1
|
Hu S, Tang X, Zhu F, Liang C, Wang S, Wang H, Li P, Li Y. Disruption of mitochondrial DNA integrity in cardiomyocyte injury upon ischemia/reperfusion. Genes Dis 2025; 12:101282. [PMID: 40028034 PMCID: PMC11870174 DOI: 10.1016/j.gendis.2024.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2025] Open
Abstract
Mitochondria serve as the energy provider and enable life activities, and they are the only organelles containing extra-chromosomal DNA. Each mitochondrion contains multiple copies of its genome, which is usually referred to as mitochondrial DNA (mtDNA). mtDNA encodes necessary electron transport chain complex subunits, as well as the essential RNAs for their translation within the organelle. Therefore, the precondition for intact mitochondrial function and cardiomyocyte survival is the integrity of mtDNA. Accumulating evidence suggests that the disruption of mtDNA integrity is involved in ischemia/reperfusion-induced mitochondrial dysfunction and cardiomyocyte injury. Here, we review the current opinions about the pathways of mtDNA integrity maintenance and discuss the role of mtDNA integrity in cardiomyocyte injury reacting to ischemia/reperfusion. We also discuss the mechanisms by which mtDNA mediates ischemia/reperfusion-induced cardiomyocyte injury, together with therapeutic strategies by targeting mtDNA.
Collapse
Affiliation(s)
- Shengnan Hu
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Xueying Tang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Fangrui Zhu
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Liang
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing 100853, China
| | - Sa Wang
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266000, China
| | - Yuzhen Li
- Basic Medical Department, Graduate School, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
Pioli KT, Ghosh S, Boulet A, Leary SC, Pioli PD. Lymphopoiesis is attenuated upon hepatocyte-specific deletion of the cytochrome c oxidase assembly factor Sco1. iScience 2025; 28:112151. [PMID: 40177634 PMCID: PMC11964678 DOI: 10.1016/j.isci.2025.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Mutations that negatively impact mitochondrial function are highly prevalent in humans and lead to disorders with a wide spectrum of disease phenotypes, including deficiencies in immune cell development and/or function. Previous analyses of mice with a hepatocyte-specific cytochrome c oxidase (COX) deficiency revealed an unexpected peripheral blood leukopenia associated with splenic and thymic atrophy. Here, we use mice with a hepatocyte-specific deletion of the COX assembly factor Sco1 to show that metabolic defects extrinsic to the hematopoietic compartment lead to a pan-lymphopenia represented by severe losses in both B and T cells. We further demonstrate that immune defects in these mice are associated with the loss of bone marrow lymphoid progenitors common to both lineages and early signs of autoantibody-mediated autoimmunity. Our findings collectively identify hepatocyte dysfunction as a potential instigator of immunodeficiency in patients with congenital mitochondrial defects who suffer from chronic or recurrent infections.
Collapse
Affiliation(s)
- KimAnh T. Pioli
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Sampurna Ghosh
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Aren Boulet
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Scot C. Leary
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Peter D. Pioli
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| |
Collapse
|
3
|
Valenzuela S, Zhu X, Macao B, Stamgren M, Geukens C, Charifson PS, Kern G, Hoberg E, Jenninger L, Gruszczyk AV, Lee S, Johansson KAS, Miralles Fusté J, Shi Y, Kerns SJ, Arabanian L, Martinez Botella G, Ekström S, Green J, Griffin AM, Pardo-Hernández C, Keating TA, Küppers-Munther B, Larsson NG, Phan C, Posse V, Jones JE, Xie X, Giroux S, Gustafsson CM, Falkenberg M. Small molecules restore mutant mitochondrial DNA polymerase activity. Nature 2025:10.1038/s41586-025-08856-9. [PMID: 40205042 DOI: 10.1038/s41586-025-08856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025]
Abstract
Mammalian mitochondrial DNA (mtDNA) is replicated by DNA polymerase γ (POLγ), a heterotrimeric complex consisting of a catalytic POLγA subunit and two accessory POLγB subunits1. More than 300 mutations in POLG, the gene encoding the catalytic subunit, have been linked to severe, progressive conditions with high rates of morbidity and mortality, for which no treatment exists2. Here we report on the discovery and characterization of PZL-A, a first-in-class small-molecule activator of mtDNA synthesis that is capable of restoring function to the most common mutant variants of POLγ. PZL-A binds to an allosteric site at the interface between the catalytic POLγA subunit and the proximal POLγB subunit, a region that is unaffected by nearly all disease-causing mutations. The compound restores wild-type-like activity to mutant forms of POLγ in vitro and activates mtDNA synthesis in cells from paediatric patients with lethal POLG disease, thereby enhancing biogenesis of the oxidative phosphorylation machinery and cellular respiration. Our work demonstrates that a small molecule can restore function to mutant DNA polymerases, offering a promising avenue for treating POLG disorders and other severe conditions linked to depletion of mtDNA.
Collapse
Affiliation(s)
- Sebastian Valenzuela
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Bertil Macao
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | - Emily Hoberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Louise Jenninger
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Seoeun Lee
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Katarina A S Johansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Xie Xie
- Pretzel Therapeutics, Mölndal, Sweden
| | | | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Piálek J, Ďureje Ľ, Hiadlovská Z, Kreisinger J, Aghová T, Bryjová A, Čížková D, de Bellocq JG, Hejlová H, Janotová K, Martincová I, Orth A, Piálková J, Pospíšilová I, Rousková L, Bímová BV, Pfeifle C, Tautz D, Bonhomme F, Forejt J, Macholán M, Klusáčková P. Phenogenomic resources immortalized in a panel of wild-derived strains of five species of house mice. Sci Rep 2025; 15:12060. [PMID: 40199997 PMCID: PMC11978780 DOI: 10.1038/s41598-025-86505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/10/2025] [Indexed: 04/10/2025] Open
Abstract
The house mouse, Mus musculus, is a widely used animal model in biomedical research, with classical laboratory strains (CLS) being the most frequently employed. However, the limited genetic variability in CLS hinders their applicability in evolutionary studies. Wild-derived strains (WDS), on the other hand, provide a suitable resource for such investigations. This study quantifies genetic and phenotypic data of 101 WDS representing 5 species, 3 subspecies, and 8 natural Y consomic strains and compares them with CLS. Genetic variability was estimated using whole mtDNA sequences, the Prdm9 gene, and copy number variation at two sex chromosome-linked genes. WDS exhibit a large natural variation with up to 2173 polymorphic sites in mitogenomes, whereas CLS display 92 sites. Moreover, while CLS have two Prdm9 alleles, WDS harbour 46 different alleles. Although CLS resemble M. m. domesticus and M. m. musculus WDS, they differ from them in 10 and 14 out of 16 phenotypic traits, respectively. The results suggest that WDS can be a useful tool in evolutionary and biomedical studies with great potential for medical applications.
Collapse
Affiliation(s)
- Jaroslav Piálek
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
| | - Ľudovít Ďureje
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Zuzana Hiadlovská
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatiana Aghová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Bryjová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Dagmar Čížková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Joëlle Goüy de Bellocq
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Helena Hejlová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kateřina Janotová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Iva Martincová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- ZOO Prague, Prague, Czech Republic
| | - Annie Orth
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jana Piálková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Iva Pospíšilová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ludmila Rousková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Barbora Vošlajerová Bímová
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | | | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - François Bonhomme
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Jiří Forejt
- Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec, Czech Republic
| | - Miloš Macholán
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavla Klusáčková
- Studenec Research Facility, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Lei S, Liu Y. Identifying blood mitochondrial DNA copy number as a biomarker for development of neurodegenerative diseases: Evidence from Mendelian randomization analysis. Neuroscience 2025; 573:421-429. [PMID: 40185386 DOI: 10.1016/j.neuroscience.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Mitochondrial dysfunction has been associated with neurodegenerative diseases (NDDs). This study aimed to explore the association between blood mitochondrial DNA copy number (mtDNA-CN) and development of NDDs. This study was based on two-sample Mendelian randomization (MR) analysis. The genome wide association study (GWAS) data of NDDs including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), age-related macular degeneration (AMD), multiple sclerosis (MS), Parkinson's disease (PD), primary open-angle glaucoma (POAG), and vascular dementia (VD) was obtained from FinnGen consortium. Inverse-variance weighted (IVW) was applied as the primary approach for MR estimation. MR results revealed that blood mtDNA-CN exhibited a significant relationship with the incidence of AD (IVW-P = 0.011, odds ratio [OR] = 0.65) and AMD (IVW-P = 0.038, OR = 0.64). However, there was no significant association observed between blood mtDNA-CN and other NDDs (IVW-P > 0.05). Our findings supported the relationship between mitochondrial dysfunction and development of AD and AMD, and that blood mtDNA-CN may serve as a potential biomarker for the incidence of these two NDDs.
Collapse
Affiliation(s)
- Shizhen Lei
- Department of Ophthalmology, Wuhan No.1 Hospital, Wuhan, Hubei, China.
| | - Yani Liu
- Department of Otolaryngology & Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, Hubei, China
| |
Collapse
|
6
|
Sobral MC, Mota SI, Oliveira PJ, Urbano AM, Paulo A. Two Targets, One Mission: Heterobivalent Metal-Based Radiopharmaceuticals for Prostate Cancer Imaging and Therapy. ChemMedChem 2025:e2500128. [PMID: 40117450 DOI: 10.1002/cmdc.202500128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/23/2025]
Abstract
Prostate cancer (PCa) is a significant healthcare challenge, associated with considerable mortality and morbidity among men, particularly in developed countries. PCa mortality and morbidity are primarily related to its most advanced form, metastatic castration-resistant PCa (mCRPC), for which there is presently no cure. Therefore, novel therapeutic approaches to increase mCRPC survival are critically needed. Due to PCa tumor heterogeneity and a complex tumor microenvironment, the efficacy of single-target radiopharmaceuticals, such as the Food and Drug Administration-approved [177Lu]Lu-PSMA-617, is currently under reassessment. The design and development of PCa dual-target radiopharmaceuticals have garnered considerable attention, due to their benefits over single-target counterparts, namely increased therapeutic specificity and efficacy, as well as the ability to overcome the challenge of inconsistent tumor visualization caused by variable receptor expression across diverse lesions, thereby enabling more comprehensive imaging. Several PCa biomarkers are currently being investigated as potential targets for dual-target radiopharmaceuticals, including prostate-specific membrane antigen, gastrin-releasing peptide receptor, integrin αvβ3 receptor, fibroblast activation protein, sigma-1 receptor, as well as albumin, the radiosensitive cell nucleus, and mitochondria. This review explores recent advancements in heterobivalent metal-based radiopharmaceuticals for dual targeting in PCa, highlighting their significance in theranostic and personalized medicine.
