1
|
Gao Y, Zheng H. Role of mitochondria and potential of mitochondria-targeted therapy in BRAF mutant cancer: A review. Crit Rev Oncol Hematol 2024; 203:104484. [PMID: 39197669 DOI: 10.1016/j.critrevonc.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
The classical mitogen-activated protein kinase (MAPK) signaling pathway, the Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK protein kinase cascade, is a conserved cascade that regulates cell growth, differentiation, and proliferation. The significance of BRAF in cancer was established with the discovery of cancer-activating mutations in BRAF in several human tumors in 2002. Currently, BRAF is recognized as a driver mutation that affects cancer phenotypes in different ways, making it an important therapeutic target for cancer. BRAF-selective inhibitors have shown promise in clinical trials involving patients with metastatic melanoma. However, resistance mechanisms to BRAF inhibitors therapy have resulted in short-lived therapeutic responses. Further in-depth research is imperative to explore resistance mechanisms that oppose the effectiveness of BRAF inhibitors. Metabolic reprogramming has emerging role in BRAF-mutant cancers. In particular, mitochondrial metabolism and its closely related signaling pathways mediated by mitochondria have become recognized as potential new targets for treating BRAF-mutant cancers. This review, examines the progress in understanding BRAF mutations in cancer, the clinicopathological correlation of BRAF inhibitors, and recent advances in mitochondrial metabolism, mitochondrial dynamics and mitochondrial mediated death in BRAF-mutant cancer. This review will inform future cancer research and lay the foundation for novel treatment combinations of BRAF-mutant cancers.
Collapse
Affiliation(s)
- Yanyan Gao
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hua Zheng
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Ayub A, Hasan MK, Mahmud Z, Hossain MS, Kabir Y. Dissecting the multifaceted roles of autophagy in cancer initiation, growth, and metastasis: from molecular mechanisms to therapeutic applications. Med Oncol 2024; 41:183. [PMID: 38902544 DOI: 10.1007/s12032-024-02417-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a cytoplasmic defense mechanism that cells use to break and reprocess their intracellular components. This utilization of autophagy is regarded as a savior in nutrient-deficient and other stressful conditions. Hence, autophagy keeps contact with and responds to miscellaneous cellular tensions and diverse pathways of signal transductions, such as growth signaling and cellular death. Importantly, autophagy is regarded as an effective tumor suppressor because regular autophagic breakdown is essential for cellular maintenance and minimizing cellular damage. However, paradoxically, autophagy has also been observed to promote the events of malignancies. This review discussed the dual role of autophagy in cancer, emphasizing its influence on tumor survival and progression. Possessing such a dual contribution to the malignant establishment, the prevention of autophagy can potentially advocate for the advancement of malignant transformation. In contrast, for the context of the instituted tumor, the agents of preventing autophagy potently inhibit the advancement of the tumor. Key regulators, including calpain 1, mTORC1, and AMPK, modulate autophagy in response to nutritional conditions and stress. Oncogenic mutations like RAS and B-RAF underscore autophagy's pivotal role in cancer development. The review also delves into autophagy's context-dependent roles in tumorigenesis, metastasis, and the tumor microenvironment (TME). It also discusses the therapeutic effectiveness of autophagy for several cancers. The recent implication of autophagy in the control of both innate and antibody-mediated immune systems made it a center of attention to evaluating its role concerning tumor antigens and treatments of cancer.
Collapse
Affiliation(s)
- Afia Ayub
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Md Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St. W., Hamilton, L8S 4K1, Canada.
- Department of Public Health, North South University, Dhaka, Bangladesh.
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Sabbir Hossain
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
3
|
Fatemi I, Dehdashtian E, Pourhanifeh MH, Mehrzadi S, Hosseinzadeh A. Therapeutic Application of Melatonin in the Treatment of Melanoma: A Review. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210526140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanoma is an aggressive type of skin cancer, which is responsible for more deaths
than nonmelanoma skin cancers. Therapeutic strategies include targeted therapy, biochemotherapy,
immunotherapy, photodynamic therapy, chemotherapy, and surgical resection. Depending on the
clinical stage, single or combination therapy may be used to prevent and treat cancer. Due to resistance
development during treatment courses, the efficacy of mentioned therapies can be reduced.
In addition to resistance, these treatments have serious side effects for melanoma patients. According
to available reports, melatonin, a pineal indolamine with a wide spectrum of biological potentials,
has anticancer features. Furthermore, melatonin could protect against chemotherapy- and radiation-
induced adverse events and can sensitize cancer cells to therapy. The present review discusses
the therapeutic application of melatonin in the treatment of melanoma. This review was carried
out in PubMed, Web of Science, and Scopus databases comprising the date of publication period
from January 1976 to March 2021.
Collapse
Affiliation(s)
- Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman,Iran
| | - Ehsan Dehdashtian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | | | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran,Iran
| |
Collapse
|
4
|
L’Hôte V, Courbeyrette R, Pinna G, Cintrat J, Le Pavec G, Delaunay‐Moisan A, Mann C, Thuret J. Ouabain and chloroquine trigger senolysis of BRAF-V600E-induced senescent cells by targeting autophagy. Aging Cell 2021; 20:e13447. [PMID: 34355491 PMCID: PMC8564827 DOI: 10.1111/acel.13447] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 01/10/2023] Open
Abstract
The expression of BRAF‐V600E triggers oncogene‐induced senescence in normal cells and is implicated in the development of several cancers including melanoma. Here, we report that cardioglycosides such as ouabain are potent senolytics in BRAF senescence. Sensitization by ATP1A1 knockdown and protection by supplemental potassium showed that senolysis by ouabain was mediated by the Na,K‐ATPase pump. Both ion transport inhibition and signal transduction result from cardioglycosides binding to Na,K‐ATPase. An inhibitor of the pump that does not trigger signaling was not senolytic despite blocking ion transport, demonstrating that signal transduction is required for senolysis. Ouabain triggered the activation of Src, p38, Akt, and Erk in BRAF‐senescent cells, and signaling inhibitors prevented cell death. The expression of BRAF‐V600E increased ER stress and autophagy in BRAF‐senescent cells and sensitized the cell to senolysis by ouabain. Ouabain inhibited autophagy flux, which was restored by signaling inhibitors. Consequently, we identified autophagy inhibitor chloroquine as a novel senolytic in BRAF senescence based on the mode of action of cardioglycosides. Our work underlies the interest of characterizing the mechanisms of senolytics to discover novel compounds and identifies the endoplasmic reticulum stress‐autophagy tandem as a new vulnerability in BRAF senescence that can be exploited for the development of further senolytic strategies.
Collapse
Affiliation(s)
- Valentin L’Hôte
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Régis Courbeyrette
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Guillaume Pinna
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Jean‐Christophe Cintrat
- Université Paris‐Saclay CEA INRAE Département Médicaments et Technologies pour la Santé (DMTS) SCBM Gif‐sur‐Yvette France
| | - Gwenaëlle Le Pavec
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Agnès Delaunay‐Moisan
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Carl Mann
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| | - Jean‐Yves Thuret
- Université Paris‐Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette Cedex France
| |
Collapse
|
5
|
Autophagy Inhibition in BRAF-Driven Cancers. Cancers (Basel) 2021; 13:cancers13143498. [PMID: 34298710 PMCID: PMC8306561 DOI: 10.3390/cancers13143498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary BRAF is a protein kinase that is frequently mutationally activated in cancer. Mutant BRAF can be pharmacologically inhibited, which in combination with blockade of its direct effector, MEK1/2, is an FDA-approved therapeutic strategy for several BRAF-mutated cancer patients, such as melanoma, non-small-cell lung carcinoma, and thyroid cancer. However, therapy resistance is a major clinical challenge, highlighting the need for comprehensive investigations on the biological causes of such resistance, as well as to develop novel therapeutic strategies to improve patient survival. Autophagy is a cellular recycling process, which has been shown to allow cancer cells to escape from BRAF inhibition. Combined blockade of autophagy and BRAF signaling is a novel therapeutic strategy that is currently being tested in clinical trials. This review describes the relationship between BRAF-targeted therapy and autophagy regulation and discusses possible future treatment strategies. Abstract Several BRAF-driven cancers, including advanced BRAFV600E/K-driven melanoma, non-small-cell lung carcinoma, and thyroid cancer, are currently treated using first-line inhibitor combinations of BRAFV600E plus MEK1/2. However, despite the success of this vertical inhibition strategy, the durability of patient response is often limited by the phenomenon of primary or acquired drug resistance. It has recently been shown that autophagy, a conserved cellular recycling process, is increased in BRAF-driven melanoma upon inhibition of BRAFV600E signaling. Autophagy is believed to promote tumor progression of established tumors and also to protect cancer cells from the cytotoxic effects of chemotherapy. To this end, BRAF inhibitor (BRAFi)-resistant cells often display increased autophagy compared to responsive lines. Several mechanisms have been proposed for BRAFi-induced autophagy, such as activation of the endoplasmic reticulum (ER) stress gatekeeper GRP78, AMP-activated protein kinase, and transcriptional regulation of the autophagy regulating transcription factors TFEB and TFE3 via ERK1/2 or mTOR inhibition. This review describes the relationship between BRAF-targeted therapy and autophagy regulation, and discusses possible future treatment strategies of combined inhibition of oncogenic signaling plus autophagy for BRAF-driven cancers.
Collapse
|
6
|
Jiménez-Mora E, Gallego B, Díaz-Gago S, Lasa M, Baquero P, Chiloeches A. V600EBRAF Inhibition Induces Cytoprotective Autophagy through AMPK in Thyroid Cancer Cells. Int J Mol Sci 2021; 22:ijms22116033. [PMID: 34204950 PMCID: PMC8199856 DOI: 10.3390/ijms22116033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
The dysregulation of autophagy is important in the development of many cancers, including thyroid cancer, where V600EBRAF is a main oncogene. Here, we analyse the effect of V600EBRAF inhibition on autophagy, the mechanisms involved in this regulation and the role of autophagy in cell survival of thyroid cancer cells. We reveal that the inhibition of V600EBRAF activity with its specific inhibitor PLX4720 or the depletion of its expression by siRNA induces autophagy in thyroid tumour cells. We show that V600EBRAF downregulation increases LKB1-AMPK signalling and decreases mTOR activity through a MEK/ERK-dependent mechanism. Moreover, we demonstrate that PLX4720 activates ULK1 and increases autophagy through the activation of the AMPK-ULK1 pathway, but not by the inhibition of mTOR. In addition, we find that autophagy blockade decreases cell viability and sensitize thyroid cancer cells to V600EBRAF inhibition by PLX4720 treatment. Finally, we generate a thyroid xenograft model to demonstrate that autophagy inhibition synergistically enhances the anti-proliferative and pro-apoptotic effects of V600EBRAF inhibition in vivo. Collectively, we uncover a new role of AMPK in mediating the induction of cytoprotective autophagy by V600EBRAF inhibition. In addition, these data establish a rationale for designing an integrated therapy targeting V600EBRAF and the LKB1-AMPK-ULK1-autophagy axis for the treatment of V600EBRAF-positive thyroid tumours.
