1
|
Engelgeh T, Wamp S, Rothe P, Herrmann J, Fischer MA, Müller R, Halbedel S. ClpP2 proteasomes and SpxA1 determine Listeria monocytogenes tartrolon B hyper-resistance. PLoS Genet 2025; 21:e1011621. [PMID: 40184427 PMCID: PMC11970672 DOI: 10.1371/journal.pgen.1011621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/13/2025] [Indexed: 04/06/2025] Open
Abstract
The foodborne bacterium Listeria monocytogenes is transmitted to humans from various environmental sources through consumption of contaminated plant and animal-based food. L. monocytogenes uses ATP-binding cassette (ABC)-type drug transporters to resist antimicrobial compounds produced by competitors co-residing in its environmental reservoirs. We have shown previously that the TimAB transporter confers resistance of L. monocytogenes to tartrolon B, a boron containing macrodiolide produced by myxo- and proteobacterial species. Tartrolon B acts as a potassium ionophore and is sensed by TimR, the transcriptional repressor of timABR operon. We here have isolated tartrolon B resistant suppressor mutations outside the timABR locus. These mutations inactivated the clpP2 gene, which encodes the main proteolytic component of house-keeping Clp proteases. Deletion of clpP2 impaired growth and virulence but caused tartrolon B hyper-resistance. This phenotype was timAB-dependent, but neither production nor degradation of TimAB was affected upon clpP2 inactivation. Combinatorial deletions of the genes encoding the three Clp ATPases showed that ClpCP2 and ClpXP2 proteasomes jointly promote tartrolon B hyper-resistance. Genetic follow-up experiments identified the ClpP2 substrate and transcription factor SpxA1 and its protease adaptor YjbH as further tartrolon B resistance determinants. SpxA1 activates transcription of the cydABCD operon encoding cytochrome oxidase and in accordance with this transposon mutants with impaired cytochrome oxidase function were depleted from a transposon mutant library during tartrolon B exposure. Our work demonstrates novel roles of Clp proteasomes, SpxA1 and cytochrome oxidase CydAB in the resistance against compounds dissipating transmembrane ion gradients and helps to better understand the genetic and chemical basis of the manifold ecological interactions of an important human pathogen in its natural ecologic niches.
Collapse
Affiliation(s)
- Tim Engelgeh
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Patricia Rothe
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Martin A. Fischer
- FG13 Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Hainzl T, Scortti M, Lindgren C, Grundström C, Krypotou E, Vázquez-Boland JA, Sauer-Eriksson AE. Structural basis of promiscuous inhibition of Listeria virulence activator PrfA by oligopeptides. Cell Rep 2025; 44:115290. [PMID: 39970044 DOI: 10.1016/j.celrep.2025.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/20/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
The facultative pathogen Listeria monocytogenes uses a master regulator, PrfA, to tightly control the fitness-costly expression of its virulence factors. We found that PrfA activity is repressed via competitive occupancy of the binding site for the PrfA-activating cofactor, glutathione, by exogenous nutritional oligopeptides. The inhibitory peptides show different sequence and physicochemical properties, but how such a wide variety of oligopeptides can bind PrfA was unclear. Using crystal structure analysis of PrfA complexed with inhibitory tri- and tetrapeptides, we show here that the binding promiscuity is due to the ability of PrfA β5 in the glutathione-binding inter-domain tunnel to establish parallel or antiparallel β sheet-like interactions with the peptide backbone. Spacious tunnel pockets provide additional flexibility for unspecific peptide accommodation while providing selectivity for hydrophobic residues. Hydrophobic contributions from two adjacent peptide residues appear to be critical for efficient PrfA inhibitory binding. In contrast to glutathione, peptide binding prevents the conformational change required for the correct positioning of the DNA-binding helix-turn-helix motifs of PrfA, effectively inhibiting virulence gene expression.
Collapse
Affiliation(s)
- Tobias Hainzl
- Department of Chemistry and Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Mariela Scortti
- Microbial Pathogenomics Group, Edinburgh Medical School (Biomedical Sciences), Edinburgh BioQuarter, IRR Bldg. South, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Cecilia Lindgren
- Department of Chemistry and Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Christin Grundström
- Department of Chemistry and Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Emilia Krypotou
- Microbial Pathogenomics Group, Edinburgh Medical School (Biomedical Sciences), Edinburgh BioQuarter, IRR Bldg. South, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - José A Vázquez-Boland
- Microbial Pathogenomics Group, Edinburgh Medical School (Biomedical Sciences), Edinburgh BioQuarter, IRR Bldg. South, University of Edinburgh, Edinburgh EH16 4UU, UK.
| | | |
Collapse
|
3
|
Nowacki JS, Jones GS, D'Orazio SEF. Listeria monocytogenes use multiple mechanisms to disseminate from the intestinal lamina propria to the mesenteric lymph nodes. Microbiol Spectr 2025; 13:e0259524. [PMID: 39714174 PMCID: PMC11792513 DOI: 10.1128/spectrum.02595-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Listeria monocytogenes are facultative intracellular bacterial pathogens that cause foodborne disease in humans. The bacteria can use the surface protein InlA to invade intestinal epithelial cells or transcytose across M cells in the gut, but it is not well understood how the bacteria traffic from the underlying lamina propria to the draining mesenteric lymph nodes (MLN). Previous studies indicated that L. monocytogenes associated with both monocytes and dendritic cells in the intestinal lamina propria. We show here that CCR2-/- mice had a significant reduction in Ly6Chi monocytes in the MLN but no change in bacterial burden following foodborne infection; thus, dissemination of L. monocytogenes associated with monocytes is not required for colonization of the MLN. To block CCR7-mediated trafficking of dendritic cells from the lamina propria, we treated mice with anti-VEGFR3 antibody (clone AFL4) prior to and during infection but did not see a change in dendritic numbers in the MLN as had been previously reported with other anti-VEGFR3-specific antibodies. However, increasing the number of circulating dendritic cells by treating mice with rFlt3L resulted in a significant increase in L. monocytogenes in the lymph nodes that drain the small intestine and the spleen. Whole-mount fluorescent microscopy of lymphatic vessels following ligated loop infection revealed both free-floating L. monocytogenes and cell-associated bacteria within lymphatic vessels. Together, these results suggest that L. monocytogenes can use multiple, redundant mechanisms to disseminate from the gut tissue to the MLN. IMPORTANCE Consumption of the foodborne bacterial pathogen Listeria monocytogenes results in a wide spectrum of human disease from mild self-limiting gastroenteritis to life-threatening infections of the bloodstream, brain, and placenta. It is not well understood how the bacteria migrate from the intestines to the draining mesenteric lymph nodes, which are thought to serve as the last barrier to prevent systemic infections. Results presented here reveal multiple redundant mechanisms L. monocytogenes can use to disseminate from the ileum or colon to the mesenteric lymph nodes.
Collapse
Affiliation(s)
- Joshua S. Nowacki
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Grant S. Jones
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Sarah E. F. D'Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Arvaniti M, Gaballa A, Orsi RH, Skandamis P, Wiedmann M. Deciphering the Molecular Mechanism of Peracetic Acid Response in Listeria monocytogenes. J Food Prot 2025; 88:100401. [PMID: 39515609 DOI: 10.1016/j.jfp.2024.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Peracetic acid (PAA), a strong oxidizing agent, has been widely used as a disinfectant in food processing settings as it does not produce harmful chlorinated by-products. In the present study, the transcriptional response of Listeria monocytogenes to a sub-lethal concentration of PAA (2.5 ppm) was assessed using RNA-sequencing (RNA-seq). Our analysis revealed 12 differentially expressed protein-coding genes, of which nine were upregulated (ohrR, ohrA, rpsN, lmo0637, lmo1973, fur, lmo2492, zurM, and lmo1007), and three were down-regulated (argG, lmo0604 and lmo2156) in PAA-treated samples compared to the control samples. A non-coding small RNA gene (rli32) was also found to be down-regulated. In detail, the organic peroxide toxicity protection (OhrA-OhrR) system, the metal homeostasis genes fur and zurM, the SbrE-regulated lmo0636-lmo0637 operon and a carbohydrate phosphotransferase system (PTS) operon component were induced under exposure of L. monocytogenes to PAA. Hence, this study identified key elements involved in the primary response of L. monocytogenes to oxidative stress caused by PAA, including the expression of the peroxide detoxification system and fine-tuning the levels of redox-active metals in the cell. The investigation of the molecular mechanism of PAA response in L. monocytogenes is of utmost importance for the food industry, as residual PAA can lead to stress tolerance in pathogens.
Collapse
Affiliation(s)
- Marianna Arvaniti
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece.
| | - Ahmed Gaballa
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Renato H Orsi
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Hall I, O'Steen M, Gold S, C Keane S, Weidmann CA. Template switching enables chemical probing of native RNA structures. RNA (NEW YORK, N.Y.) 2024; 31:113-125. [PMID: 39438135 DOI: 10.1261/rna.079926.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
RNAs are often studied in nonnative sequence contexts to facilitate structural studies. However, seemingly innocuous changes to an RNA sequence may perturb the native structure and generate inaccurate or ambiguous structural models. To facilitate the investigation of native RNA secondary structure by selective 2' hydroxyl acylation analyzed by primer extension (SHAPE), we engineered an approach that couples minimal enzymatic steps to RNA chemical probing and mutational profiling (MaP) reverse transcription (RT) methods-a process we call template switching and mutational profiling (Switch-MaP). In Switch-MaP, RT templates and additional library sequences are added postprobing through ligation and template switching, capturing reactivities for every nucleotide. For a candidate SAM-I riboswitch, we compared RNA structure models generated by the Switch-MaP approach to those of traditional primer-based MaP, including RNAs with or without appended structure cassettes. Primer-based MaP masked reactivity data in the 5' and 3' ends of the RNA, producing ambiguous ensembles inconsistent with the conserved SAM-I riboswitch secondary structure. Structure cassettes enabled unambiguous modeling of an aptamer-only construct but introduced nonnative interactions in the full-length riboswitch. In contrast, Switch-MaP provided reactivity data for all nucleotides in each RNA and enabled unambiguous modeling of secondary structure, consistent with the conserved SAM-I fold. Switch-MaP is a straightforward alternative approach to primer-based and cassette-based chemical probing methods that precludes primer masking and the formation of alternative secondary structures due to nonnative sequence elements.
Collapse
Affiliation(s)
- Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Martin O'Steen
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sophie Gold
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sarah C Keane
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
6
|
Hafner L, Gadin E, Huang L, Frouin A, Laporte F, Gaultier C, Vieira A, Maudet C, Varet H, Moura A, Bracq-Dieye H, Tessaud-Rita N, Maury M, Dazas M, Legendre R, Gastineau P, Tsai YH, Coppée JY, Charlier C, Patin E, Chikhi R, Rocha EPC, Leclercq A, Disson O, Aschard H, Lecuit M. Differential stress responsiveness determines intraspecies virulence heterogeneity and host adaptation in Listeria monocytogenes. Nat Microbiol 2024; 9:3345-3361. [PMID: 39578578 DOI: 10.1038/s41564-024-01859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Microbial pathogenesis is mediated by the expression of virulence genes. However, as microbes with identical virulence gene content can differ in their pathogenic potential, other virulence determinants must be involved. Here, by combining comparative genomics and transcriptomics of a large collection of isolates of the model pathogen Listeria monocytogenes, time-lapse microscopy, in vitro evolution and in vivo experiments, we show that the individual stress responsiveness of L. monocytogenes isolates determines their respective levels of virulence in vivo and reflects their degree of host adaptation. The transcriptional signature that accounts for the heterogeneity in the virulence of L. monocytogenes species is mediated by the stress response regulator SigB and driven by differential stress responsiveness. The tuning of SigB pathway responsiveness is polygenic and influenced by multiple, individually rare gene variations. This study reveals an overarching determinant of microbial virulence, challenging the paradigm of accessory virulence gene content as the major determinant of intraspecies virulence heterogeneity.