Collapse
Affiliation(s)
- Margarida C Sobral
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548, Coimbra, Portugal
- Molecular Physical Chemistry R&D Unit, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Sandra I Mota
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Ana M Urbano
- Molecular Physical Chemistry R&D Unit, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3001-301, Coimbra, Portugal
| | - António Paulo
- C2TN -Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, University of Lisboa, 2695-066, Lisboa, Portugal
- Department of Engineering and Nuclear Sciences, Instituto Superior Técnico, University of Lisboa, 2695-066, Lisboa, Portugal
| |
Collapse
|
7
|
Wilson K, Holjencin C, Lee H, Annamalai B, Ishii M, Gilbert JL, Jakymiw A, Rohrer B. Development of a cell-penetrating peptide-based nanocomplex for long-term delivery of intact mitochondrial DNA into epithelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102449. [PMID: 39991470 PMCID: PMC11847061 DOI: 10.1016/j.omtn.2025.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/10/2025] [Indexed: 02/25/2025]
Abstract
Gene therapy approaches for mitochondrial DNA (mtDNA)-associated damage/diseases have thus far been limited, and despite advancements in single gene therapy for mtDNA mutations and progress in mitochondrial transplantation, no method exists for restoring the entire mtDNA molecule in a clinically translatable manner. Here, we present for the first time a strategy to deliver an exogenous, fully intact, and healthy mtDNA template into cells to correct endogenous mtDNA mutations and deletions, with the potential to be developed into an efficient pan-therapy for inherited and/or acquired mtDNA disorders. More specifically, the novel therapeutic nanoparticle complex used in our study was generated by combining a cell-penetrating peptide (CPP) with purified mtDNA, in conjunction with a mitochondrial targeting reagent. The generated nanoparticle complexes were found to be taken up by cells and localized to mitochondria, with exogenous mtDNA retention/maintenance, along with mitochondrial RNA and protein production, observed in mitochondria-depleted ARPE-19 cells at least 4 weeks following a single treatment. These data demonstrate the feasibility of restoring mtDNA in cells via a CPP carrier, with the therapeutic potential to correct mtDNA damage independent of the number of gene mutations found within the mtDNA.
Collapse
Affiliation(s)
- Kyrie Wilson
- Department of Ophthalmology, College of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Charles Holjencin
- Division of Basic Science Research, Department of Biomedical & Community Health Sciences, James B. Edwards College of Dental Medicine, MUSC, Charleston, SC 29425, USA
| | - Hwaran Lee
- Department of Bioengineering, Clemson University, Clemson – MUSC Bioengineering Program, MUSC, Charleston, SC 29425, USA
| | - Balasubramaniam Annamalai
- Department of Ophthalmology, College of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Masaaki Ishii
- Department of Ophthalmology, College of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Jeremy L. Gilbert
- Department of Bioengineering, Clemson University, Clemson – MUSC Bioengineering Program, MUSC, Charleston, SC 29425, USA
| | - Andrew Jakymiw
- Division of Basic Science Research, Department of Biomedical & Community Health Sciences, James B. Edwards College of Dental Medicine, MUSC, Charleston, SC 29425, USA
- Department of Biochemistry & Molecular Biology, College of Medicine, Hollings Cancer Center, MUSC, Charleston, SC 29425, USA
| | - Bärbel Rohrer
- Department of Ophthalmology, College of Medicine, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| |
Collapse
|
8
|
Zand A, Macharia JM, Szabó I, Gerencsér G, Molnár Á, Raposa BL, Varjas T. The Impact of Tartrazine on DNA Methylation, Histone Deacetylation, and Genomic Stability in Human Cell Lines. Nutrients 2025; 17:913. [PMID: 40077783 PMCID: PMC11902176 DOI: 10.3390/nu17050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Tartrazine (TRZ), a synthetic red azo dye derived from coal tar, is widely used as a food colorant in various food products, pharmaceuticals, and cosmetics. This study aims to investigate the impact of TRZ on the expression levels of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) and histone deacetylases (HDAC5 and HDAC6). Additionally, we evaluate genomic DNA stability using the alkaline comet assay in three human cell lines: immortalized human keratinocyte (HaCaT), human hepatocellular carcinoma (HepG2), and human lung adenocarcinoma (A549). The research question focuses on whether TRZ exposure alters epigenetic regulation and DNA integrity, potentially implicating its role in carcinogenesis. METHODS The selected human cell lines were exposed to different concentrations of TRZ (20 µM, 40 µM, and 80 µM), with DMBA serving as a positive control. After treatment, we quantified the expression levels of DNMT1, DNMT3a, DNMT3b, HDAC5, and HDAC6 using quantitative real-time PCR. Additionally, we assessed DNA fragmentation via the alkaline comet assay to determine the extent of DNA damage resulting from TRZ exposure. RESULTS Our findings indicate that TRZ significantly upregulates the expression of HDAC5, HDAC6, DNMT1, DNMT3a, and DNMT3b in comparison to the control group. Furthermore, TRZ exposure leads to a notable increase in DNA damage, as evidenced by elevated tail moments across all examined human cell lines. CONCLUSIONS These results suggest that TRZ may play a role in carcinogenesis and epigenetic modifications. The observed upregulation of DNMTs and HDACs, coupled with increased DNA damage, highlights the potential risks associated with TRZ exposure. Further research is necessary to explore these mechanisms and assess their implications for human health.
Collapse
Affiliation(s)
- Afshin Zand
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (I.S.); (G.G.); (T.V.)
| | - John M. Macharia
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - Istvan Szabó
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (I.S.); (G.G.); (T.V.)
| | - Gellért Gerencsér
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (I.S.); (G.G.); (T.V.)
- Preclinical Research Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Ádám Molnár
- Preclinical Research Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Bence L. Raposa
- Institute of Basics of Health Sciences, Midwifery and Health Visiting, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (I.S.); (G.G.); (T.V.)
| |
Collapse
|
9
|
Fu Y, Land M, Kavlashvili T, Cui R, Kim M, DeBitetto E, Lieber T, Ryu KW, Choi E, Masilionis I, Saha R, Takizawa M, Baker D, Tigano M, Lareau CA, Reznik E, Sharma R, Chaligne R, Thompson CB, Pe'er D, Sfeir A. Engineering mtDNA deletions by reconstituting end joining in human mitochondria. Cell 2025:S0092-8674(25)00194-1. [PMID: 40068680 DOI: 10.1016/j.cell.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
Recent breakthroughs in the genetic manipulation of mitochondrial DNA (mtDNA) have enabled precise base substitutions and the efficient elimination of genomes carrying pathogenic mutations. However, reconstituting mtDNA deletions linked to mitochondrial myopathies remains challenging. Here, we engineered mtDNA deletions in human cells by co-expressing end-joining (EJ) machinery and targeted endonucleases. Using mitochondrial EJ (mito-EJ) and mito-ScaI, we generated a panel of clonal cell lines harboring a ∼3.5 kb mtDNA deletion across the full spectrum of heteroplasmy. Investigating these cells revealed a critical threshold of ∼75% deleted genomes, beyond which oxidative phosphorylation (OXPHOS) protein depletion, metabolic disruption, and impaired growth in galactose-containing media were observed. Single-cell multiomic profiling identified two distinct nuclear gene deregulation responses: one triggered at the deletion threshold and another progressively responding to heteroplasmy. Ultimately, we show that our method enables the modeling of disease-associated mtDNA deletions across cell types and could inform the development of targeted therapies.
Collapse
Affiliation(s)
- Yi Fu
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Max Land
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tamar Kavlashvili
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruobing Cui
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minsoo Kim
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily DeBitetto
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Toby Lieber
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elim Choi
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignas Masilionis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rahul Saha
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meril Takizawa
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daphne Baker
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Caleb A Lareau
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ed Reznik
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligne
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Chavatte L, Lange L, Schweizer U, Ohlmann T. Understanding the role of tRNA modifications in UGA recoding as selenocysteine in eukaryotes. J Mol Biol 2025:169017. [PMID: 39988117 DOI: 10.1016/j.jmb.2025.169017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
Selenocysteine (Sec), the 21st proteogenic amino acid, is a key component of selenoproteins, where it performs critical roles in redox reactions. Sec incorporation during translation is unique and highly sensitive to selenium levels. Encoded by the UGA codon, typically a termination signal, its insertion necessitates the presence of a selenocysteine insertion sequence (SECIS) within the 3' untranslated region (UTR) of selenoprotein mRNAs. This SECIS element orchestrates the recruitment of specialized molecular factors, including SECISBP2, the unique tRNA[Ser]Sec, and its dedicated elongation factor, EEFSEC. The extended variable arm of tRNA[Ser]Sec permits its specific recognition by EEFSEC. While the structure of the ribosome-bound complex is known, the precise mechanism by which EEFSEC-tRNA[Ser]Sec recodes UGA in the presence of SECIS and SECISBP2 remains unclear. tRNA[Ser]Sec has relatively few epitranscriptomic modifications, but those at the anticodon loop are crucial. Key modifications include N6-isopentenyladenosine (i6A) at position 37 and two forms of 5-methoxycarbonylmethyluridine (mcm5U and mcm5Um) at position 34. The ratio of these isoforms varies with tissue type and selenium levels, influencing mRNA-specific Sec recoding. A C65G mutation in the acceptor stem, identified in patients, disrupts these modifications at position 34, impairing selenoprotein synthesis. This highlights the essential role of wobble position modifications in anticodon function. tRNA[Ser]Sec exemplifies the complex regulation of UGA codon recoding and underscores the interplay of structural and epitranscriptomic factors in selenoprotein translation.
Collapse
Affiliation(s)
- Laurent Chavatte
- Centre International de Recherche en Infectiologie (CIRI), Lyon 69007, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1 (UCBL1), Lyon 69007, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), Lyon 69007, France.
| | - Lukas Lange
- Centre International de Recherche en Infectiologie (CIRI), Lyon 69007, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1 (UCBL1), Lyon 69007, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), Lyon 69007, France.
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany.
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie (CIRI), Lyon 69007, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1 (UCBL1), Lyon 69007, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), Lyon 69007, France.
| |
Collapse
|
11
|
Zhang X, Zhang L, Xiang W. The impact of mitochondrial dysfunction on ovarian aging. J Transl Med 2025; 23:211. [PMID: 39980008 PMCID: PMC11844166 DOI: 10.1186/s12967-025-06223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
IMPORTANCE Ovarian aging has become a focal point in current research on female aging and refers to the gradual decline in ovarian function as women age. Numerous factors influence ovarian aging, among which mitochondrial function is one because it plays a crucial role by affecting oocytes and granulosa cells. Mitochondrial deterioration not only leads to a decrease in oocyte quality but also hinders follicle development, further impacting women's reproductive health and fertility. OBJECTIVE This review summarizes and integrates research on the impact of mitochondrial function on ovarian aging, outlining the mechanisms by which mitochondria regulate the functions of oocytes and granulosa cells. This study aims to provide potential therapeutic directions to mitigate mitochondrial decline and support female reproductive health. EVIDENCE REVIEW According to a 2023 study published in Cell, factors such as oxidative stress, mitochondrial dysfunction, chronic inflammation, and telomere shortening collectively drive ovarian aging, directly affecting female fertility. Among these factors, mitochondrial dysfunction plays a key role. This study reviewed literature from databases such as PubMed, Google Scholar, and CNKI, using keywords such as "mitochondrial dysfunction", "decline in oocyte quality and quantity", and "ovarian aging", aiming to summarize current research on the mechanisms of the impact of mitochondrial dysfunction on ovarian aging and provide theoretical support for future exploration of related therapeutic strategies. FINDINGS The main characteristics of ovarian aging include a decline in oocyte quantity and quality, fluctuations in hormone levels, and a reduction in granulosa cell function. Studies have shown that mitochondria affect fertility by regulating cellular energy metabolism, exacerbating oxidative stress, causing mitochondrial DNA (mtDNA) damage, and impacting the physiological function of granulosa cells within the ovary, gradually diminishing the ovarian reserve. CONCLUSION This review focuses on analyzing the effects of mitochondrial decline on energy production in oocytes and granulosa cells, the accumulation of reactive oxygen species (ROS), and the calcium ion (Ca2+) concentration, which all contribute to the ovarian aging process, and understanding them will provide new insights into the mechanisms of ovarian aging. RELEVANCE Therapeutic interventions targeting mitochondrial dysfunction may help delay ovarian aging and improve female reproductive health.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Di Pierro E, Di Stefano V, Migone De Amicis M, Graziadei G. Are Mitochondria a Potential Target for Treating β-Thalassemia? J Clin Med 2025; 14:1095. [PMID: 40004626 PMCID: PMC11856739 DOI: 10.3390/jcm14041095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The inherited genetic disorder β-thalassemia affects the hematopoietic system and is caused by the low production or absence of adult hemoglobin (HbA). Ineffective erythropoiesis is the hallmark of β-thalassemia pathophysiology and is characterized by an erythropoietin-driven substantial increase in erythroblast proliferation, coupled with an increase in late-stage precursor apoptosis, which results in low levels of circulating mature red blood cells (RBCs) and chronic anemia. Mitochondrial dysfunction commonly occurs in these cells because of the increased demand for energy production and the need to manage abnormal hemoglobin chain synthesis. Moreover, several studies have highlighted the importance of gradual mitochondrial clearance for mature erythroid cell production. This review offers an overview of the mitochondrial role in essential cellular processes, particularly those crucial for maintaining RBC health and function. Additionally, recent evidence regarding the contribution of mitochondrial dysfunction to the pathophysiology and severity of β-thalassemia is discussed, along with updated insights into indirect mitochondria-targeting treatments, which present potential pharmacological targets.