Collapse
Affiliation(s)
- Eva Jiménez-Mora
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.J.-M.); (B.G.); (S.D.-G.); (P.B.)
| | - Beatriz Gallego
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.J.-M.); (B.G.); (S.D.-G.); (P.B.)
| | - Sergio Díaz-Gago
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.J.-M.); (B.G.); (S.D.-G.); (P.B.)
| | - Marina Lasa
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas “Alberto Sols”, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, 28029 Madrid, Spain;
| | - Pablo Baquero
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.J.-M.); (B.G.); (S.D.-G.); (P.B.)
| | - Antonio Chiloeches
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain; (E.J.-M.); (B.G.); (S.D.-G.); (P.B.)
- Correspondence:
| |
Collapse
|
7
|
Chern YJ, Tai IT. Adaptive response of resistant cancer cells to chemotherapy. Cancer Biol Med 2020; 17:842-863. [PMID: 33299639 PMCID: PMC7721100 DOI: 10.20892/j.issn.2095-3941.2020.0005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Despite advances in cancer therapeutics and the integration of personalized medicine, the development of chemoresistance in many patients remains a significant contributing factor to cancer mortality. Upon treatment with chemotherapeutics, the disruption of homeostasis in cancer cells triggers the adaptive response which has emerged as a key resistance mechanism. In this review, we summarize the mechanistic studies investigating the three major components of the adaptive response, autophagy, endoplasmic reticulum (ER) stress signaling, and senescence, in response to cancer chemotherapy. We will discuss the development of potential cancer therapeutic strategies in the context of these adaptive resistance mechanisms, with the goal of stimulating research that may facilitate the development of effective cancer therapy.
Collapse
Affiliation(s)
- Yi-Jye Chern
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z1L3, Canada.,Michael Smith Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia V5Z1L3, Canada
| |
Collapse
|
8
|
Tangella LP, Clark ME, Gray ES. Resistance mechanisms to targeted therapy in BRAF-mutant melanoma - A mini review. Biochim Biophys Acta Gen Subj 2020; 1865:129736. [PMID: 32956754 DOI: 10.1016/j.bbagen.2020.129736] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The introduction of targeted therapies for the treatment of BRAF-mutant melanomas have improved survival rates in a significant proportion of patients. Nonetheless, the emergence of resistance to treatment remains inevitable in most patients. SCOPE OF REVIEW Here, we review known and emerging molecular mechanisms that underlay the development of resistance to MAPK inhibition in melanoma cells and the potential strategies to overcome these mechanisms. MAJOR CONCLUSIONS Multiple genetic and non-genetic mechanisms contribute to treatment failure, commonly leading to the reactivation of the MAPK pathway. A variety of resistance mechanisms are enabled by the underlying heterogeneity and plasticity of melanoma cells. Moreover, it has become apparent that resistance to targeted therapy is underpinned by early functional adaptations involving the rewiring of cell states and metabolic pathways. GENERAL SIGNIFICANCE The evidence presented suggest that the use of a combinatorial treatment approach would delay the emergence of resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Lokeswari P Tangella
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Western Australia, Australia
| | - Michael E Clark
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Western Australia, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Western Australia, Australia.
| |
Collapse
|
9
|
Wu PK, Becker A, Park JI. Growth Inhibitory Signaling of the Raf/MEK/ERK Pathway. Int J Mol Sci 2020; 21:ijms21155436. [PMID: 32751750 PMCID: PMC7432891 DOI: 10.3390/ijms21155436] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
In response to extracellular stimuli, the Raf/MEK/extracellular signal-regulated kinase (ERK) pathway regulates diverse cellular processes. While mainly known as a mitogenic signaling pathway, the Raf/MEK/ERK pathway can mediate not only cell proliferation and survival but also cell cycle arrest and death in different cell types. Growing evidence suggests that the cell fate toward these paradoxical physiological outputs may be determined not only at downstream effector levels but also at the pathway level, which involves the magnitude of pathway activity, spatial-temporal regulation, and non-canonical functions of the molecular switches in this pathway. This review discusses recent updates on the molecular mechanisms underlying the pathway-mediated growth inhibitory signaling, with a major focus on the regulation mediated at the pathway level.
Collapse
Affiliation(s)
- Pui-Kei Wu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Correspondence: (P.-K.W.); (J.-I.P.)
| | - Andrew Becker
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (P.-K.W.); (J.-I.P.)
| |
Collapse
|
10
|
Hartman ML. Non-Apoptotic Cell Death Signaling Pathways in Melanoma. Int J Mol Sci 2020; 21:E2980. [PMID: 32340261 PMCID: PMC7215321 DOI: 10.3390/ijms21082980] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Resisting cell death is a hallmark of cancer. Disturbances in the execution of cell death programs promote carcinogenesis and survival of cancer cells under unfavorable conditions, including exposition to anti-cancer therapies. Specific modalities of regulated cell death (RCD) have been classified based on different criteria, including morphological features, biochemical alterations and immunological consequences. Although melanoma cells are broadly equipped with the anti-apoptotic machinery and recurrent genetic alterations in the components of the RAS/RAF/MEK/ERK signaling markedly contribute to the pro-survival phenotype of melanoma, the roles of autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and parthanatos have recently gained great interest. These signaling cascades are involved in melanoma cell response and resistance to the therapeutics used in the clinic, including inhibitors of BRAFmut and MEK1/2, and immunotherapy. In addition, the relationships between sensitivity to non-apoptotic cell death routes and specific cell phenotypes have been demonstrated, suggesting that plasticity of melanoma cells can be exploited to modulate response of these cells to different cell death stimuli. In this review, the current knowledge on the non-apoptotic cell death signaling pathways in melanoma cell biology and response to anti-cancer drugs has been discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
11
|
Alza L, Visa A, Herreros J, Cantí C. The rise of T-type channels in melanoma progression and chemotherapeutic resistance. Biochim Biophys Acta Rev Cancer 2020; 1873:188364. [PMID: 32275934 DOI: 10.1016/j.bbcan.2020.188364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Hyperactivation of the Mitogen Activated Protein Kinase (MAPK) pathway is prevalent in melanoma, principally due to mutations in the BRAF and NRAS genes. MAPK inhibitors are effective only short-term, and recurrence occurs due to functional redundancies or intertwined pathways. The remodeling of Ca2+ signaling is also common in melanoma cells, partly through the increased expression of T-type channels (TTCCs). Here we summarize current knowledge about the prognostic value and molecular targeting of TTCCs. Furthermore, we discuss recent evidence pointing to TTCCs as molecular switches for melanoma chemoresistance, which set the grounds for novel combined therapies against the advanced disease.
Collapse
Affiliation(s)
- Lía Alza
- Universitat de Lleida-IRBlLeida, Cell Calcium Signaling Lab, 25198, Rovira Roure, 80, Lleida, Spain
| | - Anna Visa
- Universitat de Lleida-IRBlLeida, Cell Calcium Signaling Lab, 25198, Rovira Roure, 80, Lleida, Spain
| | - Judit Herreros
- Universitat de Lleida-IRBlLeida, Cell Calcium Signaling Lab, 25198, Rovira Roure, 80, Lleida, Spain
| | - Carles Cantí
- Universitat de Lleida-IRBlLeida, Cell Calcium Signaling Lab, 25198, Rovira Roure, 80, Lleida, Spain.
| |
Collapse
|
12
|
Schwertheim S, Theurer S, Jastrow H, Herold T, Ting S, Westerwick D, Bertram S, Schaefer CM, Kälsch J, Baba HA, Schmid KW. New insights into intranuclear inclusions in thyroid carcinoma: Association with autophagy and with BRAFV600E mutation. PLoS One 2019; 14:e0226199. [PMID: 31841566 PMCID: PMC6913918 DOI: 10.1371/journal.pone.0226199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Intranuclear inclusions (NI) in normal and neoplastic tissues have been known for years, representing one of the diagnostic criteria for papillary thyroid carcinoma (PTC). BRAF activation is involved among others in autophagy. NI in hepatocellular carcinoma contain autophagy-associated proteins. Our aim was to clarify if NI in thyroid carcinoma (TC) have a biological function. Methods NI in 107 paraffin-embedded specimens of TC including all major subtypes were analyzed. We considered an inclusion as positive if it was delimited by a lamin AC (nuclear membrane marker) stained intact membrane and completely closed. Transmission electron microscopy (TEM), immunohistochemistry (IHC), immunofluorescence (IF) and 3D reconstruction were performed to investigate content and shape of NI; BRAFV600E mutation was analyzed by next generation sequencing. Results In 29% of the TCs at least one lamin AC positive intranuclear inclusion was detected; most frequently (76%) in PTCs. TEM analyses revealed degenerated organelles and heterolysosomes within such NI; 3D reconstruction of IF stained nuclei confirmed complete closure by the nuclear membrane without any contact to the cytoplasm. NI were positively stained for the autophagy-associated proteins LC3B, ubiquitin, cathepsin D, p62/sequestosome1 and cathepsin B in 14–29% of the cases. Double-IF revealed co-localization of LC3B & ubiquitin, p62 & ubiquitin and LC3B & p62 in the same NI. BRAFV600E mutation, exclusively detected in PTCs, was significantly associated with the number of NI/PTC (p = 0.042) and with immunoreactivity for autophagy-associated proteins in the NI (p≤0.035). BRAF-IHC revealed that some of these BRAF-positive thyrocytes contained mutant BRAF in their NI co-localized with autophagy-associated proteins. Conclusions NI are completely delimited by nuclear membrane in TC. The presence of autophagy-associated proteins within the NI together with degenerated organelles and lysosomal proteases suggests their involvement in autophagy and proteolysis. Whether and how BRAFV600E protein is degraded in NI needs further investigation.
Collapse
Affiliation(s)
- Suzan Schwertheim
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail: (HAB); (SS)
| | - Sarah Theurer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Holger Jastrow
- Institute of Anatomy and Electron Microscopy Unit of Imaging Center Essen, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Ting
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Westerwick
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefanie Bertram
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph M. Schaefer
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia Kälsch
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Hideo A. Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail: (HAB); (SS)
| | - Kurt W. Schmid
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Using personalized medicine in gliomas: a genomic approach to diagnosis and overcoming treatment resistance in a case with pleomorphic xanthoastrocytoma. J Neurol 2019; 267:783-790. [PMID: 31748891 PMCID: PMC7035305 DOI: 10.1007/s00415-019-09575-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023]
Abstract
INTRODUCTION A patient who was initially considered to have a glioblastoma (GBM) had molecular analysis, showing that it was a pleomorphic xanthoastrocytoma (PXA). Up to 78% of PXA tumors have BRAF V600E mutations. Primary brain tumors with BRAF mutations can have a good response to BRAF MEK inhibitors (BRAF MEKi), and there may be a synergistic response when combined with autophagy inhibitors. PRESENTATION OF THE CASE A 20-year-old man found to have a large brain mass with midline shift underwent resection. He was diagnosed with "GBM" and treated with radiation and temozolomide with subsequent disease recurrence. Review of histology showed malignant PXA with BRAF V600E mutation. Treatment with Dabrafenib and Trametinib was started, and tumor size increased in size after 14 months of treatment. Given studies showing that resistance to BRAF inhibition can be overcome by autophagy inhibition, chloroquine was added. Patient has been on "triple" therapy for 15 months and has radiographically Stable Disease. At MCC, 3% of patients with gliomas have BRAF mutations who could potentially benefit from this combination therapy. CONCLUSION This is the first report of a PXA patient receiving therapy with BRAF MEKi and an autophagy inhibitor with prolonged stable disease. This patient highlights the importance of a molecular interrogation in gliomas to provide an integrated diagnosis and effective treatment. This may be useful in up to 3% of glioma patients with BRAF mutations. Molecular testing in neuro-oncology is providing new avenues of diagnosis and treatment, and detailed molecular interrogation should be considered routine.