Collapse
Affiliation(s)
- Lukas Hafner
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Enzo Gadin
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Lei Huang
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Arthur Frouin
- Statistical Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS USR375, Paris, France
| | - Fabien Laporte
- Statistical Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS USR375, Paris, France
| | - Charlotte Gaultier
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Afonso Vieira
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Claire Maudet
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Hugo Varet
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alexandra Moura
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
| | - Hélène Bracq-Dieye
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
| | - Nathalie Tessaud-Rita
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
| | - Mylène Maury
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
| | - Melody Dazas
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Rachel Legendre
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Pauline Gastineau
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Yu-Huan Tsai
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Jean-Yves Coppée
- Transcriptome et Epigenome Platform, Biomics, Center for Technological Resources and Research, Institut Pasteur, Université Paris Cité, Paris, France
| | - Caroline Charlier
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Rayan Chikhi
- Sequence Bioinformatics Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3525, Paris, France
| | - Alexandre Leclercq
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France
| | - Olivier Disson
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
| | - Hugues Aschard
- Statistical Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS USR375, Paris, France
| | - Marc Lecuit
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France.
- National Reference Center and WHO Collaborating Center Listeria, Institut Pasteur, Paris, France.
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Paris, France.
| |
Collapse
|
7
|
Dramé I, Rossez Y, Krzewinski F, Charbonnel N, Ollivier-Nakusi L, Briandet R, Dague E, Forestier C, Balestrino D. FabR, a regulator of membrane lipid homeostasis, is involved in Klebsiella pneumoniae biofilm robustness. mBio 2024; 15:e0131724. [PMID: 39240091 PMCID: PMC11481535 DOI: 10.1128/mbio.01317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Biofilm is a dynamic structure from which individual bacteria and micro-aggregates are released to subsequently colonize new niches by either detachment or dispersal. Screening of a transposon mutant library identified genes associated with the alteration of Klebsiella pneumoniae biofilm including fabR, which encodes a transcriptional regulator involved in membrane lipid homeostasis. An isogenic ∆fabR mutant formed more biofilm than the wild-type (WT) strain and its trans-complemented strain. The thick and round aggregates observed with ∆fabR were resistant to extensive washes, unlike those of the WT strain. Confocal microscopy and BioFlux microfluidic observations showed that fabR deletion was associated with biofilm robustness and impaired erosion over time. The genes fabB and yqfA associated with fatty acid metabolism were significantly overexpressed in the ∆fabR strain, in both planktonic and biofilm conditions. Two monounsaturated fatty acids, palmitoleic acid (C16:1) and oleic acid (C18:1), were found in higher proportion in biofilm cells than in planktonic forms, whereas heptadecenoic acid (C17:1) and octadecanoic acid, 11-methoxy (C18:0-OCH3) were found in higher proportion in the planktonic lifestyle. The fabR mutation induced variations in the fatty acid composition, with no clear differences in the amounts of saturated fatty acids (SFA) and unsaturated fatty acids for the planktonic lifestyle but lower SFA in the biofilm form. Atomic force microscopy showed that deletion of fabR is associated with decreased K. pneumoniae cell rigidity in the biofilm lifestyle, as well as a softer, more elastic biofilm with increased cell cohesion compared to the wild-type strain.IMPORTANCEKlebsiella pneumoniae is an opportunistic pathogen responsible for a wide range of nosocomial infections. The success of this pathogen is due to its high resistance to antibiotics and its ability to form biofilms. The molecular mechanisms involved in biofilm formation have been largely described but the dispersal process that releases individual and aggregate cells from mature biofilm is less well documented while it is associated with the colonization of new environments and thus new threats. Using a multidisciplinary approach, we show that modifications of bacterial membrane fatty acid composition lead to variations in the biofilm robustness, and subsequent bacterial detachment and biofilm erosion over time. These results enhance our understanding of the genetic requirements for biofilm formation in K. pneumoniae that affect the time course of biofilm development and the embrittlement step preceding its dispersal that will make it possible to control K. pneumoniae infections.
Collapse
Affiliation(s)
- Ibrahima Dramé
- Université Clermont Auvergne, CNRS, LMGE, Clermont–Ferrand, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Frederic Krzewinski
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Etienne Dague
- LAAS-CNRS, CNRS, Univeristé de Toulouse, Toulouse, France
| | | | | |
Collapse
|
8
|
Hall I, Zablock K, Sobetski R, Weidmann CA, Keane SC. Functional Validation of SAM Riboswitch Element A from Listeria monocytogenes. Biochemistry 2024; 63:2621-2631. [PMID: 39323220 DOI: 10.1021/acs.biochem.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
SreA is one of seven candidate S-adenosyl methionine (SAM) class I riboswitches identified in Listeria monocytogenes, a saprophyte and opportunistic foodborne pathogen. SreA precedes genes encoding a methionine ATP-binding cassette (ABC) transporter, which imports methionine and is presumed to regulate transcription of its downstream genes in a SAM-dependent manner. The proposed role of SreA in controlling the transcription of genes encoding an ABC transporter complex may have important implications for how the bacteria senses and responds to the availability of the metabolite SAM in the diverse environments in which L. monocytogenes persists. Here we validate SreA as a functional SAM-I riboswitch through ligand binding studies, structure characterization, and transcription termination assays. We determined that SreA has both a structure and SAM binding properties similar to those of other well-characterized SAM-I riboswitches. Despite the apparent structural similarities to previously described SAM-I riboswitches, SreA induces transcription termination in response to comparatively lower (nanomolar) ligand concentrations. Furthermore, SreA is a leaky riboswitch that permits some transcription of the downstream gene even in the presence of millimolar SAM, suggesting that L. monocytogenes may "dampen" the expression of genes for methionine import but likely does not turn them "OFF".
Collapse
Affiliation(s)
- Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaitlyn Zablock
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Raeleen Sobetski
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Sarah C Keane
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Eren AM, Banfield JF. Modern microbiology: Embracing complexity through integration across scales. Cell 2024; 187:5151-5170. [PMID: 39303684 PMCID: PMC11450119 DOI: 10.1016/j.cell.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Microbes were the only form of life on Earth for most of its history, and they still account for the vast majority of life's diversity. They convert rocks to soil, produce much of the oxygen we breathe, remediate our sewage, and sustain agriculture. Microbes are vital to planetary health as they maintain biogeochemical cycles that produce and consume major greenhouse gases and support large food webs. Modern microbiologists analyze nucleic acids, proteins, and metabolites; leverage sophisticated genetic tools, software, and bioinformatic algorithms; and process and integrate complex and heterogeneous datasets so that microbial systems may be harnessed to address contemporary challenges in health, the environment, and basic science. Here, we consider an inevitably incomplete list of emergent themes in our discipline and highlight those that we recognize as the archetypes of its modern era that aim to address the most pressing problems of the 21st century.
Collapse
Affiliation(s)
- A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany; Marine Biological Laboratory, Woods Hole, MA, USA; Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Environmental Science Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
Cheah HL, Citartan M, Lee LP, Ahmed SA, Salleh MZ, Teh LK, Tang TH. Exploring the transcription start sites and other genomic features facilitates the accurate identification and annotation of small RNAs across multiple stress conditions in Mycobacterium tuberculosis. Funct Integr Genomics 2024; 24:160. [PMID: 39264475 DOI: 10.1007/s10142-024-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Mycobacterium tuberculosis (MTB) is a pathogen that is known for its ability to persist in harsh environments and cause chronic infections. Understanding the regulatory networks of MTB is crucial for developing effective treatments. Small regulatory RNAs (sRNAs) play important roles in gene expression regulation in all kingdoms of life, and their classification based solely on genomic location can be imprecise due to the computational-based prediction of protein-coding genes in bacteria, which often neglects segments of mRNA such as 5'UTRs, 3'UTRs, and intercistronic regions of operons. To address this issue, our study simultaneously discovered genomic features such as TSSs, UTRs, and operons together with sRNAs in the M. tuberculosis H37Rv strain (ATCC 27294) across multiple stress conditions. Our analysis identified 1,376 sRNA candidates and 8,173 TSSs in MTB, providing valuable insights into its complex regulatory landscape. TSS mapping enabled us to classify these sRNAs into more specific categories, including promoter-associated sRNAs, 5'UTR-derived sRNAs, 3'UTR-derived sRNAs, true intergenic sRNAs, and antisense sRNAs. Three of these sRNA candidates were experimentally validated using 3'-RACE-PCR: predictedRNA_0240, predictedRNA_0325, and predictedRNA_0578. Future characterization and validation are necessary to fully elucidate the functions and roles of these sRNAs in MTB. Our study is the first to simultaneously unravel TSSs and sRNAs in MTB and demonstrate that the identification of other genomic features, such as TSSs, UTRs, and operons, allows for more accurate and specific classification of sRNAs.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Monash University Malaysia Genomics Platform, School of Science, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Li-Pin Lee
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Siti Aminah Ahmed
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
11
|
Quilleré A, Darsonval M, Papadochristopoulos A, Amoros A, Nicolas P, Dubois-Brissonnet F. Deciphering the impact of exogenous fatty acids on Listeria monocytogenes at low temperature by transcriptome analysis. Front Microbiol 2024; 15:1441784. [PMID: 39328916 PMCID: PMC11426360 DOI: 10.3389/fmicb.2024.1441784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/28/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous and psychrotrophic foodborne pathogen commonly found in raw materials, ready-to-eat products, and food environments. We previously demonstrated that L. monocytogenes can grow faster at low temperature when unsaturated fatty acids (UFA) are present in its environment. This could question the maintenance of food safety for refrigerated foods, especially those reformulated with a higher ratio of UFA versus saturated fatty acids (SFA) to fit with nutritional recommendations. In this study, we used transcriptomics to understand the impact of UFA on the behavior of L. monocytogenes at low temperature. We first demonstrated that fabK, a key gene in SFA synthesis, is up-regulated in the presence of UFA but not SFA at low temperature. L. monocytogenes can thus regulate the synthesis of SFA in its membrane according to the type of FA available in its environment. Interestingly, we also observed up-regulation of genes involved in chemotaxis and flagellar assembly (especially cheY and flaA) in the presence of UFA but not SFA at low temperature. TEM observations confirmed that L. monocytogenes acquired a remarkable phenotype with numerous and long-looped flagella only in the presence of UFA at 5°C but not at 37°C. As flagella are well known to be involved in biofilm formation, this new finding raises questions about the structure and persistence of biofilms settled in refrigerated environments using unsaturated lipid-rich products.
Collapse
Affiliation(s)
- Aurore Quilleré
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Maud Darsonval
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | | | - Alban Amoros
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | | |
Collapse
|
12
|
Morón Á, Ortiz-Miravalles L, Peñalver M, García-del Portillo F, Pucciarelli MG, Ortega AD. Rli51 Attenuates Transcription of the Listeria Pathogenicity Island 1 Gene mpl and Functions as a Trans-Acting sRNA in Intracellular Bacteria. Int J Mol Sci 2024; 25:9380. [PMID: 39273334 PMCID: PMC11394854 DOI: 10.3390/ijms25179380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Listeria pathogenicity island 1 (LIPI-1) is a genetic region containing a cluster of genes essential for virulence of the bacterial pathogen Listeria monocytogenes. Main virulence factors in LIPI-1 include long 5' untranslated regions (5'UTRs), among which is Rli51, a small RNA (sRNA) in the 5'UTR of the Zn-metalloprotease-coding mpl. So far, Rli51 function and molecular mechanisms have remained obscure. Here, we show that Rli51 exhibits a dual mechanism of regulation, functioning as a cis- and as a trans-acting sRNA. Under nutrient-rich conditions, rli51-mpl transcription is prematurely terminated, releasing a short 121-nucleotide-long sRNA. Rli51 is predicted to function as a transcription attenuator that can fold into either a terminator or a thermodynamically more stable antiterminator. We show that the sRNA Rli21/RliI binds to a single-stranded RNA loop in Rli51, which is essential to mediate premature transcription termination, suggesting that sRNA binding could stabilize the terminator fold. During intracellular infection, rli51 transcription is increased, which generates a higher abundance of the short Rli51 sRNA and allows for transcriptional read-through into mpl. Comparative intracellular bacterial transcriptomics in rli51-null mutants and the wild-type reference strain EGD-e suggests that Rli51 upregulates iron-scavenging proteins and downregulates virulence factors from LIPI-1. MS2 affinity purification confirmed that Rli51 binds transcripts of the heme-binding protein Lmo2186 and Lmo0937 in vivo. These results prove that Rli51 functions as a trans-acting sRNA in intracellular bacteria. Our research shows a growth condition-dependent mechanism of regulation for Rli51, preventing unintended mpl transcription in extracellular bacteria and regulating genes important for virulence in intracellular bacteria.
