1
|
Alebouyeh S, Cárdenas-Pestana JA, Vazquez L, Prados-Rosales R, Del Portillo P, Sanz J, Menéndez MC, García MJ. Iron deprivation enhances transcriptional responses to in vitro growth arrest of Mycobacterium tuberculosis. Front Microbiol 2022; 13:956602. [PMID: 36267176 PMCID: PMC9577196 DOI: 10.3389/fmicb.2022.956602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
The establishment of Mycobacterium tuberculosis (Mtb) long-term infection in vivo depends on several factors, one of which is the availability of key nutrients such as iron (Fe). The relation between Fe deprivation inside and outside the granuloma, and the capacity of Mtb to accumulate lipids and persist in the absence of growth is not well understood. In this context, current knowledge of how Mtb modifies its lipid composition in response to growth arrest, depending on iron availability, is scarce. To shed light on these matters, in this work we compare genome-wide transcriptomic and lipidomic profiles of Mtb at exponential and stationary growth phases using cultures with glycerol as a carbon source, in the presence or absence of iron. As a result, we found that transcriptomic responses to growth arrest, considered as the transition from exponential to stationary phase, are iron dependent for as many as 714 genes (iron-growth interaction contrast, FDR <0.05), and that, in a majority of these genes, iron deprivation enhances the magnitude of the transcriptional responses to growth arrest in either direction. On the one hand, genes whose upregulation upon growth arrest is enhanced by iron deprivation were enriched in functional terms related to homeostasis of ion metals, and responses to several stressful cues considered cardinal features of the intracellular environment. On the other hand, genes showing negative responses to growth arrest that are stronger in iron-poor medium were enriched in energy production processes (TCA cycle, NADH dehydrogenation and cellular respiration), and key controllers of ribosomal activity shut-down, such as the T/A system mazE6/F6. Despite of these findings, a main component of the cell envelope, lipid phthiocerol dimycocerosate (PDIM), was not detected in the stationary phase regardless of iron availability, suggesting that lipid changes during Mtb adaptation to non-dividing phenotypes appear to be iron-independent. Taken together, our results indicate that environmental iron levels act as a key modulator of the intensity of the transcriptional adaptations that take place in the bacterium upon its transition between dividing and dormant-like phenotypes in vitro.
Collapse
Affiliation(s)
- Sogol Alebouyeh
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Jorge A. Cárdenas-Pestana
- Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Lucia Vazquez
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Rafael Prados-Rosales
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | - Joaquín Sanz
- Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- *Correspondence: Maria J. García,
| | - Maria Carmen Menéndez
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
- Maria Carmen Menéndez,
| | - Maria J. García
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
- Joaquín Sanz,
| |
Collapse
|
2
|
Behra PRK, Pettersson BMF, Das S, Dasgupta S, Kirsebom LA. Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA. BMC Evol Biol 2019; 19:124. [PMID: 31215393 PMCID: PMC6582537 DOI: 10.1186/s12862-019-1447-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Mycobacteria occupy various ecological niches and can be isolated from soil, tap water and ground water. Several cause diseases in humans and animals. To get deeper insight into our understanding of mycobacterial evolution focusing on tRNA and non-coding (nc)RNA, we conducted a comparative genome analysis of Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clade members. Results Genome sizes for Mmuc- and Mneo-clade members vary between 5.4 and 6.5 Mbps with the complete MmucT (type strain) genome encompassing 6.1 Mbp. The number of tRNA genes range between 46 and 79 (including one pseudo tRNA gene) with 39 tRNA genes common among the members of these clades, while additional tRNA genes were probably acquired through horizontal gene transfer. Selected tRNAs and ncRNAs (RNase P RNA, tmRNA, 4.5S RNA, Ms1 RNA and 6C RNA) are expressed, and the levels for several of these are higher in stationary phase compared to exponentially growing cells. The rare tRNAIleTAT isoacceptor and two for mycobacteria novel ncRNAs: the Lactobacillales-derived GOLLD RNA and a homolog to the antisense Salmonella typhimurium phage Sar RNA, were shown to be present and expressed in certain Mmuc-clade members. Conclusions Phages, IS elements, horizontally transferred tRNA gene clusters, and phage-derived ncRNAs appears to have influenced the evolution of the Mmuc- and Mneo-clades. While the number of predicted coding sequences correlates with genome size, the number of tRNA coding genes does not. The majority of the tRNA genes in mycobacteria are transcribed mainly from single genes and the levels of certain ncRNAs, including RNase P RNA (essential for the processing of tRNAs), are higher at stationary phase compared to exponentially growing cells. We provide supporting evidence that Ms1 RNA represents a mycobacterial 6S RNA variant. The evolutionary routes for the ncRNAs RNase P RNA, tmRNA and Ms1 RNA are different from that of the core genes. Electronic supplementary material The online version of this article (10.1186/s12862-019-1447-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