Collapse
|
14
|
Yang S, Yang L, Li X, Li B, Li Y, Zhang X, Ma Y, Peng X, Jin H, Li H. New insights into autophagy in hepatocellular carcinoma: mechanisms and therapeutic strategies. Am J Cancer Res 2019; 9:1329-1353. [PMID: 31392073 PMCID: PMC6682711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023] Open
Abstract
Autophagy is a mechanism by which cellular substances are transported to lysosomes for degradation, allowing the basic transformation of cellular components, and providing energy and macromolecular precursors. In cancer, the contradictory role of autophagy in tumor suppression and promotion has been widely acknowledged. Activation and suppression of autophagy have been proposed as cancer therapies, resulting in targeted treatment of cancer by autophagy being considered ambiguous. The dynamic effect of autophagy can also be applied to hepatocellular carcinoma (HCC), a malignant tumor with high incidence and a low survival rate. In this review, we introduce characteristics of different types of autophagy and summarize which genes, non-coding RNAs, and related signaling pathways are involved in autophagy and the regulation of the formation and progress of HCC. More importantly, we discuss the role of autophagy in the treatment of HCC, such as in traditional chemotherapy, molecular targeted drugs, and natural products.
Collapse
Affiliation(s)
- Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Xiaodong Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University Shenyang 110000, P. R. China
| |
Collapse
|
15
|
Leung GP, Feng T, Sigoillot FD, Geyer FC, Shirley MD, Ruddy DA, Rakiec DP, Freeman AK, Engelman JA, Jaskelioff M, Stuart DD. Hyperactivation of MAPK Signaling Is Deleterious to RAS/RAF-mutant Melanoma. Mol Cancer Res 2018; 17:199-211. [DOI: 10.1158/1541-7786.mcr-18-0327] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/25/2018] [Accepted: 08/30/2018] [Indexed: 11/16/2022]
|
16
|
Yeh E, Dao DQ, Wu ZY, Kandalam SM, Camacho FM, Tom C, Zhang W, Krencik R, Rauen KA, Ullian EM, Weiss LA. Patient-derived iPSCs show premature neural differentiation and neuron type-specific phenotypes relevant to neurodevelopment. Mol Psychiatry 2018; 23:1687-1698. [PMID: 29158583 PMCID: PMC5962360 DOI: 10.1038/mp.2017.238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/13/2017] [Accepted: 10/09/2017] [Indexed: 01/01/2023]
Abstract
Ras/MAPK pathway signaling is a major participant in neurodevelopment, and evidence suggests that BRAF, a key Ras signal mediator, influences human behavior. We studied the role of the mutation BRAFQ257R, the most common cause of cardiofaciocutaneous syndrome (CFC), in an induced pluripotent stem cell (iPSC)-derived model of human neurodevelopment. In iPSC-derived neuronal cultures from CFC subjects, we observed decreased p-AKT and p-ERK1/2 compared to controls, as well as a depleted neural progenitor pool and rapid neuronal maturation. Pharmacological PI3K/AKT pathway manipulation recapitulated cellular phenotypes in control cells and attenuated them in CFC cells. CFC cultures displayed altered cellular subtype ratios and increased intrinsic excitability. Moreover, in CFC cells, Ras/MAPK pathway activation and morphological abnormalities exhibited cell subtype-specific differences. Our results highlight the importance of exploring specific cellular subtypes and of using iPSC models to reveal relevant human-specific neurodevelopmental events.
Collapse
Affiliation(s)
- E Yeh
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - D Q Dao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Z Y Wu
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - S M Kandalam
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - F M Camacho
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - C Tom
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - W Zhang
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - R Krencik
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - K A Rauen
- Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - E M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - L A Weiss
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Maiques O, Barceló C, Panosa A, Pijuan J, Orgaz JL, Rodriguez-Hernandez I, Matas-Nadal C, Tell G, Vilella R, Fabra A, Puig S, Sanz-Moreno V, Matias-Guiu X, Canti C, Herreros J, Marti RM, Macià A. T-type calcium channels drive migration/invasion in BRAFV600E melanoma cells through Snail1. Pigment Cell Melanoma Res 2018; 31:484-495. [PMID: 29385656 DOI: 10.1111/pcmr.12690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/23/2017] [Indexed: 12/26/2022]
Abstract
Melanoma is a malignant tumor derived from melanocytes. Once disseminated, it is usually highly resistant to chemotherapy and is associated with poor prognosis. We have recently reported that T-type calcium channels (TTCCs) are overexpressed in melanoma cells and play an important role in melanoma progression. Importantly, TTCC pharmacological blockers reduce proliferation and deregulate autophagy leading to apoptosis. Here, we analyze the role of autophagy during migration/invasion of melanoma cells. TTCC Cav3.1 and LC3-II proteins are highly expressed in BRAFV600E compared with NRAS mutant melanomas, both in cell lines and biopsies. Chloroquine, pharmacological blockade, or gene silencing of TTCCs inhibit the autophagic flux and impair the migration and invasion capabilities, specifically in BRAFV600E melanoma cells. Snail1 plays an important role in motility and invasion of melanoma cells. We show that Snail1 is strongly expressed in BRAFV600E melanoma cells and patient biopsies, and its expression decreases when autophagy is blocked. These results demonstrate a role of Snail1 during BRAFV600E melanoma progression and strongly suggest that targeting macroautophagy and, particularly TTCCs, might be a good therapeutic strategy to inhibit metastasis of the most common melanoma type (BRAFV600E).
Collapse
Affiliation(s)
| | | | | | | | - Jose L Orgaz
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London, UK
| | - Irene Rodriguez-Hernandez
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London, UK
| | - Clara Matas-Nadal
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain
| | - Gemma Tell
- Melanoma Unit, Department of Dermatology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centre of Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ramón Vilella
- Department of Immunology, Hospital Clínic, Barcelona, Spain
| | - Angels Fabra
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Susana Puig
- Melanoma Unit, Department of Dermatology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centre of Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Victoria Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London, UK
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain.,Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain.,Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anna Macià
- University of Lleida, IRBLleida, Lleida, Spain
| |
Collapse
|
18
|
Sample A, He YY. Mechanisms and prevention of UV-induced melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 34:13-24. [PMID: 28703311 PMCID: PMC5760354 DOI: 10.1111/phpp.12329] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
Melanoma is the deadliest form of skin cancer and its incidence is rising, creating a costly and significant clinical problem. Exposure to ultraviolet (UV) radiation, namely UVA (315-400 nm) and UVB (280-315 nm), is a major risk factor for melanoma development. Cumulative UV radiation exposure from sunlight or tanning beds contributes to UV-induced DNA damage, oxidative stress, and inflammation in the skin. A number of factors, including hair color, skin type, genetic background, location, and history of tanning, determine the skin's response to UV radiation. In melanocytes, dysregulation of this UV radiation response can lead to melanoma. Given the complex origins of melanoma, it is difficult to develop curative therapies and universally effective preventative strategies. Here, we describe and discuss the mechanisms of UV-induced skin damage responsible for inducing melanomagenesis, and explore options for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Ashley Sample
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
19
|
Hammerlindl H, Ravindran Menon D, Hammerlindl S, Emran AA, Torrano J, Sproesser K, Thakkar D, Xiao M, Atkinson VG, Gabrielli B, Haass NK, Herlyn M, Krepler C, Schaider H. Acetylsalicylic Acid Governs the Effect of Sorafenib in RAS-Mutant Cancers. Clin Cancer Res 2017; 24:1090-1102. [PMID: 29196297 DOI: 10.1158/1078-0432.ccr-16-2118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/27/2017] [Accepted: 10/26/2017] [Indexed: 01/07/2023]
Abstract
Purpose: Identify and characterize novel combinations of sorafenib with anti-inflammatory painkillers to target difficult-to-treat RAS-mutant cancer.Experimental Design: The cytotoxicity of acetylsalicylic acid (aspirin) in combination with the multikinase inhibitor sorafenib (Nexavar) was assessed in RAS-mutant cell lines in vitro The underlying mechanism for the increased cytotoxicity was investigated using selective inhibitors and shRNA-mediated gene knockdown. In vitro results were confirmed in RAS-mutant xenograft mouse models in vivoResults: The addition of aspirin but not isobutylphenylpropanoic acid (ibruprofen) or celecoxib (Celebrex) significantly increased the in vitro cytotoxicity of sorafenib. Mechanistically, combined exposure resulted in increased BRAF/CRAF dimerization and the simultaneous hyperactivation of the AMPK and ERK pathways. Combining sorafenib with other AMPK activators, such as metformin or A769662, was not sufficient to decrease cell viability due to sole activation of the AMPK pathway. The cytotoxicity of sorafenib and aspirin was blocked by inhibition of the AMPK or ERK pathways through shRNA or via pharmacologic inhibitors of RAF (LY3009120), MEK (trametinib), or AMPK (compound C). The combination was found to be specific for RAS/RAF-mutant cells and had no significant effect in RAS/RAF-wild-type keratinocytes or melanoma cells. In vivo treatment of human xenografts in NSG mice with sorafenib and aspirin significantly reduced tumor volume compared with each single-agent treatment.Conclusions: Combination sorafenib and aspirin exerts cytotoxicity against RAS/RAF-mutant cells by simultaneously affecting two independent pathways and represents a promising novel strategy for the treatment of RAS-mutant cancers. Clin Cancer Res; 24(5); 1090-102. ©2017 AACR.
Collapse
Affiliation(s)
- Heinz Hammerlindl
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Dinoop Ravindran Menon
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Sabrina Hammerlindl
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Abdullah Al Emran
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Joachim Torrano
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | | | - Divya Thakkar
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Min Xiao
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Victoria G Atkinson
- Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Brian Gabrielli
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Nikolas K Haass
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | | | | | - Helmut Schaider
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia. .,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
20
|
Turriani E, Lázaro DF, Ryazanov S, Leonov A, Giese A, Schön M, Schön MP, Griesinger C, Outeiro TF, Arndt-Jovin DJ, Becker D. Treatment with diphenyl-pyrazole compound anle138b/c reveals that α-synuclein protects melanoma cells from autophagic cell death. Proc Natl Acad Sci U S A 2017; 114:E4971-E4977. [PMID: 28584093 PMCID: PMC5488931 DOI: 10.1073/pnas.1700200114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent epidemiological and clinical studies have reported a significantly increased risk for melanoma in people with Parkinson's disease. Because no evidence could be obtained that genetic factors are the reason for the association between these two diseases, we hypothesized that of the three major Parkinson's disease-related proteins-α-synuclein, LRRK2, and Parkin-α-synuclein might be a major link. Our data, presented here, demonstrate that α-synuclein promotes the survival of primary and metastatic melanoma cells, which is the exact opposite of the effect that α-synuclein has on dopaminergic neurons, where its accumulation causes neuronal dysfunction and death. Because this detrimental effect of α-synuclein on neurons can be rescued by the small molecule anle138b, we explored its effect on melanoma cells. We found that treatment with anle138b leads to massive melanoma cell death due to a major dysregulation of autophagy, suggesting that α-synuclein is highly beneficial to advanced melanoma because it ensures that autophagy is maintained at a homeostatic level that promotes and ensures the cell's survival.
