China
| | - Yan Li
- Translational Medical Research Centre, The First Hospital Affiliated to Shandong First Medical University& Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China
| | - Yanqing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, School of Medicine, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Renjie Chai
- Key Laboratory of Developmental Genes and Human Diseases, School of Medicine, Ministry of Education, Southeast University, Nanjing, 210009, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China.
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China.
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
- Shandong Institute of Otorhinolaryngology, Jinan, 250022, China.
| |
Collapse
|
9
|
Rai P, Bathla G, Soni N, Desai A, Rao D, Vibhute P, Agarwal A. Classification of schwannomas and the new naming convention for "neurofibromatosis-2": Genetic updates and international consensus recommendation. Neuroradiol J 2025:19714009251313510. [PMID: 39786185 PMCID: PMC11719429 DOI: 10.1177/19714009251313510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Despite their similar nomenclature, Neurofibromatosis type 1 (NF1) and "Neurofibromatosis type 2" are discrete and clinically distinguishable entities. The name of "neurofibromatosis type 2" has been changed to NF2-related schwannomatosis, to reflect the fact that neurofibromas do not occur in this syndrome and therefore the name "Neurofibromatosis" is factually incorrect. Furthermore, multiple schwannomas, a hallmark feature of NF2, can also occur in patients with mutations in genes including SMARCB1 and LZTR1, all exhibiting overlapping clinical features. Current understanding suggests that schwannomatosis (SWN) encompasses a range of clinical presentations consisting of clearly defined, separate subtypes which share a common phenotype of schwannomas. Recognizing these newly emerging subtypes, the International Consensus Group on Neurofibromatosis Diagnostic Criteria (I-NF-DC) proposed a revised nomenclature for NF2 and related disorders in 2022. This review article focuses on this critical update in diagnostic terminology, highlighting the key gene-related SWN subtypes relevant to neuroradiologists. By emphasizing molecular testing alongside clinical features, the revised system facilitates a more precise diagnosis, potentially paving the way for personalized treatment strategies. Additionally, the flexible structure accommodates future discoveries of genes associated with SWN.
Collapse
Affiliation(s)
- Pranjal Rai
- Department of Radiology, Tata Memorial Hospital, India
| | | | - Neetu Soni
- Department of Radiology, Mayo Clinic, USA
| | - Amit Desai
- Department of Neuroradiology, Mayo Clinic, USA
| | - Dinesh Rao
- Department of Neuroradiology, Mayo Clinic, USA
| | | | | |
Collapse
|
10
|
Ambooken B, Rajeev R, Asokan N, Kesavan Tm A. An unusual cutaneous presentation of neurofibromatosis type 2 with clinically silent vestibular schwannomas following a pathogenic nonsense mutation in NF2 gene. Indian J Dermatol Venereol Leprol 2024; 0:1-3. [PMID: 39912178 DOI: 10.25259/ijdvl_934_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/24/2024] [Indexed: 02/07/2025]
Affiliation(s)
- Betsy Ambooken
- Department of Dermatology and Venereology, Government Medical College, Thrissur, India
| | - Rakendu Rajeev
- Department of Dermatology, Venereology and Leprosy, Government Medical College, Alappuzha, Vrindavan, Kalarcode, Alappuzha, India
| | - Neelakandhan Asokan
- Department of Dermatology and Venereology, Government Medical College, Thrissur, India
| | - Ananda Kesavan Tm
- Department of Paediatrics, Government Medical College, Thrissur, Kerala, India
| |
Collapse
|
11
|
Cui C, Zhu L, Han G, Sun J, Zhang L, Guo Y, Jiang P. Bioinformatics analysis of the mechanisms of traumatic brain injury-associated dementia based on the competing endogenous RNA. Psychopharmacology (Berl) 2024; 241:2441-2452. [PMID: 39317770 DOI: 10.1007/s00213-024-06691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
RATIONALE Traumatic brain injury (TBI) is a critical condition associated with cognitive impairments, including dementia. This study is aimed to construct a long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network based on bioinformatics analysis and explore molecular mechanisms underlying post-TBI dementia. METHODS GSE104687 and GSE205661 datasets were downloaded from Gene Expression Omnibus database. Molecular Signatures Database (MSigDB) was used to search oxidative stress-, metabolism- and immune-related genes as the target gene datasets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were carried out for functional annotation and enrichment analysis. A TBI mouse model was built to validate the expression of NF2, PLXNA2, NCBP2 and U2SURP in brain tissues. RESULTS A total of 7 differentially expressed lncRNAs (DElncRNAs) and 191 DEmRNAs were obtained. Subsequent to differential expression (DE) analysis, a lncRNA-miRNA-mRNA network was established. Notably, 13 key DEmRNAs were identified, potentially playing pivotal roles in the pathogenesis of TBI-induced dementia. By comparing the target gene datasets with 13 DEmRNAs, we identified 4 target genes that overlap with the 13 DEGmRNAs, namely NF2, PLXNA2, NCBP2 and U2SURP. Functional enrichment analysis highlighted the involvement of neuronal projections in the dementia-enriched cluster, while the protective cluster showed associations with protein synthesis and ubiquitination pathways. Importantly, we explored potential drug interventions based on interactions with the above 4 target genes. Additionally, drug interaction prediction showed that NF2 could interact with SELUMETINIB, EVEROLIMUS and TEMSIROLIMUS. CONCLUSION Our study provides insights into the complex regulatory networks underlying post-TBI dementia and suggests a potential role for three classes of drugs in managing dementia symptoms in TBI-induced dementia.
Collapse
MESH Headings
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/metabolism
- Brain Injuries, Traumatic/complications
- Animals
- Computational Biology/methods
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Dementia/genetics
- Dementia/metabolism
- Gene Regulatory Networks
- Male
- Disease Models, Animal
- Databases, Genetic
- Mice, Inbred C57BL
- Humans
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Li Zhu
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining, Shandong, 272000, China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Jianping Sun
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Liang Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining, Shandong, 272000, China.
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Jining, Shandong, 272000, China.
| |
Collapse
|
12
|
Wang JZ, Landry AP, Raleigh DR, Sahm F, Walsh KM, Goldbrunner R, Yefet LS, Tonn JC, Gui C, Ostrom QT, Barnholtz-Sloan J, Perry A, Ellenbogen Y, Hanemann CO, Jungwirth G, Jenkinson MD, Tabatabai G, Mathiesen TI, McDermott MW, Tatagiba M, la Fougère C, Maas SLN, Galldiks N, Albert NL, Brastianos PK, Ehret F, Minniti G, Lamszus K, Ricklefs FL, Schittenhelm J, Drummond KJ, Dunn IF, Pathmanaban ON, Cohen-Gadol AA, Sulman EP, Tabouret E, Le Rhun E, Mawrin C, Moliterno J, Weller M, Bi W(L, Gao A, Yip S, Niyazi M, Aldape K, Wen PY, Short S, Preusser M, Nassiri F, Zadeh G. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients. Neuro Oncol 2024; 26:1742-1780. [PMID: 38695575 PMCID: PMC11449035 DOI: 10.1093/neuonc/noae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Collapse
Affiliation(s)
- Justin Z Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander P Landry
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany
| | - Chloe Gui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Quinn T Ostrom
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jill Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - C Oliver Hanemann
- Peninsula Schools of Medicine, University of Plymouth University, Plymouth, UK
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, UK
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Tiit I Mathiesen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael W McDermott
- Division of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Miami Neuroscience Institute, Baptist Health of South Florida, Miami, Florida, USA
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sybren L N Maas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Omar N Pathmanaban
- Division of Neuroscience and Experimental Psychology, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Emeline Tabouret
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, Marseille, France
| | - Emelie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wenya (Linda) Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiation Oncology, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | | | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Short
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Guo Q, Yao X, Yang B, Qi L, Wang F, Guo Y, Liu Y, Cao Z, Wang Y, Wang J, Li L, Huang Q, Liu C, Qu T, Zhao W, Ren D, Yang M, Yan C, Meng B, Wang C, Cao W. Eosinophilic Solid and Cystic Renal Cell Carcinoma: Morphologic and Immunohistochemical Study of 18 Cases and Review of the Literature. Arch Pathol Lab Med 2024; 148:1126-1134. [PMID: 38282571 DOI: 10.5858/arpa.2023-0122-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 01/30/2024]
Abstract
CONTEXT.— Eosinophilic solid and cystic renal cell carcinoma is now defined in the 5th edition of the 2022 World Health Organization classification of urogenital tumors. OBJECTIVE.— To perform morphologic, immunohistochemical, and preliminary genetic studies about this new entity in China for the purpose of understanding it better. DESIGN.— The study includes 18 patients from a regional tertiary oncology center in northern China (Tianjin, China). We investigated the clinical and immunohistochemical features of these cases. RESULTS.— The mean age of patients was 49.6 years, and the male to female ratio was 11:7. Macroscopically, 1 case had the classic cystic and solid appearance, whereas the others appeared purely solid. Microscopically, all 18 tumors shared a similar solid and focal macrocystic or microcystic growth pattern, and the cells were characterized by voluminous and eosinophilic cytoplasm, along with coarse amphophilic stippling. Immunohistochemically, most of the tumors had a predominant cytokeratin (CK) 20-positive feature, ranging from focal cytoplasmic staining to diffuse membranous accentuation. Initially, we separated these cases into different immunohistochemical phenotypes. Group 1 (7 of 18; 38.5%) was characterized by positive phospho-4EBP1 and phospho-S6, which can imply hyperactive mechanistic target of rapamycin complex 1 (mTORC1) signaling. Group 2 (4 of 18; 23%) was negative for NF2, probably implying a germline mutation of NF2. Group 3 (7 of 18; 38.5%) consisted of the remaining cases. One case had metastatic spread and exhibited an aggressive clinical course, and we detected cyclin-dependent kinase inhibitor 2A (CDKN2A) mutation in this case; other patients were alive and without disease progression. CONCLUSIONS.— Our research proposes that eosinophilic solid and cystic renal cell carcinoma exhibits prototypical pathologic features with CK20 positivity and has aggressive potential.
