1
|
Poudineh M, Mohammadyari F, Parsamanesh N, Jamialahmadi T, Kesharwani P, Sahebkar A. Cell and gene therapeutic approaches in non-alcoholic fatty liver disease. Gene 2025; 956:149466. [PMID: 40189164 DOI: 10.1016/j.gene.2025.149466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) refers to a range of conditions marked by the buildup of triglycerides in liver cells, accompanied by inflammation, which contributes to liver damage, clinical symptoms, and histopathological alterations. Multiple molecular pathways contribute to NAFLD pathogenesis, including immune dysregulation, endoplasmic reticulum stress, and tissue injury. Both the innate and adaptive immune systems play crucial roles in disease progression, with intricate crosstalk between liver and immune cells driving NAFLD development. Among emerging therapeutic strategies, cell and gene-based therapies have shown promise. This study reviews the pathophysiological mechanisms of NAFLD and explores the therapeutic potential of cell-based interventions, highlighting their immunomodulatory effects, inhibition of hepatic stellate cells, promotion of hepatocyte regeneration, and potential for hepatocyte differentiation. Additionally, we examine gene delivery vectors designed to target NAFLD, focusing on their role in engineering hepatocytes through gene addition or editing to enhance therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tananz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Milani M, Starinieri F, Fabiano A, Beretta S, Plati T, Canepari C, Biffi M, Russo F, Berno V, Norata R, Sanvito F, Merelli I, Aloia L, Huch M, Naldini L, Cantore A. Identification of hepatocyte-primed cholangiocytes in the homeostatic liver by in vivo lentiviral gene transfer to mice and non-human primates. Cell Rep 2025; 44:115341. [PMID: 39998949 PMCID: PMC11936872 DOI: 10.1016/j.celrep.2025.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Liver regeneration is supported by hepatocytes and, in certain conditions, biliary epithelial cells (BECs). BECs are facultative liver stem cells that form organoids in culture and engraft in damaged livers. However, BEC heterogeneity in the homeostatic liver remains to be fully elucidated. Here, we exploit systemic lentiviral vector (LV) administration to achieve efficient and lifelong gene transfer to BECs in mice. We find that LV-marked BECs retain organoid formation potential and predominantly respond to liver damage; however, they are less clonogenic and display a hepatocyte-primed transcriptome compared to untransduced BECs. We thus identify a BEC subset committed to hepatocyte lineage in the absence of liver damage, characterized by a transcriptional network orchestrated by hepatocyte nuclear factor 4α. We also report in vivo targeting of such BECs in non-human primates. This work highlights intrinsic BEC heterogeneity and that in vivo LV gene transfer to the liver may persist following BEC-mediated repair of hepatic damage.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Starinieri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Anna Fabiano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tiziana Plati
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Berno
- Advanced Light and Electron Microscopy BioImaging Center (ALEMBIC), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rossana Norata
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Sanvito
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, 20054 Segrate (MI), Italy
| | - Luigi Aloia
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Meritxell Huch
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
3
|
Singh K, Fronza R, Evens H, Chuah MK, VandenDriessche T. Comprehensive analysis of off-target and on-target effects resulting from liver-directed CRISPR-Cas9-mediated gene targeting with AAV vectors. Mol Ther Methods Clin Dev 2024; 32:101365. [PMID: 39655309 PMCID: PMC11626537 DOI: 10.1016/j.omtm.2024.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Comprehensive genome-wide studies are needed to assess the consequences of adeno-associated virus (AAV) vector-mediated gene editing. We evaluated CRISPR-Cas-mediated on-target and off-target effects and examined the integration of the AAV vectors employed to deliver the CRISPR-Cas components to neonatal mice livers. The guide RNA (gRNA) was specifically designed to target the factor IX gene (F9). On-target and off-target insertions/deletions were examined by whole-genome sequencing (WGS). Efficient F9-targeting (36.45% ± 18.29%) was apparent, whereas off-target events were rare or below the WGS detection limit since only one single putative insertion was detected out of 118 reads, based on >100 computationally predicted off-target sites. AAV integrations were identified by WGS and shearing extension primer tag selection ligation-mediated PCR (S-EPTS/LM-PCR) and occurred preferentially in CRISPR-Cas9-induced double-strand DNA breaks in the F9 locus. In contrast, AAV integrations outside F9 were not in proximity to any of ∼5,000 putative computationally predicted off-target sites (median distance of 70 kb). Moreover, without relying on such off-target prediction algorithms, analysis of DNA sequences close to AAV integrations outside the F9 locus revealed no homology to the F9-specific gRNA. This study supports the use of S-EPTS/LM-PCR for direct in vivo comprehensive, sensitive, and unbiased off-target analysis.
Collapse
Affiliation(s)
- Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Hanneke Evens
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
4
|
Chen Y, van Til NP, Bosma PJ. Gene Therapy for Inherited Liver Disease: To Add or to Edit. Int J Mol Sci 2024; 25:12514. [PMID: 39684224 DOI: 10.3390/ijms252312514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Patients suffering from an inherited severe liver disorder require lifelong treatment to prevent premature death. Until recently, the only curative treatment option was liver transplantation, which requires lifelong immune suppression. Now, liver-directed gene therapy, which is a much less invasive procedure, has become a market-approved treatment for hemophilia A and B. This may pave the way for it to become the treatment of choice for many other recessive inherited liver disorders with loss-of-function mutations. Inherited liver disease with toxic-gain-of-function or intrinsic hepatocyte damage may require alternative applications, such as integrating vectors or genome editing technologies, that can provide permanent or specific modification of the genome. We present an overview of currently available gene therapy strategies, i.e., gene supplementation, gene editing, and gene repair investigated in preclinical and clinical studies to treat inherited severe liver disorders. The advantages and limitations of these gene therapy applications are discussed in relation to the underlying disease mechanism.
Collapse
Affiliation(s)
- Yue Chen
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Niek P van Til
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Piter J Bosma
- Amsterdam University Medical Center, Tytgat Institute for Liver and Intestinal Research, AG&M, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| |
Collapse
|
5
|
Milani M, Canepari C, Assanelli S, Merlin S, Borroni E, Starinieri F, Biffi M, Russo F, Fabiano A, Zambroni D, Annoni A, Naldini L, Follenzi A, Cantore A. GP64-pseudotyped lentiviral vectors target liver endothelial cells and correct hemophilia A mice. EMBO Mol Med 2024; 16:1427-1450. [PMID: 38684862 PMCID: PMC11178766 DOI: 10.1038/s44321-024-00072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Lentiviral vectors (LV) are efficient vehicles for in vivo gene delivery to the liver. LV integration into the chromatin of target cells ensures their transmission upon proliferation, thus allowing potentially life-long gene therapy following a single administration, even to young individuals. The glycoprotein of the vesicular stomatitis virus (VSV.G) is widely used to pseudotype LV, as it confers broad tropism and high stability. The baculovirus-derived GP64 envelope protein has been proposed as an alternative for in vivo liver-directed gene therapy. Here, we perform a detailed comparison of VSV.G- and GP64-pseudotyped LV in vitro and in vivo. We report that VSV.G-LV transduced hepatocytes better than GP64-LV, however the latter showed improved transduction of liver sinusoidal endothelial cells (LSEC). Combining GP64-pseudotyping with the high surface content of the phagocytosis inhibitor CD47 further enhanced LSEC transduction. Coagulation factor VIII (FVIII), the gene mutated in hemophilia A, is naturally expressed by LSEC, thus we exploited GP64-LV to deliver a FVIII transgene under the control of the endogenous FVIII promoter and achieved therapeutic amounts of FVIII and correction of hemophilia A mice.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Simone Assanelli
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Francesco Starinieri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Fabiano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
6
|
Annoni A, Cantore A. LSpECifying transgene expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102144. [PMID: 38384446 PMCID: PMC10879793 DOI: 10.1016/j.omtn.2024.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Affiliation(s)
- Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- "Vita-Salute San Raffaele" University, Milan, Italy
| |
Collapse
|
7
|
De Wolf D, Singh K, Chuah MK, VandenDriessche T. Hemophilia Gene Therapy: The End of the Beginning? Hum Gene Ther 2023; 34:782-792. [PMID: 37672530 DOI: 10.1089/hum.2023.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Extensive preclinical research over the past 30 years has culminated in the recent regulatory approval of several gene therapy products for hemophilia. Based on the efficacy and safety data in a recently conducted phase III clinical trial, Roctavian® (valoctocogene roxaparvovec), an adeno-associated viral (AAV5) vector expressing a B domain deleted factor VIII (FVIII) complementary DNA, was approved by the European Commission and Food and Drug Administration (FDA) for the treatment of patients with severe hemophilia A. In addition, Hemgenix® (etranacogene dezaparvovec) was also recently approved by the European Medicines Agency and the FDA for the treatment of patients with severe hemophilia B. This product is based on an AAV5 vector expressing a hyper-active factor IX (FIX) transgene (FIX-Padua) transgene. All AAV-based phase III clinical trials to date show a significant increase in FVIII or FIX levels in the majority of treated patients, consistent with a substantial decrease in bleeding episodes and a concomitant reduction in factor usage obviating the need for factor prophylaxis in most patients. However, significant interpatient variability remains that is not fully understood. Moreover, most patients encountered short-term asymptomatic liver inflammation that was treated by immune suppression with corticosteroids or other immune suppressants. In all phase III trials to date, FIX expression has appeared relatively more stable than FVIII, though individual patients also had prolonged FVIII expression. Whether lifelong expression of clotting factors can be realized after gene therapy requires longer follow-up studies. Further preclinical development of next-generation gene editing technologies offers new prospects for the development of a sustained cure for hemophilia, not only in adults, but ultimately in children with hemophilia too.