Collapse
Affiliation(s)
- Álvaro Morón
- Department of Cell Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
| | - Laura Ortiz-Miravalles
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Marcos Peñalver
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Francisco García-del Portillo
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
| | - M. Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, 28049 Madrid, Spain; (L.O.-M.); (M.P.); (F.G.-d.P.)
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| | - Alvaro Darío Ortega
- Department of Cell Biology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biologia Molecular Severo Ochoa (CBM) CSIC-UAM, 28049 Madrid, Spain
| |
Collapse
|
13
|
Feltham L, Moran J, Goldrick M, Lord E, Spiller DG, Cavet JS, Muldoon M, Roberts IS, Paszek P. Bacterial aggregation facilitates internalin-mediated invasion of Listeria monocytogenes. Front Cell Infect Microbiol 2024; 14:1411124. [PMID: 39045131 PMCID: PMC11263170 DOI: 10.3389/fcimb.2024.1411124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Dissemination of food-borne L. monocytogenes in the host relies on internalin-mediated invasion, but the underlying invasion strategies remain elusive. Here we use live-cell microscopy to follow single cell interactions between individual human cells and L. monocytogenes and elucidate mechanisms associated with internalin B (InlB)-mediated invasion. We demonstrate that whilst a replicative invasion of nonphagocytic cells is a rare event even at high multiplicities of invasion, L. monocytogenes overcomes this by utilising a strategy relaying on PrfA-mediated ActA-based aggregation. We show that L. monocytogenes forms aggregates in extracellular host cell environment, which promote approximately 5-fold more host cell adhesions than the non-aggregating actA-ΔC mutant (which lacks the C-terminus coding region), with the adhering bacteria inducing 3-fold more intracellular invasions. Aggregation is associated with robust MET tyrosine kinase receptor clustering in the host cells, a hallmark of InlB-mediated invasion, something not observed with the actA-ΔC mutant. Finally, we show via RNA-seq analyses that aggregation involves a global adaptive response to host cell environment (including iron depletion), resulting in metabolic changes in L. monocytogenes and upregulation of the PrfA virulence regulon. Overall, our analyses provide new mechanistic insights into internalin-mediated host-pathogen interactions of L. monocytogenes.
Collapse
Affiliation(s)
- Liam Feltham
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Josephine Moran
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marie Goldrick
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elizabeth Lord
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer S. Cavet
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark Muldoon
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Ian. S. Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Feodorova VA, Zaitsev SS, Khizhnyakova MA, Lavrukhin MS, Saltykov YV, Zaberezhny AD, Larionova OS. Complete genome of the Listeria monocytogenes strain AUF, used as a live listeriosis veterinary vaccine. Sci Data 2024; 11:643. [PMID: 38886393 PMCID: PMC11183264 DOI: 10.1038/s41597-024-03440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Listeria monocytogenes (Lm) is a highly pathogenic bacterium that can cause listeriosis, a relatively rare food-borne infectious disease that affects farm, domestic, wild animals and humans as well. The infected livestock is the frequent sources of Lm. Vaccination is one of the methods of controlling listeriosis in target farm animals to prevent Lm-associated food contamination. Here we report the complete sequence of the Lm strain AUF attenuated from a fully-virulent Lm strain by ultraviolet irradiation, successfully used since the 1960s as a live whole-cell veterinary vaccine. The de novo assembled genome consists of a circular chromosome of 2,942,932 bp length, including more than 2,800 CDSs, 17 pseudogenes, 5 antibiotic resistance genes, and 56/92 virulence genes. Two wild Lm strains, the EGD and the 10403S that is also used in cancer Immunotherapy, were the closest homologs for the Lm strain AUF. Although all three strains belonged to different sequence types (ST), namely ST12, ST85, and ST1538, they were placed in the same genetic lineage II, CC7.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
| | - Sergey S Zaitsev
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Mariya A Khizhnyakova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Maxim S Lavrukhin
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Yury V Saltykov
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Alexey D Zaberezhny
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow, Russia
| | - Olga S Larionova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| |
Collapse
|
15
|
Chatterjee A, Kaval KG, Garsin DA. Role of ethanolamine utilization and bacterial microcompartment formation in Listeria monocytogenes intracellular infection. Infect Immun 2024; 92:e0016224. [PMID: 38752742 PMCID: PMC11237587 DOI: 10.1128/iai.00162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/28/2024] Open
Abstract
Ethanolamine (EA) affects the colonization and pathogenicity of certain human bacterial pathogens in the gastrointestinal tract. However, EA can also affect the intracellular survival and replication of host cell invasive bacteria such as Listeria monocytogenes (LMO) and Salmonella enterica serovar Typhimurium (S. Typhimurium). The EA utilization (eut) genes can be categorized as regulatory, enzymatic, or structural, and previous work in LMO showed that loss of genes encoding functions for the enzymatic breakdown of EA inhibited LMO intracellular replication. In this work, we sought to further characterize the role of EA utilization during LMO infection of host cells. Unlike what was previously observed for S. Typhimurium, in LMO, an EA regulator mutant (ΔeutV) was equally deficient in intracellular replication compared to an EA metabolism mutant (ΔeutB), and this was consistent across Caco-2, RAW 264.7, and THP-1 cell lines. The structural genes encode proteins that self-assemble into bacterial microcompartments (BMCs) that encase the enzymes necessary for EA metabolism. For the first time, native EUT BMCs were fluorescently tagged, and EUT BMC formation was observed in vitro and in vivo. Interestingly, BMC formation was observed in bacteria infecting Caco-2 cells, but not the macrophage cell lines. Finally, the cellular immune response of Caco-2 cells to infection with eut mutants was examined, and it was discovered that ΔeutB and ΔeutV mutants similarly elevated the expression of inflammatory cytokines. In conclusion, EA sensing and utilization during LMO intracellular infection are important for optimal LMO replication and immune evasion but are not always concomitant with BMC formation.IMPORTANCEListeria monocytogenes (LMO) is a bacterial pathogen that can cause severe disease in immunocompromised individuals when consumed in contaminated food. It can replicate inside of mammalian cells, escaping detection by the immune system. Therefore, understanding the features of this human pathogen that contribute to its infectiousness and intracellular lifestyle is important. In this work we demonstrate that genes encoding both regulators and enzymes of EA metabolism are important for optimal growth inside mammalian cells. Moreover, the formation of specialized compartments to enable EA metabolism were visualized by tagging with a fluorescent protein and found to form when LMO infects some mammalian cell types, but not others. Interestingly, the formation of the compartments was associated with features consistent with an early stage of the intracellular infection. By characterizing bacterial metabolic pathways that contribute to survival in host environments, we hope to positively impact knowledge and facilitate new treatment strategies.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Karan Gautam Kaval
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
16
|
Chatterjee A, Kaval KG, Garsin DA. Role of Ethanolamine Utilization and Bacterial Microcompartment Formation in Listeria monocytogenes Intracellular Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.19.572424. [PMID: 38187703 PMCID: PMC10769209 DOI: 10.1101/2023.12.19.572424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ethanolamine (EA) affects the colonization and pathogenicity of certain human bacterial pathogens in the gastrointestinal tract. However, EA can also affect the intracellular survival and replication of host-cell invasive bacteria such as Listeria monocytogenes (LMO) and Salmonella enterica serovar Typhimurium ( S. Typhimurium). The EA utilization ( eut) genes can be categorized as regulatory, enzymatic, or structural, and previous work in LMO showed that loss of genes encoding functions for the enzymatic breakdown of EA inhibited LMO intracellular replication. In this work, we sought to further characterize the role of EA utilization during LMO infection of host cells. Unlike what was previously observed for S. Typhimurium, in LMO, an EA regulator mutant ( ΔeutV) was equally deficient in intracellular replication compared to an EA metabolism mutant ( ΔeutB ), and this was consistent across Caco-2, RAW 264.7 and THP-1 cell lines. The structural genes encode proteins that self-assemble into bacterial microcompartments (BMCs) that encase the enzymes necessary for EA metabolism. For the first time, native EUT BMCs were fluorescently tagged, and EUT BMC formation was observed in vitro, and in vivo. Interestingly, BMC formation was observed in bacteria infecting Caco-2 cells, but not the macrophage cell lines. Finally, the cellular immune response of Caco-2 cells to infection with eut mutants was examined, and it was discovered that ΔeutB and ΔeutV mutants similarly elevated the expression of inflammatory cytokines. In conclusion, EA sensing and utilization during LMO intracellular infection are important for optimal LMO replication and immune evasion but are not always concomitant with BMC formation.
Collapse
|
17
|
Iturbe P, Martín AS, Hamamoto H, Marcet-Houben M, Galbaldón T, Solano C, Lasa I. Noncontiguous operon atlas for the Staphylococcus aureus genome. MICROLIFE 2024; 5:uqae007. [PMID: 38651166 PMCID: PMC11034616 DOI: 10.1093/femsml/uqae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Bacteria synchronize the expression of genes with related functions by organizing genes into operons so that they are cotranscribed together in a single polycistronic messenger RNA. However, some cellular processes may benefit if the simultaneous production of the operon proteins coincides with the inhibition of the expression of an antagonist gene. To coordinate such situations, bacteria have evolved noncontiguous operons (NcOs), a subtype of operons that contain one or more genes that are transcribed in the opposite direction to the other operon genes. This structure results in overlapping transcripts whose expression is mutually repressed. The presence of NcOs cannot be predicted computationally and their identification requires a detailed knowledge of the bacterial transcriptome. In this study, we used direct RNA sequencing methodology to determine the NcOs map in the Staphylococcus aureus genome. We detected the presence of 18 NcOs in the genome of S. aureus and four in the genome of the lysogenic prophage 80α. The identified NcOs comprise genes involved in energy metabolism, metal acquisition and transport, toxin-antitoxin systems, and control of the phage life cycle. Using the menaquinone operon as a proof of concept, we show that disarrangement of the NcO architecture results in a reduction of bacterial fitness due to an increase in menaquinone levels and a decrease in the rate of oxygen consumption. Our study demonstrates the significance of NcO structures in bacterial physiology and emphasizes the importance of combining operon maps with transcriptomic data to uncover previously unnoticed functional relationships between neighbouring genes.