Collapse
Affiliation(s)
- Qianru Guo
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xin Yao
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bo Yang
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lisha Qi
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Frank Wang
- the Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada (F. Wang)
| | - Yuhong Guo
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanxue Liu
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zi Cao
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yalei Wang
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpeng Wang
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lingmei Li
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qiujuan Huang
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Changxu Liu
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tongyuan Qu
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wei Zhao
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Danyang Ren
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Manlin Yang
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chenhui Yan
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bin Meng
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Cheng Wang
- the Department of Pathology and Laboratory Medicine, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada (C. Wang)
| | - Wenfeng Cao
- From the Departments of Pathology (Q. Guo, B. Yang, L. Qi, Y. Guo, Y. Liu, Z. Cao, Y. Wang, J Wang, L. Li, Q. Huang, C. Liu, T. Qu, W. Zhao, D. Ren, M. Yang, C. Yan, B. Meng, W. Cao) and Medical Oncology (X. Yao), Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
14
|
Eaton CD, Avalos L, Liu SJ, Chen Z, Zakimi N, Casey-Clyde T, Bisignano P, Lucas CHG, Stevenson E, Choudhury A, Vasudevan HN, Magill ST, Young JS, Krogan NJ, Villanueva-Meyer JE, Swaney DL, Raleigh DR. Merlin S13 phosphorylation regulates meningioma Wnt signaling and magnetic resonance imaging features. Nat Commun 2024; 15:7873. [PMID: 39251601 PMCID: PMC11383945 DOI: 10.1038/s41467-024-52284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
Meningiomas are associated with inactivation of NF2/Merlin, but approximately one-third of meningiomas with favorable clinical outcomes retain Merlin expression. Biochemical mechanisms underlying Merlin-intact meningioma growth are incompletely understood, and non-invasive biomarkers that may be used to guide treatment de-escalation or imaging surveillance are lacking. Here, we use single-cell RNA sequencing, proximity-labeling proteomic mass spectrometry, mechanistic and functional approaches, and magnetic resonance imaging (MRI) across meningioma xenografts and patients to define biochemical mechanisms and an imaging biomarker that underlie Merlin-intact meningiomas. We find Merlin serine 13 (S13) dephosphorylation drives meningioma Wnt signaling and tumor growth by attenuating inhibitory interactions with β-catenin and activating the Wnt pathway. MRI analyses show Merlin-intact meningiomas with S13 phosphorylation and favorable clinical outcomes are associated with high apparent diffusion coefficient (ADC). These results define mechanisms underlying a potential imaging biomarker that could be used to guide treatment de-escalation or imaging surveillance for patients with Merlin-intact meningiomas.
Collapse
Affiliation(s)
- Charlotte D Eaton
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Lauro Avalos
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Zhenhong Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Naomi Zakimi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tim Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Paola Bisignano
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Erica Stevenson
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Jacob S Young
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Javier E Villanueva-Meyer
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Chinchilla-Tábora LM, Blázquez BS, Sayagués JM, González MR, González-Rivero J, León JAM, Pérez ABJ, Morais IG, Bueno-Sacristán D, Ludeña MD. Intravascular schwannoma as an extremely unusual cause of vein obstruction: a case report. J Pathol Transl Med 2024; 58:249-254. [PMID: 38952255 PMCID: PMC11424199 DOI: 10.4132/jptm.2024.05.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 07/03/2024] Open
Abstract
The blood vessel lumen is an extremely rare location for a benign peripheral nerve sheath tumor like schwannoma. Less than 10 cases have been previously reported. In this report, we present a case of a 68-year-old woman who had a soft tissue nodule at the posterior calf of her left leg during a physical examination. Pathological examination was performed after complete surgical excision. The patient underwent follow-up for 12 months after surgery without evidence of recurrence or any other complication. This is the first case of intravascular schwannoma reported as a cause of vein obstruction. Microscopically, the tumor was composed of Schwann spindle cells that were immunoreactive for S100 protein and SOX10. This tumor was surrounded by a well-defined vascular smooth muscle wall. Prospective series are required to improve the knowledge on the underlying mechanisms of intravascular schwannoma development.
Collapse
Affiliation(s)
- Luis Miguel Chinchilla-Tábora
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
- University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - José María Sayagués
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
- University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Marta Rodríguez González
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
- University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Joaquín González-Rivero
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José Antonio Muñoz León
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Andrea Beatriz Jiménez Pérez
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | | | - María Dolores Ludeña
- Pathology Department, University Hospital of Salamanca, Salamanca, Spain
- University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
16
|
Tamura R, Yo M, Toda M. Historical Development of Diagnostic Criteria for NF2-related Schwannomatosis. Neurol Med Chir (Tokyo) 2024; 64:299-308. [PMID: 38897938 PMCID: PMC11374461 DOI: 10.2176/jns-nmc.2024-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
NF2-related schwannomatosis (NF2; previously termed neurofibromatosis type 2) is a tumor-prone disorder characterized by development of multiple schwannomas and meningiomas. The diagnostic criteria of NF2 have been regularly revised. Clinical criteria for NF2 were first formulated at the National Institutes of Health Consensus Conference in 1987 and revised in 1990. Revised criteria were also proposed by the Manchester group in 1992 and by the National Neurofibromatosis Foundation (NNFF) in 1997. The 2011 Baser criteria improved the sensitivity of diagnostic criteria, particularly for patients without bilateral vestibular schwannomas. Revisions to the Manchester criteria were published in 2019, with replacement of "glioma" by "ependymoma," removal of "neurofibroma," addition of an age limit of 70 years for development of vestibular schwannomas, and introduction of molecular criteria, which led to the most widely used criteria. In 2022, the criteria were reviewed and updated by the international committee of NF experts. In addition to changes in diagnostic criteria, the committee recommended the use of "schwannomatosis" as an umbrella term for conditions that predispose to schwannomas. Each type of schwannomatosis was classified by the gene containing the disease-causing pathogenic variant. Molecular data from NF2 patients led to further clarification of the diagnostic criteria for NF2 mosaic phenotypes. Given all these changes, the diagnostic criteria of NF2 may be confusing. Herein, to help healthcare professionals who diagnose NF2 conditions in the clinical setting, we review the historical development of diagnostic criteria.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine
| | - Masahiro Yo
- Department of Neurosurgery, Keio University School of Medicine
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine
| |
Collapse
|
17
|
Lazaro O, Li S, Carter W, Awosika O, Robertson S, Hickey BE, Angus SP, House A, Clapp WD, Qadir AS, Johnson TS, Rhodes SD. A novel induced pluripotent stem cell model of Schwann cell differentiation reveals NF2 - related gene regulatory networks of the extracellular matrix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591952. [PMID: 38746313 PMCID: PMC11092660 DOI: 10.1101/2024.05.02.591952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Schwann cells are vital to development and maintenance of the peripheral nervous system and their dysfunction has been implicated in a range of neurological and neoplastic disorders, including NF2 -related schwannomatosis. We developed a novel human induced pluripotent stem cell (hiPSC) model to study Schwann cell differentiation in health and disease. We performed transcriptomic, immunofluorescence, and morphological analysis of hiPSC derived Schwann cell precursors (SPCs) and terminally differentiated Schwann cells (SCs) representing distinct stages of development. To validate our findings, we performed integrated, cross-species analyses across multiple external datasets at bulk and single cell resolution. Our hiPSC model of Schwann cell development shared overlapping gene expression signatures with human amniotic mesenchymal stem cell (hAMSCs) derived SCs and in vivo mouse models, but also revealed unique features that may reflect species-specific aspects of Schwann cell biology. Moreover, we identified gene co-expression modules that are dynamically regulated during hiPSC to SC differentiation associated with ear and neural development, cell fate determination, the NF2 gene, and extracellular matrix (ECM) organization. By cross-referencing results between multiple datasets, we identified new genes potentially associated with NF2 expression. Our hiPSC model further provides a tractable platform for studying Schwann cell development in the context of human disease.
Collapse
|
18
|
Chaulagain RP, Shrestha Y, K.C. K, Baral A. Bilateral vestibular schwannoma with a cooccurring meningioma in a child: a case report and review of literature. Ann Med Surg (Lond) 2024; 86:4247-4254. [PMID: 38989221 PMCID: PMC11230781 DOI: 10.1097/ms9.0000000000002217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Meningioma and vestibular schwannoma (VS) are the first and second most common benign central nervous system tumors. The coexistence of VS and meningioma presents a rare clinical scenario, particularly in pediatric patients. This report presents a case of bilateral VS with a cooccurring meningioma in a Nepali child and provides an overview of the literature on this condition. Case report A 15-year-old male presented with bilateral sensorineural hearing loss, seizures, and neurological deficits and was ultimately diagnosed with concomitant bilateral acoustic neuroma and meningioma. The patient underwent radiosurgery for bilateral VS and nonoperative management of the meningioma. Long-term follow-up revealed symptomatic improvement, emphasizing the importance of a multidisciplinary approach in managing such complex cases. The management of these tumors requires tailored treatment strategies guided by tumor characteristics and associated risks. Discussion Meningioma and VS are common tumors of the central nervous system. Their coexistence is possible in neurofibromatosis type 2 but is exceedingly rare in pediatric age group. The tumors, often coexisting, pose diagnostic challenges. Diagnosis relies on clinical and genetic features, with multidisciplinary management involving various specialists. Treatment aims to preserve function and quality of life, utilizing approaches such as bevacizumab and surgical intervention. The role of radiation therapy remains uncertain. Genetic testing and regular monitoring are vital for early detection and intervention. Conclusion The cooccurrence of acoustic neuromas and meningiomas is poorly understood, with limited reported cases and unclear pathophysiological mechanisms. Further research into the genetic and molecular mechanisms underlying the coexistence of these tumors is needed to optimize patient outcomes in this rare clinical entity.
Collapse
Affiliation(s)
- Ram P. Chaulagain
- Department: Department of Internal Medicine The Second Affiliated Hospital of Harbin Medical University, Harbin City, China
| | | | - Kusha K.C.
- Department of Child HealthTribhuvan University Teaching Hospital
| | - Abal Baral
- No department Ministry of Health and Population, Kathmandu, Nepal
| |
Collapse
|
19
|
Kyrkou A, Valla R, Zhang Y, Ambrosi G, Laier S, Müller-Decker K, Boutros M, Teleman AA. G6PD and ACSL3 are synthetic lethal partners of NF2 in Schwann cells. Nat Commun 2024; 15:5115. [PMID: 38879607 PMCID: PMC11180199 DOI: 10.1038/s41467-024-49298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/24/2024] [Indexed: 06/19/2024] Open
Abstract
Neurofibromatosis Type II (NFII) is a genetic condition caused by loss of the NF2 gene, resulting in activation of the YAP/TAZ pathway and recurrent Schwann cell tumors, as well as meningiomas and ependymomas. Unfortunately, few pharmacological options are available for NFII. Here, we undertake a genome-wide CRISPR/Cas9 screen to search for synthetic-lethal genes that, when inhibited, cause death of NF2 mutant Schwann cells but not NF2 wildtype cells. We identify ACSL3 and G6PD as two synthetic-lethal partners for NF2, both involved in lipid biogenesis and cellular redox. We find that NF2 mutant Schwann cells are more oxidized than control cells, in part due to reduced expression of genes involved in NADPH generation such as ME1. Since G6PD and ME1 redundantly generate cytosolic NADPH, lack of either one is compatible with cell viability, but not down-regulation of both. Since genetic deficiency for G6PD is tolerated in the human population, G6PD could be a good pharmacological target for NFII.