Collapse
Affiliation(s)
- Dries De Wolf
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Tang PZ, Ding B, Reyes C, Papp D, Potter J. Target-seq: single workflow for detection of genome integration site, DNA translocation and off-target events. Biotechniques 2023. [PMID: 37161298 DOI: 10.2144/btn-2023-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Designed donor DNA delivery through viral or nonviral systems to target loci in the host genome is a critical step for gene therapy. Adeno-associated virus and lentivirus are leading vehicles for in vivo and ex vivo delivery of therapeutic genes due to their high delivery and editing efficiency. Nonviral editing tools, such as CRISPR/Cas9, are getting more attention for gene modification. However, there are safety concerns; for example, tumorigenesis due to off-target effects and DNA rearrangement. Analysis tools to detect and characterize on-target and off-target genome modification post editing in the host genome are pivotal for evaluating the success and safety of gene therapy. We developed Target-seq combined with different analysis tools to detect the genome integration site, DNA translocation and off-target events.
Collapse
Affiliation(s)
| | - Bo Ding
- Thermo Fisher Scientific, Inc., MA, USA
| | | | | | | |
Collapse
|
9
|
Seo DC, Ju YH, Seo JJ, Oh SJ, Lee CJ, Lee SE, Nam MH. DDC-Promoter-Driven Chemogenetic Activation of SNpc Dopaminergic Neurons Alleviates Parkinsonian Motor Symptoms. Int J Mol Sci 2023; 24:ijms24032491. [PMID: 36768816 PMCID: PMC9916413 DOI: 10.3390/ijms24032491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with typical motor symptoms. Recent studies have suggested that excessive GABA from reactive astrocytes tonically inhibits dopaminergic neurons and reduces the expression of tyrosine hydroxylase (TH), the key dopamine-synthesizing enzyme, in the substantia nigra pars compacta (SNpc). However, the expression of DOPA decarboxylase (DDC), another dopamine-synthesizing enzyme, is relatively spared, raising a possibility that the live but non-functional TH-negative/DDC-positive neurons could be the therapeutic target for rescuing PD motor symptoms. However, due to the absence of a validated DDC-specific promoter, manipulating DDC-positive neuronal activity has not been tested as a therapeutic strategy for PD. Here, we developed an AAV vector expressing mCherry under rat DDC promoter (AAV-rDDC-mCherry) and validated the specificity in the rat SNpc. Modifying this vector, we expressed hM3Dq (Gq-DREADD) under DDC promoter in the SNpc and ex vivo electrophysiologically validated the functionality. In the A53T-mutated alpha-synuclein overexpression model of PD, the chemogenetic activation of DDC-positive neurons in the SNpc significantly alleviated the parkinsonian motor symptoms and rescued the nigrostriatal TH expression. Altogether, our DDC-promoter will allow dopaminergic neuron-specific gene delivery in rodents. Furthermore, we propose that the activation of dormant dopaminergic neurons could be a potential therapeutic strategy for PD.
Collapse
Affiliation(s)
- Dong-Chan Seo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Ha Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - Jin-Ju Seo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Correspondence: (S.E.L.); (M.-H.N.)
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Department of KHU-KIST Convergence Science & Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (S.E.L.); (M.-H.N.)
| |
Collapse
|
10
|
Ferrari S, Jacob A, Cesana D, Laugel M, Beretta S, Varesi A, Unali G, Conti A, Canarutto D, Albano L, Calabria A, Vavassori V, Cipriani C, Castiello MC, Esposito S, Brombin C, Cugnata F, Adjali O, Ayuso E, Merelli I, Villa A, Di Micco R, Kajaste-Rudnitski A, Montini E, Penaud-Budloo M, Naldini L. Choice of template delivery mitigates the genotoxic risk and adverse impact of editing in human hematopoietic stem cells. Cell Stem Cell 2022; 29:1428-1444.e9. [PMID: 36206730 PMCID: PMC9550218 DOI: 10.1016/j.stem.2022.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
Long-range gene editing by homology-directed repair (HDR) in hematopoietic stem/progenitor cells (HSPCs) often relies on viral transduction with recombinant adeno-associated viral vector (AAV) for template delivery. Here, we uncover unexpected load and prolonged persistence of AAV genomes and their fragments, which trigger sustained p53-mediated DNA damage response (DDR) upon recruiting the MRE11-RAD50-NBS1 (MRN) complex on the AAV inverted terminal repeats (ITRs). Accrual of viral DNA in cell-cycle-arrested HSPCs led to its frequent integration, predominantly in the form of transcriptionally competent ITRs, at nuclease on- and off-target sites. Optimized delivery of integrase-defective lentiviral vector (IDLV) induced lower DNA load and less persistent DDR, improving clonogenic capacity and editing efficiency in long-term repopulating HSPCs. Because insertions of viral DNA fragments are less frequent with IDLV, its choice for template delivery mitigates the adverse impact and genotoxic burden of HDR editing and should facilitate its clinical translation in HSPC gene therapy.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Aurelien Jacob
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniela Cesana
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianne Laugel
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Stefano Beretta
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giulia Unali
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anastasia Conti
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Daniele Canarutto
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy,Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luisa Albano
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Andrea Calabria
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valentina Vavassori
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Carlo Cipriani
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maria Carmina Castiello
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Institute for Genetic and Biomedical Research (UOS Milan Unit), National Research Council, Milan 20132, Italy
| | - Simona Esposito
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Oumeya Adjali
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Eduard Ayuso
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes 44200, France
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, Segrate 20090, Italy
| | - Anna Villa
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Institute for Genetic and Biomedical Research (UOS Milan Unit), National Research Council, Milan 20132, Italy
| | - Raffaella Di Micco
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Kajaste-Rudnitski
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eugenio Montini
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Luigi Naldini
- San Rafaelle Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy,Vita-Salute San Raffaele University, Milan 20132, Italy,Corresponding author
| |
Collapse
|
11
|
Tipanee J, Samara-Kuko E, Gevaert T, Chuah MK, VandenDriessche T. Universal allogeneic CAR T cells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy. Mol Ther 2022; 30:3155-3175. [PMID: 35711141 PMCID: PMC9552804 DOI: 10.1016/j.ymthe.2022.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022] Open
Abstract
Allogeneic CD19-specific chimeric antigen receptor (CAR) T cells with inactivated donor T cell receptor (TCR) expression can be used as an "off-the-shelf" therapeutic modality for lymphoid malignancies, thus offering an attractive alternative to autologous, patient-derived T cells. Current approaches for T cell engineering mainly rely on the use of viral vectors. Here, we optimized and validated a non-viral genetic modification platform based on Sleeping Beauty (SB) transposons delivered with minicircles to express CD19-28z.CAR and CRISPR-Cas9 ribonucleoparticles to inactivate allogeneic TCRs. Efficient TCR gene disruption was achieved with minimal cytotoxicity and with attainment of robust and stable CD19-28z.CAR expression. The CAR T cells were responsive to CD19+ tumor cells with antitumor activities that induced complete tumor remission in NALM6 tumor-bearing mice while significantly reducing TCR alloreactivity and GvHD development. Single CAR signaling induced the similar T cell signaling signatures in TCR-disrupted CAR T cells and control CAR T cells. In contrast, TCR disruption inhibited T cell signaling/protein phosphorylation compared with the control CAR T cells during dual CAR/TCR signaling. This non-viral SB transposon-CRISPR-Cas9 combination strategy serves as an alternative for generating next-generation CD19-specific CAR T while reducing GvHD risk and easing potential manufacturing constraints intrinsic to viral vectors.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
Zhou W, Yang J, Zhang Y, Hu X, Wang W. Current landscape of gene-editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm (Beijing) 2022; 3:e155. [PMID: 35845351 PMCID: PMC9283854 DOI: 10.1002/mco2.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
The expanding genome editing toolbox has revolutionized life science research ranging from the bench to the bedside. These "molecular scissors" have offered us unprecedented abilities to manipulate nucleic acid sequences precisely in living cells from diverse species. Continued advances in genome editing exponentially broaden our knowledge of human genetics, epigenetics, molecular biology, and pathology. Currently, gene editing-mediated therapies have led to impressive responses in patients with hematological diseases, including sickle cell disease and thalassemia. With the discovery of more efficient, precise and sophisticated gene-editing tools, more therapeutic gene-editing approaches will enter the clinic to treat various diseases, such as acquired immunodeficiency sydrome (AIDS), hematologic malignancies, and even severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These initial successes have spurred the further innovation and development of gene-editing technology. In this review, we will introduce the architecture and mechanism of the current gene-editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease-based tools and other protein-based DNA targeting systems, and we summarize the meaningful applications of diverse technologies in preclinical studies, focusing on the establishment of disease models and diagnostic techniques. Finally, we provide a comprehensive overview of clinical information using gene-editing therapeutics for treating various human diseases and emphasize the opportunities and challenges.