Collapse
Affiliation(s)
- Pablo Iturbe
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Hospital Universitario de Navarra (HUN), IdiSNA, Irunlarrea 3, Pamplona, 31008 Navarra, Spain
| | - Alvaro San Martín
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Hospital Universitario de Navarra (HUN), IdiSNA, Irunlarrea 3, Pamplona, 31008 Navarra, Spain
| | - Hiroshi Hamamoto
- Faculty of Medicine, Department of Infectious diseases, Yamagata University, 2-2-2 Lida-Nishi, 990-9585 Yamagata, Japan
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Galbaldón
- Barcelona Supercomputing Centre (BSC-CNS). Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Hospital Universitario de Navarra (HUN), IdiSNA, Irunlarrea 3, Pamplona, 31008 Navarra, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed-Universidad Pública de Navarra (UPNA)-Hospital Universitario de Navarra (HUN), IdiSNA, Irunlarrea 3, Pamplona, 31008 Navarra, Spain
| |
Collapse
|
18
|
Ma X, Tempelaars MH, Zwietering MH, Boeren S, O’Byrne CP, den Besten HMW, Abee T. A single point mutation in the Listeria monocytogenes ribosomal gene rpsU enables SigB activation independently of the stressosome and the anti-sigma factor antagonist RsbV. Front Microbiol 2024; 15:1304325. [PMID: 38550865 PMCID: PMC10977602 DOI: 10.3389/fmicb.2024.1304325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/21/2024] [Indexed: 04/23/2025] Open
Abstract
Microbial population heterogeneity leads to different stress responses and growth behavior of individual cells in a population. Previously, a point mutation in the rpsU gene (rpsUG50C) encoding ribosomal protein S21 was identified in a Listeria monocytogenes LO28 variant, which leads to increased multi-stress resistance and a reduced maximum specific growth rate. However, the underlying mechanisms of these phenotypic changes remain unknown. In L. monocytogenes, the alternative sigma factor SigB regulates the general stress response, with its activation controlled by a series of Rsb proteins, including RsbR1 and anti-sigma factor RsbW and its antagonist RsbV. We combined a phenotype and proteomics approach to investigate the acid and heat stress resistance, growth rate, and SigB activation of L. monocytogenes EGDe wild type and the ΔsigB, ΔrsbV, and ΔrsbR1 mutant strains. While the introduction of rpsUG50C in the ΔsigB mutant did not induce a SigB-mediated increase in robustness, the presence of rpsUG50C in the ΔrsbV and the ΔrsbR1 mutants led to SigB activation and concomitant increased robustness, indicating an alternative signaling pathway for the SigB activation in rpsUG50C mutants. Interestingly, all these rpsUG50C mutants exhibited reduced maximum specific growth rates, independent of SigB activation, possibly attributed to compromised ribosomal functioning. In summary, the increased stress resistance in the L. monocytogenes EGDe rpsUG50C mutant results from SigB activation through an unknown mechanism distinct from the classical stressosome and RsbV/RsbW partner switching model. Moreover, the reduced maximum specific growth rate of the EGDe rpsUG50C mutant is likely unrelated to SigB activation and potentially linked to impaired ribosomal function.
Collapse
Affiliation(s)
- Xuchuan Ma
- Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Conor P. O’Byrne
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
19
|
Ładziak M, Prochwicz E, Gut K, Gomza P, Jaworska K, Ścibek K, Młyńska-Witek M, Kadej-Zajączkowska K, Lillebaek EMS, Kallipolitis BH, Krawczyk-Balska A. Inactivation of lmo0946 ( sif) induces the SOS response and MGEs mobilization and silences the general stress response and virulence program in Listeria monocytogenes. Front Microbiol 2024; 14:1324062. [PMID: 38239729 PMCID: PMC10794523 DOI: 10.3389/fmicb.2023.1324062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Bacteria have evolved numerous regulatory pathways to survive in changing environments. The SOS response is an inducible DNA damage repair system that plays an indispensable role in bacterial adaptation and pathogenesis. Here we report a discovery of the previously uncharacterized protein Lmo0946 as an SOS response interfering factor (Sif) in the human pathogen Listeria monocytogenes. Functional genetic studies demonstrated that sif is indispensable for normal growth of L. monocytogenes in stress-free as well as multi-stress conditions, and sif contributes to susceptibility to β-lactam antibiotics, biofilm formation and virulence. Absence of Sif promoted the SOS response and elevated expression of mobilome genes accompanied by mobilization of the A118 prophage and ICELm-1 mobile genetic elements (MGEs). These changes were found to be associated with decreased expression of general stress response genes from the σB regulon as well as virulence genes, including the PrfA regulon. Together, this study uncovers an unexpected role of a previously uncharacterized factor, Sif, as an inhibitor of the SOS response in L. monocytogenes.
Collapse
Affiliation(s)
- Magdalena Ładziak
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Emilia Prochwicz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karina Gut
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Patrycja Gomza
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Jaworska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Ścibek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Młyńska-Witek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Kadej-Zajączkowska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Eva M. S. Lillebaek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Agata Krawczyk-Balska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Bombelli A, Araya-Cloutier C, Boeren S, Vincken JP, Abee T, den Besten HMW. Effects of the antimicrobial glabridin on membrane integrity and stress response activation in Listeria monocytogenes. Food Res Int 2024; 175:113687. [PMID: 38128979 DOI: 10.1016/j.foodres.2023.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Glabridin is a prenylated isoflavan which can be extracted from liquorice roots and has shown antimicrobial activity against foodborne pathogens and spoilage microorganisms. However, its application may be hindered due to limited information about its mode of action. In this study, we aimed to investigate the mode of action of glabridin using a combined phenotypic and proteomic approach on Listeria monocytogenes. Fluorescence and transmission electron microscopy of cells exposed to glabridin showed membrane permeabilization upon treatment with lethal concentrations of glabridin. Comparative proteomics analysis of control cells and cells exposed to sub-lethal concentrations of glabridin showed upregulation of proteins related to the two-component systems LiaSR and VirRS, confirming cell envelope damage during glabridin treatment. Additional upregulation of SigmaB regulon members signified activation of the general stress response in L. monocytogenes during this treatment. In line with the observed upregulation of cell envelope and general stress response proteins, sub-lethal treatment of glabridin induced (cross)protection against lethal heat and low pH stress and against antimicrobials such as nisin and glabridin itself. Overall, this study sheds light on the mode of action of glabridin and activation of the main stress responses to this antimicrobial isoflavan and highlights possible implications of its use as a naturally derived antimicrobial compound.
Collapse
Affiliation(s)
- Alberto Bombelli
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands; Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
21
|
Meireles D, Pombinho R, Cabanes D. Signals behind Listeria monocytogenes virulence mechanisms. Gut Microbes 2024; 16:2369564. [PMID: 38979800 PMCID: PMC11236296 DOI: 10.1080/19490976.2024.2369564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
The tight and coordinated regulation of virulence gene expression is crucial to ensure the survival and persistence of bacterial pathogens in different contexts within their hosts. Considering this, bacteria do not express virulence factors homogenously in time and space, either due to their associated fitness cost or to their detrimental effect at specific infection stages. To efficiently infect and persist into their hosts, bacteria have thus to monitor environmental cues or chemical cell-to-cell signaling mechanisms that allow their transition from the external environment to the host, and therefore adjust gene expression levels, intrinsic biological activities, and appropriate behaviors. Listeria monocytogenes (Lm), a major Gram-positive facultative intracellular pathogen, stands out for its adaptability and capacity to thrive in a wide range of environments. Because of that, Lm presents itself as a significant concern in food safety and public health, that can lead to potentially life-threatening infections in humans. A deeper understanding of the intricate bacterial virulence mechanisms and the signals that control them provide valuable insights into the dynamic interplay between Lm and the host. Therefore, this review addresses the role of some crucial signals behind Lm pathogenic virulence mechanisms and explores how the ability to assimilate and interpret these signals is fundamental for pathogenesis, identifying potential targets for innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Diana Meireles
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar – ICBAS, Porto, Portugal
| | - Rita Pombinho
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| | - Didier Cabanes
- Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Group of Molecular Microbiology, IBMC, Porto, Portugal
| |
Collapse
|
22
|
Xia J, Luo Y, Chen M, Liu Y, Wang Z, Deng S, Xu J, Han Y, Sun J, Jiang L, Song H, Cheng C. Characterization of a DsbA family protein reveals its crucial role in oxidative stress tolerance of Listeria monocytogenes. Microbiol Spectr 2023; 11:e0306023. [PMID: 37823664 PMCID: PMC10715225 DOI: 10.1128/spectrum.03060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The adaption and tolerance to various environmental stresses are the fundamental factors for the widespread existence of Listeria monocytogenes. Anti-oxidative stress is the critical mechanism for the survival and pathogenesis of L. monocytogenes. The thioredoxin (Trx) and glutaredoxin (Grx) systems are known to contribute to the anti-oxidative stress of L. monocytogenes, but whether the Dsb system has similar roles remains unknown. This study demonstrated that the DsbA family protein Lmo1059 of L. monocytogenes participates in bacterial oxidative stress tolerance, with Cys36 as the key amino acid of its catalytic activity and anti-oxidative stress ability. It is worth noting that Lmo1059 was involved in the invading and cell-to-cell spread of L. monocytogenes. This study lays a foundation for further understanding the specific mechanisms of oxidative cysteine repair and antioxidant stress regulation of L. monocytogenes, which contributes to an in-depth understanding of the environmental adaptation mechanisms for foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Jing Xia
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yaru Luo
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Mianmian Chen
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yuqing Liu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Zhe Wang
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Simin Deng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jiali Xu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yue Han
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jing Sun
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, Zhejiang, China
| | - Houhui Song
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Changyong Cheng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Maraschin M, Talyuli OAC, Luíza Rulff da Costa C, Granella LW, Moi DA, Figueiredo BRS, Mansur DS, Oliveira PL, Oliveira JHM. Exploring dose-response relationships in Aedes aegypti survival upon bacteria and arbovirus infection. JOURNAL OF INSECT PHYSIOLOGY 2023; 151:104573. [PMID: 37838284 DOI: 10.1016/j.jinsphys.2023.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
A detailed understanding of how host fitness changes in response to variations in microbe density (an ecological measure of disease tolerance) is an important aim of infection biology. Here, we applied dose-response curves to study Aedes aegypti survival upon exposure to different microbes. We challenged female mosquitoes with Listeria monocytogenes, a model bacterial pathogen, Dengue 4 virus and Zika virus, two medically relevant arboviruses, to understand the distribution of mosquito survival following microbe exposure. By correlating microbe loads and host health, we found that a blood meal promotes disease tolerance in our systemic bacterial infection model and that mosquitoes orally infected with bacteria had an enhanced defensive capacity than insects infected through injection. We also showed that Aedes aegypti displays a higher survival profile following arbovirus infection when compared to bacterial infections. Here, we applied a framework for investigating microbe-induced mosquito mortality and details how the lifespan of Aedes aegypti varies with different inoculum sizes of bacteria and arboviruses.
Collapse
Affiliation(s)
- Mariana Maraschin
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil
| | - Octávio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro. Rio de Janeiro, Brazil
| | - Clara Luíza Rulff da Costa
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro. Rio de Janeiro, Brazil
| | - Lucilene W Granella
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil
| | - Dieison A Moi
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Bruno R S Figueiredo
- Graduate Program in Ecology, Department of Ecology and Zoology, Federal University of Santa Catarina, Campus Universitário, Edifício Fritz Müller, Bloco B, Córrego Grande, CEP 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Daniel S Mansur
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis. Universidade Federal do Rio de Janeiro. Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Brazil
| | - José Henrique M Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia. Universidade Federal de Santa Catarina. Florianópolis, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular. Brazil.
| |
Collapse
|
24
|
Moreira de Gouveia MI, Reuter A, Garrivier A, Daniel J, Bernalier-Donadille A, Jubelin G. Design and validation of a dual-fluorescence reporter system to monitor bacterial gene expression in the gut environment. Appl Microbiol Biotechnol 2023; 107:7301-7312. [PMID: 37750914 DOI: 10.1007/s00253-023-12788-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
Fluorescence-based reporter systems are valuable tools for studying gene expression dynamics in living cells. However, available strategies to follow gene expression in bacteria within their natural ecosystem that can be typically rich and complex are scarce. In this work, we designed a plasmid-based tool ensuring both the identification of a strain of interest in complex environments and the monitoring of gene expression through the combination of two distinct fluorescent proteins as reporter genes. The tool was validated in Escherichia coli to monitor the expression of eut genes involved in the catabolism of ethanolamine. We demonstrated that the constructed reporter strain gradually responds with a bimodal output to increasing ethanolamine concentrations during in vitro cultures. The reporter strain was next inoculated to mice, and flow cytometry was used to detect the reporter strain among the dense microbiota of intestinal samples and to analyze specifically the expression of eut genes. This novel dual-fluorescent reporter system would be helpful to evaluate transcriptional processes in bacteria within complex environments. KEY POINTS: • A reporter tool was developed to monitor bacterial gene expression in complex environments. • Ethanolamine utilization (eut) genes are expressed by commensal E. coli in the mouse gut. • Expression of eut genes follows a bimodal distribution.