Collapse
Affiliation(s)
- Athena Kyrkou
- German Cancer Research Center (DKFZ), Division B140, 69120, Heidelberg, Germany
- Heidelberg University, Institute of Human Genetics, 69120, Heidelberg, Germany
| | - Robert Valla
- German Cancer Research Center (DKFZ), Division B140, 69120, Heidelberg, Germany
- Heidelberg University, Institute of Human Genetics, 69120, Heidelberg, Germany
| | - Yao Zhang
- German Cancer Research Center (DKFZ), Division B140, 69120, Heidelberg, Germany
- Heidelberg University, Institute of Human Genetics, 69120, Heidelberg, Germany
| | - Giulia Ambrosi
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics, 69120, Heidelberg, Germany
| | - Stephanie Laier
- Core Facility Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Boutros
- Heidelberg University, Institute of Human Genetics, 69120, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Div. Signaling and Functional Genomics, 69120, Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Division B140, 69120, Heidelberg, Germany.
- Heidelberg University, Institute of Human Genetics, 69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Kim BH, Chung YH, Woo TG, Kang SM, Park S, Kim M, Park BJ. NF2-Related Schwannomatosis (NF2): Molecular Insights and Therapeutic Avenues. Int J Mol Sci 2024; 25:6558. [PMID: 38928264 PMCID: PMC11204266 DOI: 10.3390/ijms25126558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
NF2-related schwannomatosis (NF2) is a genetic syndrome characterized by the growth of benign tumors in the nervous system, particularly bilateral vestibular schwannomas, meningiomas, and ependymomas. This review consolidates the current knowledge on NF2 syndrome, emphasizing the molecular pathology associated with the mutations in the gene of the same name, the NF2 gene, and the subsequent dysfunction of its product, the Merlin protein. Merlin, a tumor suppressor, integrates multiple signaling pathways that regulate cell contact, proliferation, and motility, thereby influencing tumor growth. The loss of Merlin disrupts these pathways, leading to tumorigenesis. We discuss the roles of another two proteins potentially associated with NF2 deficiency as well as Merlin: Yes-associated protein 1 (YAP), which may promote tumor growth, and Raf kinase inhibitory protein (RKIP), which appears to suppress tumor development. Additionally, this review discusses the efficacy of various treatments, such as molecular therapies that target specific pathways or inhibit neomorphic protein-protein interaction caused by NF2 deficiency. This overview not only expands on the fundamental understanding of NF2 pathophysiology but also explores the potential of novel therapeutic targets that affect the clinical approach to NF2 syndrome.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - Yeon-Ho Chung
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - So-mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Minju Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
21
|
Thirimanne HN, Almiron-Bonnin D, Nuechterlein N, Arora S, Jensen M, Parada CA, Qiu C, Szulzewsky F, English CW, Chen WC, Sievers P, Nassiri F, Wang JZ, Klisch TJ, Aldape KD, Patel AJ, Cimino PJ, Zadeh G, Sahm F, Raleigh DR, Shendure J, Ferreira M, Holland EC. Meningioma transcriptomic landscape demonstrates novel subtypes with regional associated biology and patient outcome. CELL GENOMICS 2024; 4:100566. [PMID: 38788713 PMCID: PMC11228955 DOI: 10.1016/j.xgen.2024.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Meningiomas, although mostly benign, can be recurrent and fatal. World Health Organization (WHO) grading of the tumor does not always identify high-risk meningioma, and better characterizations of their aggressive biology are needed. To approach this problem, we combined 13 bulk RNA sequencing (RNA-seq) datasets to create a dimension-reduced reference landscape of 1,298 meningiomas. The clinical and genomic metadata effectively correlated with landscape regions, which led to the identification of meningioma subtypes with specific biological signatures. The time to recurrence also correlated with the map location. Further, we developed an algorithm that maps new patients onto this landscape, where the nearest neighbors predict outcome. This study highlights the utility of combining bulk transcriptomic datasets to visualize the complexity of tumor populations. Further, we provide an interactive tool for understanding the disease and predicting patient outcomes. This resource is accessible via the online tool Oncoscape, where the scientific community can explore the meningioma landscape.
Collapse
Affiliation(s)
| | - Damian Almiron-Bonnin
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Matt Jensen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Carolina A Parada
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Collin W English
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - William C Chen
- Departments of Radiation Oncology, Neurological Surgery, and Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Farshad Nassiri
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Justin Z Wang
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Tiemo J Klisch
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gelareh Zadeh
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David R Raleigh
- Departments of Radiation Oncology, Neurological Surgery, and Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
22
|
Yuan R, Wang B, Wang Y, Liu P. Gene Therapy for Neurofibromatosis Type 2-Related Schwannomatosis: Recent Progress, Challenges, and Future Directions. Oncol Ther 2024; 12:257-276. [PMID: 38760612 PMCID: PMC11187037 DOI: 10.1007/s40487-024-00279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF2)-related schwannomatosis is a rare autosomal dominant monogenic disorder caused by mutations in the NF2 gene. The hallmarks of NF2-related schwannomatosis are bilateral vestibular schwannomas (VS). The current treatment options for NF2-related schwannomatosis, such as observation with serial imaging, surgery, radiotherapy, and pharmacotherapies, have shown limited effectiveness and serious complications. Therefore, there is a critical demand for novel effective treatments. Gene therapy, which has made significant advancements in treating genetic diseases, holds promise for the treatment of this disease. This review covers the genetic pathogenesis of NF2-related schwannomatosis, the latest progress in gene therapy strategies, current challenges, and future directions of gene therapy for NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Ruofei Yuan
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ying Wang
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
Wang Y, Zhang C, Yan M, Ma X, Song L, Wang B, Li P, Liu P. PD-L1 regulates tumor proliferation and T-cell function in NF2-associated meningiomas. CNS Neurosci Ther 2024; 30:e14784. [PMID: 38828669 PMCID: PMC11145367 DOI: 10.1111/cns.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
INTRODUCTION Programmed death-ligand 1 (PD-L1) expression is an immune evasion mechanism that has been demonstrated in many tumors and is commonly associated with a poor prognosis. Over the years, anti-PD-L1 agents have gained attention as novel anticancer therapeutics that induce durable tumor regression in numerous malignancies. They may be a new treatment choice for neurofibromatosis type 2 (NF2) patients. AIMS The aims of this study were to detect the expression of PD-L1 in NF2-associated meningiomas, explore the effect of PD-L1 downregulation on tumor cell characteristics and T-cell functions, and investigate the possible pathways that regulate PD-L1 expression to further dissect the possible mechanism of immune suppression in NF2 tumors and to provide new treatment options for NF2 patients. RESULTS PD-L1 is heterogeneously expressed in NF2-associated meningiomas. After PD-L1 knockdown in NF2-associated meningioma cells, tumor cell proliferation was significantly inhibited, and the apoptosis rate was elevated. When T cells were cocultured with siPD-L1-transfected NF2-associated meningioma cells, the expression of CD69 on both CD4+ and CD8+ T cells was partly reversed, and the capacity of CD8+ T cells to kill siPD-L1-transfected tumor cells was partly restored. Results also showed that the PI3K-AKT-mTOR pathway regulates PD-L1 expression, and the mTOR inhibitor rapamycin rapidly and persistently suppresses PD-L1 expression. In vivo experimental results suggested that anti-PD-L1 antibody may have a synergetic effect with the mTOR inhibitor in reducing tumor cell proliferation and that reduced PD-L1 expression could contribute to antitumor efficacy. CONCLUSIONS Targeting PD-L1 could be helpful for restoring the function of tumor-infiltrating lymphocytes and inducing apoptosis to inhibit tumor proliferation in NF2-associated meningiomas. Dissecting the mechanisms of the PD-L1-driven tumorigenesis of NF2-associated meningioma will help to improve our understanding of the mechanisms underlying tumor progression and could facilitate further refinement of current therapies to improve the treatment of NF2 patients.
Collapse
Affiliation(s)
- Ying Wang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Minjun Yan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xin Ma
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lairong Song
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Bo Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Peng Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Pinan Liu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
24
|
Lu S, Yin Z, Chen J, Wu L, Sun Y, Gao X, Huang P, Jordan JT, Plotkin SR, Xu L. Integrating Ataxia Evaluation into Tumor-Induced Hearing Loss Model to Comprehensively Study NF2-Related Schwannomatosis. Cancers (Basel) 2024; 16:1961. [PMID: 38893082 PMCID: PMC11171041 DOI: 10.3390/cancers16111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
NF2-related Schwannomatosis (NF2-SWN) is a disease that needs new solutions. The hallmark of NF2-SWN, a dominantly inherited neoplasia syndrome, is bilateral vestibular schwannomas (VSs), which progressively enlarge, leading to sensorineural hearing loss, tinnitus, facial weakness, and pain that translates to social impairment and clinical depression. Standard treatments for growing VSs include surgery and radiation therapy (RT); however, both carry the risk of further nerve damage that can result in deafness and facial palsy. The resultant suffering and debility, in combination with the paucity of therapeutic options, make the effective treatment of NF2-SWN a major unmet medical need. A better understanding of these mechanisms is essential to developing novel therapeutic targets to control tumor growth and improve patients' quality of life. Previously, we developed the first orthotopic cerebellopontine angle mouse model of VSs, which faithfully mimics tumor-induced hearing loss. In this model, we observed that mice exhibit symptoms of ataxia and vestibular dysfunction. Therefore, we further developed a panel of five tests suitable for the mouse VS model and investigated how tumor growth and treatment affect gait, coordination, and motor function. Using this panel of ataxia tests, we demonstrated that both ataxia and motor function deteriorated concomitantly with tumor progression. We further demonstrated that (i) treatment with anti-VEGF resulted in tumor size reduction, mitigated ataxia, and improved rotarod performance; (ii) treatment with crizotinib stabilized tumor growth and led to improvements in both ataxia and rotarod performance; and (iii) treatment with losartan did not impact tumor growth nor ameliorate ataxia or motor function. Our studies demonstrated that these methods, paired with hearing tests, enable a comprehensive evaluation of tumor-induced neurological deficits and facilitate the assessment of the effectiveness of novel therapeutics to improve NF2 treatments.