Collapse
Affiliation(s)
- Weilin Zhou
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Jinrong Yang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of HematologyHematology Research LaboratoryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Yalan Zhang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Xiaoyi Hu
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of Gynecology and ObstetricsDevelopment and Related Disease of Women and Children Key Laboratory of Sichuan ProvinceKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second HospitalSichuan UniversityChengduP. R. China
| | - Wei Wang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
13
|
Freitas MVD, Frâncio L, Haleva L, Matte UDS. Protection is not always a good thing: The immune system's impact on gene therapy. Genet Mol Biol 2022; 45:e20220046. [PMID: 35852088 PMCID: PMC9295005 DOI: 10.1590/1678-4685-gmb-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
There are many clinical trials underway for the development of gene therapies, and some have resulted in gene therapy products being commercially approved already. Significant progress was made to develop safer and more effective strategies to deliver and regulate genetic products. An unsolved aspect is the immune system, which can affect the efficiency of gene therapy in different ways. Here we present an overview of approved gene therapy products and the immune response elicited by gene delivery systems. These include responses against the vector or its content after delivery and against the product of the corrected gene. Strategies to overcome the hurdles include hiding the vector or/and the transgene product from the immune system and hiding the immune system from the vector/transgene product. Combining different strategies, such as patient screening and intelligent vector design, gene therapy is set to make a difference in the life of patients with severe genetic diseases.
Collapse
Affiliation(s)
- Martiela Vaz de Freitas
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório Células Tecidos e Genes, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática Centro de Pesquisa Experimental, Porto Alegre, RS, Brazil
| | - Lariane Frâncio
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório Células Tecidos e Genes, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Laura Haleva
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Porto Alegre, RS, Brazil
| | - Ursula da Silveira Matte
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório Células Tecidos e Genes, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Núcleo de Bioinformática Centro de Pesquisa Experimental, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Russo F, Ruggiero E, Curto R, Passeri L, Sanvito F, Bortolomai I, Villa A, Gregori S, Annoni A. Editing T cell repertoire by thymic epithelial cell-directed gene transfer abrogates risk of type 1 diabetes development. Mol Ther Methods Clin Dev 2022; 25:508-519. [PMID: 35615710 PMCID: PMC9121074 DOI: 10.1016/j.omtm.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
Insulin is the primary autoantigen (Ag) targeted by T cells in type 1 diabetes (T1D). Although biomarkers precisely identifying subjects at high risk of T1D are available, successful prophylaxis is still an unmet need. Leaky central tolerance to insulin may be partially ascribed to the instability of the MHC-InsB9-23 complex, which lowers TCR avidity, thus resulting in defective negative selection of autoreactive clones and inadequate insulin-specific T regulatory cell (Treg) induction. We developed a lentiviral vector (LV)-based strategy to engineer thymic epithelial cells (TECs) to correct diabetogenic T cell repertoire. Intrathymic (it) LV injection established stable transgene expression in EpCAM+ TECs, by virtue of transduction of TEC precursors. it-LV-driven presentation of the immunodominant portion of ovalbumin allowed persistent and complete negative selection of responsive T cells in OT-II chimeric mice. We successfully applied this strategy to correct the diabetogenic repertoire of young non-obese diabetic mice, imposing the presentation by TECs of the stronger agonist InsulinB9-23R22E and partially depleting the existing T cell compartment. We further circumscribed LV-driven presentation of InsulinB9-23R22E by micro-RNA regulation to CD45− TECs without loss of efficacy in protection from diabetes, associated with expanded insulin-specific Tregs. Overall, our gene transfer-based prophylaxis fine-tuned the central tolerance processes of negative selection and Treg induction, correcting an autoimmune prone T cell repertoire.
Collapse
Affiliation(s)
- Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rosalia Curto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ileana Bortolomai
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.,Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), 20090 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
15
|
Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Ng MH. Non-Integrating Lentiviral Vectors in Clinical Applications: A Glance Through. Biomedicines 2022; 10:biomedicines10010107. [PMID: 35052787 PMCID: PMC8773317 DOI: 10.3390/biomedicines10010107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) play an important role in gene therapy and have proven successful in clinical trials. LVs are capable of integrating specific genetic materials into the target cells and allow for long-term expression of the cDNA of interest. The use of non-integrating LVs (NILVs) reduces insertional mutagenesis and the risk of malignant cell transformation over integrating lentiviral vectors. NILVs enable transient expression or sustained episomal expression, especially in non-dividing cells. Important modifications have been made to the basic human immunodeficiency virus (HIV) structures to improve the safety and efficacy of LVs. NILV-aided transient expression has led to more pre-clinical studies on primary immunodeficiencies, cytotoxic cancer therapies, and hemoglobinopathies. Recently, the third generation of self-inactivating LVs was applied in clinical trials for recombinant protein production, vaccines, gene therapy, cell imaging, and induced pluripotent stem cell (iPSC) generation. This review discusses the basic lentiviral biology and the four systems used for generating NILV designs. Mutations or modifications in LVs and their safety are addressed with reference to pre-clinical studies. The detailed application of NILVs in promising pre-clinical studies is also discussed.
Collapse
Affiliation(s)
- Narmatha Gurumoorthy
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
- Correspondence:
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Malaysia;
| | | | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| |
Collapse
|
16
|
Russo F, Citro A, Squeri G, Sanvito F, Monti P, Gregori S, Roncarolo MG, Annoni A. InsB9-23 Gene Transfer to Hepatocyte-Based Combined Therapy Abrogates Recurrence of Type 1 Diabetes After Islet Transplantation. Diabetes 2021; 70:171-181. [PMID: 33122392 DOI: 10.2337/db19-1249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 10/22/2020] [Indexed: 11/13/2022]
Abstract
The induction of antigen (Ag)-specific tolerance represents a therapeutic option for autoimmune diabetes. We demonstrated that administration of a lentiviral vector enabling expression of insulin B chain 9-23 (InsB9-23) (LV.InsB) in hepatocytes arrests β-cell destruction in prediabetic NOD mice by generating InsB9-23-specific FoxP3+ T regulatory cells (Tregs). LV.InsB in combination with a suboptimal dose of anti-CD3 monoclonal antibody (combined therapy [CT], 1 × 5 μg [CT5]) reverts diabetes and prevents recurrence of autoimmunity after islet transplantation in ∼50% of NOD mice. We investigated whether CT optimization could lead to abrogation of recurrence of autoimmunity. Therefore, alloislets were transplanted after optimized CT tolerogenic conditioning (1 × 25 μg [CT25]). Diabetic NOD mice conditioned with CT25 when glycemia was <500 mg/dL remained normoglycemic for 100 days after alloislet transplantation and displayed reduced insulitis, but independently from the graft. Accordingly, cured mice showed T-cell unresponsiveness to InsB9-23 stimulation and increased Treg frequency in islet infiltration and pancreatic lymph nodes. Additional studies revealed a complex mechanism of Ag-specific immune regulation driven by CT25, in which both Tregs and PDL1 costimulation cooperate to control diabetogenic cells, while transplanted islets play a crucial role, although transient, recruiting diabetogenic cells. Therefore, CT25 before alloislet transplantation represents an Ag-specific immunotherapy to resolve autoimmune diabetes in the presence of residual endogenous β-cell mass.
Collapse
Affiliation(s)
- Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute (DRI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Squeri
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute (DRI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | | | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Moscoso CG, Steer CJ. Liver targeted gene therapy: Insights into emerging therapies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 34:9-19. [PMID: 33357766 DOI: 10.1016/j.ddtec.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
The large number of monogenic metabolic disorders originating in the liver poses a unique opportunity for development of gene therapy modalities to pursue curative approaches. Various disorders have been successfully treated via liver-directed gene therapy, though most of the advances have been in animal models, with only limited success in clinical trials. Pre-clinical data in animals using non-viral approaches, including the Sleeping Beauty transposon system, are discussed. The various advances with viral vectors for liver-directed gene therapy are also a focus of this review, including retroviral, adenoviral, recombinant adeno-associated viral, and SV40 vectors. Genome editing techniques, including zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR), are also described. Further, the various controversies in the field with regards to somatic vs. germline editing using CRISPR in humans are explored, while also highlighting the myriad of preclinical advances. Lastly, newer technologies are reviewed, including base editing and prime editing, which use CRISPR with exciting adjunctive properties to avoid double-stranded breaks and thus the recruitment of endogenous repair mechanisms. While encouraging results have been achieved recently, there are still significant challenges to overcome prior to the broad use of vector-based and genome editing techniques in the clinical arena. As these technologies mature, the promise of a cure for many disabling inherited metabolic disorders is within reach, and urgently needed.
Collapse
Affiliation(s)
- Carlos G Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | - Clifford J Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA.
| |
Collapse
|
18
|
Integrase-Defective Lentiviral Vectors for Delivery of Monoclonal Antibodies against Influenza. Viruses 2020; 12:v12121460. [PMID: 33348840 PMCID: PMC7767071 DOI: 10.3390/v12121460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Delivering rapid protection against infectious agents to non-immune populations is a formidable public health challenge. Although passive immunotherapy is a fast and effective method of protection, large-scale production and administration of monoclonal antibodies (mAbs) is expensive and unpractical. Viral vector-mediated delivery of mAbs offers an attractive alternative to their direct injection. Integrase-defective lentiviral vectors (IDLV) are advantageous for this purpose due to the absence of pre-existing anti-vector immunity and the safety features of non-integration and non-replication. We engineered IDLV to produce the humanized mAb VN04-2 (IDLV-VN04-2), which is broadly neutralizing against H5 influenza A virus (IAV), and tested the vectors’ ability to produce antibodies and protect from IAV in vivo. We found that IDLV-transduced cells produced functional VN04-2 mAbs in a time- and dose-dependent fashion. These mAbs specifically bind the hemagglutinin (HA), but not the nucleoprotein (NP) of IAV. VN04-2 mAbs were detected in the serum of mice at different times after intranasal (i.n.) or intramuscular (i.m.) administration of IDLV-VN04-2. Administration of IDLV-VN04-2 by the i.n. route provided rapid protection against lethal IAV challenge, although the protection did not persist at later time points. Our data suggest that administration of mAb-expressing IDLV may represent an effective strategy for rapid protection against infectious diseases.