Collapse
Affiliation(s)
- Elena Di Pierro
- SC di Medicina ad Indirizzo Metabolico, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122 Milano, Italy; (V.D.S.); (M.M.D.A.); (G.G.)
| | | | | | | |
Collapse
|
13
|
Iliushchenko D, Efimenko B, Mikhailova AG, Shamanskiy V, Saparbaev MK, Matkarimov BT, Mazunin I, Voronka A, Knorre D, Kunz WS, Kapranov P, Denisov S, Fellay J, Khrapko K, Gunbin K, Popadin K. Deciphering the Foundations of Mitochondrial Mutational Spectra: Replication-Driven and Damage-Induced Signatures Across Chordate Classes. Mol Biol Evol 2025; 42:msae261. [PMID: 39903101 PMCID: PMC11792237 DOI: 10.1093/molbev/msae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025] Open
Abstract
Mitochondrial DNA (mtDNA) mutagenesis remains poorly understood despite its crucial role in disease, aging, and evolutionary tracing. In this study, we reconstructed a comprehensive 192-component mtDNA mutational spectrum for chordates by analyzing 118,397 synonymous mutations in the CytB gene across 1,697 species and five classes. This analysis revealed three primary forces shaping mtDNA mutagenesis: (i) symmetrical, replication-driven errors by mitochondrial polymerase (POLG), resulting in C > T and A > G mutations that are highly conserved across classes; (ii) asymmetrical, damage-driven C > T mutations on the single-stranded heavy strand with clock-like dynamics; and (iii) asymmetrical A > G mutations on the heavy strand, with dynamics suggesting sensitivity to oxidative damage. The third component, sensitive to oxidative damage, positions mtDNA mutagenesis as a promising marker for metabolic and physiological processes across various classes, species, organisms, tissues, and cells. The deconvolution of the mutational spectra into mutational signatures uncovered deficiencies in both base excision repair (BER) and mismatch repair (MMR) pathways. Further analysis of mutation hotspots, abasic sites, and mutational asymmetries underscores the critical role of single-stranded DNA damage (components ii and iii), which, uncorrected due to BER and MMR deficiencies, contributes roughly as many mutations as POLG-induced errors (component i).
Collapse
Affiliation(s)
- Dmitrii Iliushchenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Bogdan Efimenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Alina G Mikhailova
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Victor Shamanskiy
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Murat K Saparbaev
- Groupe “Mechanisms of DNA Repair and Carcinogenesis”, CNRS UMR9019, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Bakhyt T Matkarimov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russian Federation
- Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Alexandr Voronka
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Dmitry Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Wolfram S Kunz
- Department of Epileptology and Institute of Experimental Epileptology and Cognition Research, University Bonn Medical Center, Bonn, Germany
| | | | - Stepan Denisov
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Konstantin Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russian Federation
| | - Konstantin Popadin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Childs J, Gomes TB, Vincent AE, Golightly A, Lawless C. Bayesian classification of OXPHOS deficient skeletal myofibres. PLoS Comput Biol 2025; 21:e1012770. [PMID: 39970187 PMCID: PMC11838899 DOI: 10.1371/journal.pcbi.1012770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
Mitochondria are organelles in most human cells which release the energy required for cells to function. Oxidative phosphorylation (OXPHOS) is a key biochemical process within mitochondria required for energy production and requires a range of proteins and protein complexes. Mitochondria contain multiple copies of their own genome (mtDNA), which codes for some of the proteins and ribonucleic acids required for mitochondrial function and assembly. Pathology arises from genetic defects in mtDNA and can reduce cellular abundance of OXPHOS proteins, affecting mitochondrial function. Due to the continuous turn-over of mtDNA, pathology is random and neighbouring cells can possess different OXPHOS protein abundance. Estimating the proportion of cells where OXPHOS protein abundance is too low to maintain normal function is critical to understanding disease severity and predicting disease progression. Currently, one method to classify single cells as being OXPHOS deficient is prevalent in the literature. The method compares a patient's OXPHOS protein abundance to that of a small number of healthy control subjects. If the patient's cell displays an abundance which differs from the abundance of the controls then it is deemed deficient. However, due to the natural variation between subjects and the low number of control subjects typically available, this method is inflexible and often results in a large proportion of patient cells being misclassified. These misclassifications have significant consequences for the clinical interpretation of these data. We propose a single-cell classification method using a Bayesian hierarchical mixture model, which allows for inter-subject OXPHOS protein abundance variation. The model accurately classifies an example dataset of OXPHOS protein abundances in skeletal muscle fibres (myofibres). When comparing the proposed and existing model classifications to manual classifications performed by experts, the proposed model results in estimates of the proportion of deficient myofibres that are consistent with expert manual classifications.
Collapse
Affiliation(s)
- Jordan Childs
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne, United Kingdom
| | - Tiago Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne, United Kingdom
- NIHR Biomedical Research Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle-upon-Tyne, United Kingdom
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne, United Kingdom
- NIHR Biomedical Research Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew Golightly
- Department of Mathematical Sciences, Durham University, Durham, United Kingdom
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
15
|
He Y, Tang Z, Zhu G, Cai L, Chen C, Guan MX. Deafness-associated mitochondrial 12S rRNA mutation reshapes mitochondrial and cellular homeostasis. J Biol Chem 2025; 301:108124. [PMID: 39716492 PMCID: PMC11791119 DOI: 10.1016/j.jbc.2024.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Human mitochondrial 12S ribosomal RNA (rRNA) 1555A>G mutation has been associated with aminoglycoside-induced and nonsyndromic deafness in many families worldwide. Our previous investigation revealed that the m.1555A>G mutation impaired mitochondrial translation and oxidative phosphorylation (OXPHOS). However, the mechanisms by which mitochondrial dysfunctions induced by m.1555A>G mutation regulate intracellular signaling for mitochondrial and cellular integrity remain poorly understood. Here, we demonstrated that the m.1555A>G mutation downregulated the expression of nucleus-encoded subunits of complexes I and IV but upregulated the expression of assemble factors for OXPHOS complexes, using cybrids derived from one hearing-impaired Chinese subject bearing the m.1555A>G mutation and from one hearing normal control lacking the mutation. These alterations resulted in the aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, IV, and V, rate of oxygen consumption, and diminished ATP production. Furthermore, the mutant cell lines carrying the m.1555A>G mutation exhibited decreased membrane potential and increased the production of reactive oxygen species. The aberrant assembly and biogenesis of OXPHOS impacted mitochondrial quality controls, including the imbalance of mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology and impaired mitophagy. Strikingly, the cells bearing the m.1555A>G mutation revealed the upregulation of both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing levels of Parkin, Pink, BNIP3 and NIX, respectively. The m.1555A>G mutation-induced deficiencies ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into pathophysiology of mitochondrial deafness arising from reshaping mitochondrial and cellular homeostasis due to 12S rRNA 1555A>G mutation.
Collapse
Affiliation(s)
- Yunfan He
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Zhining Tang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Gao Zhu
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Luhang Cai
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Chen
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine and Department of Otolaryngology-Head and Neck Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China; Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China; Joint Institute of Genetics and Genomic Medicine Between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Qie B, Tuo J, Chen F, Ding H, Lyu L. Gene therapy for genetic diseases: challenges and future directions. MedComm (Beijing) 2025; 6:e70091. [PMID: 39949979 PMCID: PMC11822459 DOI: 10.1002/mco2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Genetic diseases constitute the majority of rare human diseases, resulting from abnormalities in an individual's genetic composition. Traditional treatments offer limited relief for these challenging conditions. In contrast, the rapid advancement of gene therapy presents significant advantages by directly addressing the underlying causes of genetic diseases, thereby providing the potential for precision treatment and the possibility of curing these disorders. This review aims to delineate the mechanisms and outcomes of current gene therapy approaches in clinical applications across various genetic diseases affecting different body systems. Additionally, genetic muscular disorders will be examined as a case study to investigate innovative strategies of novel therapeutic approaches, including gene replacement, gene suppression, gene supplementation, and gene editing, along with their associated advantages and limitations at both clinical and preclinical levels. Finally, this review emphasizes the existing challenges of gene therapy, such as vector packaging limitations, immunotoxicity, therapy specificity, and the subcellular localization and immunogenicity of therapeutic cargos, while discussing potential optimization directions for future research. Achieving delivery specificity, as well as long-term effectiveness and safety, will be crucial for the future development of gene therapies targeting genetic diseases.
Collapse
Affiliation(s)
- Beibei Qie
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Jianghua Tuo
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Feilong Chen
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Haili Ding
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Lei Lyu
- Institute of Sports Medicine and Health, School of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| |
Collapse
|
17
|
Rai NK, Venugopal H, Rajesh R, Ancha P, Venkatesh S. Mitochondrial complex-1 as a therapeutic target for cardiac diseases. Mol Cell Biochem 2025; 480:869-890. [PMID: 39033212 DOI: 10.1007/s11010-024-05074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Mitochondrial dysfunction is critical for the development and progression of cardiovascular diseases (CVDs). Complex-1 (CI) is an essential component of the mitochondrial electron transport chain that participates in oxidative phosphorylation and energy production. CI is the largest multisubunit complex (~ 1 Mda) and comprises 45 protein subunits encoded by seven mt-DNA genes and 38 nuclear genes. These subunits function as the enzyme nicotinamide adenine dinucleotide hydrogen (NADH): ubiquinone oxidoreductase. CI dysregulation has been implicated in various CVDs, including heart failure, ischemic heart disease, pressure overload, hypertrophy, and cardiomyopathy. Several studies demonstrated that impaired CI function contributes to increased oxidative stress, altered calcium homeostasis, and mitochondrial DNA damage in cardiac cells, leading to cardiomyocyte dysfunction and apoptosis. CI dysfunction has been associated with endothelial dysfunction, inflammation, and vascular remodeling, critical processes in developing atherosclerosis and hypertension. Although CI is crucial in physiological and pathological conditions, no potential therapeutics targeting CI are available to treat CVDs. We believe that a lack of understanding of CI's precise mechanisms and contributions to CVDs limits the development of therapeutic strategies. In this review, we comprehensively analyze the role of CI in cardiovascular health and disease to shed light on its potential therapeutic target role in CVDs.