Collapse
Affiliation(s)
- Elisa Turriani
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Diana F Lázaro
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Sergey Ryazanov
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-University Göttingen, 37073 Göttingen, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Andrei Leonov
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-University Göttingen, 37073 Göttingen, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Margarete Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Christian Griesinger
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-University Göttingen, 37073 Göttingen, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-University Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Donna J Arndt-Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dorothea Becker
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany;
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Liu L, Liao JZ, He XX, Li PY. The role of autophagy in hepatocellular carcinoma: friend or foe. Oncotarget 2017; 8:57707-57722. [PMID: 28915706 PMCID: PMC5593678 DOI: 10.18632/oncotarget.17202] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an evolutionarily conserved lysosome-dependent catabolic process which degrades cell’s components in order to recycle substrates to exert optimally and adapt to tough circumstances. It is a critical cellular homeostatic mechanism with stress resistance, immunity, antiaging, and pro-tumor or anti-tumor effects. Among these, the role of autophagy in cancer is the most eye-catching that is not immutable but dynamic and highly complex. Basal autophagy acts as a tumor suppressor by maintaining genomic stability in normal cells. However, once a tumor is established, unbalanced autophagy will contribute to carcinoma cell survival under tumor microenvironment and in turn promote tumor growth and development. The dynamic role of autophagy can also apply on hepatocellular carcinoma (HCC). HCC is a highly malignant cancer with high morbidity and poor survival rate. Decline or overexpression of autophagic essential genes such as ATG7, ATG5 or Beclin 1 plays a key role in the occurrence and development of HCC but the exact mechanisms are still highly controversial. Signaling pathways or molecules involving in autophagy, for example PI3K/AKT/mTOR pathway, ERK/MAPK pathway, PERK pathway, p53, LncRNA PTENP1 (Long non-coding RNA PTENP1), microRNA-375 and so on, occupy an important position in the complex role of autophagy in HCC. Here, we discuss the dynamic role, the signaling pathways and the potential prognostic and therapy value of autophagy in HCC.
Collapse
Affiliation(s)
- Lian Liu
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Zhi Liao
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Yuan Li
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Maiques O, Macià A, Moreno S, Barceló C, Santacana M, Vea A, Herreros J, Gatius S, Ortega E, Valls J, Chen BJ, Llobet-Navas D, Matias-Guiu X, Cantí C, Marti RM. Immunohistochemical analysis of T-type calcium channels in acquired melanocytic naevi and melanoma. Br J Dermatol 2017; 176:1247-1258. [PMID: 27718503 DOI: 10.1111/bjd.15121] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cutaneous malignant melanoma arises from transformed melanocytes de novo or from congenital or acquired melanocytic naevi. We have recently reported that T-type Ca2+ channels (TT-Cs) are upregulated in human melanoma and play an important role in cell proliferation. OBJECTIVES To describe for the first time in formalin-fixed paraffin-embedded tissue the immunoexpression of TT-Cs in biopsies of normal skin, acquired melanocytic naevi and melanoma, in order to evaluate their role in melanomagenesis and/or tumour progression, their utility as prognostic markers and their possible use in targeted therapies. METHODS Tissue samples from normal skin, melanocytic naevi and melanoma were subjected to immunohistochemistry for two TT-Cs (Cav3.1, Cav3.2); markers of proliferation (Ki67), the cell cycle (cyclin D1), hypoxia (Glut1), vascularization (CD31) and autophagy (LC3); BRAF V600E mutation (VE1) and phosphatase and tensin homologue (PTEN). Immunostaining was evaluated by histoscore. In silico analysis was used to assess the prognostic value of TT-C overexpression. RESULTS TT-C immunoexpression increased gradually from normal skin to common naevi, dysplastic naevi and melanoma samples, but with differences in the distribution of both isoforms. Particularly, Cav3.2 expression was significantly higher in metastatic melanoma than in primary melanoma. Statistical correlation showed a linear interaction between PTEN loss/BRAF V600E/Cav3.1/LC3/ Ki67/cyclin D1/Cav3.2/Glut1. Disease-free survival (DFS) and overall survival correlated inversely with overexpression of Cav3.2. DFS also correlated inversely with overexpression of Cav3.1. CONCLUSIONS TT-C immunoexpression on melanocytic neoplasms is consistent with our previous in vitro studies and appears to be related to tumour progression. TT-C upregulation can be considered as a prognostic marker using The Cancer Genome Atlas database. The high expression of Cav3.2 in metastatic melanoma encourages the investigation of the use of TT-C blockers in targeted therapies.
Collapse
Affiliation(s)
- O Maiques
- University of Lleida, IRBLleida, Lleida, Spain
| | - A Macià
- University of Lleida, IRBLleida, Lleida, Spain
| | - S Moreno
- Department of Dermatology, Hospital Universitari Arnau de Vilanova; University of Lleida, IRBLleida, Lleida, Spain
| | - C Barceló
- University of Lleida, IRBLleida, Lleida, Spain
| | - M Santacana
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova; University of Lleida, IRBLleida, Lleida, Spain
| | - A Vea
- Department of Dermatology, Hospital Universitari Arnau de Vilanova; University of Lleida, IRBLleida, Lleida, Spain
| | - J Herreros
- University of Lleida, IRBLleida, Lleida, Spain
| | - S Gatius
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova; University of Lleida, IRBLleida, Lleida, Spain
| | - E Ortega
- Department of Oncology, Hospital Universitari Arnau de Vilanova; University of Lleida, IRBLleida, Lleida, Spain
| | - J Valls
- Biostatistics Unit, IRBLleida, Lleida, Spain
| | - B J Chen
- New York Genome Center, New York, NY, U.S.A
| | - D Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, U.K
| | - X Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova; University of Lleida, IRBLleida, Lleida, Spain
| | - C Cantí
- University of Lleida, IRBLleida, Lleida, Spain
| | - R M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova; University of Lleida, IRBLleida, Lleida, Spain
| |
Collapse
|
23
|
Tang DYL, Ellis RA, Lovat PE. Prognostic Impact of Autophagy Biomarkers for Cutaneous Melanoma. Front Oncol 2016; 6:236. [PMID: 27882308 PMCID: PMC5101199 DOI: 10.3389/fonc.2016.00236] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
Prognosis and survival for malignant melanoma is highly dependent on early diagnosis and treatment. While the American Joint Committee on Cancer (AJCC) criterion provides a means of staging melanomas and guiding treatment approaches, it is unable to identify the risk of disease progression of early stage tumors or provide reliable stratification for novel adjuvant therapies. The demand for credible prognostic/companion biomarkers able to identify high-risk melanoma subgroups as well as guide more effective personalized/precision-based therapy is therefore of paramount importance. Autophagy, the principle lysosomal-mediated process for the degradation/recycling of cellular debris, is a hot topic in cancer medicine, and observations of its deregulation in melanoma have brought its potential as a prognostic biomarker to the forefront of current research. Key regulatory proteins, including Atg8/microtubule-associated light chain 3 (LC3) and BECN1 (Beclin 1), have been proposed as potential prognostic biomarkers. However, given the dynamic nature of autophagy, their expression in vitro does not translate to their use as a prognostic biomarker for melanoma in vivo. We have recently identified the expression levels of Sequestosome1/SQSTM1 (p62) and activating molecule in Beclin 1-regulated autophagy protein 1 (AMBRA1) as novel independent prognostic biomarkers for early stage melanomas. While increasing followed by subsequent decreasing levels of p62 expression reflects the paradoxical role of autophagy in melanoma, expression levels additionally define a novel prognostic biomarker for AJCC stage II tumors. Conversely, loss of AMBRA1 in the epidermis overlying primary melanomas defines a novel prognostic biomarker for AJCC stage I tumors. Collectively, the definition of AMBRA1 and p62 as prognostic biomarkers for early stage melanomas provides novel and accurate means through which to identify tumors at risk of disease progression, facilitating earlier patient therapeutic intervention and stratification tools for novel personalized therapeutic approaches to improve clinical outcome.
Collapse
Affiliation(s)
- Diana Y L Tang
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK; Dermatology, The James Cook University Hospital, Middlesbrough, UK
| | - Robert A Ellis
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK; Dermatology, The James Cook University Hospital, Middlesbrough, UK
| | - Penny E Lovat
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle-upon-Tyne , UK
| |
Collapse
|
24
|
New insight into the role of metabolic reprogramming in melanoma cells harboring BRAF mutations. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2710-2718. [PMID: 27542908 DOI: 10.1016/j.bbamcr.2016.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/04/2016] [Accepted: 08/13/2016] [Indexed: 11/24/2022]
Abstract
This study explores the V600BRAF-MITF-PGC-1α axis and compares metabolic and functional changes occurring in primary and metastatic V600BRAF melanoma cell lines. V600BRAF mutations in homo/heterozygosis were found to be correlated to high levels of pERK, to downregulate PGC-1α/β, MITF and tyrosinase activity, resulting in a reduced melanin synthesis as compared to BRAFwt melanoma cells. In this scenario, V600BRAF switches on a metabolic reprogramming in melanoma, leading to a decreased OXPHOS activity and increased glycolytic ATP, lactate, HIF-1α and MCT4 levels. Furthermore, the induction of autophagy and the presence of ER stress markers in V600BRAF metastatic melanoma cells suggest that metabolic adaptations of these cells occur as compensatory survival mechanisms. For the first time, we underline the role of peIF2α as an important marker of metastatic behaviour in melanoma. Our results suggest the hypothesis that inhibition of the glycolytic pathway, inactivation of peIF2α and a reduction of basal autophagy could be suitable targets for novel combination therapies in a specific subgroup of metastatic melanoma.