Collapse
|
19
|
Moscoso CG, Steer CJ. The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes (Basel) 2020; 11:genes11080915. [PMID: 32785089 PMCID: PMC7463482 DOI: 10.3390/genes11080915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Monogenic metabolic disorders of hepatic origin number in the hundreds, and for many, liver transplantation remains the only cure. Liver-targeted gene therapy is an attractive treatment modality for many of these conditions, and there have been significant advances at both the preclinical and clinical stages. Viral vectors, including retroviruses, lentiviruses, adenovirus-based vectors, adeno-associated viruses and simian virus 40, have differing safety, efficacy and immunogenic profiles, and several of these have been used in clinical trials with variable success. In this review, we profile viral vectors and non-viral vectors, together with various payloads, including emerging therapies based on RNA, that are entering clinical trials. Genome editing technologies are explored, from earlier to more recent novel approaches that are more efficient, specific and safe in reaching their target sites. The various curative approaches for the multitude of monogenic hepatic metabolic disorders currently at the clinical development stage portend a favorable outlook for this class of genetic disorders.
Collapse
Affiliation(s)
- Carlos G. Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Correspondence: (C.G.M.); (C.J.S.); Tel.: +1-612-625-8999 (C.G.M. & C.J.S.); Fax: +1-612-625-5620 (C.G.M. & C.J.S.)
| | - Clifford J. Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Correspondence: (C.G.M.); (C.J.S.); Tel.: +1-612-625-8999 (C.G.M. & C.J.S.); Fax: +1-612-625-5620 (C.G.M. & C.J.S.)
| |
Collapse
|
20
|
Milani M, Annoni A, Moalli F, Liu T, Cesana D, Calabria A, Bartolaccini S, Biffi M, Russo F, Visigalli I, Raimondi A, Patarroyo-White S, Drager D, Cristofori P, Ayuso E, Montini E, Peters R, Iannacone M, Cantore A, Naldini L. Phagocytosis-shielded lentiviral vectors improve liver gene therapy in nonhuman primates. Sci Transl Med 2020; 11:11/493/eaav7325. [PMID: 31118293 DOI: 10.1126/scitranslmed.aav7325] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/11/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
Abstract
Liver-directed gene therapy for the coagulation disorder hemophilia showed safe and effective results in clinical trials using adeno-associated viral vectors to replace a functional coagulation factor, although some unmet needs remain. Lentiviral vectors (LVs) may address some of these hurdles because of their potential for stable expression and the low prevalence of preexisting viral immunity in humans. However, systemic LV administration to hemophilic dogs was associated to mild acute toxicity and low efficacy at the administered doses. Here, exploiting intravital microscopy and LV surface engineering, we report a major role of the human phagocytosis inhibitor CD47, incorporated into LV cell membrane, in protecting LVs from uptake by professional phagocytes and innate immune sensing, thus favoring biodistribution to hepatocytes after systemic administration. By enforcing high CD47 surface content, we generated phagocytosis-shielded LVs which, upon intravenous administration to nonhuman primates, showed selective liver and spleen targeting and enhanced hepatocyte gene transfer compared to parental LV, reaching supraphysiological activity of human coagulation factor IX, the protein encoded by the transgene, without signs of toxicity or clonal expansion of transduced cells.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Bartolaccini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ilaria Visigalli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | - Patrizia Cristofori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.,GlaxoSmithKline R&D UK, Ware SG12 0DP, UK
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, CHU de Nantes, 44093 Nantes, France
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. .,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy. .,Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
21
|
Bolleyn J, Rombaut M, Nair N, Branson S, Heymans A, Chuah M, VandenDriessche T, Rogiers V, De Kock J, Vanhaecke T. Genetic and Epigenetic Modification of Rat Liver Progenitor Cells via HNF4α Transduction and 5' Azacytidine Treatment: An Integrated miRNA and mRNA Expression Profile Analysis. Genes (Basel) 2020; 11:E486. [PMID: 32365562 PMCID: PMC7291069 DOI: 10.3390/genes11050486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Neonatal liver-derived rat epithelial cells (rLEC) from biliary origin are liver progenitor cells that acquire a hepatocyte-like phenotype upon sequential exposure to hepatogenic growth factors and cytokines. Undifferentiated rLEC express several liver-enriched transcription factors, including the hepatocyte nuclear factors (HNF) 3β and HNF6, but not the hepatic master regulator HNF4α. In this study, we first investigated the impact of the ectopic expression of HNF4α in rLEC on both mRNA and microRNA (miR) level by means of microarray technology. We found that HNF4α transduction did not induce major changes to the rLEC phenotype. However, we next investigated the influence of DNA methyl transferase (DNMT) inhibition on the phenotype of undifferentiated naïve rLEC by exposure to 5' azacytidine (AZA), which was found to have a significant impact on rLEC gene expression. The transduction of HNF4α or AZA treatment resulted both in significantly downregulated C/EBPα expression levels, while the exposure of the cells to AZA had a significant effect on the expression of HNF3β. Computationally, dysregulated miRNAs were linked to target mRNAs using the microRNA Target Filter function of Ingenuity Pathway Analysis. We found that differentially regulated miRNA-mRNA target associations predict ectopic HNF4α expression in naïve rLEC to interfere with cell viability and cellular maturation (miR-19b-3p/NR4A2, miR30C-5p/P4HA2, miR328-3p/CD44) while it predicts AZA exposure to modulate epithelial/hepatic cell proliferation, apoptosis, cell cycle progression and the differentiation of stem cells (miR-18a-5p/ESR1, miR-503-5p/CCND1). Finally, our computational analysis predicts that the combination of HNF4α transduction with subsequent AZA treatment might cause changes in hepatic cell proliferation and maturation (miR-18a-5p/ESR1, miR-503-5p/CCND1, miR-328-3p/CD44) as well as the apoptosis (miR-16-5p/BCL2, miR-17-5p/BCL2, miR-34a-5p/BCL2 and miR-494-3p/HMOX1) of naïve rLEC.
Collapse
Affiliation(s)
- Jennifer Bolleyn
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Nisha Nair
- Department of Gene Therapy and Regenerative Medicine (GTRM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (N.N.); (M.C.); (T.V.)
| | - Steven Branson
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Anja Heymans
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Marinee Chuah
- Department of Gene Therapy and Regenerative Medicine (GTRM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (N.N.); (M.C.); (T.V.)
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine (GTRM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (N.N.); (M.C.); (T.V.)
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| |
Collapse
|
22
|
Abstract
Several viral vector-based gene therapy drugs have now received marketing approval. A much larger number of additional viral vectors are in various stages of clinical trials for the treatment of genetic and acquired diseases, with many more in pre-clinical testing. Efficiency of gene transfer and ability to provide long-term therapy make these vector systems very attractive. In fact, viral vector gene therapy has been able to treat or even cure diseases for which there had been no or only suboptimal treatments. However, innate and adaptive immune responses to these vectors and their transgene products constitute substantial hurdles to clinical development and wider use in patients. This review provides an overview of the type of immune responses that have been documented in animal models and in humans who received gene transfer with one of three widely tested vector systems, namely adenoviral, lentiviral, or adeno-associated viral vectors. Particular emphasis is given to mechanisms leading to immune responses, efforts to reduce vector immunogenicity, and potential solutions to the problems. At the same time, we point out gaps in our knowledge that should to be filled and problems that need to be addressed going forward.
Collapse
Affiliation(s)
- Jamie L Shirley
- Gene Therapy Center, University of Massachusetts, Worchester, MA, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
23
|
Jin SJ, Jin MZ, Xia BR, Jin WL. Long Non-coding RNA DANCR as an Emerging Therapeutic Target in Human Cancers. Front Oncol 2019; 9:1225. [PMID: 31799189 PMCID: PMC6874123 DOI: 10.3389/fonc.2019.01225] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators of numerous biological processes, especially in cancer development. Aberrantly expressed and specifically located in tumor cells, they exert distinct functions in different cancers via regulating multiple downstream targets such as chromatins, RNAs, and proteins. Differentiation antagonizing non-protein coding RNA (DANCR) is a cytoplasmic lncRNA that generally works as a tumor promoter. Mechanically, DANCR promotes the functions of vital components in the oncogene network by sponging their corresponding microRNAs or by interacting with various regulating proteins. DANCR's distinct expression in tumor cells and collective involvement in pro-tumor pathways make it a promising therapeutic target for broad cancer treatment. Herein, we summarize the functions and molecular mechanism of DANCR in human cancers. Furthermore, we introduce the use of CRISPR/Cas9, antisense oligonucleotides and small interfering RNAs as well as viral, lipid, or exosomal vectors for onco-lncRNA targeted treatment. Conclusively, DANCR is a considerable promoter of cancers with a bright prospect in targeted therapy.
Collapse
Affiliation(s)
- Shi-Jia Jin
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Department of Instrument Science and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bai-Rong Xia
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, China
| | - Wei-Lin Jin
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Department of Instrument Science and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
TraFo-CRISPR: Enhanced Genome Engineering by Transient Foamy Virus Vector-Mediated Delivery of CRISPR/Cas9 Components. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:708-726. [PMID: 31726388 PMCID: PMC6859288 DOI: 10.1016/j.omtn.2019.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022]
Abstract
The adaptation of CRISPR/Cas technology for use in mammals has revolutionized genome engineering. In particular with regard to clinical application, efficient expression of Cas9 within a narrow time frame is highly desirable to minimize the accumulation of off-target editing. We developed an effective, aptamer-independent retroviral delivery system for Cas9 mRNAs that takes advantage of a unique foamy virus (FV) capability: the efficient encapsidation and transfer of non-viral RNAs. This enabled us to create a FV vector toolbox for efficient, transient delivery (TraFo) of CRISPR/Cas9 components into different target tissues. Co-delivery of Cas9 mRNA by TraFo-Cas9 vectors in combination with retroviral, integration-deficient single guide RNA (sgRNA) expression enhanced efficacy and specificity of gene-inactivation compared with CRISPR/Cas9 lentiviral vector systems. Furthermore, separate TraFo-Cas9 delivery allowed the optional inclusion of a repair matrix for efficient gene correction or tagging as well as the addition of fluorescent negative selection markers for easy identification of off-target editing or incorrect repair events. Thus, the TraFo CRISPR toolbox represents an interesting alternative technology for gene inactivation and gene editing.