Collapse
Affiliation(s)
| | - Audrey Reuter
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000, Clermont-Ferrand, France
| | - Annie Garrivier
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000, Clermont-Ferrand, France
| | - Julien Daniel
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000, Clermont-Ferrand, France
| | | | - Gregory Jubelin
- Université Clermont Auvergne, INRAE, MEDIS UMR454, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
25
|
Mao P, Wang Y, Gan L, Liu L, Chen J, Li L, Sun H, Luo X, Ye C. Large-scale genetic analysis and biological traits of two SigB factors in Listeria monocytogenes: lineage correlations and differential functions. Front Microbiol 2023; 14:1268709. [PMID: 38029172 PMCID: PMC10679752 DOI: 10.3389/fmicb.2023.1268709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Listeria monocytogenes is a globally distributed bacterium that exhibits genetic diversity and trait heterogeneity. The alternative sigma factor SigB serves as a crucial transcriptional regulator essential for responding to environmental stress conditions and facilitating host infection. Method We employed a comprehensive genetic analysis of sigB in a dataset comprising 46,921 L. monocytogenes genomes. The functional attributes of SigB were evaluated by phenotypic experiments. Results Our study revealed the presence of two predominant SigB factors (SigBT1 and SigBT2) in L. monocytogenes, with a robust correlation between SigBT1 and lineages I and III, as well as SigBT2 and lineage II. Furthermore, SigBT1 exhibits superior performance in promoting cellular invasion, cytotoxicity and enhancing biofilm formation and cold tolerance abilities under minimally defined media conditions compared to SigBT2. Discussion The functional characteristics of SigBT1 suggest a potential association with the epidemiology of lineages I and III strains in both human hosts and the natural environment. Our findings highlight the important role of distinct SigB factors in influencing the biological traits of L. monocytogenes of different lineages, thus highlighting its distinct pathogenic and adaptive attributes.
Collapse
Affiliation(s)
- Pan Mao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Lingyun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinni Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingling Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xia Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changyun Ye
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
26
|
Engelgeh T, Herrmann J, Jansen R, Müller R, Halbedel S. Tartrolon sensing and detoxification by the Listeria monocytogenes timABR resistance operon. Mol Microbiol 2023; 120:629-644. [PMID: 37804169 DOI: 10.1111/mmi.15178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Listeria monocytogenes is a foodborne bacterium that naturally occurs in the soil. Originating from there, it contaminates crops and infects farm animals and their consumption by humans may lead to listeriosis, a systemic life-threatening infectious disease. The adaptation of L. monocytogenes to such contrastive habitats is reflected by the presence of virulence genes for host infection and other genes for survival under environmental conditions. Among the latter are ABC transporters for excretion of antibiotics produced by environmental competitors; however, most of these transporters have not been characterized. Here, we generated a collection of promoter-lacZ fusions for genes encoding ABC-type drug transporters of L. monocytogenes and screened this reporter strain collection for induction using a library of natural compounds produced by various environmental microorganisms. We found that the timABR locus (lmo1964-lmo1962) was induced by the macrodiolide antibiotic tartrolon B, which is synthesized by the soil myxobacterium Sorangium cellulosum. Tartrolon B resistance of L. monocytogenes was dependent on timAB, encoding the ATPase and the permease component of a novel ABC transporter. Moreover, transplantation of timAB was sufficient to confer tartrolon B resistance to Bacillus subtilis. Expression of the timABR locus was found to be auto-repressed by the TimR repressor, whose repressing activity was lost in the presence of tartrolon B. We also demonstrate that tartrolon sensitivity was suppressed by high external potassium concentrations, suggesting that tartrolon acts as potassium ionophore. Our results help to map the ecological interactions of an important human pathogen with its co-residing species within their joint natural reservoir.
Collapse
Affiliation(s)
- Tim Engelgeh
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
27
|
Elfmann C, Zhu B, Stülke J, Halbedel S. ListiWiki: A database for the foodborne pathogen Listeria monocytogenes. Int J Med Microbiol 2023; 313:151591. [PMID: 38043216 DOI: 10.1016/j.ijmm.2023.151591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Listeria monocytogenes is a Gram positive foodborne pathogen that regularly causes outbreaks of systemic infectious diseases. The bacterium maintains a facultative intracellular lifestyle; it thrives under a variety of environmental conditions and is able to infect human host cells. L. monocytogenes is genetically tractable and therefore has become an attractive model system to study the mechanisms employed by facultative intracellular bacteria to invade eukaryotic cells and to replicate in their cytoplasm. Besides its importance for basic research, L. monocytogenes also serves as a paradigmatic pathogen in genomic epidemiology, where the relative stability of its genome facilitates successful outbreak detection and elucidation of transmission chains in genomic pathogen surveillance systems. In both terms, it is necessary to keep the annotation of the L. monocytogenes genome up to date. Therefore, we have created the database ListiWiki (http://listiwiki.uni-goettingen.de/) which stores comprehensive information on the widely used L. monocytogenes reference strain EDG-e. ListiWiki is designed to collect information on genes, proteins and RNAs and their relevant functional characteristics, but also further information such as mutant phenotypes, available biological material, and publications. In its present form, ListiWiki combines the most recent annotation of the EDG-e genome with published data on gene essentiality, gene expression and subcellular protein localization. ListiWiki also predicts protein-protein interactions networks based on protein homology to Bacillus subtilis proteins, for which detailed interaction maps have been compiled in the sibling database SubtiWiki. Furthermore, crystallographic information of proteins is made accessible through integration of Protein Structure Database codes and AlphaFold structure predictions. ListiWiki is an easy-to-use web interface that has been developed with a focus on an intuitive access to all information. Use of ListiWiki is free of charge and its content can be edited by all members of the scientific community after registration. In our labs, ListiWiki has already become an important and easy to use tool to quickly access genome annotation details that we can keep updated with advancing knowledge. It also might be useful to promote the comprehensive understanding of the physiology and virulence of an important human pathogen.
Collapse
Affiliation(s)
- Christoph Elfmann
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Bingyao Zhu
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany.
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855 Wernigerode, Germany; Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
28
|
Castelli P, De Ruvo A, Bucciacchio A, D'Alterio N, Cammà C, Di Pasquale A, Radomski N. Harmonization of supervised machine learning practices for efficient source attribution of Listeria monocytogenes based on genomic data. BMC Genomics 2023; 24:560. [PMID: 37736708 PMCID: PMC10515079 DOI: 10.1186/s12864-023-09667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Genomic data-based machine learning tools are promising for real-time surveillance activities performing source attribution of foodborne bacteria such as Listeria monocytogenes. Given the heterogeneity of machine learning practices, our aim was to identify those influencing the source prediction performance of the usual holdout method combined with the repeated k-fold cross-validation method. METHODS A large collection of 1 100 L. monocytogenes genomes with known sources was built according to several genomic metrics to ensure authenticity and completeness of genomic profiles. Based on these genomic profiles (i.e. 7-locus alleles, core alleles, accessory genes, core SNPs and pan kmers), we developed a versatile workflow assessing prediction performance of different combinations of training dataset splitting (i.e. 50, 60, 70, 80 and 90%), data preprocessing (i.e. with or without near-zero variance removal), and learning models (i.e. BLR, ERT, RF, SGB, SVM and XGB). The performance metrics included accuracy, Cohen's kappa, F1-score, area under the curves from receiver operating characteristic curve, precision recall curve or precision recall gain curve, and execution time. RESULTS The testing average accuracies from accessory genes and pan kmers were significantly higher than accuracies from core alleles or SNPs. While the accuracies from 70 and 80% of training dataset splitting were not significantly different, those from 80% were significantly higher than the other tested proportions. The near-zero variance removal did not allow to produce results for 7-locus alleles, did not impact significantly the accuracy for core alleles, accessory genes and pan kmers, and decreased significantly accuracy for core SNPs. The SVM and XGB models did not present significant differences in accuracy between each other and reached significantly higher accuracies than BLR, SGB, ERT and RF, in this order of magnitude. However, the SVM model required more computing power than the XGB model, especially for high amount of descriptors such like core SNPs and pan kmers. CONCLUSIONS In addition to recommendations about machine learning practices for L. monocytogenes source attribution based on genomic data, the present study also provides a freely available workflow to solve other balanced or unbalanced multiclass phenotypes from binary and categorical genomic profiles of other microorganisms without source code modifications.
Collapse
Affiliation(s)
- Pierluigi Castelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "Giuseppe Caporale" (IZSAM), National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data base and bioinformatics analysis (GENPAT), Via Campo Boario, Teramo, TE, 64100, Italy
| | - Andrea De Ruvo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "Giuseppe Caporale" (IZSAM), National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data base and bioinformatics analysis (GENPAT), Via Campo Boario, Teramo, TE, 64100, Italy
| | - Andrea Bucciacchio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "Giuseppe Caporale" (IZSAM), National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data base and bioinformatics analysis (GENPAT), Via Campo Boario, Teramo, TE, 64100, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "Giuseppe Caporale" (IZSAM), National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data base and bioinformatics analysis (GENPAT), Via Campo Boario, Teramo, TE, 64100, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "Giuseppe Caporale" (IZSAM), National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data base and bioinformatics analysis (GENPAT), Via Campo Boario, Teramo, TE, 64100, Italy
| | - Adriano Di Pasquale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "Giuseppe Caporale" (IZSAM), National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data base and bioinformatics analysis (GENPAT), Via Campo Boario, Teramo, TE, 64100, Italy
| | - Nicolas Radomski
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "Giuseppe Caporale" (IZSAM), National Reference Centre (NRC) for Whole Genome Sequencing of microbial pathogens: data base and bioinformatics analysis (GENPAT), Via Campo Boario, Teramo, TE, 64100, Italy.
| |
Collapse
|
29
|
Cossart P. Raising a Bacterium to the Rank of a Model System: The Listeria Paradigm. Annu Rev Microbiol 2023; 77:1-22. [PMID: 37713460 DOI: 10.1146/annurev-micro-110422-112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
My scientific career has resulted from key decisions and reorientations, sometimes taken rapidly but not always, guided by discussions or collaborations with amazing individuals from whom I learnt a lot scientifically and humanly. I had never anticipated that I would accomplish so much in what appeared as terra incognita when I started to interrogate the mechanisms underlying the virulence of the bacterium Listeria monocytogenes. All this has been possible thanks to a number of talented team members who ultimately became friends.
Collapse
Affiliation(s)
- Pascale Cossart
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France;
| |
Collapse
|
30
|
Broglia L, Le Rhun A, Charpentier E. Methodologies for bacterial ribonuclease characterization using RNA-seq. FEMS Microbiol Rev 2023; 47:fuad049. [PMID: 37656885 PMCID: PMC10503654 DOI: 10.1093/femsre/fuad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Bacteria adjust gene expression at the post-transcriptional level through an intricate network of small regulatory RNAs and RNA-binding proteins, including ribonucleases (RNases). RNases play an essential role in RNA metabolism, regulating RNA stability, decay, and activation. These enzymes exhibit species-specific effects on gene expression, bacterial physiology, and different strategies of target recognition. Recent advances in high-throughput RNA sequencing (RNA-seq) approaches have provided a better understanding of the roles and modes of action of bacterial RNases. Global studies aiming to identify direct targets of RNases have highlighted the diversity of RNase activity and RNA-based mechanisms of gene expression regulation. Here, we review recent RNA-seq approaches used to study bacterial RNases, with a focus on the methods for identifying direct RNase targets.