Collapse
|
25
|
García-Fernández M, Karras P, Checinska A, Cañón E, Calvo GT, Gómez-López G, Cifdaloz M, Colmenar A, Espinosa-Hevia L, Olmeda D, Soengas MS. Metastatic risk and resistance to BRAF inhibitors in melanoma defined by selective allelic loss of ATG5. Autophagy 2016; 12:1776-1790. [PMID: 27464255 DOI: 10.1080/15548627.2016.1199301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Melanoma is a paradigm of aggressive tumors with a complex and heterogeneous genetic background. Still, melanoma cells frequently retain developmental traits that trace back to lineage specification programs. In particular, lysosome-associated vesicular trafficking is emerging as a melanoma-enriched lineage dependency. However, the contribution of other lysosomal functions such as autophagy to melanoma progression is unclear, particularly in the context of metastasis and resistance to targeted therapy. Here we mined a broad spectrum of cancers for a meta-analysis of mRNA expression, copy number variation and prognostic value of 13 core autophagy genes. This strategy identified heterozygous loss of ATG5 at chromosome band 6q21 as a distinctive feature of advanced melanomas. Importantly, partial ATG5 loss predicted poor overall patient survival in a manner not shared by other autophagy factors and not recapitulated in other tumor types. This prognostic relevance of ATG5 copy number was not evident for other 6q21 neighboring genes. Melanocyte-specific mouse models confirmed that heterozygous (but not homozygous) deletion of Atg5 enhanced melanoma metastasis and compromised the response to targeted therapy (exemplified by dabrafenib, a BRAF inhibitor in clinical use). Collectively, our results support ATG5 as a therapeutically relevant dose-dependent rheostat of melanoma progression. Moreover, these data have important translational implications in drug design, as partial blockade of autophagy genes may worsen (instead of counteracting) the malignant behavior of metastatic melanomas.
Collapse
Affiliation(s)
- María García-Fernández
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Panagiotis Karras
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Agnieszka Checinska
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Estela Cañón
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Guadalupe T Calvo
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Gonzalo Gómez-López
- b Bioinformatics Unit , Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Metehan Cifdaloz
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Angel Colmenar
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Luis Espinosa-Hevia
- c Cytogenetics Unit , Spanish National Cancer Research Center (CNIO) , Madrid , Spain
| | - David Olmeda
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - María S Soengas
- a Melanoma Laboratory , Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| |
Collapse
|
26
|
Wiersma VR, de Bruyn M, Wei Y, van Ginkel RJ, Hirashima M, Niki T, Nishi N, Zhou J, Pouwels SD, Samplonius DF, Nijman HW, Eggleton P, Helfrich W, Bremer E. The epithelial polarity regulator LGALS9/galectin-9 induces fatal frustrated autophagy in KRAS mutant colon carcinoma that depends on elevated basal autophagic flux. Autophagy 2016; 11:1373-88. [PMID: 26086204 PMCID: PMC4590647 DOI: 10.1080/15548627.2015.1063767] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oncogenic mutation of KRAS (Kirsten rat sarcoma viral oncogene homolog) in colorectal cancer (CRC) confers resistance to both chemotherapy and EGFR (epidermal growth factor receptor)-targeted therapy. We uncovered that KRAS mutant (KRASmut) CRC is uniquely sensitive to treatment with recombinant LGALS9/Galectin-9 (rLGALS9), a recently established regulator of epithelial polarity. Upon treatment of CRC cells, rLGALS9 rapidly internalizes via early- and late-endosomes and accumulates in the lysosomal compartment. Treatment with rLGALS9 is accompanied by induction of frustrated autophagy in KRASmut CRC, but not in CRC with BRAF (B-Raf proto-oncogene, serine/threonine kinase) mutations (BRAFmut). In KRASmut CRC, rLGALS9 acts as a lysosomal inhibitor that inhibits autophagosome-lysosome fusion, leading to autophagosome accumulation, excessive lysosomal swelling and cell death. This antitumor activity of rLGALS9 directly correlates with elevated basal autophagic flux in KRASmut cancer cells. Thus, rLGALS9 has potent antitumor activity toward refractory KRASmut CRC cells that may be exploitable for therapeutic use.
Collapse
Affiliation(s)
- Valerie R Wiersma
- a University of Groningen; University Medical Center Groningen; Department of Surgery; Translational Surgical Oncology ; Groningen , The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bikas A, Jensen K, Patel A, Costello J, McDaniel D, Klubo-Gwiezdzinska J, Larin O, Hoperia V, Burman KD, Boyle L, Wartofsky L, Vasko V. Glucose-deprivation increases thyroid cancer cells sensitivity to metformin. Endocr Relat Cancer 2015; 22:919-32. [PMID: 26362676 DOI: 10.1530/erc-15-0402] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 01/23/2023]
Abstract
Metformin inhibits thyroid cancer cell growth. We sought to determine if variable glucose concentrations in medium alter the anti-cancer efficacy of metformin. Thyroid cancer cells (FTC133 and BCPAP) were cultured in high-glucose (20 mM) and low-glucose (5 mM) medium before treatment with metformin. Cell viability and apoptosis assays were performed. Expression of glycolytic genes was examined by real-time PCR, western blot, and immunostaining. Metformin inhibited cellular proliferation in high-glucose medium and induced cell death in low-glucose medium. In low-, but not in high-glucose medium, metformin induced endoplasmic reticulum stress, autophagy, and oncosis. At micromolar concentrations, metformin induced phosphorylation of AMP-activated protein kinase and blocked p-pS6 in low-glucose medium. Metformin increased the rate of glucose consumption from the medium and prompted medium acidification. Medium supplementation with glucose reversed metformin-inducible morphological changes. Treatment with an inhibitor of glycolysis (2-deoxy-d-glucose (2-DG)) increased thyroid cancer cell sensitivity to metformin. The combination of 2-DG with metformin led to cell death. Thyroid cancer cell lines were characterized by over-expression of glycolytic genes, and metformin decreased the protein level of pyruvate kinase muscle 2 (PKM2). PKM2 expression was detected in recurrent thyroid cancer tissue samples. In conclusion, we have demonstrated that the glucose concentration in the cellular milieu is a factor modulating metformin's anti-cancer activity. These data suggest that the combination of metformin with inhibitors of glycolysis could represent a new strategy for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Athanasios Bikas
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| | - Kirk Jensen
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| | - Aneeta Patel
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| | - John Costello
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| | - Dennis McDaniel
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| | - Joanna Klubo-Gwiezdzinska
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| | - Olexander Larin
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| | - Victoria Hoperia
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| | - Kenneth D Burman
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| | - Lisa Boyle
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| | - Leonard Wartofsky
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| | - Vasyl Vasko
- Division of EndocrinologyDepartment of Medicine, Medstar Washington Hospital Center, 110 Irving Street Northwest, Washington, District of Columbia 20010, USADepartment of PediatricsUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USABiomedical Instrumental CenterUniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4712, USACenter for Endocrine SurgeryKiev, UkraineDepartment of SurgeryMedstar Georgetown University Hospital, 3800 Reservoir Road, Washington, District of Columbia 20007, USA
| |
Collapse
|
28
|
Hassan M, Selimovic D, Hannig M, Haikel Y, Brodell RT, Megahed M. Endoplasmic reticulum stress-mediated pathways to both apoptosis and autophagy: Significance for melanoma treatment. World J Exp Med 2015; 5:206-217. [PMID: 26618107 PMCID: PMC4655250 DOI: 10.5493/wjem.v5.i4.206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/29/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer. Disrupted intracellular signaling pathways are responsible for melanoma's extraordinary resistance to current chemotherapeutic modalities. The pathophysiologic basis for resistance to both chemo- and radiation therapy is rooted in altered genetic and epigenetic mechanisms that, in turn, result in the impairing of cell death machinery and/or excessive activation of cell growth and survival-dependent pathways. Although most current melanoma therapies target mitochondrial dysregulation, there is increasing evidence that endoplasmic reticulum (ER) stress-associated pathways play a role in the potentiation, initiation and maintenance of cell death machinery and autophagy. This review focuses on the reliability of ER-associated pathways as therapeutic targets for melanoma treatment.
Collapse
|
29
|
Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human melanoma cells. Oncotarget 2015; 5:11237-51. [PMID: 25365078 PMCID: PMC4294377 DOI: 10.18632/oncotarget.2616] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 10/21/2014] [Indexed: 01/07/2023] Open
Abstract
Reduction in the expression of the anti-survival BH3-only proteins PUMA and Bim is associated with the pathogenesis of melanoma. However, we have found that the expression of the other BH3-only protein Noxa is commonly upregulated in melanoma cells, and that this is driven by oncogenic activation of MEK/ERK. Immunohistochemistry studies showed that Noxa was expressed at higher levels in melanomas than nevi. Moreover, the expression of Noxa was increased in metastatic compared to primary melanomas, and in thick primaries compared to thin primaries. Inhibition of oncogenic BRAFV600E or MEK downregulated Noxa, whereas activation of MEK/ERK caused its upregulation. In addition, introduction of BRAFV600E increased Noxa expression in melanocytes. Upregulation of Noxa was due to a transcriptional increase mediated by cAMP responsive element binding protein, activation of which was also increased by MEK/ERK signaling in melanoma cells. Significantly, Noxa appeared necessary for constitutive activation of autophagy, albeit at low levels, by MEK/ERK in melanoma cells. Furthermore, it was required for autophagy activation that delayed apoptosis in melanoma cells undergoing nutrient deprivation. These results reveal that oncogenic activation of MEK/ERK drives Noxa expression to promote autophagy, and suggest that Noxa has an indirect anti-apoptosis role in melanoma cells under nutrient starvation conditions.
Collapse
|
30
|
Corazzari M, Rapino F, Ciccosanti F, Giglio P, Antonioli M, Conti B, Fimia GM, Lovat PE, Piacentini M. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ 2015; 22:946-58. [PMID: 25361077 PMCID: PMC4423179 DOI: 10.1038/cdd.2014.183] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 01/11/2023] Open
Abstract
The notorious unresponsiveness of metastatic cutaneous melanoma to current treatment strategies coupled with its increasing incidence constitutes a serious worldwide clinical problem. Moreover, despite recent advances in targeted therapies for patients with BRAF(V600E) mutant melanomas, acquired resistance remains a limiting factor and hence emphasises the acute need for comprehensive pre-clinical studies to increase the biological understanding of such tumours in order to develop novel effective and longlasting therapeutic strategies. Autophagy and ER stress both have a role in melanoma development/progression and chemoresistance although their real impact is still unclear. Here, we show that BRAF(V600E) induces a chronic ER stress status directly increasing basal cell autophagy. BRAF(V600E)-mediated p38 activation stimulates both the IRE1/ASK1/JNK and TRB3 pathways. Bcl-XL/Bcl-2 phosphorylation by active JNK releases Beclin1 whereas TRB3 inhibits the Akt/mTor axes, together resulting in an increase in basal autophagy. Furthermore, we demonstrate chemical chaperones relieve the BRAF(V600E)-mediated chronic ER stress status, consequently reducing basal autophagic activity and increasing the sensitivity of melanoma cells to apoptosis. Taken together, these results suggest enhanced basal autophagy, typically observed in BRAF(V600E) melanomas, is a consequence of a chronic ER stress status, which ultimately results in the chemoresistance of such tumours. Targeted therapies that attenuate ER stress may therefore represent a novel and more effective therapeutic strategy for BRAF mutant melanoma.