Collapse
Affiliation(s)
- Neeraj Kumar Rai
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Harikrishnan Venugopal
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ritika Rajesh
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
| | - Pranavi Ancha
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA
| | - Sundararajan Venkatesh
- Department of Physiology, Pharmacology and Toxicology, School of Medicine, School of Medicine, West Virginia University, Morgantown, 26505, WV, USA.
| |
Collapse
|
18
|
Musci RV, Fuqua JD, Peelor FF, Nguyen HVM, Richardson A, Choi S, Miller BF, Wanagat J. Age-induced changes in skeletal muscle mitochondrial DNA synthesis, quantity, and quality in genetically unique rats. GeroScience 2025; 47:851-862. [PMID: 39312152 PMCID: PMC11872842 DOI: 10.1007/s11357-024-01344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 01/11/2025] Open
Abstract
Mitochondrial genomic integrity is a key element of physiological processes and health. Changes in the half-life of the mitochondrial genome are implicated in the generation and accumulation of age-induced mitochondrial DNA (mtDNA) mutations, which are implicated in skeletal muscle aging and sarcopenia. There are conflicting data on the half-life of mtDNA, and there is limited information on how aging affects half-life in skeletal muscle. We hypothesized that skeletal muscle mtDNA synthesis rates would decrease with age in both female and male rats concomitant with changes in mtDNA integrity reflected in mtDNA copy number and mutation frequency. We measured mitochondrial genome half-life using stable isotope labeling over a period of 14 days and assessed mtDNA copy number and deletion mutation frequency using digital PCR in the quadriceps muscle of 9-month-old and 26-month-old male and female OKC-HET rats. We found a significant age-related increase in mtDNA half-life, from 132 days at 9 months to 216 days at 26 months of age in OKC-HET quadriceps. Concomitant with the increase in mtDNA half-life, we found an age-related increase in mtDNA deletion mutation frequency in both male and female rats. Notably, 26-month-old female rats had a lower mutation frequency than male rats, and there were no changes in mtDNA copy number with sex, age, or mitochondrial genotype. These data reveal several key findings: (1) mtDNA turnover in rat skeletal muscle decreases with age, (2) mtDNA half-lives in skeletal muscle are approximately an order of magnitude longer than what is reported for other tissues, and (3) muscle mtDNA turnover differs significantly from the turnover of other mitochondrial macromolecules including components of the mitochondrial nucleoid. These findings provide insight into the factors driving age-induced mtDNA mutation accumulation, which contribute to losses of mitochondrial genomic integrity and may play a role in skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Robert V Musci
- Department of Health and Human Sciences, Frank R Seaver College of Science and Engineering, Loyola Marymount University, 1 LMU Dr., Los Angeles, CA, 90045, USA.
| | - Jordan D Fuqua
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Arlan Richardson
- Department of Biochemistry & Physiology, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Solbie Choi
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Jonathan Wanagat
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
19
|
Shah D, McCastlain K, Chang TC, Wu G, Kundu M. MitoEdit: a pipeline for optimizing mtDNA base editing and predicting bystander effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634390. [PMID: 39896555 PMCID: PMC11785211 DOI: 10.1101/2025.01.22.634390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Motivation Human mitochondrial DNA (mtDNA) mutations are causally implicated in maternally inherited mitochondrial respiratory disorders; however, the role of somatic mtDNA mutations in both late-onset chronic diseases and cancer remains less clear. Although recent advances in mtDNA base editing technology have the potential to model and characterize many of these mutations, current editing approaches are complicated by the potential for multiple unintentional edits (bystanders) that are only identifiable through empirical 'trial and error', thereby sacrificing valuable time and effort towards suboptimal construct development. Results We developed MitoEdit, a novel tool that incorporates empirical base editor patterns to facilitate identification of optimal target windows and potential bystander edits. MitoEdit allows users to input DNA sequences in a text-based format, specifying the target base position and its desired modification. The program generates a list of candidate target windows with a predicted number of bystander edits and their functional impact, along with flanking nucleotide sequences designed to bind TALE (transcription activator-like effectors) array proteins. In silico evaluations indicate that MitoEdit can predict the majority of bystander edits, thereby reducing the number of constructs that need to be tested empirically. To the best of our knowledge, MitoEdit is the first tool to automate prediction of base edits. Availability and implementation MitoEdit is freely available at Kundu Lab GitHub ( https://github.com/Kundu-Lab/mitoedit ). Contact Corresponding email: Gang.Wu@stjude.org ; Mondira.Kundu@stjude.org. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
|
20
|
Shahi A, Kidane D. Decoding mitochondrial DNA damage and repair associated with H. pylori infection. Front Cell Infect Microbiol 2025; 14:1529441. [PMID: 39906209 PMCID: PMC11790445 DOI: 10.3389/fcimb.2024.1529441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Mitochondrial genomic stability is critical to prevent various human inflammatory diseases. Bacterial infection significantly increases oxidative stress, driving mitochondrial genomic instability and initiating inflammatory human disease. Oxidative DNA base damage is predominantly repaired by base excision repair (BER) in the nucleus (nBER) as well as in the mitochondria (mtBER). In this review, we summarize the molecular mechanisms of spontaneous and H. pylori infection-associated oxidative mtDNA damage, mtDNA replication stress, and its impact on innate immune signaling. Additionally, we discuss how mutations located on mitochondria targeting sequence (MTS) of BER genes may contribute to mtDNA genome instability and innate immune signaling activation. Overall, the review summarizes evidence to understand the dynamics of mitochondria genome and the impact of mtBER in innate immune response during H. pylori-associated pathological outcomes.
Collapse
Affiliation(s)
| | - Dawit Kidane
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
21
|
Luo L, Wang M, Liu Y, Li J, Bu F, Yuan H, Tang R, Liu C, He G. Sequencing and characterizing human mitochondrial genomes in the biobank-based genomic research paradigm. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2736-7. [PMID: 39843848 DOI: 10.1007/s11427-024-2736-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 01/24/2025]
Abstract
Human mitochondrial DNA (mtDNA) harbors essential mutations linked to aging, neurodegenerative diseases, and complex muscle disorders. Due to its uniparental and haploid inheritance, mtDNA captures matrilineal evolutionary trajectories, playing a crucial role in population and medical genetics. However, critical questions about the genomic diversity patterns, inheritance models, and evolutionary and medical functions of mtDNA remain unresolved or underexplored, particularly in the transition from traditional genotyping to large-scale genomic analyses. This review summarizes recent advancements in data-driven genomic research and technological innovations that address these questions and clarify the biological impact of nuclear-mitochondrial segments (NUMTs) and mtDNA variants on human health, disease, and evolution. We propose a streamlined pipeline to comprehensively identify mtDNA and NUMT genomic diversity using advanced sequencing and computational technologies. Haplotype-resolved mtDNA sequencing and assembly can distinguish authentic mtDNA variants from NUMTs, reduce diagnostic inaccuracies, and provide clearer insights into heteroplasmy patterns and the authenticity of paternal inheritance. This review emphasizes the need for integrative multi-omics approaches and emerging long-read sequencing technologies to gain new insights into mutation mechanisms, the influence of heteroplasmy and paternal inheritance on mtDNA diversity and disease susceptibility, and the detailed functions of NUMTs.
Collapse
Affiliation(s)
- Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| | - Yunhui Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Jianbo Li
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
| | - Chao Liu
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
| |
Collapse
|
22
|
Fujiwara-Tani R, Luo Y, Ogata R, Fujii K, Sasaki T, Sasaki R, Nishiguchi Y, Mori S, Ohmori H, Kuniyasu H. Energy Metabolism and Stemness and the Role of Lauric Acid in Reversing 5-Fluorouracil Resistance in Colorectal Cancer Cells. Int J Mol Sci 2025; 26:664. [PMID: 39859378 PMCID: PMC11766121 DOI: 10.3390/ijms26020664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
While 5-fluorouracil (5FU) plays a central role in chemotherapy for colorectal cancer (CRC), resistance to 5FU remains a major challenge in CRC treatment, and its underlying mechanisms remain unclear. In this study, we investigated the relationship between 5FU resistance acquisition, stemness, and energy metabolism. Among the two CRC cell lines, HT29 cells exhibited glycolytic and quiescent properties, while CT26 cells relied on oxidative phosphorylation (OXPHOS) for energy. In contrast, the 5FU-resistant sublines (HT29R and CT26R), developed through continuous exposure to low concentrations of 5FU, demonstrated enhanced stemness. This was associated with glycolytic dominance, low proliferation, and reduced reactive oxygen species (ROS) production. However, treatment with the medium-chain fatty acid lauric acid shifted the cells to OXPHOS, reducing stemness, increasing ROS levels, and inducing cell death, therefore reversing 5FU resistance. These findings suggest that an enhancement in stemness and the reprogramming of energy metabolism play key roles in acquiring 5FU resistance in CRC. While lauric acid reversed 5FU resistance, further clinical studies are required.
Collapse
Grants
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 22K16497 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1010, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan; (Y.L.); (R.O.); (K.F.); (T.S.); (R.S.); (Y.N.); (S.M.); (H.O.)
| |
Collapse
|
23
|
Chong SW, Shen Y, Palomba S, Vigolo D. Nanofluidic Lab-On-A-Chip Systems for Biosensing in Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407478. [PMID: 39491535 DOI: 10.1002/smll.202407478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Biosensing plays a vital role in healthcare monitoring, disease detection, and treatment planning. In recent years, nanofluidic technology has been increasingly explored to be developed into lab-on-a-chip biosensing systems. Given now the possibility of fabricating geometrically defined nanometric channels that are commensurate with the size of many biomolecules, nanofluidic-based devices are likely to become a key technology for the analysis of various clinical biomarkers, including DNA (deoxyribonucleic acid) and proteins in liquid biopsies. This review summarizes the fundamentals and technological advances of nanofluidics from the purview of single-molecule analysis, detection of low-abundance molecules, and single-cell analysis at the subcellular level. The extreme confinement and dominant surface charge effects in nanochannels provide unique advantages to nanofluidic devices for the manipulation and transport of target biomarkers. When coupled to a microfluidic network to facilitate sample introduction, integrated micro-nanofluidic biosensing devices are proving to be more sensitive and specific in molecular analysis compared to conventional assays in many cases. Based on recent progress in nanofluidics and current clinical trends, the review concludes with a discussion of near-term challenges and future directions for the development of nanofluidic-based biosensing systems toward enabling a new wave of lab-on-a-chip technology for personalized and preventive medicine.