Collapse
Affiliation(s)
- Laura Broglia
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Center for Human Technologies, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Anaïs Le Rhun
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, D-10117 Berlin, Germany
- Institute for Biology, Humboldt University, D-10115 Berlin, Germany
| |
Collapse
|
31
|
Oliveira AH, Tiensuu T, Guerreiro D, Tükenmez H, Dessaux C, García-del Portillo F, O’Byrne C, Johansson J. The Virulence and Infectivity of Listeria monocytogenes Are Not Substantially Altered by Elevated SigB Activity. Infect Immun 2023; 91:e0057122. [PMID: 37125941 PMCID: PMC10269059 DOI: 10.1128/iai.00571-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/26/2023] [Indexed: 05/02/2023] Open
Abstract
Listeria monocytogenes is a bacterial pathogen capable of causing severe infections but also thriving outside the host. To respond to different stress conditions, L. monocytogenes mainly utilizes the general stress response regulon, which largely is controlled by the alternative sigma factor Sigma B (SigB). In addition, SigB is important for virulence gene expression and infectivity. Upon encountering stress, a large multicomponent protein complex known as the stressosome becomes activated, ultimately leading to SigB activation. RsbX is a protein needed to reset a "stressed" stressosome and prevent unnecessary SigB activation in nonstressed conditions. Consequently, absence of RsbX leads to constitutive activation of SigB even without prevailing stress stimulus. To further examine the involvement of SigB in the virulence of this pathogen, we investigated whether a strain with constitutively active SigB would be affected in virulence factor expression and/or infectivity in cultured cells and in a chicken embryo infection model. Our results suggest that increased SigB activity does not substantially alter virulence gene expression compared with the wild-type (WT) strain at transcript and protein levels. Bacteria lacking RsbX were taken up by phagocytic and nonphagocytic cells at a similar frequency to WT bacteria, both in stressed and nonstressed conditions. Finally, the absence of RsbX only marginally affected the ability of bacteria to infect chicken embryos. Our results suggest only a minor role of RsbX in controlling virulence factor expression and infectivity under these conditions.
Collapse
Affiliation(s)
- Ana H. Oliveira
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research, Umeå University, Umeå, Sweden
| | - Teresa Tiensuu
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research, Umeå University, Umeå, Sweden
| | - Duarte Guerreiro
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research, Umeå University, Umeå, Sweden
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Hasan Tükenmez
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research, Umeå University, Umeå, Sweden
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Charlotte Dessaux
- Laboratory of Intracellular Bacterial Pathogens, National Center of Biotechnology, (CNB)-CSIC, Madrid, Spain
| | | | - Conor O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Jörgen Johansson
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre of Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics (Basel) 2023; 12:965. [PMID: 37370284 DOI: 10.3390/antibiotics12060965] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
- Scylla Biotech Srl, 98124 Messina, Italy
| |
Collapse
|
33
|
Tucker JS, Cho J, Albrecht TM, Ferrell JL, D’Orazio SEF. Egress of Listeria monocytogenes from Mesenteric Lymph Nodes Depends on Intracellular Replication and Cell-to-Cell Spread. Infect Immun 2023; 91:e0006423. [PMID: 36916918 PMCID: PMC10112146 DOI: 10.1128/iai.00064-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023] Open
Abstract
The mesenteric lymph nodes (MLN) function as a barrier to systemic spread for both commensal and pathogenic bacteria in the gut. Listeria monocytogenes, a facultative intracellular foodborne pathogen, readily overcomes this barrier and spreads into the bloodstream, causing life-threatening systemic infections. We show here that intracellular replication protected L. monocytogenes from clearance by monocytes and neutrophils and promoted colonization of the small intestine-draining MLN (sMLN) but was not required for dissemination to the colon-draining MLN (cMLN). Intestinal tissue had enough free lipoate to support LplA2-dependent extracellular growth of L. monocytogenes, but exogenous lipoate in the MLN was severely limited, and so the bacteria could replicate only inside cells, where they used LplA1 to scavenge lipoate from host peptides. When foodborne infection was manipulated to allow ΔlplA1 L. monocytogenes to colonize the MLN to the same extent as wild-type bacteria, the mutant was still never recovered in the spleen or liver of any animal. We found that intracellular replication in the MLN promoted actin-based motility and cell-to-cell spread of L. monocytogenes and that rapid efficient exit from the MLN was actA dependent. We conclude that intracellular replication of L. monocytogenes in intestinal tissues is not essential and serves primarily to amplify bacterial burdens above a critical threshold needed to efficiently colonize the cMLN. In contrast, intracellular replication in the MLN is absolutely required for further systemic spread and serves primarily to promote ActA-mediated cell-to-cell spread.
Collapse
Affiliation(s)
- Jamila S. Tucker
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jooyoung Cho
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Taylor M. Albrecht
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Jessica L. Ferrell
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
34
|
Marked inter-strain heterogeneity in the differential expression of some key stress response and virulence-related genes between planktonic and biofilm cells in Listeria monocytogenes. Int J Food Microbiol 2023; 390:110136. [PMID: 36807004 DOI: 10.1016/j.ijfoodmicro.2023.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Listeria monocytogenes is a facultatively intracellular pathogenic bacterium that can provoke invasive listeriosis, a severe foodborne infection in humans. Outside the host, this is capable to survive for long periods in soil, and water, as well as on plants, while, like many other microorganisms, this can also attach to abiotic surfaces, such as food contact ones, forming biofilms on them. It has been suggested that inside those sessile communities, L. monocytogenes cells not only display an increased stress tolerance but may also boost their pathogenicity. In this work, the expression of ten key stress response and/or virulence-related genes (i.e., groEL, hly, iap, inlA, inlB, lisK, mdrD, mdrL, prfA, and sigB) was studied in three different L. monocytogenes strains (AAL20066, AAL20107, and PL24), all isolated from foods and each belonging to a different listeriosis-associated serovar (1/2a, 1/2b, and 1/2c, respectively). For this, each strain was initially left to develop a mature biofilm on a model polystyrene surface (Petri dish) by incubating for 144 h (6 days) at 20 °C in tryptone soya broth (with medium renewal every 48 h). Following incubation, both biofilm and the surrounding free-swimming (planktonic) cells were recovered, and their gene expressions were comparatively evaluated through targeted reverse transcription-quantitative polymerase chain reactions (RT-qPCR). Results revealed a strain-dependent differential gene expression between the two cell types. Thus, for instance, in strain AAL20107 (ser. 1/2b) biofilm growth worryingly resulted in a significant overexpression of all the studied genes (P < 0.05), whereas in strain PL24 (ser. 1/2c), the expression of most genes (8/10) did not change upon biofilm growth, with only two of them (groEL and hly) being again significantly upregulated. Such transcriptomic strain variability in stress adaptation and/or virulence induction should be generally considered in the physiological studies of pathogenic biofilms and preferably upon designing and implementing novel and more efficient eradication methods.
Collapse
|
35
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Tran BM, Linnik DS, Punter CM, Śmigiel WM, Mantovanelli L, Iyer A, O’Byrne C, Abee T, Johansson J, Poolman B. Super-resolving microscopy reveals the localizations and movement dynamics of stressosome proteins in Listeria monocytogenes. Commun Biol 2023; 6:51. [PMID: 36641529 PMCID: PMC9840623 DOI: 10.1038/s42003-023-04423-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
The human pathogen Listeria monocytogenes can cope with severe environmental challenges, for which the high molecular weight stressosome complex acts as the sensing hub in a complicated signal transduction pathway. Here, we show the dynamics and functional roles of the stressosome protein RsbR1 and its paralogue, the blue-light receptor RsbL, using photo-activated localization microscopy combined with single-particle tracking and single-molecule displacement mapping and supported by physiological studies. In live cells, RsbR1 is present in multiple states: in protomers with RsbS, large clusters of stressosome complexes, and in connection with the plasma membrane via Prli42. RsbL diffuses freely in the cytoplasm but forms clusters upon exposure to light. The clustering of RsbL is independent of the presence of Prli42. Our work provides a comprehensive view of the spatial organization and intracellular dynamics of the stressosome proteins in L. monocytogenes, which paves the way towards uncovering the stress-sensing mechanism of this signal transduction pathway.
Collapse
Affiliation(s)
- Buu Minh Tran
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Dmitrii Sergeevich Linnik
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Christiaan Michiel Punter
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Wojciech Mikołaj Śmigiel
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Luca Mantovanelli
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Aditya Iyer
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Conor O’Byrne
- Microbiology, School of Biological & Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Tjakko Abee
- grid.4818.50000 0001 0791 5666Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jörgen Johansson
- grid.12650.300000 0001 1034 3451Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Bert Poolman
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
37
|
Wang LX, Ji CH, Ning CC, Liu YC, Li ZY, Sun YQ, Xia XZ, Cai XP, Meng QL, Qiao J. A Regulatory sRNA rli41 is Implicated in Cell Adhesion, Invasion and Pathogenicity in Listeria monocytogenes. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
38
|
SecA2 Associates with Translating Ribosomes and Contributes to the Secretion of Potent IFN-β Inducing RNAs. Int J Mol Sci 2022; 23:ijms232315021. [PMID: 36499346 PMCID: PMC9736482 DOI: 10.3390/ijms232315021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Protein secretion plays a central role in modulating interactions of the human pathogen Listeria monocytogenes with its environment. Recently, secretion of RNA has emerged as an important strategy used by the pathogen to manipulate the host cell response to its advantage. In general, the Sec-dependent translocation pathway is a major route for protein secretion in L. monocytogenes, but mechanistic insights into the secretion of RNA by these pathways are lacking. Apart from the classical SecA1 secretion pathway, L. monocytogenes also encodes for a SecA paralogue (SecA2) which targets the export of a specific subset of proteins, some of which are involved in virulence. Here, we demonstrated that SecA2 co-sediments with translating ribosomes and provided evidence that it associates with a subset of secreted small non-coding RNAs (sRNAs) that induce high levels of IFN-β response in host cells. We found that enolase, which is translocated by a SecA2-dependent mechanism, binds to several sRNAs, suggesting a pathway by which sRNAs are targeted to the supernatant of L. monocytogenes.
Collapse
|
39
|
Lu Q, Zhu X, Long Q, Yi X, Yang A, Long X, Cao D. Comparative Genomics Reveal the Utilization Ability of Variable Carbohydrates as Key Genetic Features of Listeria Pathogens in Their Pathogenic Lifestyles. Pathogens 2022; 11:1430. [PMID: 36558765 PMCID: PMC9784484 DOI: 10.3390/pathogens11121430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND L. monocytogenes and L. ivanovii, the only two pathogens of Listeria, can survive in various environments, having different pathogenic characteristics. However, the genetic basis of their excellent adaptability and differences in pathogenicity has still not been completely elucidated. METHODS We performed a comparative genomic analysis based on 275 L. monocytogenes, 10 L. ivanovii, and 22 non-pathogenic Listeria strains. RESULTS Core/pan-genome analysis revealed that 975 gene families were conserved in all the studied strains. Additionally, 204, 242, and 756 gene families existed uniquely in L. monocytogenes, L. ivanovii, and both, respectively. Functional annotation partially verified that these unique gene families were closely related to their adaptability and pathogenicity. Moreover, the protein-protein interaction (PPI) network analysis of these unique gene sets showed that plenty of carbohydrate transport systems and energy metabolism enzymes were clustered in the networks. Interestingly, ethanolamine-metabolic-process-related proteins were significantly enriched in the PPI network of the unique genes of the Listeria pathogens, which can be understood as a determining factor of their pathogenicity. CONCLUSIONS The utilization capacity of multiple carbon sources of Listeria pathogens, especially ethanolamine, is the key genetic basis for their ability to adapt to various environments and pathogenic lifestyles.