3
|
Otal I, Pérez-Herrán E, Garcia-Morales L, Menéndez MC, Gonzalez-Y-Merchand JA, Martín C, García MJ. Detection of a Putative TetR-Like Gene Related to Mycobacterium bovis BCG Growth in Cholesterol Using a gfp-Transposon Mutagenesis System. Front Microbiol 2017; 8:315. [PMID: 28321208 PMCID: PMC5337628 DOI: 10.3389/fmicb.2017.00315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
In vitro transposition is a powerful genetic tool for identifying mycobacterial virulence genes and studying virulence factors in relation to the host. Transposon shuttle mutagenesis is a method for constructing stable insertions in the genome of different microorganisms including mycobacteria. Using an IS1096 derivative, we have constructed the Tngfp, a transposon containing a promoterless green fluorescent protein (gfp) gene. This transposon was able to transpose randomly in Mycobacterium bovis BCG. Bacteria with a single copy of the gfp gene per chromosome from an M. bovis BCG::Tngfp library were analyzed and cells exhibiting high levels of fluorescence were detected by flow cytometry. Application of this approach allowed for the selection of a mutant, BCG_2177c::Tngfp (BCG-Tn), on the basis of high level of long-standing fluorescence at stationary phase. This BCG-Tn mutant showed some particular phenotypic features compared to the wild type strain, mainly during stationary phase, when cholesterol was used as a sole carbon source, thus supporting the relationships of the targeted gene with the regulation of cholesterol metabolism in this bacteria. This approach showed that Tngfp is a potentially useful tool for studying the involvement of the targeted loci in metabolic pathways of mycobacteria.
Collapse
Affiliation(s)
- Isabel Otal
- Grupo de Genética de Micobacterias, Departamento de Microbiologia, Medicina Preventiva y Salud Pública, Universidad de ZaragozaZaragoza, Spain; Centros de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos IIIMadrid, Spain; Instituto de Investigación Sanitaria AragónZaragoza, Spain
| | - Esther Pérez-Herrán
- Grupo de Genética de Micobacterias, Departamento de Microbiologia, Medicina Preventiva y Salud Pública, Universidad de ZaragozaZaragoza, Spain; Diseases of the Developing World, GlaxoSmithKlineTres Cantos, Spain
| | - Lazaro Garcia-Morales
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Ciudad de Mexico, Mexico
| | - María C Menéndez
- Departamento de Medicina Preventiva, Universidad Autónoma Madrid, Spain
| | - Jorge A Gonzalez-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Ciudad de Mexico, Mexico
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiologia, Medicina Preventiva y Salud Pública, Universidad de ZaragozaZaragoza, Spain; Centros de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos IIIMadrid, Spain; Instituto de Investigación Sanitaria AragónZaragoza, Spain
| | - María J García
- Departamento de Medicina Preventiva, Universidad Autónoma Madrid, Spain
| |
Collapse
|
4
|
Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev 2016; 29:239-90. [PMID: 26912567 DOI: 10.1128/cmr.00055-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Collapse
|
5
|
Abdeldaim G, Svensson E, Blomberg J, Herrmann B. Duplex detection of the Mycobacterium tuberculosis complex and medically important non-tuberculosis mycobacteria by real-time PCR based on the rnpB gene. APMIS 2016; 124:991-995. [PMID: 27677426 DOI: 10.1111/apm.12598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/31/2016] [Indexed: 11/27/2022]
Abstract
A duplex real-time PCR based on the rnpB gene was developed for Mycobacterium spp. The assay was specific for the Mycobacterium tuberculosis complex (MTB) and also detected all 19 tested species of non-tuberculous mycobacteria (NTM). The assay was evaluated on 404 clinical samples: 290 respiratory samples and 114 from tissue and other non-respiratory body sites. M. tuberculosis was detected by culture in 40 samples and in 30 samples by the assay. The MTB assay showed a sensitivity similar to Roche Cobas Amplicor MTB-PCR (Roche Molecular Systems, Pleasanton, CA, USA). There were only nine samples with non-tuberculous mycobacteria detected by culture. Six of them were detected by the PCR assay.