Collapse
Affiliation(s)
- M Corazzari
- Department of Biology, University of Rome ‘Tor Vergata', Rome, Italy
- National Institute for Infectious Diseases IRCCS ‘L. Spallanzani', Rome, Italy
| | - F Rapino
- National Institute for Infectious Diseases IRCCS ‘L. Spallanzani', Rome, Italy
| | - F Ciccosanti
- National Institute for Infectious Diseases IRCCS ‘L. Spallanzani', Rome, Italy
| | - P Giglio
- Department of Biology, University of Rome ‘Tor Vergata', Rome, Italy
| | - M Antonioli
- National Institute for Infectious Diseases IRCCS ‘L. Spallanzani', Rome, Italy
| | - B Conti
- National Institute for Infectious Diseases IRCCS ‘L. Spallanzani', Rome, Italy
| | - G M Fimia
- National Institute for Infectious Diseases IRCCS ‘L. Spallanzani', Rome, Italy
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - P E Lovat
- Dermatological Sciences Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - M Piacentini
- Department of Biology, University of Rome ‘Tor Vergata', Rome, Italy
- National Institute for Infectious Diseases IRCCS ‘L. Spallanzani', Rome, Italy
| |
Collapse
|
31
|
Goodall ML, Wang T, Martin KR, Kortus MG, Kauffman AL, Trent JM, Gately S, MacKeigan JP. Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib. Autophagy 2015; 10:1120-36. [PMID: 24879157 PMCID: PMC4091172 DOI: 10.4161/auto.28594] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a dynamic cell survival mechanism by which a double-membrane vesicle, or autophagosome, sequesters portions of the cytosol for delivery to the lysosome for recycling. This process can be inhibited using the antimalarial agent chloroquine (CQ), which impairs lysosomal function and prevents autophagosome turnover. Despite its activity, CQ is a relatively inadequate inhibitor that requires high concentrations to disrupt autophagy, highlighting the need for improved small molecules. To address this, we screened a panel of antimalarial agents for autophagy inhibition and chemically synthesized a novel series of acridine and tetrahydroacridine derivatives. Structure-activity relationship studies of the acridine ring led to the discovery of VATG-027 as a potent autophagy inhibitor with a high cytotoxicity profile. In contrast, the tetrahydroacridine VATG-032 showed remarkably little cytotoxicity while still maintaining autophagy inhibition activity, suggesting that both compounds act as autophagy inhibitors with differential effects on cell viability. Further, knockdown of autophagy-related genes showed no effect on cell viability, demonstrating that the ability to inhibit autophagy is separate from the compound cytotoxicity profiles. Next, we determined that both inhibitors function through lysosomal deacidification mechanisms and ultimately disrupt autophagosome turnover. To evaluate the genetic context in which these lysosomotropic inhibitors may be effective, they were tested in patient-derived melanoma cell lines driven by oncogenic BRAF (v-raf murine sarcoma viral oncogene homolog B). We discovered that both inhibitors sensitized melanoma cells to the BRAF V600E inhibitor vemurafenib. Overall, these autophagy inhibitors provide a means to effectively block autophagy and have the potential to sensitize mutant BRAF melanomas to first-line therapies.
Collapse
Affiliation(s)
- Megan L Goodall
- Laboratory of Systems Biology; Van Andel Research Institute; Grand Rapids, MI USA; Genetics Graduate Program; Michigan State University; East Lansing, MI USA
| | - Tong Wang
- Translational Drug Development (TD2); Scottsdale, AZ USA
| | - Katie R Martin
- Laboratory of Systems Biology; Van Andel Research Institute; Grand Rapids, MI USA
| | - Matthew G Kortus
- Laboratory of Systems Biology; Van Andel Research Institute; Grand Rapids, MI USA
| | - Audra L Kauffman
- Laboratory of Systems Biology; Van Andel Research Institute; Grand Rapids, MI USA
| | | | - Stephen Gately
- Translational Drug Development (TD2); Scottsdale, AZ USA
| | - Jeffrey P MacKeigan
- Laboratory of Systems Biology; Van Andel Research Institute; Grand Rapids, MI USA
| |
Collapse
|
32
|
Ren T, Takahashi Y, Liu X, Loughran TP, Sun SC, Wang HG, Cheng H. HTLV-1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains. Oncogene 2015; 34:334-45. [PMID: 24362528 PMCID: PMC4067462 DOI: 10.1038/onc.2013.552] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 10/14/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022]
Abstract
The retroviral oncoprotein Tax from human T-cell leukemia virus type 1 (HTLV-1), an etiological factor that causes adult T-cell leukemia and lymphoma, has a crucial role in initiating T-lymphocyte transformation by inducing oncogenic signaling activation. We here report that Tax is a determining factor for dysregulation of autophagy in HTLV-1-transformed T cells and Tax-immortalized CD4 memory T cells. Tax facilitated autophagic process by activating inhibitor of κB (IκB) kinase (IKK) complex, which subsequently recruited an autophagy molecular complex containing Beclin1 and Bif-1 to the lipid raft microdomains. Tax engaged a crosstalk between IKK complex and autophagic molecule complex by directly interacting with both complexes, promoting assembly of LC3+ autophagosomes. Moreover, expression of lipid raft-targeted Bif-1 or Beclin1 was sufficient to induce formation of LC3+ autophagosomes, suggesting that Tax recruitment of autophagic molecules to lipid rafts is a dominant strategy to deregulate autophagy in the context of HTLV-1 transformation of T cells. Furthermore, depletion of autophagy molecules such as Beclin1 and PI3 kinase class III resulted in impaired growth of HTLV-1-transformed T cells, indicating a critical role of Tax-deregulated autophagy in promoting survival and transformation of virally infected T cells.
Collapse
Affiliation(s)
- Tong Ren
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033
| | - Yoshinori Takahashi
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033
| | - Xin Liu
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033
| | - Thomas P. Loughran
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Hong-Gang Wang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033
| | - Hua Cheng
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
33
|
An electrochemical immunosensing method for detecting melanoma cells. Biosens Bioelectron 2015; 68:508-515. [PMID: 25636023 DOI: 10.1016/j.bios.2015.01.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/09/2015] [Indexed: 01/06/2023]
Abstract
An electrochemical immunosensing method was developed to detect melanoma cells based on the affinity between cell surface melanocortin 1 receptor (MC1R) antigen and anti-MC1R antibody (MC1R-Ab). The MC1R-Abs were immobilized in amino-functionalized silica nanoparticles (n-SiNPs)-polypyrrole (PPy) nanocomposite modified on working electrode surface of screen-printed electrode (SPE). Cyclic voltammetry was employed, with the help of redox mediator ([Fe(CN)6](3-)), to measure the change in anodic oxidation peak current arising due to the specific interaction between MC1R antigens and MC1R-Abs when the target melanoma cells are present in the sample. Various factors affecting the sensor performance, such as the amount of MC1R-Abs loaded, incubation time with the target melanoma cells, the presence of interfering non-melanoma cells, were tested and optimized over different expected melanoma cell loads in the range of 50-7500 cells/2.5 mL. The immunosensor is highly sensitive (20 cells/mL), specific, and reproducible, and the antibody-loaded electrode in ready-to-use stage is stable over two weeks. Thus, in conjunction with a microfluidic lab-on-a-chip device our electrochemical immunosensing approach may be suitable for highly sensitive, selective, and rapid detection of circulating tumor cells (CTCs) in blood samples.
Collapse
|
34
|
Netea-Maier RT, Klück V, Plantinga TS, Smit JWA. Autophagy in thyroid cancer: present knowledge and future perspectives. Front Endocrinol (Lausanne) 2015; 6:22. [PMID: 25741318 PMCID: PMC4332359 DOI: 10.3389/fendo.2015.00022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/05/2015] [Indexed: 01/01/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignancy. Despite having a good prognosis in the majority of cases, when the tumor is dedifferentiated it does no longer respond to conventional treatment with radioactive iodine, the prognosis worsens significantly. Treatment options for advanced, dedifferentiated disease are limited and do not cure the disease. Autophagy, a process of self-digestion in which damaged molecules or organelles are degraded and recycled, has emerged as an important player in the pathogenesis of different diseases, including cancer. The role of autophagy in thyroid cancer pathogenesis is not yet elucidated. However, the available data indicate that autophagy is involved in several steps of thyroid tumor initiation and progression as well as in therapy resistance and therefore could be exploited for therapeutic applications. The present review summarizes the most recent data on the role of autophagy in the pathogenesis of thyroid cancer and we will provide a perspective on how this process can be targeted for potential therapeutic approaches and could be further explored in the context of multimodality treatment in cancer and personalized medicine.
Collapse
Affiliation(s)
- Romana T. Netea-Maier
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Viola Klück
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Theo S. Plantinga
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Johannes W. A. Smit
- Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
- *Correspondence: Johannes W. A. Smit, Department of Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Geert Grooteplein 8, PO Box 9101, Nijmegen 6500 HB, Netherlands e-mail:
| |
Collapse
|
35
|
Zhang H, Tang J, Li C, Kong J, Wang J, Wu Y, Xu E, Lai M. MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Lett 2014; 356:781-90. [PMID: 25449431 DOI: 10.1016/j.canlet.2014.10.029] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023]
Abstract
Autophagy has become one of the most important mechanisms of chemotherapy resistance by supporting the survival of tumor cells under metabolic and therapeutic stress. Here, we showed that miR-22 inhibited autophagy and promoted apoptosis to increase the sensitivity of colorectal cancer (CRC) cells to 5-fluorouracil (5-FU) treatment both in vitro and in vivo. B-cell translocation gene 1 (BTG1) was identified as a new target of miR-22, which could reverse the inhibition of autophagy induced by miR-22. Thus, miR-22 may function as an important switch between autophagy and apoptosis to regulate 5-FU sensitivity through post-transcriptional silencing of BTG1. Promisingly, miR-22 could be considered as both a predictor of 5-FU sensitivity for personalized treatment and a therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Honghe Zhang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China
| | - Jinlong Tang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China
| | - Jianlu Kong
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China
| | - Jingyu Wang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology, The First Hospital of Jiaxing, Jiaxing, China
| | - Yihua Wu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Enping Xu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China
| | - Maode Lai
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
36
|
Maes H, Martin S, Verfaillie T, Agostinis P. Dynamic interplay between autophagic flux and Akt during melanoma progression in vitro. Exp Dermatol 2014; 23:101-6. [PMID: 24313465 DOI: 10.1111/exd.12298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 01/06/2023]
Abstract
Despite advances in cancer diagnosis and therapy, metastatic melanoma remains untreatable, due to its notorious resistance to apoptosis, deeming traditional therapies obsolete. Deregulated PI3K/Akt signalling is a common oncogenic event enabling melanocyte transformation and represents a significant and 'druggable' pathway in melanoma. Emerging data show that the ability of cancer cells to survive is also facilitated by alteration of vital homoeostatic mechanisms, such as autophagy. Although the role of autophagy in melanoma is still controversial, recent studies suggest that basal autophagy is down-modulated in primary melanomas. However, the dynamic connection between pro-tumorigenic PI3K/Akt and autophagy during melanoma progression has not been systematically studied. By using human primary melanocytes, incipient melanoma and metastatic melanoma cell lines, we show that early in melanomagenesis, increased Akt activity is associated with a low baseline autophagic flux. However, during melanoma progression, metastatic melanoma cells regain the ability to stimulate autophagic flux, supporting survival. Heightened autophagy is associated with an attenuated Akt activation status and can be suppressed by overexpressing a constitutive active mutant of Akt. On the other hand, blocking the higher Akt activity of primary melanoma is sufficient to incite autophagy. Interestingly, we found that although Akt supports survival of melanocytes and all melanoma cell lines, autophagy inhibition specifically targeted the metastatic melanoma cells, thus indicating a stage-specific requirement for Akt and autophagic flux, throughout melanoma progression. Therefore, this study highlights a dynamic interplay between Akt signalling and autophagic rescue in melanoma, which should be considered in the design of therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Hannelore Maes
- Cell Death Research and Therapy Unit, Department for Cellular and Molecular Medicine, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | | | | | | |
Collapse
|
37
|
Wang Y, Guo Q, Zhao Y, Chen J, Wang S, Hu J, Sun Y. BRAF-activated long non-coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma. Oncol Lett 2014; 8:1947-1952. [PMID: 25289082 PMCID: PMC4186573 DOI: 10.3892/ol.2014.2487] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are novel regulators in cancer biology. BRAF-activated lncRNA (BANCR) is overexpressed in melanoma and has a potential functional role in melanoma cell migration. However, little is known about the role of BANCR in the development of papillary thyroid carcinoma (PTC). In the present study, BANCR expression was examined in six pairs of PTC and matched adjacent normal tissues. The results revealed that BANCR levels were significantly higher in the PTC tissues and PTC IHH-4 cells compared with the normal controls. Knockdown of BANCR in the IHH-4 cells inhibited proliferation and increased apoptosis of the cells in vitro. Further investigation of the underlying mechanisms revealed that BANCR markedly activated autophagy. Overexpression of BANCR inhibited apoptosis in the IHH-4 cells, whereas inhibition of autophagy stimulated apoptosis in the BANCR-overexpressed cells. BANCR overexpression also increased cell proliferation and the inhibition of autophagy abrogated BANCR overexpression-induced cell proliferation. In addition, the overexpression of BANCR resulted in an increase in the ratio of LC3-II/LC3-I, a marker for autophagy, while the knockdown of BANCR decreased the ratio of LC3-II/LC3-I. These results revealed that BANCR expression levels are upregulated in PTC. Additionally, BANCR increases PTC cell proliferation, which could activate autophagy.