Collapse
Affiliation(s)
- Simeng Lu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhenzhen Yin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jie Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Limeng Wu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100073, China
| | - Yao Sun
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xing Gao
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Peigen Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Justin T. Jordan
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Scott R. Plotkin
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
25
|
Wang J, Fu K, Zhang M, Liang L, Ni M, Sun HX, Yin R, Tang M. Mutation characteristics of cancer susceptibility genes in Chinese ovarian cancer patients. Front Oncol 2024; 14:1395818. [PMID: 38817903 PMCID: PMC11137316 DOI: 10.3389/fonc.2024.1395818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction The association between mutations in susceptibility genes and the occurrence of ovarian cancer has been extensively studied. Previous research has primarily concentrated on genes involved in the homologous recombination repair pathway, particularly BRCA1 and BRCA2. However, a wider range of genes related to the DNA damage response pathways has not been fully explored. Methods To investigate the mutation characteristics of cancer susceptibility genes in the Chinese ovarian cancer population and the associations between gene mutations and clinical data, this study initially gathered a total of 1171 Chinese ovarian cancer samples and compiled a dataset of germline mutations in 171 genes. Results In this study, it was determined that MC1R and PRKDC were high-frequency ovarian cancer susceptibility genes in the Chinese population, exhibiting notable distinctions from those in European and American populations; moreover high-frequency mutation genes, such as MC1R: c.359T>C and PRKDC: c.10681T>A, typically had high-frequency mutation sites. Furthermore, we identified c.8187G>T as a characteristic mutation of BRCA2 in the Chinese population, and the CHEK2 mutation was significantly associated with the early onset of ovarian cancer, while the CDH1 and FAM175A mutations were more prevalent in Northeast China. Additionally, Fanconi anemia pathway-related genes were significantly associated with ovarian carcinogenesis. Conclusion In summary, this research provided fundamental data support for the optimization of ovarian cancer gene screening policies and the determination of treatment, and contributed to the precise intervention and management of patients.
Collapse
Affiliation(s)
- Jie Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Genomics, Shenzhen, China
| | - Kaiyu Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Molecular Epidemiology of Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengpei Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Molecular Epidemiology of Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Meng Ni
- BGI Genomics, Shenzhen, China
| | | | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Molecular Epidemiology of Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | | |
Collapse
|
26
|
Perez-Becerril C, Burghel GJ, Hartley C, Rowlands CF, Evans DG, Smith MJ. Improved sensitivity for detection of pathogenic variants in familial NF2-related schwannomatosis. J Med Genet 2024; 61:452-458. [PMID: 38302265 DOI: 10.1136/jmg-2023-109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To determine the impact of additional genetic screening techniques on the rate of detection of pathogenic variants leading to familial NF2-related schwannomatosis. METHODS We conducted genetic screening of a cohort of 168 second-generation individuals meeting the clinical criteria for NF2-related schwannomatosis. In addition to the current clinical screening techniques, targeted next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification analysis, we applied additional genetic screening techniques, including karyotype and RNA analysis. For characterisation of a complex structural variant, we also performed long-read sequencing analysis. RESULTS Additional genetic analysis resulted in increased sensitivity of detection of pathogenic variants from 87% to 95% in our second-generation NF2-related schwannomatosis cohort. A number of pathogenic variants identified through extended analysis had been previously observed after NGS analysis but had been overlooked or classified as variants of uncertain significance. CONCLUSION Our study indicates there is added value in performing additional genetic analysis for detection of pathogenic variants that are difficult to identify with current clinical genetic screening methods. In particular, RNA analysis is valuable for accurate classification of non-canonical splicing variants. Karyotype analysis and whole genome sequencing analysis are of particular value for identification of large and/or complex structural variants, with additional advantages in the use of long-read sequencing techniques.
Collapse
Affiliation(s)
- Cristina Perez-Becerril
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Claire Hartley
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Charles F Rowlands
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Miriam J Smith
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Douwes JPJ, Hensen EF, Jansen JC, Gelderblom H, Schopman JE. Bevacizumab Treatment for Patients with NF2-Related Schwannomatosis: A Single Center Experience. Cancers (Basel) 2024; 16:1479. [PMID: 38672561 PMCID: PMC11047890 DOI: 10.3390/cancers16081479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: NF2-related schwannomatosis, characterized by the development of bilateral vestibular schwannomas, often necessitates varied treatment approaches. Bevacizumab, though widely utilized, demonstrates variable effectiveness on hearing and tumor growth. At the same time, (serious) adverse events have been frequently reported. (2) Methods: A single center retrospective study was conducted, on NF2-related schwannomatosis patients treated with bevacizumab from 2013 to 2023, with the aim to assess treatment-related and clinical outcomes. Outcomes of interest comprised hearing, radiologic response, symptoms, and adverse events. (3) Results: Seventeen patients received 7.5 mg/kg bevacizumab for 7.1 months. Following treatment, 40% of the patients experienced hearing improvement, 53%, stable hearing, and 7%, hearing loss. Vestibular schwannoma regression occurred in 31%, and 69% remained stable. Further symptomatic improvement was reported by 41%, stable symptoms by 47%, and worsened symptoms by 12%. Treatment discontinuation due to adverse events was observed in 29% of cases. Hypertension (82%) and fatigue (29%) were most frequently reported, with no occurrences of grade 4/5 toxicities. (4) Conclusion: Supporting previous studies, bevacizumab demonstrated positive effects on hearing, tumor control, and symptoms in NF2-related schwannomatosis, albeit with common adverse events. Therefore, careful consideration of an appropriate management strategy is warranted.
Collapse
Affiliation(s)
- Jules P. J. Douwes
- Department of Otorhinolaryngology–Head and Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (E.F.H.); (J.C.J.)
| | - Erik F. Hensen
- Department of Otorhinolaryngology–Head and Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (E.F.H.); (J.C.J.)
| | - Jeroen C. Jansen
- Department of Otorhinolaryngology–Head and Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (E.F.H.); (J.C.J.)
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (H.G.); (J.E.S.)
| | - Josefine E. Schopman
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (H.G.); (J.E.S.)
| |
Collapse
|
28
|
Dang DD, Mugge LA, Awan OK, Gong AD, Fanous AA. Spinal Meningiomas: A Comprehensive Review and Update on Advancements in Molecular Characterization, Diagnostics, Surgical Approach and Technology, and Alternative Therapies. Cancers (Basel) 2024; 16:1426. [PMID: 38611105 PMCID: PMC11011121 DOI: 10.3390/cancers16071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Spinal meningiomas are the most common intradural, extramedullary tumor in adults, yet the least common entity when accounting for all meningiomas spanning the neuraxis. While traditionally considered a benign recapitulation of their intracranial counterpart, a paucity of knowledge exists regarding the differences between meningiomas arising from these two anatomic compartments in terms of histopathologic subtypes, molecular tumor biology, surgical principles, long-term functional outcomes, and recurrence rates. To date, advancements at the bench have largely been made for intracranial meningiomas, including the discovery of novel gene targets, DNA methylation profiles, integrated diagnoses, and alternative systemic therapies, with few exceptions reserved for spinal pathology. Likewise, evolving clinical research offers significant updates to our understanding of guiding surgical principles, intraoperative technology, and perioperative patient management for intracranial meningiomas. Nonetheless, spinal meningiomas are predominantly relegated to studies considering non-specific intradural extramedullary spinal tumors of all histopathologic types. The aim of this review is to comprehensively report updates in both basic science and clinical research regarding intraspinal meningiomas and to provide illustrative case examples thereof, thereby lending a better understanding of this heterogenous class of central nervous system tumors.
Collapse
Affiliation(s)
- Danielle D. Dang
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Luke A. Mugge
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Omar K. Awan
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Andrew D. Gong
- Department of Neurosurgery, Inova Fairfax Medical Campus, Falls Church, VA 22042, USA; (D.D.D.); (L.A.M.); (O.K.A.); (A.D.G.)
| | - Andrew A. Fanous
- Department of Neurosurgery, Inova Alexandria Hospital, Alexandria, VA 22304, USA
| |
Collapse
|
29
|
Nghiemphu PL, Vitte J, Dombi E, Nguyen T, Wagle N, Ishiyama A, Sepahdari AR, Cachia D, Widemann BC, Brackmann DE, Doherty JK, Kalamarides M, Giovannini M. Imaging as an early biomarker to predict sensitivity to everolimus for progressive NF2-related vestibular schwannoma. J Neurooncol 2024; 167:339-348. [PMID: 38372904 PMCID: PMC11023969 DOI: 10.1007/s11060-024-04596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE NF2-related schwannomatosis (NF2) is characterized by bilateral vestibular schwannomas (VS) often causing hearing and neurologic deficits, with currently no FDA-approved drug treatment. Pre-clinical studies highlighted the potential of mTORC1 inhibition in delaying schwannoma progression. We conducted a prospective open-label, phase II study of everolimus for progressive VS in NF2 patients and investigated imaging as a potential biomarker predicting effects on growth trajectory. METHODS The trial enrolled 12 NF2 patients with progressive VS. Participants received oral everolimus daily for 52 weeks. Brain imaging was obtained quarterly. As primary endpoint, radiographic response (RR) was defined as ≥ 20% decrease in target VS volume. Secondary endpoints included other tumors RR, hearing outcomes, drug safety and quality of life (QOL). RESULTS Eight participants completed the trial and four discontinued the drug early due to significant volumetric VS progression. After 52 weeks of treatment, the median annual VS growth rate decreased from 77.2% at baseline to 29.4%. There was no VS RR and 3 of 8 (37.5%) participants had stable disease. Decreased or unchanged VS volume after 3 months of treatment was predictive of stabilization at 12 months. Seven of eight participants had stable hearing during treatment except one with a decline in word recognition score. Ten of twelve participants reported only minimal changes to their QOL scores. CONCLUSIONS Volumetric imaging at 3 months can serve as an early biomarker to predict long-term sensitivity to everolimus treatment. Everolimus may represent a safe treatment option to decrease the growth of NF2-related VS in patients who have stable hearing and neurological condition. TRN: NCT01345136 (April 29, 2011).