Collapse
|
25
|
Dynamics and genomic landscape of CD8 + T cells undergoing hepatic priming. Nature 2019; 574:200-205. [PMID: 31582858 PMCID: PMC6858885 DOI: 10.1038/s41586-019-1620-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022]
Abstract
The responses of CD8+ T cells to hepatotropic viruses such as hepatitis B range from dysfunction to differentiation into effector cells, but the mechanisms that underlie these distinct outcomes remain poorly understood. Here we show that priming by Kupffer cells, which are not natural targets of hepatitis B, leads to differentiation of CD8+ T cells into effector cells that form dense, extravascular clusters of immotile cells scattered throughout the liver. By contrast, priming by hepatocytes, which are natural targets of hepatitis B, leads to local activation and proliferation of CD8+ T cells but not to differentiation into effector cells; these cells form loose, intravascular clusters of motile cells that coalesce around portal tracts. Transcriptomic and chromatin accessibility analyses reveal unique features of these dysfunctional CD8+ T cells, with limited overlap with those of exhausted or tolerant T cells; accordingly, CD8+ T cells primed by hepatocytes cannot be rescued by treatment with anti-PD-L1, but instead respond to IL-2. These findings suggest immunotherapeutic strategies against chronic hepatitis B infection.
Collapse
|
26
|
Domenger C, Grimm D. Next-generation AAV vectors—do not judge a virus (only) by its cover. Hum Mol Genet 2019; 28:R3-R14. [DOI: 10.1093/hmg/ddz148] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractRecombinant adeno-associated viruses (AAV) are under intensive investigation in numerous clinical trials after they have emerged as a highly promising vector for human gene therapy. Best exemplifying their power and potential is the authorization of three gene therapy products based on wild-type AAV serotypes, comprising Glybera (AAV1), Luxturna (AAV2) and, most recently, Zolgensma (AAV9). Nonetheless, it has also become evident that the current AAV vector generation will require improvements in transduction potency, antibody evasion and cell/tissue specificity to allow the use of lower and safer vector doses. To this end, others and we devoted substantial previous research to the implementation and application of key technologies for engineering of next-generation viral capsids in a high-throughput ‘top-down’ or (semi-)rational ‘bottom-up’ approach. Here, we describe a set of recent complementary strategies to enhance features of AAV vectors that act on the level of the recombinant cargo. As examples that illustrate the innovative and synergistic concepts that have been reported lately, we highlight (i) novel synthetic enhancers/promoters that provide an unprecedented degree of AAV tissue specificity, (ii) pioneering genetic circuit designs that harness biological (microRNAs) or physical (light) triggers as regulators of AAV gene expression and (iii) new insights into the role of AAV DNA structures on vector genome stability, integrity and functionality. Combined with ongoing capsid engineering and selection efforts, these and other state-of-the-art innovations and investigations promise to accelerate the arrival of the next generation of AAV vectors and to solidify the unique role of this exciting virus in human gene therapy.
Collapse
Affiliation(s)
- Claire Domenger
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, BioQuant Center, Im Neuenheimer Feld, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| |
Collapse
|
27
|
Merlin S, Follenzi A. Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:223-232. [PMID: 30775404 PMCID: PMC6365353 DOI: 10.1016/j.omtm.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene expression regulation is the result of complex interactions between transcriptional and post-transcriptional controls, resulting in cell-type-specific gene expression patterns that are determined by the developmental and differentiation stage of pathophysiological conditions. Understanding the complexity of gene expression regulatory networks is fundamental to gene therapy, an approach which has the potential to treat and cure inherited disorders by delivering the correct gene to patient specific cells or tissues by means of both viral and non-viral vectors. Besides the issues of biosafety, in recent years efforts have focused on achieving a robust and sustained transgene expression, which attains a phenotypic correction in several diseases, while avoiding transgene-related adverse effects, such as overexpression-associated cytotoxicity and/or immune responses to the transgene. In this sense, the use of cell-type-specific promoters and microRNA target sequences (miRTs) in gene transfer expression cassettes have allowed for a restricted expression after gene transfer in several studies. This review will focus on the use of transcriptional and post-transcriptional regulation to achieve a highly specific and safe transgene expression, as well as their application in ex vivo and in vivo gene therapeutic approaches.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
28
|
Petrillo C, Thorne LG, Unali G, Schiroli G, Giordano AMS, Piras F, Cuccovillo I, Petit SJ, Ahsan F, Noursadeghi M, Clare S, Genovese P, Gentner B, Naldini L, Towers GJ, Kajaste-Rudnitski A. Cyclosporine H Overcomes Innate Immune Restrictions to Improve Lentiviral Transduction and Gene Editing In Human Hematopoietic Stem Cells. Cell Stem Cell 2018; 23:820-832.e9. [PMID: 30416070 PMCID: PMC6292841 DOI: 10.1016/j.stem.2018.10.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/09/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
Abstract
Innate immune factors may restrict hematopoietic stem cell (HSC) genetic engineering and contribute to broad individual variability in gene therapy outcomes. Here, we show that HSCs harbor an early, constitutively active innate immune block to lentiviral transduction that can be efficiently overcome by cyclosporine H (CsH). CsH potently enhances gene transfer and editing in human long-term repopulating HSCs by inhibiting interferon-induced transmembrane protein 3 (IFITM3), which potently restricts VSV glycoprotein-mediated vector entry. Importantly, individual variability in endogenous IFITM3 levels correlated with permissiveness of HSCs to lentiviral transduction, suggesting that CsH treatment will be useful for improving ex vivo gene therapy and standardizing HSC transduction across patients. Overall, our work unravels the involvement of innate pathogen recognition molecules in immune blocks to gene correction in primary human HSCs and highlights how these roadblocks can be overcome to develop innovative cell and gene therapies.
Collapse
Affiliation(s)
- Carolina Petrillo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Giulia Unali
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Giulia Schiroli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Anna M S Giordano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Francesco Piras
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Ivan Cuccovillo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Sarah J Petit
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Fatima Ahsan
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy; Vita-Salute San Raffaele University, School of Medicine, Milan, MI 20132, Italy
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, MI 20132, Italy.
| |
Collapse
|
29
|
Dastidar S, Ardui S, Singh K, Majumdar D, Nair N, Fu Y, Reyon D, Samara E, Gerli MF, Klein AF, De Schrijver W, Tipanee J, Seneca S, Tulalamba W, Wang H, Chai Y, In’t Veld P, Furling D, Tedesco F, Vermeesch JR, Joung JK, Chuah MK, VandenDriessche T. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Res 2018; 46:8275-8298. [PMID: 29947794 PMCID: PMC6144820 DOI: 10.1093/nar/gky548] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
CRISPR/Cas9 is an attractive platform to potentially correct dominant genetic diseases by gene editing with unprecedented precision. In the current proof-of-principle study, we explored the use of CRISPR/Cas9 for gene-editing in myotonic dystrophy type-1 (DM1), an autosomal-dominant muscle disorder, by excising the CTG-repeat expansion in the 3'-untranslated-region (UTR) of the human myotonic dystrophy protein kinase (DMPK) gene in DM1 patient-specific induced pluripotent stem cells (DM1-iPSC), DM1-iPSC-derived myogenic cells and DM1 patient-specific myoblasts. To eliminate the pathogenic gain-of-function mutant DMPK transcript, we designed a dual guide RNA based strategy that excises the CTG-repeat expansion with high efficiency, as confirmed by Southern blot and single molecule real-time (SMRT) sequencing. Correction efficiencies up to 90% could be attained in DM1-iPSC as confirmed at the clonal level, following ribonucleoprotein (RNP) transfection of CRISPR/Cas9 components without the need for selective enrichment. Expanded CTG repeat excision resulted in the disappearance of ribonuclear foci, a quintessential cellular phenotype of DM1, in the corrected DM1-iPSC, DM1-iPSC-derived myogenic cells and DM1 myoblasts. Consequently, the normal intracellular localization of the muscleblind-like splicing regulator 1 (MBNL1) was restored, resulting in the normalization of splicing pattern of SERCA1. This study validates the use of CRISPR/Cas9 for gene editing of repeat expansions.