Collapse
Affiliation(s)
- Shin Wei Chong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yi Shen
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefano Palomba
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Daniele Vigolo
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
24
|
Luo J, le Cessie S, Willems van Dijk K, Hägg S, Grassmann F, van Heemst D, Noordam R. Mitochondrial DNA abundance and circulating metabolomic profiling: Multivariable-adjusted and Mendelian randomization analyses in UK Biobank. Mitochondrion 2025; 80:101991. [PMID: 39592086 DOI: 10.1016/j.mito.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Low leukocyte mitochondrial DNA (mtDNA) abundance has been associated with a higher risk of atherosclerotic cardiovascular disease, but through unclear mechanisms. We aimed to investigate whether low mtDNA abundance is associated with worse metabolomic profiling, as being potential intermediate phenotypes, using cross-sectional and genetic studies. METHODS Among 61,186 unrelated European participants from UK Biobank, we performed multivariable-adjusted linear regression analyses to examine the associations between mtDNA abundance and 168 NMR-based circulating metabolomic measures and nine metabolomic principal components (PCs) that collectively covered 91.5% of the total variation of individual metabolomic measures. Subsequently, we conducted Mendelian randomization (MR) to approximate the causal effects of mtDNA abundance on the individual metabolomic measures and their metabolomic PCs. RESULTS After correction for multiple testing, low mtDNA abundance was associated with 130 metabolomic measures, predominantly lower concentrations of some amino acids and higher concentrations of lipids, lipoproteins and fatty acids; moreover, mtDNA abundance was associated with seven out of the nine metabolomic PCs. Using MR, genetically-predicted low mtDNA abundance was associated with lower lactate (standardized beta and 95% confidence interval: -0.17; -0.26, -0.08), and higher acetate (0.15; 0.07,0.23), and unsaturation degree (0.14; 0.08,0.20). Similarly, genetically-predicted low mtDNA abundance was associated with lower metabolomic PC2 (related to lower concentrations of lipids and fatty acids), and higher metabolomic PC9 (related to lower concentrations of glycolysis-related metabolites). CONCLUSION Low mtDNA abundance is associated with metabolomic perturbations, particularly reflecting a pro-atherogenic metabolomic profile, which potentially could link low mtDNA abundance to higher atherosclerosis risk.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia le Cessie
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
25
|
Jawla N, Kar R, Patil VS, Arimbasseri GA. Inherent metabolic preferences differentially regulate the sensitivity of Th1 and Th2 cells to ribosome-inhibiting antibiotics. Immunology 2025; 174:73-91. [PMID: 39263985 DOI: 10.1111/imm.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Mitochondrial translation is essential to maintain mitochondrial function and energy production. Mutations in genes associated with mitochondrial translation cause several developmental disorders, and immune dysfunction is observed in many such patients. Besides genetic mutations, several antibiotics targeting bacterial ribosomes are well-established to inhibit mitochondrial translation. However, the effect of such antibiotics on different immune cells is not fully understood. Here, we addressed the differential effect of mitochondrial translation inhibition on different subsets of helper T cells (Th) of mice and humans. Inhibition of mitochondrial translation reduced the levels of mitochondrially encoded electron transport chain subunits without affecting their nuclear-encoded counterparts. As a result, mitochondrial oxygen consumption reduced dramatically, but mitochondrial mass was unaffected. Most importantly, we show that inhibition of mitochondrial translation induced apoptosis, specifically in Th2 cells. This increase in apoptosis was associated with higher expression of Bim and Puma, two activators of the intrinsic pathway of apoptosis. We propose that this difference in the sensitivity of Th1 and Th2 cells to mitochondrial translation inhibition reflects the intrinsic metabolic demands of these subtypes. Though Th1 and Th2 cells exhibit similar levels of oxidative phosphorylation, Th1 cells exhibit higher levels of aerobic glycolysis than Th2 cells. Moreover, Th1 cells are more sensitive to the inhibition of glycolysis, while higher concentrations of glycolysis inhibitor 2-deoxyglucose are required to induce cell death in the Th2 lineage. These observations reveal that selection of metabolic pathways for substrate utilization during differentiation of Th1 and Th2 lineages is a fundamental process conserved across species.
Collapse
Affiliation(s)
- Neha Jawla
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Raunak Kar
- Immuno Genomics Laboratory, National Institute of Immunology, New Delhi, India
| | - Veena S Patil
- Immuno Genomics Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
26
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
27
|
Zhang F, Lee A, Freitas AV, Herb JT, Wang ZH, Gupta S, Chen Z, Xu H. A transcription network underlies the dual genomic coordination of mitochondrial biogenesis. eLife 2024; 13:RP96536. [PMID: 39727307 DOI: 10.7554/elife.96536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcription factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown. We performed a targeted RNAi screen in developing eyes with reduced mitochondrial DNA content, anticipating a synergistic disruption of tissue development due to impaired mitochondrial biogenesis and mitochondrial DNA (mtDNA) deficiency. Among 638 transcription factors annotated in the Drosophila genome, 77 were identified as potential regulators of mitochondrial biogenesis. Utilizing published ChIP-seq data of positive hits, we constructed a regulatory network revealing the logic of the transcription regulation of mitochondrial biogenesis. Multiple transcription factors in core layers had extensive connections, collectively governing the expression of nearly all mitochondrial genes, whereas factors sitting on the top layer may respond to cellular cues to modulate mitochondrial biogenesis through the underlying network. CG1603, a core component of the network, was found to be indispensable for the expression of most nuclear mitochondrial genes, including those required for mtDNA maintenance and gene expression, thus coordinating nuclear genome and mtDNA activities in mitochondrial biogenesis. Additional genetic analyses validated YL-1, a transcription factor upstream of CG1603 in the network, as a regulator controlling CG1603 expression and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Annie Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Anna V Freitas
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jake T Herb
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zong-Heng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Snigdha Gupta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
28
|
Zhao H, Wang W, Yang Y, Feng C, Lin T, Gong L. Norepinephrine Attenuates Benzalkonium Chloride-Induced Dry Eye Disease by Regulating the PINK1/Parkin Mitophagy Pathway. Ocul Immunol Inflamm 2024:1-15. [PMID: 39731302 DOI: 10.1080/09273948.2024.2447816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye. PURPOSE This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease. METHODS BAC-pretreated human corneal epithelial cells (HCEpiC) were cultured with various concentrations of NE. A BAC-induced dry eye mice model was established to explore the role of NE. Alterations in mice corneal tissues, ROS levels, mitochondrial function, and mitophagy levels were analyzed. RESULTS In vitro, our results revealed that BAC-exposed HCEpiC led to mitochondrial malfunction, which involved excessive ROS production, decreased mitochondrial membrane potential (MMP), and promoted mitochondrial fragmentation through increased DRP1 and fission protein 1 (Fis1) expression and reduced mitofusin 2 (Mfn2) expression. Moreover, topical BAC application induced excessive mitophagy. These effects were reversed by NE. Additionally, the increased expression of LC3B, SQSTM1/p62, PINK1, and Parkin, which control mitophagy, in BAC-exposed HCEpiC was suppressed by NE. In BAC-induced C57BL/6J mice, NE resulted in lower fluorescein staining scores, decreased TUNEL-positive cells, and decreased mitochondrial fragmentation. CONCLUSIONS In conclusion, our findings showed that NE therapy prevented HCEpiC following BAC application by regulating mitochondrial quality control, which is controlled by PINK1/Parkin-dependent mitophagy. Our research suggests a potential targeted treatment for dry eye disease.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Yun Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Changming Feng
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
29
|
Chen J, Li H, Liang R, Huang Y, Tang Q. Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. Biogerontology 2024; 26:33. [PMID: 39729246 DOI: 10.1007/s10522-024-10175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases. In the field of aging research, it is critical to unravel the intricate mechanisms underpinning mtDNA mutations in living organisms and to elucidate the pathological consequences they trigger. Interestingly, certain effects, such as oxidative stress and apoptosis, may not universally accelerate aging as traditionally perceived. These phenomena demand deeper investigation and a more nuanced reinterpretation of current findings to address persistent scientific uncertainties. By synthesizing recent insights, this review seeks to clarify how pathogenic mtDNA mutations drive cellular senescence and systemic health deterioration, while also exploring the complex dynamics of mtDNA inheritance that may propagate these mutations. Such a comprehensive understanding could ultimately inform the development of innovative therapeutic strategies to counteract mitochondrial dysfunctions associated with aging.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
30
|
Xu M, Li T, Liu X, Islam B, Xiang Y, Zou X, Wang J. Mechanism and Clinical Application Prospects of Mitochondrial DNA Single Nucleotide Polymorphism in Neurodegenerative Diseases. Neurochem Res 2024; 50:61. [PMID: 39673588 DOI: 10.1007/s11064-024-04311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Mitochondrial dysfunction is well recognized as a critical component of the complicated pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review investigates the influence of mitochondrial DNA single nucleotide polymorphisms on mitochondrial function, as well as their role in the onset and progression of these neurodegenerative diseases. Furthermore, the contemporary approaches to mitochondrial regulation in these disorders are discussed. Our objective is to uncover early diagnostic targets and formulate precision medicine strategies for neurodegenerative diseases, thereby offering new paths for preventing and treating these conditions.
Collapse
Affiliation(s)
- Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Binish Islam
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yuyue Xiang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xiyan Zou
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
31
|
Arbeithuber B, Anthony K, Higgins B, Oppelt P, Shebl O, Tiemann-Boege I, Chiaromonte F, Ebner T, Makova KD. Mitochondrial DNA mutations in human oocytes undergo frequency-dependent selection but do not increase with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627454. [PMID: 39713397 PMCID: PMC11661235 DOI: 10.1101/2024.12.09.627454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Mitochondria, cellular powerhouses, harbor DNA (mtDNA) inherited from the mothers. MtDNA mutations can cause diseases, yet whether they increase with age in human germline cells-oocytes-remains understudied. Here, using highly accurate duplex sequencing of full-length mtDNA, we detected de novo mutations in single oocytes, blood, and saliva in women between 20 and 42 years of age. We found that, with age, mutations increased in blood and saliva but not in oocytes. In oocytes, mutations with high allele frequencies (≥1%) were less prevalent in coding than non-coding regions, whereas mutations with low allele frequencies (<1%) were more uniformly distributed along mtDNA, suggesting frequency-dependent purifying selection. In somatic tissues, mutations caused elevated amino acid changes in protein-coding regions, suggesting positive or destructive selection. Thus, mtDNA in human oocytes is protected against accumulation of mutations having functional consequences and with aging. These findings are particularly timely as humans tend to reproduce later in life.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Department of Gynaecology, Obstetrics and Gynaecological Endocrinology, Experimental Gynaecology and Obstetrics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Kate Anthony
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Bonnie Higgins
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Peter Oppelt
- Department of Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Kepler University Hospital, Altenberger Strasse 69, 4040 Linz and Krankenhausstrasse 26, 4020, Linz, Austria
| | - Omar Shebl
- Department of Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Kepler University Hospital, Altenberger Strasse 69, 4040 Linz and Krankenhausstrasse 26, 4020, Linz, Austria
| | - Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Francesca Chiaromonte
- Center for Medical Genomics, Penn State University, University Park, PA 16802, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802 USA
- Sant’Anna School of Advanced Studies, Pisa, 56127 Italy
| | - Thomas Ebner
- Department of Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Kepler University Hospital, Altenberger Strasse 69, 4040 Linz and Krankenhausstrasse 26, 4020, Linz, Austria
| | - Kateryna D. Makova
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Center for Medical Genomics, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
32
|
Lai M, Kim K, Zheng Y, Castellani CA, Ratliff SM, Wang M, Liu X, Haessler J, Huan T, Bielak LF, Zhao W, Joehanes R, Ma J, Guo X, Manson JE, Grove ML, Bressler J, Taylor KD, Lappalainen T, Kasela S, Blackwell TW, Lake NJ, Faul JD, Ferrier KR, Hou L, Kooperberg C, Reiner AP, Zhang K, Peyser PA, Fornage M, Boerwinkle E, Raffield LM, Carson AP, Rich SS, Liu Y, Levy D, Rotter JI, Smith JA, Arking DE, Liu C. Epigenome-wide Association Analysis of Mitochondrial Heteroplasmy Provides Insight into Molecular Mechanisms of Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.05.24318557. [PMID: 39677472 PMCID: PMC11643249 DOI: 10.1101/2024.12.05.24318557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The relationship between mitochondrial DNA (mtDNA) heteroplasmy and nuclear DNA (nDNA) methylation (CpGs) remains to be studied. We conducted an epigenome-wide association analysis of heteroplasmy burden scores across 10,986 participants (mean age 77, 63% women, and 54% non-White races/ethnicities) from seven population-based observational cohorts. We identified 412 CpGs (FDR p < 0.05) associated with mtDNA heteroplasmy. Higher levels of heteroplasmy burden were associated with lower nDNA methylation levels at most significant CpGs. Functional inference analyses of genes annotated to heteroplasmy-associated CpGs emphasized mitochondrial functions and showed enrichment in cardiometabolic conditions and traits. We developed CpG-scores based on heteroplasmy-count associated CpGs (MHC-CpG scores) using elastic net Cox regression in a training cohort. A one-unit higher level of the standardized MHC-CpG scores were associated with 1.26-fold higher hazard of all-cause mortality (95% CI: 1.14, 1.39) and 1.09-fold higher hazard of CVD (95% CI: 1.01-1.17) in the meta-analysis of testing cohorts, adjusting for age, sex, and smoking. These findings shed light on the relationship between mtDNA heteroplasmy and DNA methylation, and the role of heteroplasmy-associated CpGs as biomarkers in predicting all-cause mortality and cardiovascular disease.