Collapse
Affiliation(s)
- Phioanh Leia Nghiemphu
- Department of Neurology, UCLA Neuro‑Oncology Program, David Geffen School of Medicine and Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine and Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, 675 Charles E Young Dr. S, MRL 2240, Los Angeles, CA, 90095-7286, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Thien Nguyen
- Department of Neurology, UCLA Neuro‑Oncology Program, David Geffen School of Medicine and Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Palo Alto, CA, USA
| | - Naveed Wagle
- Department of Medicine, Division of Medical Oncology, Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Akira Ishiyama
- Department of Head and Neck Surgery, David Geffen School of Medicine and Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, 675 Charles E Young Dr. S, MRL 2240, Los Angeles, CA, 90095-7286, USA
| | - Ali R Sepahdari
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Diagnostic Neuroradiology, Scripps Clinic Medical Group, La Jolla, CA, USA
| | - David Cachia
- Department of Neurosurgery, Division of Neuro-oncology, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Division of Hematology/Oncology, University of Massachusetts, Worcester, MA, USA
| | | | - Derald E Brackmann
- Department of Otolaryngology and Neurotology, House Clinic and Research Institute, Los Angeles, CA, USA
| | - Joni K Doherty
- Center for Neural Tumor Research, House Research Institute, Los Angeles, CA, USA
- Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Michel Kalamarides
- Department of Neurosurgery, Hôpital Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine and Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, 675 Charles E Young Dr. S, MRL 2240, Los Angeles, CA, 90095-7286, USA.
| |
Collapse
|
30
|
Iivanainen A, Raitanen J, Auvinen A. Incidence of vestibular schwannoma in Finland, 1990-2017. Acta Oncol 2024; 63:111-117. [PMID: 38578202 PMCID: PMC11332484 DOI: 10.2340/1651-226x.2024.20352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/06/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND An increasing trend in incidence of vestibular schwannomas (VS) has been reported, though not consistently, across populations. Materials and methods: We obtained data from the Finnish Cancer Registry on 1,149 VS cases diagnosed in 1990-2017 with tabular data up to 2022. We calculated age-standardised incidence rates (ASR) overall, by sex, and for 10-year age groups. We analysed time trends using Poisson and joinpoint regression. RESULTS The average ASR of VS in Finland during 1990-2017 was 8.6/1,000,000 person-years for women and 7.5/1,000,000 for men. A declining trend was found with an average annual percent change of -1.7% (95% confidence interval [CI]: -2.8%, -0.6%) for women, -2.2% (95% CI: -3.6%, -0.7%) for men, and -1.9% (95% CI: -2.9%, -1.0%) for both sexes combined. The ASR in women was 11.6/1,000,000 person-years in 1990 and it decreased to 8.2/1,000,000 by 2017. Correspondingly, the incidence in men was 7.1/1,000,000 in 1990 and decreased to 5.1/1,000,000 by 2017. Some decline in incidence over time was found in all age groups below 80 years, but the decline (2.3-3.1% per year) was statistically significant only in age groups 40-49, 50-59, and 60-69 years. In the oldest age group (80+ years), the incidence of VS increased by 16% per year. For 2018-2022, the ASR was 7.6/1,000,000 for both sexes combined, with a decline by -1.7% (95% CI: -2.3%, -1.2%) annually for the entire period 1990-2022. CONCLUSION In contrast to the increasing incidence reported in some studies, we found a decreasing trend in VS incidence for both sexes in Finland.
Collapse
Affiliation(s)
- Aino Iivanainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Jani Raitanen
- Faculty of Social Sciences, Tampere University, Tampere, Finland; UKK Institute for Health Promotion Research, Tampere, Finland
| | - Anssi Auvinen
- Faculty of Social Sciences, Tampere University, Tampere, Finland; STUK - Radiation and Nuclear Safety Authority, Environmental Surveillance, Vantaa, Finland
| |
Collapse
|
31
|
Imura T, Mitsuhara T, Horie N. Characteristics of MicroRNA Expression Depending on the Presence or Absence of Meningioma in Patients with Neurofibromatosis Type 2: A Secondary Analysis. Neurol Med Chir (Tokyo) 2024; 64:116-122. [PMID: 38267057 PMCID: PMC10992986 DOI: 10.2176/jns-nmc.2023-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/24/2023] [Indexed: 01/26/2024] Open
Abstract
Meningioma is the second most frequent tumor in patients with neurofibromatosis type 2 (NF2). The presence of meningioma is believed to be a negative prognostic marker in these patients. However, the molecular mechanisms involved in the tumorigenesis of NF2-associated meningioma are not well characterized. Epigenetic regulation, including microRNAs (miRNAs), may be involved in the development of different tumor types in patients with NF2. The objective of this study is to explore the different characteristics of serum miRNA expression depending on the presence or absence of meningioma in patients with NF2. Nine patients with NF2 who were treated at the Department of Neurosurgery, Hiroshima University Hospital, were included. Total RNA (including small RNAs) was extracted from serum samples for the preparation of a small RNA library for next-generation sequencing analysis. Differentially expressed miRNAs (DEMs) were analyzed using the DESeq2 package to compare the characteristic miRNA expression profiles of patients with and without meningioma. In small RNA sequencing analysis, out of a total of 1,879 miRNAs registered in the database, the expressions of 657 miRNAs were observed. In DEM analysis, the expressions of four miRNAs, namely, hsa-miR-664b, hsa-miR-7706, hsa-miR-590, and hsa-miR-6513, were downregulated in patients with NF2 with meningioma compared with patients with NF2 without meningioma. Hsa-miR-193a was identified as the only upregulated miRNA in patients with NF2 with meningioma. In conclusion, we identified different circulating miRNA expression characteristics depending on the presence or absence of meningioma in patients with NF2.
Collapse
Affiliation(s)
- Takeshi Imura
- Department of Rehabilitation, Faculty of Health Sciences, Hiroshima Cosmopolitan University
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
32
|
Nagel A, Huegel J, Petrilli A, Rosario R, Victoria B, Hardin HM, Fernandez-Valle C. Simultaneous inhibition of PI3K and PAK in preclinical models of neurofibromatosis type 2-related schwannomatosis. Oncogene 2024; 43:921-930. [PMID: 38336988 PMCID: PMC10959746 DOI: 10.1038/s41388-024-02958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Anna Nagel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Julianne Huegel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Alejandra Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Rosa Rosario
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Haley M Hardin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
33
|
Scott KR, Gener MA, Repnikova EA. Pediatric spinal ependymoma with chromothripsis of chromosome 6: a case report and review of the literature. J Med Case Rep 2024; 18:95. [PMID: 38351155 PMCID: PMC10865573 DOI: 10.1186/s13256-023-04283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Ependymomas are the third most common central nervous system tumor in the pediatric population; however, spinal ependymomas in children are rare. Ependymomas affecting the spinal cord most frequently occur in adults of 20-40 years of age. The current World Health Organization classification system for ependymomas is now composed of ten different entities based on histopathology, location, and molecular studies, with evidence that the new classification system more accurately predicts clinical outcomes. CASE PRESENTATION We present the case of a 16-year-old Caucasian female patient with a history of type 2 neurofibromatosis with multiple schwannomas, meningioma, and spinal ependymoma. Chromosome analysis of the harvested spinal ependymoma tumor sample revealed a 46,XX,-6,+7,-22,+mar[16]/46,XX[4] karyotype. Subsequent OncoScan microarray analysis of the formalin-fixed paraffin-embedded tumor sample confirmed + 7, -22 and clarified that the marker chromosome represents chromothripsis of the entire chromosome 6 with more than 100 breakpoints. Fluorescent in situ hybridization and microarray analysis showed no evidence of MYCN amplification. The final integrated pathology diagnosis was spinal ependymoma (central nervous system World Health Organization grade 2 with no MYCN amplification. CONCLUSION This case adds to the existing literature of pediatric patients with spinal ependymomas and expands the cytogenetic findings that may be seen in patients with this tumor type. This case also highlights the value of cytogenetics and microarray analysis in solid tumors to provide a more accurate molecular diagnosis.
Collapse
Affiliation(s)
- Keela R Scott
- Department of Pathology & Anatomical Sciences, University of Missouri-Columbia, 1 Hospital Drive M263, MSB, Columbia, MO, 65212, USA.
| | - Melissa A Gener
- Department of Pathology & Laboratory Medicine Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO, 64108, USA
| | - Elena A Repnikova
- Department of Pathology & Laboratory Medicine Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MO, 64108, USA
| |
Collapse
|
34
|
Pipchuk A, Kelly T, Carew M, Nicol C, Yang X. Development of Novel Bioluminescent Biosensors Monitoring the Conformation and Activity of the Merlin Tumour Suppressor. Int J Mol Sci 2024; 25:1527. [PMID: 38338806 PMCID: PMC10855677 DOI: 10.3390/ijms25031527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Solid tumours can universally evade contact inhibition of proliferation (CIP), a mechanism halting cell proliferation when cell-cell contact occurs. Merlin, an ERM-like protein, crucially regulates CIP and is frequently deactivated in various cancers, indicating its significance as a tumour suppressor in cancer biology. Despite extensive investigations into Merlin's role in cancer, its lack of intrinsic catalytic activity and frequent conformation changes have made it notoriously challenging to study. To address this challenge, we harnessed innovative luciferase technologies to create and validate a NanoBiT split-luciferase biosensor system in which Merlin is cloned between two split components (LgBiT and SmBiT) of NanoLuc luciferase. This system enables precise quantification of Merlin's conformation and activity both in vitro and within living cells. This biosensor significantly enhances the study of Merlin's molecular functions, serving as a potent tool for exploring its contributions to CIP and tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.P.); (T.K.); (M.C.); (C.N.)
| |
Collapse
|
35
|
Shinya Y, Teranishi Y, Hasegawa H, Miyawaki S, Sugiyama T, Shin M, Kawashima M, Umekawa M, Katano A, Nakatomi H, Saito N. Long-term outcomes of stereotactic radiosurgery for intracranial schwannoma in neurofibromatosis type 2: a genetic analysis perspective. J Neurooncol 2024; 166:185-194. [PMID: 38151698 DOI: 10.1007/s11060-023-04530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE Neurofibromatosis type 2 (NF2) is intractable because of multiple tumors involving the nervous system and is clinically diverse and genotype-dependent. Stereotactic radiosurgery (SRS) for NF2-associated schwannomas remains controversial. We aimed to investigate the association between radiosurgical outcomes and mutation types in NF2-associated schwannomas. METHODS This single-institute retrospective study included consecutive NF2 patients with intracranial schwannomas treated with SRS. The patients' types of germline mutations ("Truncating," "Large deletion," "Splice site," "Missense," and "Mosaic") and Halliday's genetic severity scores were examined, and the associations with progression-free rate (PFR) and overall survival (OS) were analyzed. RESULTS The study enrolled 14 patients with NF2 with 22 associated intracranial schwannomas (median follow-up, 102 months). The PFRs in the entire cohort were 95% at 5 years and 90% at 10-20 years. The PFRs tended to be worse in patients with truncating mutation exons 2-13 than in those with other mutation types (91% at 5 years and 82% at 10-20 years vs. 100% at 10-20 years, P = 0.140). The OSs were 89% for patients aged 40 years and 74% for those aged 60 years in the entire cohort and significantly lower in genetic severity group 3 than in the other groups (100% vs. 50% for those aged 35 years; P = 0.016). CONCLUSION SRS achieved excellent PFR for NF2-associated intracranial schwannomas in the mild (group 2A) and moderate (group 2B) groups. SRS necessitates careful consideration for the severe group (group 3), especially in cases with NF2 truncating mutation exons 2-13.