Collapse
Affiliation(s)
- Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Simon Ardui
- Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Debanjana Majumdar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Nisha Nair
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Yanfang Fu
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Deepak Reyon
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Ermira Samara
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Mattia F M Gerli
- Department of Cell and Developmental Biology, University College London, London WC1E6DE, UK
| | - Arnaud F Klein
- Sorbonne Universités, INSERM, Association Institute de Myologie, Center de Recherche en Myologie, F-75013 , France
| | - Wito De Schrijver
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Sara Seneca
- Research Group Reproduction and Genetics (REGE), Center for Medical Genetics, UZ Brussels, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Hui Wang
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Yoke Chin Chai
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Peter In’t Veld
- Department of Pathology, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Denis Furling
- Sorbonne Universités, INSERM, Association Institute de Myologie, Center de Recherche en Myologie, F-75013 , France
| | | | - Joris R Vermeesch
- Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - J Keith Joung
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
30
|
Alfranca A, Campanero MR, Redondo JM. New Methods for Disease Modeling Using Lentiviral Vectors. Trends Mol Med 2018; 24:825-837. [PMID: 30213701 DOI: 10.1016/j.molmed.2018.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
Lentiviral vectors (LVs) transduce quiescent cells and provide stable integration to maintain transgene expression. Several approaches have been adopted to optimize LV safety profiles. Similarly, LV targeting has been tailored through strategies including the modification of envelope components, the use of specific regulatory elements, and the selection of appropriate administration routes. Models of aortic disease based on a single injection of pleiotropic LVs have been developed that efficiently transduce the three aorta layers in wild type mice. This approach allows the dissection of pathways involved in aortic aneurysm formation and the identification of targets for gene therapy in aortic diseases. LVs provide a fast, efficient, and affordable alternative to genetically modified mice to study disease mechanisms and develop therapeutic tools.
Collapse
Affiliation(s)
- Arantzazu Alfranca
- Department of Immunology, Hospital Universitario de La Princesa, Madrid, Spain; CIBERCV, Madrid, Spain.
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain; CIBERCV, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBERCV, Madrid, Spain.
| |
Collapse
|
31
|
Escobar G, Barbarossa L, Barbiera G, Norelli M, Genua M, Ranghetti A, Plati T, Camisa B, Brombin C, Cittaro D, Annoni A, Bondanza A, Ostuni R, Gentner B, Naldini L. Interferon gene therapy reprograms the leukemia microenvironment inducing protective immunity to multiple tumor antigens. Nat Commun 2018; 9:2896. [PMID: 30042420 PMCID: PMC6057972 DOI: 10.1038/s41467-018-05315-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/14/2018] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy is emerging as a new pillar of cancer treatment with potential to cure. However, many patients still fail to respond to these therapies. Among the underlying factors, an immunosuppressive tumor microenvironment (TME) plays a major role. Here we show that monocyte-mediated gene delivery of IFNα inhibits leukemia in a mouse model. IFN gene therapy counteracts leukemia-induced expansion of immunosuppressive myeloid cells and imposes an immunostimulatory program to the TME, as shown by bulk and single-cell transcriptome analyses. This reprogramming promotes T-cell priming and effector function against multiple surrogate tumor-specific antigens, inhibiting leukemia growth in our experimental model. Durable responses are observed in a fraction of mice and are further increased combining gene therapy with checkpoint blockers. Furthermore, IFN gene therapy strongly enhances anti-tumor activity of adoptively transferred T cells engineered with tumor-specific TCR or CAR, overcoming suppressive signals in the leukemia TME. These findings warrant further investigations on the potential development of our gene therapy strategy towards clinical testing. An immune suppressive tumor microenvironment (TME) is a limitation for immunotherapy. Here the authors show that, in a B cell acute lymphoblastic leukemia mouse model, gene-based delivery of IFNα reprograms the leukemia-induced immunosuppressive TME into immunostimulatory and enhances T-cell responses.
Collapse
Affiliation(s)
- Giulia Escobar
- Vita-Salute San Raffaele University, 20132, Milan, Italy.,Targeted Cancer Gene Therapy Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy, 20132, Milan, Italy
| | - Luigi Barbarossa
- Targeted Cancer Gene Therapy Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy, 20132, Milan, Italy
| | - Giulia Barbiera
- San Raffaele Telethon Institute for Gene Therapy, 20132, Milan, Italy
| | - Margherita Norelli
- Vita-Salute San Raffaele University, 20132, Milan, Italy.,Division of Immunology, Transplant and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy, 20132, Milan, Italy
| | - Anna Ranghetti
- Targeted Cancer Gene Therapy Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Tiziana Plati
- San Raffaele Telethon Institute for Gene Therapy, 20132, Milan, Italy
| | - Barbara Camisa
- Division of Immunology, Transplant and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Chiara Brombin
- CUSSB-University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Davide Cittaro
- San Raffaele Telethon Institute for Gene Therapy, 20132, Milan, Italy.,Centre for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, 20132, Milan, Italy
| | - Attilio Bondanza
- Vita-Salute San Raffaele University, 20132, Milan, Italy.,Division of Immunology, Transplant and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy, 20132, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, 20132, Milan, Italy. .,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| | - Luigi Naldini
- Vita-Salute San Raffaele University, 20132, Milan, Italy. .,Targeted Cancer Gene Therapy Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy. .,San Raffaele Telethon Institute for Gene Therapy, 20132, Milan, Italy.
| |
Collapse
|
32
|
Milani M, Annoni A, Bartolaccini S, Biffi M, Russo F, Di Tomaso T, Raimondi A, Lengler J, Holmes MC, Scheiflinger F, Lombardo A, Cantore A, Naldini L. Genome editing for scalable production of alloantigen-free lentiviral vectors for in vivo gene therapy. EMBO Mol Med 2018; 9:1558-1573. [PMID: 28835507 PMCID: PMC5666310 DOI: 10.15252/emmm.201708148] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lentiviral vectors (LV) are powerful and versatile vehicles for gene therapy. However, their complex biological composition challenges large-scale manufacturing and raises concerns for in vivo applications, because particle components and contaminants may trigger immune responses. Here, we show that producer cell-derived polymorphic class-I major histocompatibility complexes (MHC-I) are incorporated into the LV surface and trigger allogeneic T-cell responses. By disrupting the beta-2 microglobulin gene in producer cells, we obtained MHC-free LV with substantially reduced immunogenicity. We introduce this targeted editing into a novel stable LV packaging cell line, carrying single-copy inducible vector components, which can be reproducibly converted into high-yield LV producers upon site-specific integration of the LV genome of interest. These LV efficiently transfer genes into relevant targets and are more resistant to complement-mediated inactivation, because of reduced content of the vesicular stomatitis virus envelope glycoprotein G compared to vectors produced by transient transfection. Altogether, these advances support scalable manufacturing of alloantigen-free LV with higher purity and increased complement resistance that are better suited for in vivo gene therapy.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Bartolaccini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tiziano Di Tomaso
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
33
|
Ball AN, Donahue SW, Wojda SJ, McIlwraith CW, Kawcak CE, Ehrhart N, Goodrich LR. The challenges of promoting osteogenesis in segmental bone defects and osteoporosis. J Orthop Res 2018; 36:1559-1572. [PMID: 29280510 PMCID: PMC8354209 DOI: 10.1002/jor.23845] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
Conventional clinical management of complex bone healing scenarios continues to result in 5-10% of fractures forming non-unions. Additionally, the aging population and prevalence of osteoporosis-related fractures necessitate the further exploration of novel ways to augment osteogenesis in this special population. This review focuses on the current clinical modalities available, and the ongoing clinical and pre-clinical research to promote osteogenesis in segmental bone defects, delayed unions, and osteoporosis. In summary, animal models of fracture repair are often small animals as historically significant large animal models, like the dog, continue to gain favor as companion animals. Small rodents have well-documented limitations in comparing to fracture repair in humans, and few similarities exist. Study design, number of studies, and availability of funding continue to limit large animal studies. Osteoinduction with rhBMP-2 results in robust bone formation, although long-term quality is scrutinized due to poor bone mineral quality. PTH 1-34 is the only FDA approved osteo-anabolic treatment to prevent osteoporotic fractures. Limited to 2 years of clinical use, PTH 1-34 has further been plagued by dose-related ambiguities and inconsistent results when applied to pathologic fractures in systematic human clinical studies. There is limited animal data of PTH 1-34 applied locally to bone defects. Gene therapy continues to gain popularity among researchers to augment bone healing. Non-integrating viral vectors and targeted apoptosis of genetically modified therapeutic cells is an ongoing area of research. Finally, progenitor cell therapies and the content variation of patient-side treatments (e.g., PRP and BMAC) are being studied. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1559-1572, 2018.
Collapse
Affiliation(s)
- Alyssa N. Ball
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Seth W. Donahue
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678,,Department of Mechanical Engineering, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Samantha J. Wojda
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678,,Department of Mechanical Engineering, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Christopher E. Kawcak
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| | - Nicole Ehrhart
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Laurie R. Goodrich
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, 1678 Campus Delivery, Fort Collins, Colorado 80523-1678
| |
Collapse
|
34
|
Evens H, Chuah MK, VandenDriessche T. Haemophilia gene therapy: From trailblazer to gamechanger. Haemophilia 2018; 24 Suppl 6:50-59. [DOI: 10.1111/hae.13494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/24/2022]
Affiliation(s)
- H. Evens
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
| | - M. K. Chuah
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| | - T. VandenDriessche
- Department of Gene Therapy & Regenerative Medicine Faculty of Medicine & Pharmacy Vrije Universiteit Brussel (VUB) Brussels Belgium
- Department of Cardiovascular Sciences Center for Molecular & Vascular Biology University of Leuven Leuven Belgium
| |
Collapse
|
35
|
Singh K, Evens H, Nair N, Rincón MY, Sarcar S, Samara-Kuko E, Chuah MK, VandenDriessche T. Efficient In Vivo Liver-Directed Gene Editing Using CRISPR/Cas9. Mol Ther 2018; 26:1241-1254. [PMID: 29599079 PMCID: PMC5993986 DOI: 10.1016/j.ymthe.2018.02.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
In vivo tissue-specific genome editing at the desired loci is still a challenge. Here, we report that AAV9-delivery of truncated guide RNAs (gRNAs) and Cas9 under the control of a computationally designed hepatocyte-specific promoter lead to liver-specific and sequence-specific targeting in the mouse factor IX (F9) gene. The efficiency of in vivo targeting was assessed by T7E1 assays, site-specific Sanger sequencing, and deep sequencing of on-target and putative off-target sites. Though AAV9 transduction was apparent in multiple tissues and organs, Cas9 expression was restricted mainly to the liver, with only minimal or no expression in other non-hepatic tissues. Consequently, the insertions and deletion (indel) frequency was robust in the liver (up to 50%) in the desired target loci of the F9 gene, with no evidence of targeting in other organs or other putative off-target sites. This resulted in a substantial loss of FIX activity and the emergence of a bleeding phenotype, consistent with hemophilia B. The in vivo efficacy of the truncated gRNA was as high as that of full-length gRNA. Cas9 expression was transient in neonates, representing an attractive "hit-and-run" paradigm. Our findings have potentially broad implications for somatic gene targeting in the liver using the CRISPR/Cas9 platform.