Collapse
|
33
|
Lan X, Ao WL, Li J. Preimplantation genetic testing as a preventive strategy for the transmission of mitochondrial DNA disorders. Syst Biol Reprod Med 2024; 70:38-51. [PMID: 38323618 DOI: 10.1080/19396368.2024.2306389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial diseases are distinct types of metabolic and/or neurologic abnormalities that occur as a consequence of dysfunction in oxidative phosphorylation, affecting several systems in the body. There is no effective treatment modality for mitochondrial disorders so far, emphasizing the clinical significance of preventing the inheritance of these disorders. Various reproductive options are available to reduce the probability of inheriting mitochondrial disorders, including in vitro fertilization (IVF) using donated oocytes, preimplantation genetic testing (PGT), and prenatal diagnosis (PND), among which PGT not only makes it possible for families to have genetically-owned children but also PGT has the advantage that couples do not have to decide to terminate the pregnancy if a mutation is detected in the fetus. PGT for mitochondrial diseases originating from nuclear DNA includes analyzing the nuclear genome for the presence or absence of corresponding mutations. However, PGT for mitochondrial disorders arising from mutations in mitochondrial DNA (mtDNA) is more intricate, due to the specific characteristics of mtDNA such as multicopy nature, heteroplasmy phenomenon, and exclusive maternal inheritance. Therefore, the present review aims to discuss the utility and challenges of PGT as a preventive approach to inherited mitochondrial diseases caused by mtDNA mutations.
Collapse
Affiliation(s)
- Xinpeng Lan
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wu Liji Ao
- College of Mongolian Medicine and Pharmacy, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Ji Li
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
34
|
Nie Q, Zhang W, Lin S, Huang M, Li Y, Qiu Y, Li J, Chen X, Wang Y, Tong X, Wu J, He P, Cai Q, Chen L, Chen M, Guo W, Lin Y, Yu L, Hou J, Cai W, Chen H, Wang C, Fu F. Identification of sequence polymorphism in the D-loop region of mitochondrial DNA as a risk factor for breast cancer. Cancer Sci 2024; 115:4064-4073. [PMID: 39401980 PMCID: PMC11611757 DOI: 10.1111/cas.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 12/06/2024] Open
Abstract
Mitochondrial DNA (mtDNA) variations affect the efficiency of the electron transport chain and production of reactive oxygen species, contributing to carcinogenesis. The D-loop region of mtDNA has emerged as a variation hotspot region in human neoplasia; however, the potential contribution of these variations in breast cancer risk prediction remains unknown. We investigated the relationship between germline single nucleotide polymorphisms (SNPs) in the entire D-loop region and breast cancer risk in Chinese women. Peripheral blood-isolated mtDNA from 2329 patients with breast cancer and 2328 cancer-free controls was examined for SNPs. In the combined cohort, we used traditional risk factors, susceptibility germline polymorphisms, and logistic regression analysis to evaluate the predictive value of susceptibility variants for breast cancer risk. We calculated the area under the receiver operating characteristic curve (AUC) as a measure. We also measured the content of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Individual polymorphisms SNP573 were significantly associated with breast cancer risk in both the discovery and validation cohorts. In the combined cohort, the AUC of the traditional risk factors was 64.3%; after adding susceptibility variants, the AUC was 64.9% (DeLong test, p = 0.007). 8-OHdG levels were significantly higher in patients with breast cancer than in controls and higher in individuals with SNP573 than in those negative for this variation. Overall, oxidative stress might be associated with the risk of breast cancer, and SNP573 might be associated with oxidative stress. Our results indicate the risk potential of polymorphisms in the D-loop region in breast cancer in Southern China.
Collapse
|
35
|
Tung PW, Thaker VV, Gallagher D, Kupsco A. Mitochondrial Health Markers and Obesity-Related Health in Human Population Studies: A Narrative Review of Recent Literature. Curr Obes Rep 2024; 13:724-738. [PMID: 39287712 DOI: 10.1007/s13679-024-00588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE OF REVIEW This narrative review summarizes current literature on the relationship of mitochondrial biomarkers with obesity-related characteristics, including body mass index and body composition. RECENT FINDINGS Mitochondria, as cellular powerhouses, play a pivotal role in energy production and the regulation of metabolic process. Altered mitochondrial functions contribute to obesity, yet evidence of the intricate relationship between mitochondrial dynamics and obesity-related outcomes in human population studies is scarce and warrants further attention. We discuss emerging evidence linking obesity and related health outcomes to impaired oxidative phosphorylation pathways, oxidative stress and mtDNA variants, copy number and methylation, all hallmark of suboptimal mitochondrial function. We also explore the influence of dietary interventions and metabolic and bariatric surgery procedures on restoring mitochondrial attributes of individuals with obesity. Finally, we report on the potential knowledge gaps in the mitochondrial dynamics for human health for future study.
Collapse
Affiliation(s)
- Pei Wen Tung
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Vidhu V Thaker
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Dympna Gallagher
- Department of Medicine, Columbia University Irving Medical Center , New York, NY, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
36
|
Zuo M, Ye M, Lin H, Liao S, Xing X, Liu J, Wu D, Huang Z, Ren X. Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. Chem Res Toxicol 2024; 37:1794-1806. [PMID: 39485318 DOI: 10.1021/acs.chemrestox.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.
Collapse
Affiliation(s)
- Mingyang Zuo
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Mingqi Ye
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Haofeng Lin
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Zhenlie Huang
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
37
|
Lu M, Wu Y, Xia M, Zhang Y. The role of metabolic reprogramming in liver cancer and its clinical perspectives. Front Oncol 2024; 14:1454161. [PMID: 39610917 PMCID: PMC11602425 DOI: 10.3389/fonc.2024.1454161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Primary liver cancer (PLC), which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), remains a leading cause of cancer-related death worldwide. Chronic liver diseases, such as hepatitis B and C infections and metabolic dysfunction-associated steatotic liver disease (MASLD), are key risk factors for PLC. Metabolic reprogramming, a defining feature of cancer, enables liver cancer cells to adapt to the demands of rapid proliferation and the challenging tumor microenvironment (TME). This manuscript examines the pivotal role of metabolic reprogramming in PLC, with an emphasis on the alterations in glucose, lipid, and amino acid metabolism that drive tumor progression. The Warburg effect, marked by increased glycolysis, facilitates rapid energy production and biosynthesis of cellular components in HCC. Changes in lipid metabolism, including elevated de novo fatty acid synthesis and lipid oxidation, support membrane formation and energy storage essential for cancer cell survival. Amino acid metabolism, particularly glutamine utilization, supplies critical carbon and nitrogen for nucleotide synthesis and maintains redox homeostasis. These metabolic adaptations not only enhance tumor growth and invasion but also reshape the TME, promoting immune escape. Targeting these metabolic pathways presents promising therapeutic opportunities for PLC. This review underscores the interaction between metabolic reprogramming and tumor immunity, suggesting potential metabolic targets for innovative therapeutic strategies. A comprehensive understanding of PLC's intricate metabolic landscape may lead to more effective treatments and better patient outcomes. Integrating metabolomics, genomics, and proteomics in future research will be vital for identifying precise therapeutic targets and advancing personalized therapies for liver cancer.
Collapse
Affiliation(s)
- Mengxiao Lu
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | | | | | | |
Collapse
|
38
|
Li R, Yang J, Wang N, Zang Y, Liu J, Wu E, Wu R, Sun H. Inference of forensic body fluids/tissues based on mitochondrial DNA copy number: a preliminary study. Int J Legal Med 2024; 138:2315-2324. [PMID: 39164574 DOI: 10.1007/s00414-024-03317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
The inference of body fluids and tissues is critical in reconstructing crime scenes and inferring criminal behaviors. Nevertheless, present methods are incompatible with conventional DNA genotyping, and additional testing might result in excessive consumption of forensic scene materials. This study aims to investigate the feasibility of distinguishing common body fluids/tissues through the difference in mitochondrial DNA copy number (mtDNAcn). Four types of body fluids/tissues were analyzed in this study - hair, saliva, semen, and skeletal muscle. MtDNAcn was estimated by dividing the read counts of mitochondrial DNA to that of nuclear DNA (RRmt/nu). Results indicated that there were significant differences in RRmt/nu between different body fluids/tissues. Specifically, hair samples exhibited the highest RRmt/nu (log10RRmt/nu: 4.3 ± 0.28), while semen samples showed the lowest RRmt/nu (log10RRmt/nu: -0.1 ± 0.28). RRmt/nu values for DNA samples without extraction were notably higher (approximately 2.9 times) than those obtained after extraction. However, no significant difference in RRmt/nu was observed between various age and gender groups. Hierarchical clustering and Kmeans clustering analyses showed that body fluids/tissues of the same type clustered closely to each other and could be inferred with high accuracy. In conclusion, this study demonstrated that the simultaneous detection of nuclear and mitochondrial DNA made it possible to perform conventional DNA analyses and body fluid/tissue inference at the same time, thus killing two birds with one stone. Furthermore, mtDNAcn has the potential to serve as a novel and promising biomarker for the identification of body fluids/tissues.