Collapse
Affiliation(s)
- Yong Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Qinhao Guo
- Department of Obstetrics and Gynecology, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yan Zhao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jiejing Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Shuwei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jun Hu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yueming Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
38
|
MicroRNA-340 as a modulator of RAS-RAF-MAPK signaling in melanoma. Arch Biochem Biophys 2014; 563:118-24. [PMID: 25043973 DOI: 10.1016/j.abb.2014.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 12/19/2022]
Abstract
microRNA (miRNA)-dependent regulation of gene expression is increasingly linked to development and progression of melanoma. In this study we evaluated the functions of miR-340 in human melanoma cells. Here, we show that miR-340 inhibits the tumorigenic phenotype of melanoma cells. We also found that miR-340 regulates RAS-RAF-Mitogen Activated Protein Kinase (MAPK) signaling by modulating the expression of multiple components of this pathway. Given the importance of MAPK signaling in melanoma, these results provide further insight into the pathogenesis of melanoma.
Collapse
|
39
|
Therapeutic targeting of autophagy in cancer. Part I: molecular pathways controlling autophagy. Semin Cancer Biol 2014; 31:89-98. [PMID: 24879905 DOI: 10.1016/j.semcancer.2014.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/09/2014] [Accepted: 05/18/2014] [Indexed: 12/31/2022]
Abstract
Autophagy is a process in which cells can generate energy and building materials, by degradation of redundant and/or damaged organelles and proteins. Especially during conditions of stress, autophagy helps to maintain homeostasis. In addition, autophagy has been shown to influence malignant transformation and cancer progression. The precise molecular events in autophagy are complex and the core autophagic machinery described to date consists of nearly thirty proteins. Apart from these factors that execute the process of autophagy, several signalling pathways are involved in converting internal and external stimuli into an autophagic response. In this review we provide an overview of the signalling pathways that influence autophagy, particularly in cancer cells. We will illustrate that interference with multiple of these signalling pathways can have significant effects on cancer cell survival.
Collapse
|
40
|
Levy JMM, Thompson JC, Griesinger AM, Amani V, Donson AM, Birks DK, Morgan MJ, Mirsky DM, Handler MH, Foreman NK, Thorburn A. Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov 2014; 4:773-80. [PMID: 24823863 DOI: 10.1158/2159-8290.cd-14-0049] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Autophagy inhibition is a potential therapeutic strategy in cancer, but it is unknown which tumors will benefit. The BRAF(V600E) mutation has been identified as important in pediatric central nervous system (CNS) tumors and is known to affect autophagy in other tumor types. We evaluated CNS tumor cells with BRAF(V600E) and found that mutant (but not wild-type) cells display high rates of induced autophagy, are sensitive to pharmacologic and genetic autophagy inhibition, and display synergy when the clinically used autophagy inhibitor chloroquine was combined with the RAF inhibitor vemurafenib or standard chemotherapeutics. Importantly, we also demonstrate that chloroquine can improve vemurafenib sensitivity in a resistant ex vivo primary culture and provide the first demonstration in a patient harboring the V600E mutation treated with vemurafenib that the addition of chloroquine can improve clinical outcomes. These findings suggest that CNS tumors with BRAF(V600E) are autophagy-dependent and should be targeted with autophagy inhibition in combination with other therapeutic strategies. SIGNIFICANCE Autophagy inhibition may improve cancer therapy, but it is unclear which tumors will benefit. We found that BRAF mutations cause brain tumor cells to depend on autophagy and display selective chemosensitization with autophagy inhibition. We present a pediatric case in which deliberate autophagy inhibition halted tumor growth and overcame acquired BRAF-inhibition resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David M Mirsky
- Radiology, University of Colorado Denver, Aurora, Colorado
| | | | | | | |
Collapse
|
41
|
Plantinga TS, van de Vosse E, Huijbers A, Netea MG, Joosten LAB, Smit JWA, Netea-Maier RT. Role of genetic variants of autophagy genes in susceptibility for non-medullary thyroid cancer and patients outcome. PLoS One 2014; 9:e94086. [PMID: 24739953 PMCID: PMC3989221 DOI: 10.1371/journal.pone.0094086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/10/2014] [Indexed: 11/29/2022] Open
Abstract
Autophagy is a central process in regulation of cell survival, cell death and proliferation and plays an important role in carcinogenesis, including thyroid carcinoma. Genetic variation in autophagy components has been demonstrated to influence the capacity to execute autophagy and is associated with disease susceptibility, progression and outcome. In the present study, we assessed whether genetic variation in autophagy genes contributes to susceptibility to develop thyroid carcinoma, disease progression and/or patient outcome. The results indicate that patients carrying the ATG5 single nucleotide polymorphisms rs2245214 have a higher probability to develop thyroid carcinoma (OR 1.85 (95% CI 1.04–3.23), P = 0.042). In contrast, no significant differences could be observed for the other genetic variants studied in terms of thyroid carcinoma susceptibility. Furthermore, none of the selected genetic variants were associated with clinical parameters of disease progression and outcome. In conclusion, genetic variation in ATG5, a central player in the autophagy process, is found to be associated with increased susceptibility for thyroid carcinoma, indicating a role for autophagy in thyroid carcinogenesis.
Collapse
Affiliation(s)
- Theo S. Plantinga
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Division of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Esther van de Vosse
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Angelique Huijbers
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Division of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jan W. A. Smit
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Division of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Romana T. Netea-Maier
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Division of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
Ahn JH, Lee YW, Ahn SK, Lee M. Oncogenic BRAF inhibitor UAI-201 induces cell cycle arrest and autophagy in BRAF mutant glioma cells. Life Sci 2014; 104:38-46. [PMID: 24721513 DOI: 10.1016/j.lfs.2014.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/20/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
AIMS An activating mutation of BRAF (BRAF-V600E) has been reported in a subset of malignant brain tumors. Thus, the aim of the present study was to identify the antiproliferative effect of the new oncogenic B-Raf targeting drug UAI-201 on 6 types of glioma cell lines with differing B-Raf mutational status. MAIN METHODS The IC50 values of UAI-201 were determined using crystal violet assays in six glioma cell lines. Real-time RT-PCR was performed to assess the functional role of multidrug resistance proteins in response to UAI-201. The effects of UAI-201 on six glioma cells were further examined by immunoblotting analysis, cell cycle analysis, flow cytometric apoptotic assay and autophagy assay. To identify the role of autophagy in UAI-201-induced growth inhibition, Atg5 and Beclin 1 were knocked down by RNA interference. KEY FINDINGS Real-time RT-PCR analysis showed a poor correlation between UAI-201 activity and the expression level of multidrug resistance proteins. The growth inhibitory effects of UAI-201 correlated with the BRAF-V600E genotype of the glioma cell lines. BRAF blockade with UAI-201 resulted in dose-dependent inhibition of MEK/ERK phosphorylations and increased G0/G1 arrest in glioma cells with BRAF-V600E. Interestingly, UAI-201 preferentially induced autophagy in BRAF-V600E cells, but not in BRAF-WT cells. More notably, autophagy inhibition through siRNA-mediated Beclin 1 knockdown partially attenuated the growth inhibition induced by UAI-201 in BRAF-V600E cells. SIGNIFICANCE The pro-death autophagic processes could be one of the underlying mechanisms for the sensitization of BRAF-V600E glioma cells toward UAI-201.
Collapse
Affiliation(s)
- Jun-Ho Ahn
- Division of Life Sciences, College of Natural Sciences, Incheon National University, Incheon 406-772, Republic of Korea
| | - Yong Woo Lee
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA
| | - Soon Kil Ahn
- Division of Life Sciences, College of Natural Sciences, Incheon National University, Incheon 406-772, Republic of Korea; YOUAI Co., Ltd., Suwon-Si, Gyeonggi-Do 443-766, Republic of Korea
| | - Michael Lee
- Division of Life Sciences, College of Natural Sciences, Incheon National University, Incheon 406-772, Republic of Korea.
| |
Collapse
|
43
|
Morani F, Titone R, Pagano L, Galetto A, Alabiso O, Aimaretti G, Isidoro C. Autophagy and thyroid carcinogenesis: genetic and epigenetic links. Endocr Relat Cancer 2014; 21:R13-29. [PMID: 24163390 DOI: 10.1530/erc-13-0271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Thyroid cancer is the most common cancer of the endocrine system and is responsible for the majority of deaths from endocrine malignancies. Although a large proportion of thyroid cancers belong to well differentiated histologic subtypes, which in general show a good prognosis after surgery and radioiodine ablation, the treatment of radio-resistant papillary-type, of undifferentiated anaplastic, and of medullary-type thyroid cancers remains unsatisfactory. Autophagy is a vesicular process for the lysosomal degradation of protein aggregates and of damaged or redundant organelles. Autophagy plays an important role in cell homeostasis, and there is evidence that this process is dysregulated in cancer cells. Recent in vitro preclinical studies have indicated that autophagy is involved in the cytotoxic response to chemotherapeutics in thyroid cancer cells. Indeed, several oncogenes and oncosuppressor genes implicated in thyroid carcinogenesis also play a role in the regulation of autophagy. In addition, some epigenetic modulators involved in thyroid carcinogenesis also influence autophagy. In this review, we highlight the genetic and epigenetic factors that mechanistically link thyroid carcinogenesis and autophagy, thus substantiating the rationale for an autophagy-targeted therapy of aggressive and radio-chemo-resistant thyroid cancers.