Collapse
Affiliation(s)
- Guma Abdeldaim
- Section of Clinical Bacteriology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, Benghazi University, Benghazi, Libya
| | - Erik Svensson
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas Blomberg
- Section of Clinical Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Björn Herrmann
- Section of Clinical Bacteriology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
George R, Cavalcante R, Jr CC, Marques E, Waugh JB, Unlap MT. Use of siRNA molecular beacons to detect and attenuate mycobacterial infection in macrophages. World J Exp Med 2015; 5:164-181. [PMID: 26309818 PMCID: PMC4543811 DOI: 10.5493/wjem.v5.i3.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/05/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis is one of the leading infectious diseases plaguing mankind and is mediated by the facultative pathogen, Mycobacterium tuberculosis (MTB). Once the pathogen enters the body, it subverts the host immune defenses and thrives for extended periods of time within the host macrophages in the lung granulomas, a condition called latent tuberculosis (LTB). Persons with LTB are prone to reactivation of the disease when the body’s immunity is compromised. Currently there are no reliable and effective diagnosis and treatment options for LTB, which necessitates new research in this area. The mycobacterial proteins and genes mediating the adaptive responses inside the macrophage is largely yet to be determined. Recently, it has been shown that the mce operon genes are critical for host cell invasion by the mycobacterium and for establishing a persistent infection in both in vitro and in mouse models of tuberculosis. The YrbE and Mce proteins which are encoded by the MTB mce operons display high degrees of homology to the permeases and the surface binding protein of the ABC transports, respectively. Similarities in structure and cell surface location impute a role in cell invasion at cholesterol rich regions and immunomodulation. The mce4 operon is also thought to encode a cholesterol transport system that enables the mycobacterium to derive both energy and carbon from the host membrane lipids and possibly generating virulence mediating metabolites, thus enabling the bacteria in its long term survival within the granuloma. Various deletion mutation studies involving individual or whole mce operon genes have shown to be conferring varying degrees of attenuation of infectivity or at times hypervirulence to the host MTB, with the deletion of mce4A operon gene conferring the greatest degree of attenuation of virulence. Antisense technology using synthetic siRNAs has been used in knocking down genes in bacteria and over the years this has evolved into a powerful tool for elucidating the roles of various genes mediating infectivity and survival in mycobacteria. Molecular beacons are a newer class of antisense RNA tagged with a fluorophore/quencher pair and their use for in vivo detection and knockdown of mRNA is rapidly gaining popularity.
Collapse
|
7
|
Das S, Pettersson BMF, Behra PRK, Ramesh M, Dasgupta S, Bhattacharya A, Kirsebom LA. Characterization of Three Mycobacterium spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics. Genome Biol Evol 2015; 7:1871-86. [PMID: 26079817 PMCID: PMC4524478 DOI: 10.1093/gbe/evv111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We provide the genome sequences of the type strains of the polychlorophenol-degrading Mycobacterium chlorophenolicum (DSM43826), the degrader of chlorinated aliphatics Mycobacterium chubuense (DSM44219) and Mycobacterium obuense (DSM44075) that has been tested for use in cancer immunotherapy. The genome sizes of M. chlorophenolicum, M. chubuense, and M. obuense are 6.93, 5.95, and 5.58 Mb with GC-contents of 68.4%, 69.2%, and 67.9%, respectively. Comparative genomic analysis revealed that 3,254 genes are common and we predicted approximately 250 genes acquired through horizontal gene transfer from different sources including proteobacteria. The data also showed that the biodegrading Mycobacterium spp. NBB4, also referred to as M. chubuense NBB4, is distantly related to the M. chubuense type strain and should be considered as a separate species, we suggest it to be named Mycobacterium ethylenense NBB4. Among different categories we identified genes with potential roles in: biodegradation of aromatic compounds and copper homeostasis. These are the first nonpathogenic Mycobacterium spp. found harboring genes involved in copper homeostasis. These findings would therefore provide insight into the role of this group of Mycobacterium spp. in bioremediation as well as the evolution of copper homeostasis within the Mycobacterium genus.
Collapse
Affiliation(s)
- Sarbashis Das
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | | | | | - Malavika Ramesh
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| |
Collapse
|