Collapse
Affiliation(s)
- Yuki Shinya
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hirotaka Hasegawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takehiro Sugiyama
- Diabetes and Metabolism Information Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
- Department of Health Services Research, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Masahiro Shin
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mariko Kawashima
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Motoyuki Umekawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsuto Katano
- Department of Radiology, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
36
|
Yamauchi T, Suka M. Quality of life and neurological symptoms in patients with neurofibromatosis type 2: a national database study in Japan. Environ Health Prev Med 2024; 29:44. [PMID: 39198186 PMCID: PMC11362668 DOI: 10.1265/ehpm.24-00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND This study examined the association between neurological symptoms and quality of life (QoL) in patients with neurofibromatosis type 2 (NF2) using a national database of all patients who newly claimed for medical expense subsidies in Japan from 2015 to 2019. METHODS The Japanese Ministry of Health, Labour and Welfare provided access to the "National Database of Designated Intractable Diseases of Japan" containing the "Medical Certificates of Designated Intractable Diseases" of all patients with NF2. The database included information on five items of QoL: "mobility," "self-care," "usual activities," "pain/discomfort," and "anxiety/depression." To examine the association between the presence/absence of neurological symptoms and QoL, multivariable logistic regression analyses were performed, adjusted for potential confounders. RESULTS Data from 187 patients (97 females and 90 males; mean (standard deviation) age, 43.1 (17.9) years) were analyzed. Overall, 31% to 55% of patients were recorded as having moderate/severe impairment of QoL. Spinal dysfunction was significantly associated with deterioration of all components of QoL, whereas speech dysfunction and hemiparesis were specifically associated with physical health-related components of QoL. Spinal dysfunction, facial nerve palsy, and age 25-64 years were significantly associated with "anxiety/depression." CONCLUSIONS In the present epidemiological study using a national database of NF2 in Japan, spinal dysfunction was significantly associated with deterioration of all components of QoL, including subjective and mental health-related components of QoL, whereas speech dysfunction and hemiparesis were specifically associated with physical health-related components of QoL.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
37
|
Jovanović A, Tošić N, Marjanović I, Komazec J, Zukić B, Nikitović M, Ilić R, Grujičić D, Janić D, Pavlović S. Germline Variants in Cancer Predisposition Genes in Pediatric Patients with Central Nervous System Tumors. Int J Mol Sci 2023; 24:17387. [PMID: 38139220 PMCID: PMC10744041 DOI: 10.3390/ijms242417387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Central nervous system (CNS) tumors comprise around 20% of childhood malignancies. Germline variants in cancer predisposition genes (CPGs) are found in approximately 10% of pediatric patients with CNS tumors. This study aimed to characterize variants in CPGs in pediatric patients with CNS tumors and correlate these findings with clinically relevant data. Genomic DNA was isolated from the peripheral blood of 51 pediatric patients and further analyzed by the next-generation sequencing approach. Bioinformatic analysis was done using an "in-house" gene list panel, which included 144 genes related to pediatric brain tumors, and the gene list panel Neoplasm (HP:0002664). Our study found that 27% of pediatric patients with CNS tumors have a germline variant in some of the known CPGs, like ALK, APC, CHEK2, ELP1, MLH1, MSH2, NF1, NF2 and TP53. This study represents the first comprehensive evaluation of germline variants in pediatric patients with CNS tumors in the Western Balkans region. Our results indicate the necessity of genomic research to reveal the genetic basis of pediatric CNS tumors, as well as to define targets for the application and development of innovative therapeutics that form the basis of the upcoming era of personalized medicine.
Collapse
Affiliation(s)
- Aleksa Jovanović
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Nataša Tošić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Irena Marjanović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Jovana Komazec
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Branka Zukić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Marina Nikitović
- Pediatric Radiation Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
| | - Rosanda Ilić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Danica Grujičić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dragana Janić
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| |
Collapse
|
38
|
Hardin HM, Dinh CT, Huegel J, Petrilli AM, Bracho O, Allaf A, Karajannis MA, Griswold AJ, Ivan ME, Morcos J, Gultekin SH, Telischi FF, Liu XZ, Fernandez-Valle C. Cotargeting Phosphoinositide 3-Kinase and Focal Adhesion Kinase Pathways Inhibits Proliferation of NF2 Schwannoma Cells. Mol Cancer Ther 2023; 22:1280-1289. [PMID: 37527526 PMCID: PMC10832398 DOI: 10.1158/1535-7163.mct-23-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 07/30/2023] [Indexed: 08/03/2023]
Abstract
Neurofibromatosis Type 2 (NF2) is a tumor predisposition syndrome caused by germline inactivating mutations in the NF2 gene encoding the merlin tumor suppressor. Patients develop multiple benign tumor types in the nervous system including bilateral vestibular schwannomas (VS). Standard treatments include surgery and radiation therapy, which may lead to loss of hearing, impaired facial nerve function, and other complications. Kinase inhibitor monotherapies have been evaluated clinically for NF2 patients with limited success, and more effective nonsurgical therapies are urgently needed. Schwannoma model cells treated with PI3K inhibitors upregulate activity of the focal adhesion kinase (FAK) family as a compensatory survival pathway. We screened combinations of 13 clinically relevant PI3K and FAK inhibitors using human isogenic normal and merlin-deficient Schwann cell lines. The most efficacious combination was PI3K/mTOR inhibitor omipalisib with SRC/FAK inhibitor dasatinib. Sub-GI50 doses of the single drugs blocked phosphorylation of their major target proteins. The combination was superior to either single agent in promoting a G1 cell-cycle arrest and produced a 44% decrease in tumor growth over a 2-week period in a pilot orthotopic allograft model. Evaluation of single and combination drugs in six human primary VS cell models revealed the combination was superior to the monotherapies in 3 of 6 VS samples, highlighting inter-tumor variability between patients consistent with observations from clinical trials with other molecular targeted agents. Dasatinib alone performed as well as the combination in the remaining three samples. Preclinically validated combination therapies hold promise for NF2 patients and warrants further study in clinical trials.
Collapse
Affiliation(s)
- Haley M. Hardin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, FL, USA
| | - Christine T. Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Julianne Huegel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, FL, USA
| | - Alejandra M. Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, FL, USA
| | - Olena Bracho
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Abdulrahman Allaf
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, FL, USA
| | | | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael E. Ivan
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jacques Morcos
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sakir H. Gultekin
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Fred F. Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, FL, USA
| |
Collapse
|
39
|
Fernandez-Valle C, Nagel A, Huegel J, Petrilli A, Rosario R, Victoria B, Hardin H. Simultaneous Inhibition of PI3K and PAK in Preclinical Models of Neurofibromatosis Type 2-related Schwannomatosis. RESEARCH SQUARE 2023:rs.3.rs-3405297. [PMID: 37886501 PMCID: PMC10602174 DOI: 10.21203/rs.3.rs-3405297/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.
Collapse
|
40
|
Elbeltagy M, Abbassy M. Neurofibromatosis type1, type 2, tuberous sclerosis and Von Hippel-Lindau disease. Childs Nerv Syst 2023; 39:2791-2806. [PMID: 37819506 DOI: 10.1007/s00381-023-06160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023]
Abstract
Neurocutaneous syndromes (also known as phakomatoses) are heterogenous group of disorders that involve derivatives of the neuroectoderm. Each disease has diagnostic and pathognomonic criteria, once identified, thorough clinical examination to the patient and the family members should be done. Magnetic resonance imaging (MRI) is used to study the pathognomonic findings withing the CNS (Evans et al. in Am J Med Genet A 152A:327-332, 2010). This chapter includes the 4 most common syndromes faced by neurosurgeons and neurologists; neurofibromatosis types 1 and 2, tuberous sclerosis and Von Hippel-Lindau disease. Each syndrome has specific genetic anomaly that involves a tumor suppressor gene and the loss of inhibition of specific pathways. The result is a spectrum of cutaneous manifestations and neoplasms.
Collapse
Affiliation(s)
- M Elbeltagy
- Department of Neurosurgery, Cairo University, 1 University Street, Giza Governorate, 12613, Egypt.
- Department of Neurosurgery, Children's Cancer Hospital Egypt, Sekat Hadid Al Mahger, Zeinhom, El Sayeda Zeinab, Cairo Governorate, 4260102, Egypt.
| | - M Abbassy
- Department of Neurosurgery, Children's Cancer Hospital Egypt, Sekat Hadid Al Mahger, Zeinhom, El Sayeda Zeinab, Cairo Governorate, 4260102, Egypt
- Department of Neurosurgery, Alexandria University, 22 El-Gaish Rd, Al Azaritah WA Ash Shatebi, Bab Sharqi, Alexandria Governorate, 5424041, Egypt
| |
Collapse
|
41
|
Trizuljak J, Duben J, Blaháková I, Vrzalová Z, Kozubík KS, Štika J, Radová L, Bergerová V, Mejstříková S, Hořínová V, Jančálek R, Pospíšilová Š, Doubek M. Extensive, 3.8 Mb-Sized Deletion of 22q12 in a Patient with Bilateral Schwannoma, Intellectual Disability, Sensorineural Hearing Loss, and Epilepsy. Mol Syndromol 2023; 14:439-448. [PMID: 37908896 PMCID: PMC10613852 DOI: 10.1159/000528744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 11/02/2023] Open
Abstract
Introduction In contrast with the well-known and described deletion of the 22q11 chromosome region responsible for DiGeorge syndrome, 22q12 deletions are much rarer. Only a few dozen cases have been reported so far. This region contains genes responsible for cell cycle control, chromatin modification, transmembrane signaling, cell adhesion, and neural development, as well as several cancer predisposition genes. Case Presentation We present a patient with cleft palate, sensorineural hearing loss, vestibular dysfunction, epilepsy, mild to moderate intellectual disability, divergent strabism, pes equinovarus, platyspondylia, and bilateral schwannoma. Using Microarray-based Comparative Genomic Hybridization (aCGH), we identified the de novo 3.8 Mb interstitial deletion at 22q12.1→22q12.3. We confirmed deletion of the critical NF2 region by MLPA analysis. Discussion Large 22q12 deletion in the proband encases the critical NF2 region, responsible for development of bilateral schwannoma. We compared the phenotype of the patient with previously reported cases. Interestingly, our patient developed cleft palate even without deletion of the MN1 gene, deemed responsible in previous studies. We also strongly suspect the DEPDC5 gene deletion to be responsible for seizures, consistent with previously reported cases.