Collapse
Affiliation(s)
- Ran Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- School of Medicine, Jiaying University, Meizhou, 514015, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Nana Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yu Zang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jiajun Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Enlin Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
39
|
Zhou Y, Jin Y, Wu T, Wang Y, Dong Y, Chen P, Hu C, Pan N, Ye C, Shen L, Lin M, Fang T, Wu R. New insights on mitochondrial heteroplasmy observed in ovarian diseases. J Adv Res 2024; 65:211-226. [PMID: 38061426 PMCID: PMC11519015 DOI: 10.1016/j.jare.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024] Open
Abstract
BACKGROUND The reportedly high mutation rate of mitochondrial DNA (mtDNA) may be attributed to the absence of histone protection and complete repair mechanisms. Mitochondrial heteroplasmy refers to the coexistence of wild-type and mutant mtDNA. Most healthy individuals carry a low point mutation load (<1 %) in their mtDNA, typically without any discernible phenotypic effects. However, as it exceeds a certain threshold, it may cause the onset of various diseases. Since the ovary is a highly energy-intensive organ, it relies heavily on mitochondrial function. Mitochondrial heteroplasmy can potentially contribute to a variety of significant ovarian disorders. AIM OF REVIEW In this review, we have elucidated the close relationship between mtDNA heteroplasmy and ovarian diseases, and summarized novel avenues and strategies for the potential treatment of these ovarian diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Mitochondrial heteroplasmy can potentially contribute to a variety of significant ovarian disorders, including polycystic ovary syndrome, premature ovarian insufficiency, and endometriosis. Current strategies related to mitochondrial heteroplasmy are untargeted and have low bioavailability. Nanoparticle delivery systems loaded with mitochondrial modulators, mitochondrial replacement/transplantation therapy, and mitochondria-targeted gene editing therapy may offer promising paths towards potentially more effective treatments for these diseases, despite ongoing challenges.
Collapse
Affiliation(s)
- Yong Zhou
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China; Women's Reproductive Health Key Laboratory of Zhejiang Province, People's Republic of China
| | - Yang Jin
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Tianyu Wu
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Yinfeng Wang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Yuanhang Dong
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Pei Chen
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Changchang Hu
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Ningping Pan
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Chaoshuang Ye
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Li Shen
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Mengyan Lin
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Tao Fang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Ruijin Wu
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, Zhejiang 310006, People's Republic of China; Women's Reproductive Health Key Laboratory of Zhejiang Province, People's Republic of China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, People's Republic of China.
| |
Collapse
|
40
|
Akamatsu S, Mitsuhashi S, Soga K, Mizukami H, Shiraishi M, Frith MC, Yamano Y. Targeted nanopore sequencing using the Flongle device to identify mitochondrial DNA variants. Sci Rep 2024; 14:25161. [PMID: 39448697 PMCID: PMC11502840 DOI: 10.1038/s41598-024-75749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Variants in mitochondrial genomes (mtDNA) can cause various neurological and mitochondrial diseases such as mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes (MELAS). Given the 16 kb length of mtDNA, continuous sequencing is feasible using long-read sequencing (LRS). Herein, we aimed to show a simple and accessible method for comprehensive mtDNA sequencing with potential diagnostic applications for mitochondrial diseases using the compact and affordable LRS flow cell "Flongle." Whole mtDNA amplification (WMA) was performed using genomic DNA samples derived from four patients with mitochondrial diseases, followed by LRS using Flongle. We compared these results to those obtained using Cas9 enrichment. Additionally, the accuracy of heteroplasmy rates was assessed by incorporating mtDNA variants at equimolar levels. Finally, mtDNA from 19 patients with Parkinson's disease (PD) was sequenced using Flongle to identify disease risk-associated variants. mtDNA variants were detected in all four patients with mitochondrial diseases, with results comparable to those obtained from Cas9 enrichment. Heteroplasmy levels were accurately detected (r2 > 0.99) via WMA using Flongle. A reported variant was identified in three patients with PD. In conclusion, Flongle can simplify the traditionally cumbersome and expensive mtDNA sequencing process, offering a streamlined and accessible approach to diagnosing mitochondrial diseases.
Collapse
Affiliation(s)
- Shintaro Akamatsu
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Satomi Mitsuhashi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan.
| | - Kaima Soga
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Heisuke Mizukami
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Makoto Shiraishi
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, AIST, Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST, Tokyo, Japan
| | - Yoshihisa Yamano
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan.
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
41
|
Weigele J, Zhang L, Franco A, Cartier E, Dorn GW. Sensory-Motor Neuropathy in Mfn2 T105M Knock-in Mice and Its Reversal by a Novel Piperine-Derived Mitofusin Activator. J Pharmacol Exp Ther 2024; 391:361-374. [PMID: 39284622 PMCID: PMC11493442 DOI: 10.1124/jpet.124.002258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/09/2024] [Indexed: 10/20/2024] Open
Abstract
Mitochondrial dysfunction is a hallmark of many genetic neurodegenerative diseases, but therapeutic options to reverse mitochondrial dysfunction are limited. While recent studies support the possibility of improving mitochondrial fusion/fission dynamics and motility to correct mitochondrial dysfunction and resulting neurodegeneration in Charcot-Marie-Tooth disease (CMT) and other neuropathies, the clinical utility of reported compounds and relevance of preclinical models are uncertain. Here, we describe motor and sensory neuron dysfunction characteristic of clinical CMT type 2 A in a CRISPR/Casp-engineered Mfn2 Thr105Met (T105M) mutant knock-in mouse. We further demonstrate that daily oral treatment with a novel mitofusin activator derived from the natural product piperine can reverse these neurologic phenotypes. Piperine derivative 8015 promoted mitochondrial fusion and motility in Mfn2-deficient cells in a mitofusin-dependent manner and reversed mitochondrial dysfunction in cultured fibroblasts and reprogrammed motor neurons from a human CMT2A patient carrying the MFN2 T105M mutation. Like previous mitofusin activators, 8015 exhibited stereospecific functionality, but the more active stereoisomer, 8015-P2, is unique in that it has subnanomolar potency and undergoes entero-hepatic recirculation which extends its in vivo half-life. Daily administration of 8015-P2 to Mfn2 T105M knock-in mice for 6 weeks normalized neuromuscular and sensory dysfunction and corrected histological/ultrastructural neurodegeneration and neurogenic myoatrophy. These studies describe a more clinically relevant mouse model of CMT2A and an improved mitofusin activator derived from piperine. We posit that 8015-P2 and other piperine derivatives may benefit CMT2A or other neurodegenerative conditions wherein mitochondrial dysdynamism plays a contributory role. SIGNIFICANCE STATEMENT: Mitochondrial dysfunction is widespread and broadly contributory in neurodegeneration, but difficult to target therapeutically. Here, we describe 8015-P2, a new small molecule mitofusin activator with ∼10-fold greater potency and improved in vivo pharmacokinetics versus comparators, and demonstrate its rapid reversal of sensory and motor neuron dysfunction in an Mfn2 T105M knock-in mouse model of Charcot-Marie-Tooth disease type 2 A. These findings further support the therapeutic approach of targeting mitochondrial dysdynamism in neurodegeneration.
Collapse
Affiliation(s)
- Jochen Weigele
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Lihong Zhang
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Antonietta Franco
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Etienne Cartier
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| | - Gerald W Dorn
- Department of Internal Medicine (Pharmacogenomics), Washington University School of Medicine (J.W., L.Z., A.F., E.C., G.W.D.) and Mitochondria in Motion, Inc. (J.W., L.Z.), St. Louis Missouri
| |
Collapse
|
42
|
Fu Y, Land M, Cui R, Kavlashvili T, Kim M, Lieber T, Ryu KW, DeBitetto E, Masilionis I, Saha R, Takizawa M, Baker D, Tigano M, Reznik E, Sharma R, Chaligne R, Thompson CB, Pe'er D, Sfeir A. Engineering mtDNA Deletions by Reconstituting End-Joining in Human Mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618543. [PMID: 39463974 PMCID: PMC11507875 DOI: 10.1101/2024.10.15.618543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Recent breakthroughs in the genetic manipulation of mitochondrial DNA (mtDNA) have enabled the precise introduction of base substitutions and the effective removal of genomes carrying harmful mutations. However, the reconstitution of mtDNA deletions responsible for severe mitochondrial myopathies and age-related diseases has not yet been achieved in human cells. Here, we developed a method to engineer specific mtDNA deletions in human cells by co-expressing end-joining (EJ) machinery and targeted endonucleases. As a proof-of-concept, we used mito-EJ and mito-ScaI to generate a panel of clonal cell lines harboring a ∼3.5 kb mtDNA deletion with the full spectrum of heteroplasmy. Investigating these isogenic cells revealed a critical threshold of ∼75% deleted genomes, beyond which cells exhibited depletion of OXPHOS proteins, severe metabolic disruption, and impaired growth in galactose-containing media. Single-cell multiomic analysis revealed two distinct patterns of nuclear gene deregulation in response to mtDNA deletion accumulation; one triggered at the deletion threshold and another progressively responding to increasing heteroplasmy. In summary, the co-expression of mito-EJ and programable nucleases provides a powerful tool to model disease-associated mtDNA deletions in different cell types. Establishing a panel of cell lines with a large-scale deletion at varying levels of heteroplasmy is a valuable resource for understanding the impact of mtDNA deletions on diseases and guiding the development of potential therapeutic strategies. Highlights Combining prokaryotic end-joining with targeted endonucleases generates specific mtDNA deletions in human cellsEngineering a panel of cell lines with a large-scale deletion that spans the full spectrum of heteroplasmy75% heteroplasmy is the threshold that triggers mitochondrial and cellular dysfunctionTwo distinct nuclear transcriptional programs in response to mtDNA deletions: threshold-triggered and heteroplasmy-sensing.
Collapse
|
43
|
Yoshinaga N, Numata K. Poly(A) Tail Length of Messenger RNA Regulates Translational Efficiency of the Mitochondria-Targeting Delivery System. ACS Biomater Sci Eng 2024; 10:6344-6351. [PMID: 39231264 DOI: 10.1021/acsbiomaterials.4c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Mitochondria are essential for cellular functions, such as energy production. Human mitochondrial DNA (mtDNA), encoding 13 distinct genes, two rRNA, and 22 tRNA, is crucial for maintaining vital functions, along with nuclear-encoded mitochondrial proteins. However, mtDNA is prone to somatic mutations due to replication errors and reactive oxygen species exposure. These mutations can accumulate, leading to heteroplasmic conditions associated with severe metabolic diseases. Therefore, developing methodologies to improve mitochondrial health is highly demanded. Introducing nucleic acids directly into mitochondria is a promising strategy to control mitochondrial gene expression. Messenger RNA (mRNA) delivery especially offers several advantages such as faster gene expression and reduced risk of genome integration if accidentally delivered to the cell nucleus. In this study, we investigated the effect of the poly(A) tail length of mRNA on the mitochondrial translation to achieve efficient expression. We used a peptide-based mitochondrial targeting system, mitoNEET-(RH)9, comprising a mitochondria-targeting sequence (MTS) and a cationic sequence, to deliver mRNA with various poly(A) tails into the mitochondria. The poly(A) tail length significantly affected translational efficiency, with a medium length of 60 nucleotides maximizing protein expression in various cell lines due to enhanced interaction with mitochondrial RNA-binding proteins. Our findings highlight the importance of optimizing poly(A) tail length for efficient mitochondrial mRNA translation, providing a potential strategy for improving mitochondrial gene therapy. These results pave the way for further exploration of the mechanisms and clinical applications of mitochondrial mRNA delivery systems.