Collapse
Affiliation(s)
- Qunfeng Lu
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, China
- School of Medical Laboratory Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xiaoying Zhu
- Medical College, Guangxi University, Nanning 530004, China
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
- Department of Tumor Pathology, The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise 533000, China
| | - Qinqin Long
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
- Department of Tumor Pathology, The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise 533000, China
| | - Xueli Yi
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Anni Yang
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, China
- School of Medical Laboratory Sciences, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xidai Long
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
- Department of Tumor Pathology, The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise 533000, China
| | - Demin Cao
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
- Department of Tumor Pathology, The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise 533000, China
| |
Collapse
|
40
|
Costa VG, Costa SM, Saramago M, Cunha MV, Arraiano CM, Viegas SC, Matos RG. Developing New Tools to Fight Human Pathogens: A Journey through the Advances in RNA Technologies. Microorganisms 2022; 10:2303. [PMID: 36422373 PMCID: PMC9697208 DOI: 10.3390/microorganisms10112303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 09/18/2024] Open
Abstract
A long scientific journey has led to prominent technological advances in the RNA field, and several new types of molecules have been discovered, from non-coding RNAs (ncRNAs) to riboswitches, small interfering RNAs (siRNAs) and CRISPR systems. Such findings, together with the recognition of the advantages of RNA in terms of its functional performance, have attracted the attention of synthetic biologists to create potent RNA-based tools for biotechnological and medical applications. In this review, we have gathered the knowledge on the connection between RNA metabolism and pathogenesis in Gram-positive and Gram-negative bacteria. We further discuss how RNA techniques have contributed to the building of this knowledge and the development of new tools in synthetic biology for the diagnosis and treatment of diseases caused by pathogenic microorganisms. Infectious diseases are still a world-leading cause of death and morbidity, and RNA-based therapeutics have arisen as an alternative way to achieve success. There are still obstacles to overcome in its application, but much progress has been made in a fast and effective manner, paving the way for the solid establishment of RNA-based therapies in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal; (V.G.C.); (S.M.C.); (M.S.); (M.V.C.); (C.M.A.)
| |
Collapse
|
41
|
Berdejo D, Gayán E, Pagán E, Merino N, Campillo R, Pagán R, García-Gonzalo D. Carvacrol Selective Pressure Allows the Occurrence of Genetic Resistant Variants of Listeria monocytogenes EGD-e. Foods 2022; 11:3282. [PMID: 37431028 PMCID: PMC9602272 DOI: 10.3390/foods11203282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 09/07/2024] Open
Abstract
Essential oils and their constituents, such as carvacrol, are potential food preservatives because of their great antimicrobial properties. However, the long-term effects of these compounds are unknown and raise the question of whether resistance to these antimicrobials could emerge. This work aims to evaluate the occurrence of genetic resistant variants (RVs) in Listeria monocytogenes EGD-e by exposure to carvacrol. Two protocols were performed for the RVs selection: (a) by continuous exposure to sublethal doses, where LmSCar was isolated, and (b) by reiterative exposure to short lethal treatments of carvacrol, where LmLCar was isolated. Both RVs showed an increase in carvacrol resistance. Moreover, LmLCar revealed an increased cross-resistance to heat treatments at acid conditions and to ampicillin. Whole-genome sequencing identified two single nucleotide variations in LmSCar and three non-silent mutations in LmLCar. Among them, those located in the genes encoding the transcriptional regulators RsbT (in LmSCar) and ManR (in LmLCar) could contribute to their increased carvacrol resistance. These results provide information regarding the mode of action of this antimicrobial and support the importance of knowing how RVs appear. Further studies are required to determine the emergence of RVs in food matrices and their impact on food safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
42
|
Ramirez Garcia A, Hurley K, Marastoni G, Diard M, Hofer S, Greppi A, Hardt WD, Lacroix C, Sturla SJ, Schwab C. Pathogenic and Commensal Gut Bacteria Harboring Glycerol/Diol Dehydratase Metabolize Glycerol and Produce DNA-Reactive Acrolein. Chem Res Toxicol 2022; 35:1840-1850. [PMID: 36116084 PMCID: PMC9580524 DOI: 10.1021/acs.chemrestox.2c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/20/2022]
Abstract
Bacteria harboring glycerol/diol dehydratase (GDH) encoded by the genes pduCDE metabolize glycerol and release acrolein during growth. Acrolein has antimicrobial activity, and exposure of human cells to acrolein gives rise to toxic and mutagenic responses. These biological responses are related to acrolein's high reactivity as a chemical electrophile that can covalently bind to cellular nucleophiles including DNA and proteins. Various food microbes and gut commensals transform glycerol to acrolein, but there is no direct evidence available for bacterial glycerol metabolism giving rise to DNA adducts. Moreover, it is unknown whether pathogens, such as Salmonella Typhymurium, catalyze this transformation. We assessed, therefore, acrolein formation by four GDH-competent strains of S. Typhymurium grown under either aerobic or anaerobic conditions in the presence of 50 mM glycerol. On the basis of analytical derivatization with a heterocyclic amine, all wild-type strains were observed to produce acrolein, but to different extents, and acrolein production was not detected in fermentations of a pduC-deficient mutant strain. Furthermore, we found that, in the presence of calf thymus DNA, acrolein-DNA adducts were formed as a result of bacterial glycerol metabolism by two strains of Limosilactobacillus reuteri, but not a pduCDE mutant strain. The quantification of the resulting adducts with increasing levels of glycerol up to 600 mM led to the production of up to 1.5 mM acrolein and 3600 acrolein-DNA adducts per 108 nucleosides in a model system. These results suggest that GDH-competent food microbes, gut commensals, and pathogens alike have the capacity to produce acrolein from glycerol. Further, the acrolein production can lead to DNA adduct formation, but requires high glycerol concentrations that are not available in the human gut.
Collapse
Affiliation(s)
- Alejandro Ramirez Garcia
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Katherine Hurley
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Giovanni Marastoni
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Médéric Diard
- Biozentrum, University of Basel, Basel 4056, Switzerland
- Institute
of Microbiology, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Sophie Hofer
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Anna Greppi
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Wolf-Dietrich Hardt
- Institute
of Microbiology, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Christophe Lacroix
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Shana J. Sturla
- Laboratory
of Toxicology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Clarissa Schwab
- Laboratory
of Food Biotechnology, Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
- Department
of Biological and Chemical Engineering, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
43
|
Mayer RL, Verbeke R, Asselman C, Aernout I, Gul A, Eggermont D, Boucher K, Thery F, Maia TM, Demol H, Gabriels R, Martens L, Bécavin C, De Smedt SC, Vandekerckhove B, Lentacker I, Impens F. Immunopeptidomics-based design of mRNA vaccine formulations against Listeria monocytogenes. Nat Commun 2022; 13:6075. [PMID: 36241641 PMCID: PMC9562072 DOI: 10.1038/s41467-022-33721-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes is a foodborne intracellular bacterial pathogen leading to human listeriosis. Despite a high mortality rate and increasing antibiotic resistance no clinically approved vaccine against Listeria is available. Attenuated Listeria strains offer protection and are tested as antitumor vaccine vectors, but would benefit from a better knowledge on immunodominant vector antigens. To identify novel antigens, we screen for Listeria peptides presented on the surface of infected human cell lines by mass spectrometry-based immunopeptidomics. In between more than 15,000 human self-peptides, we detect 68 Listeria immunopeptides from 42 different bacterial proteins, including several known antigens. Peptides presented on different cell lines are often derived from the same bacterial surface proteins, classifying these antigens as potential vaccine candidates. Encoding these highly presented antigens in lipid nanoparticle mRNA vaccine formulations results in specific CD8+ T-cell responses and induces protection in vaccination challenge experiments in mice. Our results can serve as a starting point for the development of a clinical mRNA vaccine against Listeria and aid to improve attenuated Listeria vaccines and vectors, demonstrating the power of immunopeptidomics for next-generation bacterial vaccine development.
Collapse
Affiliation(s)
- Rupert L Mayer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Caroline Asselman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ilke Aernout
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Adillah Gul
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Denzel Eggermont
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katie Boucher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Teresa M Maia
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Hans Demol
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- VIB Proteomics Core, VIB, Ghent, Belgium.
| |
Collapse
|
44
|
Anast JM, Etter AJ, Schmitz‐Esser S. Comparative analysis of Listeria monocytogenes plasmid transcriptomes reveals common and plasmid-specific gene expression patterns and high expression of noncoding RNAs. Microbiologyopen 2022; 11:e1315. [PMID: 36314750 PMCID: PMC9484302 DOI: 10.1002/mbo3.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Recent research demonstrated that some Listeria monocytogenes plasmids contribute to stress survival. However, only a few studies have analyzed gene expression patterns of L. monocytogenes plasmids. In this study, we identified four previously published stress-response-associated transcriptomic data sets which studied plasmid-harboring L. monocytogenes strains but did not include an analysis of the plasmid transcriptomes. The four transcriptome data sets encompass three distinct plasmids from three different L. monocytogenes strains. Differential gene expression analysis of these plasmids revealed that the number of differentially expressed (DE) L. monocytogenes plasmid genes ranged from 30 to 45 with log2 fold changes of -2.2 to 6.8, depending on the plasmid. Genes often found to be DE included the cadmium resistance genes cadA and cadC, a gene encoding a putative NADH peroxidase, the putative ultraviolet resistance gene uvrX, and several uncharacterized noncoding RNAs (ncRNAs). Plasmid-encoded ncRNAs were consistently among the highest expressed genes. In addition, one of the data sets utilized the same experimental conditions for two different strains harboring distinct plasmids. We found that the gene expression patterns of these two L. monocytogenes plasmids were highly divergent despite the identical treatments. These data suggest plasmid-specific gene expression responses to environmental stimuli and differential plasmid regulation mechanisms between L. monocytogenes strains. Our findings further our understanding of the dynamic expression of L. monocytogenes plasmid-encoded genes in diverse environmental conditions and highlight the need to expand the study of L. monocytogenes plasmid genes' functions.
Collapse
Affiliation(s)
- Justin M. Anast
- Department of Animal ScienceIowa State UniversityAmesIowaUSA
- Interdepartmental Microbiology Graduate ProgramIowa State UniversityAmesIowaUSA
| | - Andrea J. Etter
- Department of Nutrition and Food SciencesThe University of VermontBurlingtonVermontUSA
| | - Stephan Schmitz‐Esser
- Department of Animal ScienceIowa State UniversityAmesIowaUSA
- Interdepartmental Microbiology Graduate ProgramIowa State UniversityAmesIowaUSA
| |
Collapse
|
45
|
A Regulatory SRNA Rli43 Is Involved in the Modulation of Biofilm Formation and Virulence in Listeria monocytogenes. Pathogens 2022; 11:pathogens11101137. [PMID: 36297193 PMCID: PMC9606912 DOI: 10.3390/pathogens11101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Small RNAs (sRNAs) are a kind of regulatory molecule that can modulate gene expression at the post-transcriptional level, thereby involving alteration of the physiological characteristics of bacteria. However, the regulatory roles and mechanisms of most sRNAs remain unknown in Listeria monocytogenes(L. monocytogenes). To explore the regulatory roles of sRNA Rli43 in L. monocytogenes, the rli43 gene deletion strain LM-Δrli43 and complementation strain LM-Δrli43-rli43 were constructed to investigate the effects of Rli43 on responses to environmental stress, biofilm formation, and virulence, respectively. Additionally, Rli43-regulated target genes were identified using bioinformatic analysis tools and a bacterial dual plasmid reporter system based on E. coli. The results showed that the intracellular expression level of the rli43 gene was significantly upregulated compared with those under extracellular conditions. Compared with the parental and complementation strains, the environmental adaptation, motility, biofilm formation, adhesion, invasion, and intracellular survival of LM-Δrli43 were significantly reduced, respectively, whereas the LD50 of LM-Δrli43 was significantly elevated in BALB/c mice. Furthermore, the bacterial loads and pathological damages were alleviated, suggesting that sRNA Rli43 was involved in the modulation of the virulence of L. monocytogenes. It was confirmed that Rli43 may complementarily pair with the 5'-UTR (-47--55) of HtrA mRNA, thereby regulating the expression level of HtrA protein at the post-transcriptional level. These findings suggest that Rli43-mediated control was involved in the modulation of environmental adaptation, biofilm formation, and virulence in L. monocytogenes.