Collapse
Affiliation(s)
- Jakub Trizuljak
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jakub Duben
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Ivona Blaháková
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Vrzalová
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Kateřina Staňo Kozubík
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiří Štika
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Radová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Veronika Bergerová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Soňa Mejstříková
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Věra Hořínová
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Outpatient Ward for Genetics, Hospital Jihlava, Jihlava, Czech Republic
| | - Radim Jančálek
- Department of Neurosurgery, St. Anne University Hospital, Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Department of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
42
|
Idler J, Turkoglu O, Patek K, Stuart S, Taskin B, Sivaswamy L, Whitten A. Neurocutaneous Disorders in Pregnancy. Obstet Gynecol Surv 2023; 78:606-619. [PMID: 37976316 DOI: 10.1097/ogx.0000000000001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Importance Neurocutaneous disorders have significant implications for care of the pregnant patient. As neurocutaneous disorders are uncommon, obstetricians may be unfamiliar with these disorders and with recommendations for appropriate care of this population. Objective This review aims to summarize existing literature on the interaction between neurocutaneous disorders and pregnancy and to provide a guide for physicians caring for an affected patient. Evidence Acquisition A PubMed, MEDLINE, and Google Scholar search was carried out with a broad range of combinations of the medical subject headings (MeSH) terms "pregnancy," "Sturge -Weber," "Neurofibromatosis Type 1," "neurofibromatosis type 2," "von Hippel Lindau," "Tuberous Sclerosis," "neurocutaneous disorder," "treatment," "congenital malformations," "neurodevelopmental defects," "miscarriage," "breastfeeding," "autoimmune," "pathophysiology," and "management." References of included articles were searched to identify any articles that may have been missed after the above method was used. Results Neurocutaneous disorders are associated with increased pregnancy-associated maternal and fetal/neonatal morbidity, largely surrounding hypertensive disorders, epilepsy, and medication exposure. Some features of neurocutaneous disorders may be worsened or accelerated by pregnancy. Neurocutaneous disorders can often be diagnosed prenatally. Therefore, directed assessment should be offered to affected individuals with a personal or family history of a neurocutaneous disorder. Conclusion and Relevance Patients affected by neurocutaneous disorders who are pregnant or planning for future pregnancy should be carefully followed by a multidisciplinary team, which could include maternal-fetal medicine, neurology, and anesthesia, as well as other relevant subspecialists. Additional research is required regarding optimal counseling and management of these patients.
Collapse
Affiliation(s)
- Jay Idler
- Maternal Fetal Medicine Specialist, Allegheny Health Network, Pittsburgh, PA; Assistant Professor, Drexel College of Medicine, Philadelphia, PA
| | | | | | - Sean Stuart
- Obstetrics and Gynecology Resident, William Beaumont University Hospital, Corewell Health, Royal Oak
| | - Birce Taskin
- Child Neurologist, Pediatric Neurology Department, Children's Hospital of Michigan, Wayne State University, Detroit
| | - Lalitha Sivaswamy
- Child Neurologist, Pediatric Neurology Department, Children's Hospital of Michigan, Wayne State University, Detroit
| | - Amy Whitten
- Maternal Fetal Medicine Fellow; Maternal Fetal Medicine Specialist and Associate Professor, William Beaumont University Hospital, Corewell Health, Royal Oak, MI
| |
Collapse
|
43
|
Teranishi Y, Miyawaki S, Nakatochi M, Okano A, Ohara K, Hongo H, Ishigami D, Sakai Y, Shimada D, Takayanagi S, Ikemura M, Komura D, Katoh H, Mitsui J, Morishita S, Ushiku T, Ishikawa S, Nakatomi H, Saito N. Meningiomas in patients with neurofibromatosis type 2 predominantly comprise 'immunogenic subtype' tumours characterised by macrophage infiltration. Acta Neuropathol Commun 2023; 11:156. [PMID: 37752594 PMCID: PMC10521403 DOI: 10.1186/s40478-023-01645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Although recent molecular analyses revealed that sporadic meningiomas have various genetic, epigenetic, and transcriptomic profiles, meningioma in patients with neurofibromatosis type 2 (NF2) have not been fully elucidated. This study investigated meningiomas' clinical, histological, and molecular characteristics in NF2 patients. A long-term retrospective follow-up (13.5 ± 5.5 years) study involving total 159 meningiomas in 37 patients with NF2 was performed. Their characteristics were assessed using immunohistochemistry (IHC), bulk-RNA sequencing, and copy number analysis. All variables of meningiomas in patients with NF2 were compared with those in 189 sporadic NF2-altered meningiomas in 189 patients. Most meningiomas in NF2 patients were stable, and the mean annual growth rate was 1.0 ± 1.8 cm3/year. Twenty-eight meningiomas (17.6%) in 25 patients (43.1%) were resected during the follow-up period. WHO grade I meningiomas in patients with NF2 were more frequent than in sporadic NF2-altered meningiomas (92.9% vs. 80.9%). Transcriptomic analysis for patients with NF2/sporadic NF2-altered WHO grade I meningiomas (n = 14 vs. 15, respectively) showed that tumours in NF2 patients still had a higher immune response and immune cell infiltration than sporadic NF2-altered meningiomas. Furthermore, RNA-seq/IHC-derived immunophenotyping corroborated this enhanced immune response by identifying myeloid cell infiltration, particularly in macrophages. Clinical, histological, and transcriptomic analyses of meningiomas in patients with NF2 demonstrated that meningiomas in NF2 patients showed less aggressive behaviour than sporadic NF2-altered meningiomas and elicited a marked immune response by identifying myeloid cell infiltration, particularly of macrophages.
Collapse
Affiliation(s)
- Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Japan
| | - Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiichiro Ishigami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yu Sakai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daisuke Shimada
- Department of Neurosurgery, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masako Ikemura
- Department of Pathology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Neurosurgery, Faculty of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
44
|
Kioutchoukova IP, Foster DT, Thakkar RN, Foreman MA, Burgess BJ, Toms RM, Molina Valero EE, Lucke-Wold B. Neurologic orphan diseases: Emerging innovations and role for genetic treatments. World J Exp Med 2023; 13:59-74. [PMID: 37767543 PMCID: PMC10520757 DOI: 10.5493/wjem.v13.i4.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Orphan diseases are rare diseases that affect less than 200000 individuals within the United States. Most orphan diseases are of neurologic and genetic origin. With the current advances in technology, more funding has been devoted to developing therapeutic agents for patients with these conditions. In our review, we highlight emerging options for patients with neurologic orphan diseases, specifically including diseases resulting in muscular deterioration, epilepsy, seizures, neurodegenerative movement disorders, inhibited cognitive development, neuron deterioration, and tumors. After extensive literature review, gene therapy offers a promising route for the treatment of neurologic orphan diseases. The use of clustered regularly interspaced palindromic repeats/Cas9 has demonstrated positive results in experiments investigating its role in several diseases. Additionally, the use of adeno-associated viral vectors has shown improvement in survival, motor function, and developmental milestones, while also demonstrating reversal of sensory ataxia and cardiomyopathy in Friedreich ataxia patients. Antisense oligonucleotides have also been used in some neurologic orphan diseases with positive outcomes. Mammalian target of rapamycin inhibitors are currently being investigated and have reduced abnormal cell growth, proliferation, and angiogenesis. Emerging innovations and the role of genetic treatments open a new window of opportunity for the treatment of neurologic orphan diseases.
Collapse
Affiliation(s)
| | - Devon T Foster
- Florida International University Herbert Wertheim College of Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Rajvi N Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Marco A Foreman
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Brandon J Burgess
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Rebecca M Toms
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
45
|
Li KL, Lewis D, Zhu X, Coope DJ, Djoukhadar I, King AT, Cootes T, Jackson A. A Novel Multi-Model High Spatial Resolution Method for Analysis of DCE MRI Data: Insights from Vestibular Schwannoma Responses to Antiangiogenic Therapy in Type II Neurofibromatosis. Pharmaceuticals (Basel) 2023; 16:1282. [PMID: 37765090 PMCID: PMC10534691 DOI: 10.3390/ph16091282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to develop and evaluate a new DCE-MRI processing technique that combines LEGATOS, a dual-temporal resolution DCE-MRI technique, with multi-kinetic models. This technique enables high spatial resolution interrogation of flow and permeability effects, which is currently challenging to achieve. Twelve patients with neurofibromatosis type II-related vestibular schwannoma (20 tumours) undergoing bevacizumab therapy were imaged at 1.5 T both before and at 90 days following treatment. Using the new technique, whole-brain, high spatial resolution images of the contrast transfer coefficient (Ktrans), vascular fraction (vp), extravascular extracellular fraction (ve), capillary plasma flow (Fp), and the capillary permeability-surface area product (PS) could be obtained, and their predictive value was examined. Of the five microvascular parameters derived using the new method, baseline PS exhibited the strongest correlation with the baseline tumour volume (p = 0.03). Baseline ve showed the strongest correlation with the change in tumour volume, particularly the percentage tumour volume change at 90 days after treatment (p < 0.001), and PS demonstrated a larger reduction at 90 days after treatment (p = 0.0001) when compared to Ktrans or Fp alone. Both the capillary permeability-surface area product (PS) and the extravascular extracellular fraction (ve) significantly differentiated the 'responder' and 'non-responder' tumour groups at 90 days (p < 0.05 and p < 0.001, respectively). These results highlight that this novel DCE-MRI analysis approach can be used to evaluate tumour microvascular changes during treatment and the need for future larger clinical studies investigating its role in predicting antiangiogenic therapy response.
Collapse
Affiliation(s)
- Ka-Loh Li
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.-L.L.); (T.C.); (A.J.)
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester M13 9PL, UK; (D.L.); (D.J.C.); (A.T.K.)
| | - Daniel Lewis
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester M13 9PL, UK; (D.L.); (D.J.C.); (A.T.K.)
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Xiaoping Zhu
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.-L.L.); (T.C.); (A.J.)