Collapse
Affiliation(s)
- Kshitiz Singh
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Hanneke Evens
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Nisha Nair
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Melvin Y Rincón
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium; Centro de Investigaciones, Fundacion Cardiovascular de Colombia, 681004 Floridablanca, Colombia
| | - Shilpita Sarcar
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
36
|
Modulation of immune responses in lentiviral vector-mediated gene transfer. Cell Immunol 2018; 342:103802. [PMID: 29735164 PMCID: PMC6695505 DOI: 10.1016/j.cellimm.2018.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Lentiviral vectors (LV) are widely used vehicles for gene transfer and therapy in pre-clinical animal models and clinical trials with promising safety and efficacy results. However, host immune responses against vector- and/or transgene-derived antigens remain a major obstacle to the success and broad applicability of gene therapy. Here we review the innate and adaptive immunological barriers to successful gene therapy, both in the context of ex vivo and in vivo LV gene therapy, mostly concerning systemic LV delivery and discuss possible means to overcome them, including vector design and production and immune modulatory strategies.
Collapse
|
37
|
Aravalli RN, Steer CJ. CRISPR/Cas9 therapeutics for liver diseases. J Cell Biochem 2018; 119:4265-4278. [PMID: 29266637 DOI: 10.1002/jcb.26627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
The development of innovative genome editing techniques in recent years has revolutionized the field of biomedicine. Among the novel approaches, the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas9) technology has become the most popular, in part due to its matchless ability to carry out gene editing at the target site with great precision. With considerable successes in animal and preclinical studies, CRISPR/Cas9-mediated gene editing has paved the way for its use in human trials, including patients with a variety of liver diseases. Gene editing is a logical therapeutic approach for liver diseases because many metabolic and acquired disorders are caused by mutations within a single gene. In this review, we provide an overview on current and emerging therapeutic strategies for the treatment of liver diseases using the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Clifford J Steer
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
38
|
Pay SL, Qi X, Willard JF, Godoy J, Sankhavaram K, Horton R, Mitter SK, Quigley JL, Chang LJ, Grant MB, Boulton ME. Improving the Transduction of Bone Marrow-Derived Cells with an Integrase-Defective Lentiviral Vector. Hum Gene Ther Methods 2017; 29:44-59. [PMID: 29160102 PMCID: PMC5806075 DOI: 10.1089/hgtb.2017.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In lentiviral vector (LV) applications where transient transgene expression is sufficient, integrase-defective lentiviral vectors (IDLVs) are beneficial for reducing the potential for off-target effects associated with insertional mutagenesis. It was previously demonstrated that human RPE65 mRNA expression from an integrating lentiviral vector (ILV) induces endogenous Rpe65 and Cralbp mRNA expression in murine bone marrow–derived cells (BMDCs), initiating programming of the cells to retinal pigment epithelium (RPE)-like cells. These cells regenerate RPE in retinal degeneration models when injected systemically. As transient expression of RPE65 is sufficient to activate endogenous RPE-associated genes for programming BMDCs, use of an ILV is an unnecessary risk. In this study, an IDLV expressing RPE65 (IDLV3-RPE65) was generated. Transduction with IDLV3-RPE65 is less efficient than the integrating vector (ILV3-RPE65). Therefore, IDLV3-RPE65 transduction was enhanced with a combination of preloading 20 × -concentrated viral supernatant on RetroNectin at a multiplicity of infection of 50 and transduction of BMDCs by low-speed centrifugation. RPE65 mRNA levels increased from ∼12-fold to ∼25-fold (p < 0.05) after modification of the IDLV3-RPE65 transduction protocol, achieving expression similar to the ∼27-fold (p < 0.05) increase observed with ILV3-RPE65. Additionally, the study shows that the same preparation of RetroNectin can be used to coat up to three wells with no reduction in transduction. Critically, IDLV3-RPE65 transduction initiates endogenous Rpe65 mRNA expression in murine BMDCs and Cralbp/CRALBP mRNA in both murine and human BMDCs, similar to expression observed in ILV3-RPE65-transduced cells. Systemic administration of ILV3-RPE65 or IDLV3-RPE65 programmed BMDCs in a mouse model of retinal degeneration is sufficient to retain visual function and reduce retinal degeneration compared to mice receiving no treatment or naïve BMDC. It is concluded that IDLV3-RPE65 is appropriate for programming BMDCs to RPE-like cells.
Collapse
Affiliation(s)
- S Louise Pay
- 1 Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana
| | - Xiaoping Qi
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jeffrey F Willard
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana
| | - Juliana Godoy
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kavya Sankhavaram
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana
| | - Ranier Horton
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sayak K Mitter
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Judith L Quigley
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana
| | - Lung-Ji Chang
- 4 Department of Molecular Genetics and Microbiology, University of Florida , Gainesville, Florida
| | - Maria B Grant
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Michael E Boulton
- 2 Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
39
|
Sherman A, Biswas M, Herzog RW. Innovative Approaches for Immune Tolerance to Factor VIII in the Treatment of Hemophilia A. Front Immunol 2017; 8:1604. [PMID: 29225598 PMCID: PMC5705551 DOI: 10.3389/fimmu.2017.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 01/19/2023] Open
Abstract
Hemophilia A (coagulation factor VIII deficiency) is a debilitating genetic disorder that is primarily treated with intravenous replacement therapy. Despite a variety of factor VIII protein formulations available, the risk of developing anti-dug antibodies (“inhibitors”) remains. Overall, 20–30% of patients with severe disease develop inhibitors. Current clinical immune tolerance induction protocols to eliminate inhibitors are not effective in all patients, and there are no prophylactic protocols to prevent the immune response. New experimental therapies, such as gene and cell therapies, show promising results in pre-clinical studies in animal models of hemophilia. Examples include hepatic gene transfer with viral vectors, genetically engineered regulatory T cells (Treg), in vivo Treg induction using immune modulatory drugs, and maternal antigen transfer. Furthermore, an oral tolerance protocol is being developed based on transgenic lettuce plants, which suppressed inhibitor formation in hemophilic mice and dogs. Hopefully, some of these innovative approaches will reduce the risk of and/or more effectively eliminate inhibitor formation in future treatment of hemophilia A.
Collapse
Affiliation(s)
- Alexandra Sherman
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Moanaro Biswas
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
VandenDriessche T, Chuah MK. Hemophilia Gene Therapy: Ready for Prime Time? Hum Gene Ther 2017; 28:1013-1023. [DOI: 10.1089/hum.2017.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Merlin S, Cannizzo ES, Borroni E, Bruscaggin V, Schinco P, Tulalamba W, Chuah MK, Arruda VR, VandenDriessche T, Prat M, Valente G, Follenzi A. A Novel Platform for Immune Tolerance Induction in Hemophilia A Mice. Mol Ther 2017; 25:1815-1830. [PMID: 28552407 DOI: 10.1016/j.ymthe.2017.04.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Hemophilia A (HA) is an X-linked bleeding disease caused by factor VIII (FVIII) deficiency. We previously demonstrated that FVIII is produced specifically in liver sinusoid endothelial cells (LSECs) and to some degree in myeloid cells, and thus, in the present work, we seek to restrict the expression of FVIII transgene to these cells using cell-specific promoters. With this approach, we aim to limit immune response in a mouse model by lentiviral vector (LV)-mediated gene therapy encoding FVIII. To increase the target specificity of FVIII expression, we included miRNA target sequences (miRTs) (i.e., miRT-142.3p, miRT-126, and miRT-122) to silence expression in hematopoietic cells, endothelial cells, and hepatocytes, respectively. Notably, we report, for the first time, therapeutic levels of FVIII transgene expression at its natural site of production, which occurred without the formation of neutralizing antibodies (inhibitors). Moreover, inhibitors were eradicated in FVIII pre-immune mice through a regulatory T cell-dependent mechanism. In conclusion, targeting FVIII expression to LSECs and myeloid cells by using LVs with cell-specific promoter minimized off-target expression and immune responses. Therefore, at least for some transgenes, expression at the physiologic site of synthesis can enhance efficacy and safety, resulting in long-term correction of genetic diseases such as HA.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Elvira Stefania Cannizzo
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Valentina Bruscaggin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Piercarla Schinco
- Azienda Ospedaliera Universitaria Città della Salute e della Scienza, 10126 Torino, Italy
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Valder R Arruda
- The Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Guido Valente
- Department of Translational Medicine, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy.
| |
Collapse
|
42
|
|
43
|
Perrin GQ, Zolotukhin I, Sherman A, Biswas M, de Jong YP, Terhorst C, Davidoff AM, Herzog RW. Dynamics of antigen presentation to transgene product-specific CD4 + T cells and of Treg induction upon hepatic AAV gene transfer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16083. [PMID: 27933310 PMCID: PMC5142511 DOI: 10.1038/mtm.2016.83] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8) vector expressing cytoplasmic ovalbumin (OVA) into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal) are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages) and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products.