Collapse
|
46
|
Fischer MA, Engelgeh T, Rothe P, Fuchs S, Thürmer A, Halbedel S. Listeria monocytogenes genes supporting growth under standard laboratory cultivation conditions and during macrophage infection. Genome Res 2022; 32:1711-1726. [PMID: 36114002 PMCID: PMC9528990 DOI: 10.1101/gr.276747.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
The Gram-positive bacterium Listeria monocytogenes occurs widespread in the environment and infects humans when ingested along with contaminated food. Such infections are particularly dangerous for risk group patients, for whom they represent a life-threatening disease. To invent novel strategies to control contamination and disease, it is important to identify those cellular processes that maintain pathogen growth inside and outside the host. Here, we have applied transposon insertion sequencing (Tn-Seq) to L. monocytogenes for the identification of such processes on a genome-wide scale. Our approach identified 394 open reading frames that are required for growth under standard laboratory conditions and 42 further genes, which become necessary during intracellular growth in macrophages. Most of these genes encode components of the translation machinery and act in chromosome-related processes, cell division, and biosynthesis of the cellular envelope. Several cofactor biosynthesis pathways and 29 genes with unknown functions are also required for growth, suggesting novel options for the development of antilisterial drugs. Among the genes specifically required during intracellular growth are known virulence factors, genes compensating intracellular auxotrophies, and several cell division genes. Our experiments also highlight the importance of PASTA kinase signaling for general viability and of glycine metabolism and chromosome segregation for efficient intracellular growth of L. monocytogenes.
Collapse
Affiliation(s)
- Martin A Fischer
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Tim Engelgeh
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Patricia Rothe
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Stephan Fuchs
- MF1 Bioinformatic Support, Robert Koch Institute, 13353 Berlin, Germany
| | - Andrea Thürmer
- MF2 Genome Sequencing, Robert Koch Institute, 13353 Berlin, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| |
Collapse
|
47
|
Abdelhamed H, Ramachandran R, Narayanan L, Islam S, Ozan O, Freitag N, Lawrence ML. Role of FruR transcriptional regulator in virulence of Listeria monocytogenes and identification of its regulon. PLoS One 2022; 17:e0274005. [PMID: 36054213 PMCID: PMC9439231 DOI: 10.1371/journal.pone.0274005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous opportunistic foodborne pathogen capable of survival in various adverse environmental conditions. Pathogenesis of L. monocytogenes is tightly controlled by a complex regulatory network of transcriptional regulators that are necessary for survival and adaptations to harsh environmental conditions both inside and outside host cells. Among these regulatory pathways are members of the DeoR-family transcriptional regulators that are known to play a regulatory role in sugar metabolism. In this study, we deciphered the role of FruR, a DeoR family protein, which is a fructose operon transcriptional repressor protein, in L. monocytogenes pathogenesis and growth. Following intravenous (IV) inoculation in mice, a mutant strain with deletion of fruR exhibited a significant reduction in bacterial burden in liver and spleen tissues compared to the parent strain. Further, the ΔfruR strain had a defect in cell-to-cell spread in L2 fibroblast monolayers. Constitutive activation of PrfA, a pleiotropic activator of L. monocytogenes virulence factors, did not restore virulence to the ΔfruR strain, suggesting that the attenuation was not a result of impaired PrfA activation. Transcriptome analysis revealed that FruR functions as a positive regulator for genes encoding enzymes involved in the pentose phosphate pathway (PPP) and as a repressor for genes encoding enzymes in the glycolysis pathway. These results suggested that FruR may function to facilitate NADPH regeneration, which is necessary for full protection from oxidative stress. Interestingly, deletion of fruR increased sensitivity of L. monocytogenes to H2O2, confirming a role for FruR in survival of L. monocytogenes during oxidative stress. Using anti-mouse neutrophil/monocyte monoclonal antibody RB6-8C5 (RB6) in an in vivo infection model, we found that FruR has a specific function in protecting L. monocytogenes from neutrophil/monocyte-mediated killing. Overall, this work clarifies the role of FruR in controlling L. monocytogenes carbon flow between glycolysis and PPP for NADPH homeostasis, which provides a new mechanism allowing metabolic adaptation of L. monocytogenes to oxidative stress.
Collapse
Affiliation(s)
- Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
- * E-mail:
| | - Reshma Ramachandran
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
- Department of Poultry Science, Mississippi State University, Starkville, MS, United States of America
| | - Lakshmi Narayanan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
| | - Shamima Islam
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
| | - Ozdemir Ozan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
| | - Nancy Freitag
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mark L. Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
| |
Collapse
|
48
|
Mahendran G, Jayasinghe OT, Thavakumaran D, Arachchilage GM, Silva GN. Key players in regulatory RNA realm of bacteria. Biochem Biophys Rep 2022; 30:101276. [PMID: 35592614 PMCID: PMC9111926 DOI: 10.1016/j.bbrep.2022.101276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Precise regulation of gene expression is crucial for living cells to adapt for survival in diverse environmental conditions. Among the common cellular regulatory mechanisms, RNA-based regulators play a key role in all domains of life. Discovery of regulatory RNAs have made a paradigm shift in molecular biology as many regulatory functions of RNA have been identified beyond its canonical roles as messenger, ribosomal and transfer RNA. In the complex regulatory RNA network, riboswitches, small RNAs, and RNA thermometers can be identified as some of the key players. Herein, we review the discovery, mechanism, and potential therapeutic use of these classes of regulatory RNAs mainly found in bacteria. Being highly adaptive organisms that inhabit a broad range of ecological niches, bacteria have adopted tight and rapid-responding gene regulation mechanisms. This review aims to highlight how bacteria utilize versatile RNA structures and sequences to build a sophisticated gene regulation network.
The three major classes of prokaryotic ncRNAs and their characterized mechanisms of operation in gene regulation. sRNAs emerging as major players in global gene regulatory networks. Riboswitch mediated gene control mechanisms through on/off switches in response to ligand binding. RNA thermo sensors for temperature-dependent gene expression. Therapeutic importance of ncRNAs and computational approaches involved in the discovery of ncRNAs.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Oshadhi T. Jayasinghe
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dhanushika Thavakumaran
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Department of Chemistry and Biochemistry, University of Notre Dame, IN, 46556, USA
| | - Gayan Mirihana Arachchilage
- Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520-8103, USA
- PTC Therapeutics Inc, South Plainfield, NJ, 07080, USA
| | - Gayathri N. Silva
- Department of Chemistry, University of Colombo, Colombo, Sri Lanka
- Corresponding author.
| |
Collapse
|
49
|
Jin F, Feng Y, Chen C, Yao H, Zhang R, Zhang Q, Meng F, Chen X, Jiao X, Yin Y. Transmembrane Protein LMxysn_1693 of Serovar 4h Listeria monocytogenes Is Associated with Bile Salt Resistance and Intestinal Colonization. Microorganisms 2022; 10:microorganisms10071263. [PMID: 35888981 PMCID: PMC9320622 DOI: 10.3390/microorganisms10071263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes (Lm) is a ubiquitous foodborne pathogen comprising of 14 serotypes, of which serovar 4h isolates belonging to hybrid sub-lineage Ⅱ exhibit hypervirulent features. LMxysn_1693 of serovar 4h Lm XYSN, a member of genomic island-7 (GI-7), is predicted to a membrane protein with unknown function, which is conserved in serovar 4h Listeria monocytogenes. Under bile salts stress, Lm XYSN strain lacking LMxysn_1693 (XYSN∆1693) exhibited a stationary phase growth defect as well as a reduction in biofilm formation and strikingly down-regulated bile-salts-resistant genes and virulent genes. Particularly, LMxysn_1693 protein plays a crucial role in Lm XYSN adhesion and invasion to intestinal epithelial cells, as well as colonization in the ileum of mice. Taken together, these findings indicate that the LMxysn_1693 gene encodes a component of the putative ABC transporter system, synthetically interacts with genes involved in bile resistance, biofilm formation and virulence, and thus contributes to Listeria monocytogenes survival within and outside the host.
Collapse
Affiliation(s)
- Fanxin Jin
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (F.J.); (Y.F.); (C.C.); (H.Y.); (R.Z.); (Q.Z.); (F.M.); (X.C.); (X.J.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Youwei Feng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (F.J.); (Y.F.); (C.C.); (H.Y.); (R.Z.); (Q.Z.); (F.M.); (X.C.); (X.J.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Chao Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (F.J.); (Y.F.); (C.C.); (H.Y.); (R.Z.); (Q.Z.); (F.M.); (X.C.); (X.J.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Hao Yao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (F.J.); (Y.F.); (C.C.); (H.Y.); (R.Z.); (Q.Z.); (F.M.); (X.C.); (X.J.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Renling Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (F.J.); (Y.F.); (C.C.); (H.Y.); (R.Z.); (Q.Z.); (F.M.); (X.C.); (X.J.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Qin Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (F.J.); (Y.F.); (C.C.); (H.Y.); (R.Z.); (Q.Z.); (F.M.); (X.C.); (X.J.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Fanzeng Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (F.J.); (Y.F.); (C.C.); (H.Y.); (R.Z.); (Q.Z.); (F.M.); (X.C.); (X.J.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (F.J.); (Y.F.); (C.C.); (H.Y.); (R.Z.); (Q.Z.); (F.M.); (X.C.); (X.J.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Xin’an Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (F.J.); (Y.F.); (C.C.); (H.Y.); (R.Z.); (Q.Z.); (F.M.); (X.C.); (X.J.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (F.J.); (Y.F.); (C.C.); (H.Y.); (R.Z.); (Q.Z.); (F.M.); (X.C.); (X.J.)
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
50
|
Wu J, NicAogáin K, McAuliffe O, Jordan K, O’Byrne C. Phylogenetic and Phenotypic Analyses of a Collection of Food and Clinical Listeria monocytogenes Isolates Reveal Loss of Function of Sigma B from Several Clonal Complexes. Appl Environ Microbiol 2022; 88:e0005122. [PMID: 35481758 PMCID: PMC9128516 DOI: 10.1128/aem.00051-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
To understand the molecular mechanisms that contribute to the stress responses of the important foodborne pathogen Listeria monocytogenes, we collected 139 strains (meat, n = 25; dairy, n = 10; vegetable, n = 8; seafood, n = 14; mixed food, n = 4; and food processing environments, n = 78), mostly isolated in Ireland, and subjected them to whole-genome sequencing. These strains were compared to 25 Irish clinical isolates and 4 well-studied reference strains. Core genome and pan-genome analysis confirmed a highly clonal and deeply branched population structure. Multilocus sequence typing showed that this collection contained a diverse range of strains from L. monocytogenes lineages I and II. Several groups of isolates with highly similar genome content were traced to single or multiple food business operators, providing evidence of strain persistence or prevalence, respectively. Phenotypic screening assays for tolerance to salt stress and resistance to acid stress revealed variants within several clonal complexes that were phenotypically distinct. Five of these phenotypic outliers were found to carry mutations in the sigB operon, which encodes the stress-inducible sigma factor sigma B. Transcriptional analysis confirmed that three of the strains that carried mutations in sigB, rsbV, or rsbU had reduced SigB activity, as predicted. These strains exhibited increased tolerance to salt stress and displayed decreased resistance to low pH stress. Overall, this study shows that loss-of-function mutations in the sigB operon are comparatively common in field isolates, probably reflecting the cost of the general stress response to reproductive fitness in this pathogen. IMPORTANCE The bacterial foodborne pathogen Listeria monocytogenes frequently contaminates various categories of food products and is able to cause life-threatening infections when ingested by humans. Thus, it is important to control the growth of this bacterium in food by understanding the mechanisms that allow its proliferation under suboptimal conditions. In this study, intraspecies heterogeneity in stress response was observed across a collection consisting of mainly Irish L. monocytogenes isolates. Through comparisons of genome sequence and phenotypes observed, we identified three strains with impairment of the general stress response regulator SigB. Two of these strains are used widely in food challenge studies for evaluating the growth potential of L. monocytogenes. Given that loss of SigB function is associated with atypical phenotypic properties, the use of these strains in food challenge studies should be re-evaluated.
Collapse
Affiliation(s)
- Jialun Wu
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - Kerrie NicAogáin
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | | | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Conor O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|