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester M20 3LJ, UK
| | - David J. Coope
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester M13 9PL, UK; (D.L.); (D.J.C.); (A.T.K.)
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Ibrahim Djoukhadar
- Department of Neuroradiology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NT, UK;
| | - Andrew T. King
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester M13 9PL, UK; (D.L.); (D.J.C.); (A.T.K.)
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Timothy Cootes
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.-L.L.); (T.C.); (A.J.)
| | - Alan Jackson
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.-L.L.); (T.C.); (A.J.)
| |
Collapse
|
46
|
Omene EE, Easaw J. Management of Bevacizumab-Induced Proteinuria Using an Angiotensin Receptor Blocker (ARB) in a Neurofibromatosis Type 2 (NF-2) Patient With Vestibular Schwannoma. Cureus 2023; 15:e46202. [PMID: 37905291 PMCID: PMC10613429 DOI: 10.7759/cureus.46202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Neurofibromatosis type 2 (NF-2) is a genetic condition that by definition includes bilateral vestibular schwannoma, a non-malignant lesion also known as acoustic neuroma. Patients often develop hearing impairment and hearing loss as a result of the involvement of the vestibulocochlear nerve bilaterally as well as attempts at surgical repair. A common treatment for NF-2-mediated schwannoma is the antiangiogenic agent, bevacizumab. In many cases, patients require prolonged and even lifelong treatment with bevacizumab to control schwannoma growth. However, long-term use of bevacizumab can be associated with multiple side effects including hypertension and proteinuria including nephrotic syndrome (>3g of protein excreted in the urine in 24 hours). In these situations, the challenge with discontinuing prolonged bevacizumab can be rapid tumor growth and worsening hearing loss. Pre-clinical data suggests that hearing loss can be prevented following treatment with the angiotensin receptor blocker (ARB), losartan, in an animal model of NF-2. ARBs are already established in nephrology guidelines to treat proteinuria and hypertension. Here, we present a patient with NF-2 who developed nephrotic syndrome while on bevacizumab. Attempts to discontinue bevacizumab resulted in near-immediate hearing loss. Treatment with the ARB telmisartan together with bevacizumab resulted in improved hearing, reduced proteinuria, and controlled hypertension.
Collapse
Affiliation(s)
| | - Jay Easaw
- Medical Oncology, Cross Cancer Institute, Edmonton, CAN
| |
Collapse
|
47
|
Dornhoffer JR, Haller T, Lohse CM, Driscoll CLW, Neff BA, Saoji A, Link MJ, Carlson ML. Cochlear Implant Outcomes between Patients with Sporadic and Neurofibromatosis Type 2-Associated Vestibular Schwannoma. Otol Neurotol 2023; 44:791-797. [PMID: 37464449 DOI: 10.1097/mao.0000000000003963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Compare cochlear implant (CI) performance between patients with ipsilateral sporadic vestibular schwannoma (VS) and NF2-related schwannomatosis (NF2). Compare CI performance according to VS management modality. STUDY DESIGN Historical cohort. SETTING Tertiary academic center. PATIENTS Forty-nine patients (52 ears) undergoing cochlear implantation in the setting of ipsilateral sporadic (n = 21) or NF2-associated VS (n = 28). INTERVENTIONS CI ipsilateral to VS. MAIN OUTCOME MEASURES Auditory thresholds, consonant-nucleus-consonant (CNC) word scores, and AzBio sentences in quiet scores. RESULTS Among all patients, median post-CI pure tone average was 28 dB HL (interquartile range [IQR], 21-38), CNC word score was 39% (IQR, 6-62), and AzBio sentences in quiet score was 60% (IQR, 11-83) at a median of 12.5 months postimplantation. Despite the NF2 cohort having larger tumors, when comparing patients with sporadic versus NF2-associated VS, there were no statistically significant differences in CNC word (49% [30-70] vs. 31% [0-52]) or AzBio sentences in quiet (66% [28-80] vs. 57% [5-83]) scores. Regardless of NF2 status, all patients managed with observation, and radiosurgery achieved open-set speech. In patients who underwent microsurgery, 6 (46%) of 13 with NF2 achieved open-set speech recognition compared with 4 (67%) of 6 with sporadic disease. CONCLUSION Select patients with VS achieve successful hearing rehabilitation with a CI. In this cohort, tumor management strategy significantly influenced CI performance, whereas differences in NF2 status exhibited less effect. Specifically, all patients managed with observation or radiosurgery achieved open-set speech perception, whereas approximately half of people with NF2-related VS and two-thirds of people with sporadic VS achieved this outcome after tumor microsurgery. When disease permits, observation and radiosurgery should be considered in patients who may later pursue a CI.
Collapse
Affiliation(s)
- James R Dornhoffer
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, MN
| | - Travis Haller
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, MN
| | - Christine M Lohse
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | | | | | - Aniket Saoji
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, MN
| | | | | |
Collapse
|
48
|
Hiruta R, Saito K, Bakhit M, Fujii M. Current progress in genomics and targeted therapies for neurofibromatosis type 2. Fukushima J Med Sci 2023; 69:95-103. [PMID: 37468280 PMCID: PMC10480513 DOI: 10.5387/fms.2023-05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Neurofibromatosis type 2 (NF2), a multiple neoplasia syndrome, is a manifestation of an impaired expression of the merlin protein, exerting inhibitory effects on cell proliferation signals due to abnormalities of the NF2 gene located on chromosome 22. About half of patients inherit a germline mutation from a parent, and nearly 60% of de novo NF2 patients are estimated to have somatic mosaicism. The development of technical methods to detect NF2 gene mutation, including targeted deep sequencing from multiple tissues, improved the diagnostic rate of mosaic NF2. With improved understanding of genetics and pathogenesis, the diagnostic criteria for NF2 were updated to assist in identifying and diagnosing NF2 at an earlier stage. The understanding of cell signaling pathways interacting with merlin has led to the development of molecular-targeted therapies. Currently, several translational studies are searching for possible therapeutic agents targeting VEGF or VEGF receptors. Bevacizumab, an anti-VEGF monoclonal antibody, is widely used in many clinical trials aiming for hearing improvement or tumor volume control. Currently, a randomized, double-masked trial to assess bevacizumab is underway. In this randomized control trial, 12 other Japanese institutions joined the principal investigators in the clinical trial originating at Fukushima Medical University. In this review, we will be discussing the latest research developments regarding NF2 pathophysiology, including molecular biology, diagnosis, and novel therapeutics.
Collapse
Affiliation(s)
- Ryo Hiruta
- Department of Neurosurgery, Fukushima Medical University
| | - Kiyoshi Saito
- Department of Neurosurgery, Fukushima Rosai Hospital
| | | | - Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University
| |
Collapse
|
49
|
Ahmed SG, Oliva G, Shao M, Mekalanos JJ, Brenner GJ. Culture of attenuated Salmonella Typhimurium VNP20009 in animal-product-free media does not alter schwannoma growth control. Hum Vaccin Immunother 2023; 19:2262639. [PMID: 37786375 PMCID: PMC10549203 DOI: 10.1080/21645515.2023.2262639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Schwannomas are slow-growing benign peripheral nerve sheath tumors derived from Schwann-lineage cells that develop in association with NF2-related schwannomatosis (NF2) and schwannomatosis (NF3), as well as spontaneously. Individuals affected with NF2 and NF3 have multiple schwannomas with tumors arising throughout life. Surgical resection, the standard management, is limited in scope and efficacy and is itself associated with significant morbidity. We have previously shown that direct intratumoral injection of attenuated Salmonella Typhimurium (S. Typhimurium), strain VNP20009, showed a potent anti-tumor effect in preclinical NF-2 schwannoma models. The United States Federal Drug Administration (FDA) requires that bacterial products utilized in clinical trials be produced without exposure to animal-derived-products. In this context, we developed, characterized, and tested the antitumor efficacy of an attenuated S. Typhimurium serially passaged in animal-product-free media, naming it VNP20009-AF for "VNP20009-animal-product-free." Our in vitro data did not indicate any significant changes in the viability, motility, or morphology of VNP20009-AF, compared to its parental strain. In vivo efficacy data demonstrated that VNP20009-AF and VNP20009 controlled tumor growth to the same degree in both human NF2-schwannoma xenograft and murine-NF2 schwannoma allograft models. Together, these data support the use of VNP20009-AF for the translation of bacterial schwannoma therapy into clinical trials.
Collapse
Affiliation(s)
- Sherif G. Ahmed
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giulia Oliva
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Manlin Shao
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Gary J. Brenner
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Moesslacher CS, Auernig E, Woodsmith J, Feichtner A, Jany-Luig E, Jehle S, Worseck JM, Heine CL, Stefan E, Stelzl U. Missense variant interaction scanning reveals a critical role of the FERM domain for tumor suppressor protein NF2 conformation and function. Life Sci Alliance 2023; 6:e202302043. [PMID: 37280085 PMCID: PMC10244618 DOI: 10.26508/lsa.202302043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
NF2 (moesin-ezrin-radixin-like [MERLIN] tumor suppressor) is frequently inactivated in cancer, where its NF2 tumor suppressor functionality is tightly coupled to protein conformation. How NF2 conformation is regulated and how NF2 conformation influences tumor suppressor activity is a largely open question. Here, we systematically characterized three NF2 conformation-dependent protein interactions utilizing deep mutational scanning interaction perturbation analyses. We identified two regions in NF2 with clustered mutations which affected conformation-dependent protein interactions. NF2 variants in the F2-F3 subdomain and the α3H helix region substantially modulated NF2 conformation and homomerization. Mutations in the F2-F3 subdomain altered proliferation in three cell lines and matched patterns of disease mutations in NF2 related-schwannomatosis. This study highlights the power of systematic mutational interaction perturbation analysis to identify missense variants impacting NF2 conformation and provides insight into NF2 tumor suppressor function.
Collapse
Affiliation(s)
- Christina S Moesslacher
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Elisabeth Auernig
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Jonathan Woodsmith
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Evelyne Jany-Luig
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Stefanie Jehle
- Max-Planck Institute for Molecular Genetics (MPIMG), Otto-Warburg-Laboratory, Berlin, Germany
| | - Josephine M Worseck
- Max-Planck Institute for Molecular Genetics (MPIMG), Otto-Warburg-Laboratory, Berlin, Germany
| | - Christian L Heine
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
- Institute of Molecular Biology, Innsbruck, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- Max-Planck Institute for Molecular Genetics (MPIMG), Otto-Warburg-Laboratory, Berlin, Germany
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| |
Collapse
|