Collapse
Affiliation(s)
- Naoto Yoshinaga
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka-shi, Yamagata 997-0017, Japan
| | - Keiji Numata
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka-shi, Yamagata 997-0017, Japan
- Department of Material Chemistry, Kyoto University, Kyoto-shi, Kyoto 606-8501, Japan
| |
Collapse
|
44
|
Zhang H, Zhu Y, Xue D. Moderate embryonic delay of paternal mitochondrial elimination impairs mating and cognition and alters behaviors of adult animals. SCIENCE ADVANCES 2024; 10:eadp8351. [PMID: 39365857 PMCID: PMC11451536 DOI: 10.1126/sciadv.adp8351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Rapid elimination of paternal mitochondria following fertilization is a conserved event in most animals, but its physiological significance remains unclear. We find that modest delay of paternal mitochondrial elimination (PME) in Caenorhabditis elegans embryos unexpectedly impairs mating and cognition of adult animals and alters their locomotion behaviors. Delayed PME causes decreased adenosine triphosphate (ATP) levels in early embryos, which lead to impaired physiological functions of adult animals through an energy-sensing pathway mediated by an adenosine monophosphate (AMP)-activated protein kinase, AAK-2, and a forkhead box class O (FOXO) transcription factor, DAF-16. Treatment of PME-delayed animals with MK-4, a subtype of vitamin K2 that can improve mitochondrial ATP production, restores ATP levels in early embryos, and rescues physiological defects of adult animals. Our results suggest that moderate PME delay during embryo development adversely affects crucial physiological functions in adults, which could be evolutionarily disadvantageous. These observations provide mechanistic explanations for the need to swiftly remove paternal mitochondria early during embryo development.
Collapse
Affiliation(s)
| | | | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
45
|
Castillo SR, Simone BW, Clark KJ, Devaux P, Ekker SC. Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs. Hum Gene Ther 2024; 35:798-813. [PMID: 39212664 PMCID: PMC11511777 DOI: 10.1089/hum.2024.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs work in pairs, with each arm composed of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants. Nonetheless, given the intrinsic properties of TALE proteins, several target sites in human mtDNA are predicted to remain out of reach to DdCBEs and other TALE-based technologies. Specifically, due to the conventional requirement for a thymine immediately upstream of the TALE target sequences (i.e., the 5'-T constraint), over 150 loci in the human mitochondrial genome are presumed to be inaccessible to DdCBEs. Previous attempts at circumventing this requirement, either by developing monomeric DdCBEs or utilizing DNA-binding domains alternative to TALEs, have resulted in suboptimal specificity profiles with reduced therapeutic potential. Here, aiming to challenge and elucidate the relevance of the 5'-T constraint in the context of DdCBE-mediated mtDNA editing, and to expand the range of motifs that are editable by this technology, we generated DdCBEs containing TALE proteins engineered to recognize all 5' bases. These modified DdCBEs are herein referred to as αDdCBEs. Notably, 5'-T-noncompliant canonical DdCBEs efficiently edited mtDNA at diverse loci. However, they were frequently outperformed by αDdCBEs, which exhibited significant improvements in activity and specificity, regardless of the most 5' bases of their TALE binding sites. Furthermore, we showed that αDdCBEs are compatible with the enhanced DddAtox variants DddA6 and DddA11, and we validated TALE shifting with αDdCBEs as an effective approach to optimize base editing outcomes. Overall, αDdCBEs enable efficient, specific, and unconstrained mitochondrial base editing.
Collapse
Affiliation(s)
- Santiago R. Castillo
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Brandon W. Simone
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricia Devaux
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pediatrics and Department of Molecular Biosciences, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
46
|
Yildirim RM, Seli E. Mitochondria as therapeutic targets in assisted reproduction. Hum Reprod 2024; 39:2147-2159. [PMID: 39066614 DOI: 10.1093/humrep/deae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria are essential organelles with specialized functions, which play crucial roles in energy production, calcium homeostasis, and programmed cell death. In oocytes, mitochondrial populations are inherited maternally and are vital for developmental competence. Dysfunction in mitochondrial quality control mechanisms can lead to reproductive failure. Due to their central role in oocyte and embryo development, mitochondria have been investigated as potential diagnostic and therapeutic targets in assisted reproduction. Pharmacological agents that target mitochondrial function and show promise in improving assisted reproduction outcomes include antioxidant coenzyme Q10 and mitoquinone, mammalian target of rapamycin signaling pathway inhibitor rapamycin, and nicotinamide mononucleotide. Mitochondrial replacement therapies (MRTs) offer solutions for infertility and mitochondrial disorders. Autologous germline mitochondrial energy transfer initially showed promise but failed to demonstrate significant benefits in clinical trials. Maternal spindle transfer (MST) and pronuclear transfer hold potential for preventing mitochondrial disease transmission and improving oocyte quality. Clinical trials of MST have shown promising outcomes, but larger studies are needed to confirm safety and efficacy. However, ethical and legislative challenges complicate the widespread implementation of MRTs.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
47
|
Gupta V, Jolly B, Bhoyar RC, Divakar MK, Jain A, Mishra A, Senthivel V, Imran M, Scaria V, Sivasubbu S. Spectrum of rare and common mitochondrial DNA variations from 1029 whole genomes of self-declared healthy individuals from India. Comput Biol Chem 2024; 112:108118. [PMID: 38878606 DOI: 10.1016/j.compbiolchem.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024]
Abstract
Mitochondrial disorders are a class of heterogeneous disorders caused by genetic variations in the mitochondrial genome (mtDNA) as well as the nuclear genome. The spectrum of mtDNA variants remains unexplored in the Indian population. In the present study, we have cataloged 2689 high confidence single nucleotide variants, small insertions and deletions in mtDNA in 1029 healthy Indian individuals. We found a major proportion (76.5 %) of the variants being rare (AF<=0.005) in the studied population. Intriguingly, we found two 'confirmed' pathogenic variants (m.1555 A>G and m.14484 T>C) with a frequency of ∼1 in 250 individuals in our dataset. The high carrier frequency underscores the need for screening of the mtDNA pathogenic mutations in newborns in India. Interestingly, our analysis also revealed 202 variants in our dataset which have been 'reported' in disease cases as per the MITOMAP database. Additionally, we found the frequency of haplogroup M (52.2 %) to be the highest among all the 18 top-level haplogroups found in our dataset. In comparison to the global population datasets, 20 unique mtDNA variants are found in the Indian population. We hope the whole genome sequencing based compendium of mtDNA variants along with their allele frequencies and heteroplasmy levels in the Indian population will drive additional genome scale studies for mtDNA. Furthermore, the identification of clinically relevant variants in our dataset will aid in better clinical interpretation of the variants in mitochondrial disorders.
Collapse
Affiliation(s)
- Vishu Gupta
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhinav Jain
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anushree Mishra
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Vigneshwar Senthivel
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohamed Imran
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
48
|
Jun CS, Lee W. Development of Lasing Silica Microsphere for High-Speed DNA Molecular Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:6088. [PMID: 39338832 PMCID: PMC11435820 DOI: 10.3390/s24186088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Laser and molecular detection techniques that have been used to overcome the limitations of fluorescent DNA labeling have presented new challenges. To address some of these challenges, we developed a DNA laser that uses a solid-state silica microsphere as a ring resonator and a site for DNA-binding reactions, as well as a platform to detect and sequence target DNA molecules. We detected target DNA using laser emission from a DNA-labeling dye and a developed solid-state silica microsphere ring resonator. The microsphere was sensitive; a single base mismatch in the DNA resulted in the absence of an optical signal. As each individual microsphere can be utilized as a parallel DNA analysis chamber, this optical digital detection scheme allows for high-throughput and rapid analysis. More importantly, the solid-state DNA laser is free from deformation, which guarantees stable lasing characteristics, and can be manipulated freely outside the solution. Thus, this promising advanced DNA laser scheme can be implemented on platforms other than optofluidic chips.
Collapse
Affiliation(s)
- Chan Seok Jun
- Department of Material Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wonsuk Lee
- Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
49
|
Gitschlag BL, Pereira CV, Held JP, McCandlish DM, Patel MR. Multiple distinct evolutionary mechanisms govern the dynamics of selfish mitochondrial genomes in Caenorhabditis elegans. Nat Commun 2024; 15:8237. [PMID: 39300074 DOI: 10.1038/s41467-024-52596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Cells possess multiple mitochondrial DNA (mtDNA) copies, which undergo semi-autonomous replication and stochastic inheritance. This enables mutant mtDNA variants to arise and selfishly compete with cooperative (wildtype) mtDNA. Selfish mitochondrial genomes are subject to selection at different levels: they compete against wildtype mtDNA directly within hosts and indirectly through organism-level selection. However, determining the relative contributions of selection at different levels has proven challenging. We overcome this challenge by combining mathematical modeling with experiments designed to isolate the levels of selection. Applying this approach to many selfish mitochondrial genotypes in Caenorhabditis elegans reveals an unexpected diversity of evolutionary mechanisms. Some mutant genomes persist at high frequency for many generations, despite a host fitness cost, by aggressively outcompeting cooperative genomes within hosts. Conversely, some mutant genomes persist by evading inter-organismal selection. Strikingly, the mutant genomes vary dramatically in their susceptibility to genetic drift. Although different mechanisms can cause high frequency of selfish mtDNA, we show how they give rise to characteristically different distributions of mutant frequency among individuals. Given that heteroplasmic frequency represents a key determinant of phenotypic severity, this work outlines an evolutionary theoretic framework for predicting the distribution of phenotypic consequences among individuals carrying a selfish mitochondrial genome.
Collapse
Affiliation(s)
- Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Claudia V Pereira
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James P Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David M McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Evolutionary Studies, Vanderbilt University, VU Box #34-1634, Nashville, TN, USA.
| |
Collapse
|
50
|
Zhang F, Lee A, Freitas A, Herb J, Wang Z, Gupta S, Chen Z, Xu H. A transcription network underlies the dual genomic coordination of mitochondrial biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577217. [PMID: 38410491 PMCID: PMC10896348 DOI: 10.1101/2024.01.25.577217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcriptional factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown. We performed a targeted RNAi screen in developing eyes with reduced mitochondrial DNA content, anticipating a synergistic disruption of tissue development due to impaired mitochondrial biogenesis and mtDNA deficiency. Among 638 transcription factors annotated in Drosophila genome, 77 were identified as potential regulators of mitochondrial biogenesis. Utilizing published ChIP-seq data of positive hits, we constructed a regulatory network revealing the logic of the transcription regulation of mitochondrial biogenesis. Multiple transcription factors in core layers had extensive connections, collectively governing the expression of nearly all mitochondrial genes, whereas factors sitting on the top layer may respond to cellular cues to modulate mitochondrial biogenesis through the underlying network. CG1603, a core component of the network, was found to be indispensable for the expression of most nuclear mitochondrial genes, including those required for mtDNA maintenance and gene expression, thus coordinating nuclear genome and mtDNA activities in mitochondrial biogenies. Additional genetics analyses validated YL-1, a transcription factor upstream of CG1603 in the network, as a regulator controlling CG1603 expression and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Annie Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Freitas
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jake Herb
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zongheng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Snigdha Gupta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|