Collapse
Affiliation(s)
- Federica Morani
- Laboratory of Molecular Pathology, Department of Health SciencesUnit of Clinical Endocrinology Unit of Oncology, Department of Translational Medicine, Università del Piemonte Orientale 'A. Avogadro', Via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Ahn JH, Lee M. Autophagy-Dependent Survival of Mutant B-Raf Melanoma Cells Selected for Resistance to Apoptosis Induced by Inhibitors against Oncogenic B-Raf. Biomol Ther (Seoul) 2013; 21:114-20. [PMID: 24009868 PMCID: PMC3762312 DOI: 10.4062/biomolther.2013.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 01/16/2023] Open
Abstract
Most patients with mutant B-Raf melanomas respond to inhibitors of oncogenic B-Raf but resistance eventually emerges. To better understand the mechanisms that determine the long-term responses of mutant B-Raf melanoma cells to B-Raf inhibitor, we used chronic selection to establish B-Raf (V600E) melanoma clones with acquired resistance to the new oncogenic B-Raf inhibitor UI-152. Whereas the parental A375P cells were highly sensitive to UI-152 (IC50<0.5 μM), the resistant sub-line (A375P/Mdr) displayed strong resistance to UI-152 (IC50>20 μM). Immunofluorescence analysis indicated the absence of an increase in the levels of P-glycoprotein multidrug resistance (MDR) transporter in A375P/Mdr cells, suggesting that resistance was not attributable to P-glycoprotein overexpression. In UI-152-sensitive A375P cells, the anti-proliferative activity of UI-152 appeared to be due to cell-cycle arrest at G0/G1 with the induction of apoptosis. However, we found that A375P/Mdr cells were resistant to the apoptosis induced by UI-152. Interestingly, UI-152 preferentially induced autophagy in A375P/Mdr cells but not in A375P cells, as determined by GFP-LC3 puncta/cell counts. Further, autophagy inhibition with 3-methyladenine (3-MA) partially augmented growth inhibition of A375P/Mdr cells by UI-152, which implies that a high level of autophagy may protect UI-152-treated cells from undergoing growth inhibition. Together, our data implicate high rates of autophagy as a key mechanism of acquired resistance to the oncogenic B-Raf inhibitor, in support of clinical studies in which combination therapy with autophagy targeted drugs is being designed to overcome resistance.
Collapse
Affiliation(s)
- Jun-Ho Ahn
- Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon, Incheon 406-772, Republic of Korea
| | | |
Collapse
|
45
|
Oncogenic activation of MEK/ERK primes melanoma cells for adaptation to endoplasmic reticulum stress. J Invest Dermatol 2013; 134:488-497. [PMID: 23921951 DOI: 10.1038/jid.2013.325] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/21/2013] [Accepted: 07/07/2013] [Indexed: 02/07/2023]
Abstract
Cancer cells commonly undergo chronic endoplasmic reticulum (ER) stress, to which the cells have to adapt for survival and proliferation. We report here that in melanoma cells intrinsic activation of the ER stress response/unfolded protein response (UPR) is, at least in part, caused by increased outputs of protein synthesis driven by oncogenic activation of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) and promotes proliferation and protects against apoptosis induced by acute ER stress. Inhibition of oncogenic BRAF(V600E) or MEK-attenuated activation of inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6) signaling of the UPR in melanoma cells. This was associated with decreased phosphorylation of eukaryotic initiation factor 4E (eIF4E) and nascent protein synthesis and was recapitulated by knockdown of eIF4E. In line with this, introduction of BRAF(V600E) into melanocytes led to increases in eIF4E phosphorylation and protein production and triggered activation of the UPR. Similar to knockdown of glucose-regulated protein 78 (GRP78), inhibition of XBP1 decelerated melanoma cell proliferation and enhanced apoptosis induced by the pharmacological ER stress inducers tunicamycin and thapasigargin. Collectively, these results reveal that potentiation of adaptation to chronic ER stress is another mechanism by which oncogenic activation of the MEK/ERK pathway promotes the pathogenesis of melanoma.
Collapse
|
46
|
Espina V, Wysolmerski J, Edmiston K, Liotta LA. Attacking breast cancer at the preinvasion stage by targeting autophagy. ACTA ACUST UNITED AC 2013; 9:157-70. [PMID: 23477322 DOI: 10.2217/whe.13.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preinvasive breast carcinoma cells that proliferate and accumulate within the nonvascular, closed intraductal niche are under severe hypoxic and metabolic stress. Understanding the survival mechanisms used by these cells has revealed therapeutic strategies for killing preinvasive neoplasms. We have found that autophagy ('self-eating') is a major survival strategy used by preinvasive carcinoma and breast cancer stem-like cells. Based on this finding, we have opened a clinical trial that is exploring neoadjuvant oral chloroquine antiautophagy therapy for ductal carcinoma in situ. We envision that antiautophagy therapy can be administered in combination with other treatments such as those that elevate intracellular calcium, to create a state of intolerable stress for preinvasive neoplastic cells, and thereby stop breast cancer before it starts.
Collapse
Affiliation(s)
- Virginia Espina
- George Mason University, Center for Applied Proteomics & Molecular Medicine, Manassas, VA 20110, USA
| | | | | | | |
Collapse
|
47
|
Zhang L, Shi R, He C, Cheng C, Song B, Cui H, Zhang Y, Zhao Z, Bi Y, Yang X, Miao X, Guo J, Chen X, Wang J, Li Y, Cheng X, Liu J, Cui Y. Oncogenic B-Raf(V600E) abrogates the AKT/B-Raf/Mps1 interaction in melanoma cells. Cancer Lett 2013; 337:125-32. [PMID: 23726842 DOI: 10.1016/j.canlet.2013.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 12/16/2022]
Abstract
Activating B-Raf mutations that deregulate the mitogen-activated protein kinase (MAPK) pathway commonly occur in cancer. Although B-Raf(V600E) induces increased Mps1 protein contributing to centrosome amplification and chromosome instability, the regulatory mechanisms of Mps1 in melanoma cells is not fully understood. Here, we report that Mps1/AKT and B-Raf(WT)/ERK signaling form an auto-regulatory negative feedback loop in melanoma cells; notably, oncogenic B-Raf(V600E) abrogates the negative feedback loop, contributing the aberrant Mps1 functions and tumorigenesis. Our findings raise the possibility that targeting the oncogenic B-Raf and Mps1, especially when used in combination could potentially provide great therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Clancey LF, Beirl AJ, Linbo TH, Cooper CD. Maintenance of melanophore morphology and survival is cathepsin and vps11 dependent in zebrafish. PLoS One 2013; 8:e65096. [PMID: 23724125 PMCID: PMC3664566 DOI: 10.1371/journal.pone.0065096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/22/2013] [Indexed: 11/18/2022] Open
Abstract
Here, we characterize a Danio rerio zebrafish pigment cell mutant (melanophore integrity mutant), which displays a defect in maintenance of melanophore and iridophore number. Mapping and candidate gene analysis links the melanophore integrity mutant mutation to the vacuolar protein sorting 11 (vps11(w66)) gene. Quantification of vps11(w66) chromatophores during larval stages suggests a decrease in number as compared to wildtype siblings. TUNEL analysis and treatment with the caspase inhibitor, zVAD-fmk, indicate that vps11(w66) chromatophore death is caspase independent. Western blot analysis of PARP-1 cleavage patterns in mutant lysates suggests that increases in pH dependent cathepsin activity is involved in the premature chromatophore death observed in vps11(w66) mutants. Consistently, treatment with ALLM and Bafilomycin A1 (cathepsin/calpain and vacuolar-type H+-ATPase inhibitors, respectively), restore normal melanophore morphology and number in vps11(w66) mutants. Last, LC3B western blot analysis indicates an increase in autophagosome marker, LC3B II in vps11(w66) mutants as compared to wildtype control, but not in ALLM or Bafilomycin A1 treated mutants. Taken together, these data suggest that vps11 promotes normal melanophore morphology and survival by inhibiting cathepsin release and/or activity.
Collapse
Affiliation(s)
- Lauren F. Clancey
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, Washington, United States of America
| | - Alisha J. Beirl
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, Washington, United States of America
| | - Tor H. Linbo
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Cynthia D. Cooper
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, Washington, United States of America
- * E-mail:
| |
Collapse
|
49
|
Luo C, Sheng J, Hu MG, Haluska FG, Cui R, Xu Z, Tsichlis PN, Hu GF, Hinds PW. Loss of ARF sensitizes transgenic BRAFV600E mice to UV-induced melanoma via suppression of XPC. Cancer Res 2013; 73:4337-48. [PMID: 23650282 DOI: 10.1158/0008-5472.can-12-4454] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both genetic mutations and UV irradiation (UVR) can predispose individuals to melanoma. Although BRAF(V600E) is the most prevalent oncogene in melanoma, the BRAF(V600E) mutant is not sufficient to induce tumors in vivo. Mutation at the CDKN2A locus is another melanoma-predisposing event that can disrupt the function of both p16(INK4a) and ARF. Numerous studies have focused on the role of p16(INK4a) in melanoma, but the involvement of ARF, a well-known p53 activator, is still controversial. Using a transgenic BRAF(V600E) mouse model previously generated in our laboratory, we report that loss of ARF is able to enhance spontaneous melanoma formation and cause profound sensitivity to neonatal UVB exposure. Mechanistically, BRAF(V600E) and ARF deletion synergize to inhibit nucleotide excision repair by epigenetically repressing XPC and inhibiting the E2F4/DP1 complex. We suggest that the deletion of ARF promotes melanomagenesis not by abrogating p53 activation but by acting in concert with BRAF(V600E) to increase the load of DNA damage caused by UVR.
Collapse
Affiliation(s)
- Chi Luo
- Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gewirtz DA. Autophagy and senescence: a partnership in search of definition. Autophagy 2013; 9:808-12. [PMID: 23422284 DOI: 10.4161/auto.23922] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Autophagy and senescence share a number of characteristics, which suggests that both responses could serve to collaterally protect the cell from the toxicity of external stress such as radiation and chemotherapy and internal forms of stress such as telomere shortening and oncogene activation. Studies of oncogene activation in normal fibroblasts as well as exposure of tumor cells to chemotherapy have indicated that autophagy and senescence are closely related but not necessarily interdependent responses; specifically, interference with autophagy delays but does not abrogate senescence. The literature relating to this topic is inconclusive, with some reports appearing to be consistent with a direct relationship between autophagy and senescence and others indicative of an inverse relationship. Before this question can be resolved, additional studies will be necessary where autophagy is clearly inhibited by genetic silencing and where the temporal responses of both autophagy and senescence are monitored, preferably in cells that are intrinsically incapable of apoptosis or where apoptosis is suppressed. Understanding the nature of this relationship may provide needed insights relating to cytoprotective as well as potential cytotoxic functions of both autophagy and senescence.
Collapse
Affiliation(s)
- David A Gewirtz
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|