Collapse
Affiliation(s)
- George Q Perrin
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Irene Zolotukhin
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Alexandra Sherman
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Moanaro Biswas
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine , New York, New York, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| |
Collapse
|
44
|
Levy C, Fusil F, Amirache F, Costa C, Girard-Gagnepain A, Negre D, Bernadin O, Garaulet G, Rodriguez A, Nair N, Vandendriessche T, Chuah M, Cosset FL, Verhoeyen E. Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDγc -/- mice. J Thromb Haemost 2016; 14:2478-2492. [PMID: 27685947 DOI: 10.1111/jth.13520] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/25/2016] [Indexed: 12/30/2022]
Abstract
Essentials B cells are attractive targets for gene therapy and particularly interesting for immunotherapy. A baboon envelope pseudotyped lentiviral vector (BaEV-LV) was tested for B-cell transduction. BaEV-LVs transduced mature and plasma human B cells with very high efficacy. BaEV-LVs allowed secretion of functional factor IX from B cells at therapeutic levels in vivo. SUMMARY Background B cells are attractive targets for gene therapy for diseases associated with B-cell dysfunction and particularly interesting for immunotherapy. Moreover, B cells are potent protein-secreting cells and can be tolerogenic antigen-presenting cells. Objective Evaluation of human B cells for secretion of clotting factors such as factor IX (FIX) as a possible treatment for hemophilia. Methods We tested here for the first time our newly developed baboon envelope (BaEV) pseudotyped lentiviral vectors (LVs) for human (h) B-cell transduction following their adaptive transfer into an NOD/SCIDγc-/- (NSG) mouse. Results Upon B-cell receptor stimulation, BaEV-LVs transduced up to 80% of hB cells, whereas vesicular stomatitis virus G protein VSV-G-LV only reached 5%. Remarkably, BaEVTR-LVs permitted efficient transduction of 20% of resting naive and 40% of resting memory B cells. Importantly, BaEV-LVs reached up to 100% transduction of human plasmocytes ex vivo. Adoptive transfer of BaEV-LV-transduced mature B cells into NOD/SCID/γc-/- (NSG) [non-obese diabetic (NOD), severe combined immuno-deficiency (SCID)] mice allowed differentiation into plasmablasts and plasma B cells, confirming a sustained high-level gene marking in vivo. As proof of principle, we assessed BaEV-LV for transfer of human factor IX (hFIX) into B cells. BaEV-LVs encoding FIX efficiently transduced hB cells and their transfer into NSG mice demonstrated for the first time secretion of functional hFIX from hB cells at therapeutic levels in vivo. Conclusions The BaEV-LVs might represent a valuable tool for therapeutic protein secretion from autologous B cells in vivo in the treatment of hemophilia and other acquired or inherited diseases.
Collapse
Affiliation(s)
- C Levy
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - F Fusil
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - F Amirache
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - C Costa
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - A Girard-Gagnepain
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - D Negre
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - O Bernadin
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - G Garaulet
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
| | - A Rodriguez
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
| | - N Nair
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - T Vandendriessche
- Department of Gene Therapy and Regenerative Medicine, Free University of Brussels, Brussels, Belgium
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - M Chuah
- Department of Molecular Biology, Universidad Autonoma de Madrid, Madrid, Spain
- Center for Molecular and Vascular Biology and Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - F-L Cosset
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - E Verhoeyen
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm, U1065, Équipe 'contrôle métabolique des morts cellulaires', Nice, France
| |
Collapse
|
45
|
Vargas JE, Chicaybam L, Stein RT, Tanuri A, Delgado-Cañedo A, Bonamino MH. Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J Transl Med 2016; 14:288. [PMID: 27729044 PMCID: PMC5059932 DOI: 10.1186/s12967-016-1047-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022] Open
Abstract
Gene therapy protocols require robust and long-term gene expression. For two decades, retrovirus family vectors have offered several attractive properties as stable gene-delivery vehicles. These vectors represent a technology with widespread use in basic biology and translational studies that require persistent gene expression for treatment of several monogenic diseases. Immunogenicity and insertional mutagenesis represent the main obstacles to a wider clinical use of these vectors. Efficient and safe non-viral vectors are emerging as a promising alternative and facilitate clinical gene therapy studies. Here, we present an updated review for beginners and expert readers on retro and lentiviruses and the latest generation of transposon vectors (sleeping beauty and piggyBac) used in stable gene transfer and gene therapy clinical trials. We discuss the potential advantages and disadvantages of these systems such as cellular responses (immunogenicity or genome modification of the target cell) following exogenous DNA integration. Additionally, we discuss potential implications of these genome modification tools in gene therapy and other basic and applied science contexts.
Collapse
Affiliation(s)
- José Eduardo Vargas
- Centro Infantil-Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, Brazil
| | - Leonardo Chicaybam
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37/6º andar, Centro, Rio de Janeiro, 20231-050, Brazil.,Vice-presidência de Pesquisa e Laboratórios de Referência, Fundação Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Renato Tetelbom Stein
- Centro Infantil-Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, Brazil
| | - Amilcar Tanuri
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Martin H Bonamino
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer (INCA), Rua Andre Cavalcanti 37/6º andar, Centro, Rio de Janeiro, 20231-050, Brazil. .,Vice-presidência de Pesquisa e Laboratórios de Referência, Fundação Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
46
|
Shaw AM, Joseph GL, Jasti AC, Sastry-Dent L, Witting S, Cornetta K. Differences in vector-genome processing and illegitimate integration of non-integrating lentiviral vectors. Gene Ther 2016; 24:12-20. [PMID: 27682478 PMCID: PMC5269419 DOI: 10.1038/gt.2016.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022]
Abstract
A variety of mutations in lentiviral vector expression systems have been shown to generate a non-integrating phenotype. We studied a novel 12 base-pair U3-long terminal repeats (LTR) integrase (IN) attachment site deletion (U3-LTR att site) mutant and found similar physical titers to the previously reported IN catalytic core mutant IN/D116N. Both mutations led to a greater than two log reduction in vector integration; with IN/D116N providing lower illegitimate integration frequency, whereas the U3-LTR att site mutant provided a higher level of transgene expression. The improved expression of the U3-LTR att site mutant could not be explained solely based on an observed modest increase in integration frequency. In evaluating processing, we noted significant differences in unintegrated vector forms, with the U3-LTR att site mutant leading to a predominance of 1-LTR circles. The mutations also differed in the manner of illegitimate integration. The U3-LTR att site mutant vector demonstrated IN-mediated integration at the intact U5-LTR att site and non-IN-mediated integration at the mutated U3-LTR att site. Finally, we combined a variety of mutations and modifications and assessed transgene expression and integration frequency to show that combining modifications can improve the potential clinical utility of non-integrating lentiviral vectors.
Collapse
Affiliation(s)
- A M Shaw
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - G L Joseph
- Departments of Microbiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A C Jasti
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Sastry-Dent
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Witting
- Department of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - K Cornetta
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Departments of Microbiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Departments of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
47
|
Ciré S, Da Rocha S, Ferrand M, Collins MK, Galy A. In Vivo Gene Delivery to Lymph Node Stromal Cells Leads to Transgene-specific CD8+ T Cell Anergy in Mice. Mol Ther 2016; 24:1965-1973. [PMID: 27562586 DOI: 10.1038/mt.2016.168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022] Open
Abstract
Lymph node stromal cells play a role in self-tolerance by presenting tissue antigens to T cells. Yet, immunomodulatory properties of lymphoid tissue stroma, particularly toward CD4+ T cells, remain insufficiently characterized by lack of tools to target antigens for presentation by stromal cells. A lentiviral vector was therefore designed for antigen delivery to MHC class II+ cells of nonhematopoietic origin. Following intravenous vector delivery, the transgene was detected in lymph node gp38+ stromal cells which were CD45- MHCII+ and partly positive for CD86 and CTLA4 or B7-H4. The transgene was not detected in classical dendritic cells of lymph nodes or spleen. Transgene-specific CD4+ and CD8+ T cell responses were primed and regulatory T cells were also induced but effector T cell response did not develop, even after a peptide boost. Antigen-specific CD8+ T cells were not cytolytic in vivo. Thus, expressing a neo-antigen in MHC-II+ lymph node stroma seems to trigger blunt CD4 T cell responses leading to antigen-specific CD8+ T cell anergy. These results open up new perspectives to further characterize lymph node stromal cell functional properties and to develop gene transfer protocols targeting lymph node stroma to induce peripheral tolerance.
Collapse
Affiliation(s)
- Séverine Ciré
- Research unit UMR_S951, Genethon, Inserm, Univ Evry, EPHE, Evry, France
| | - Sylvie Da Rocha
- Research unit UMR_S951, Genethon, Inserm, Univ Evry, EPHE, Evry, France
| | - Maxime Ferrand
- Research unit UMR_S951, Genethon, Inserm, Univ Evry, EPHE, Evry, France
| | - Mary K Collins
- Infection and Immunity Department, University College London, London, UK; National Institute of Biological Standards and Control, Potters Bar, UK
| | - Anne Galy
- Research unit UMR_S951, Genethon, Inserm, Univ Evry, EPHE, Evry, France.
| |
Collapse
|
48
|
Geisler A, Fechner H. MicroRNA-regulated viral vectors for gene therapy. World J Exp Med 2016; 6:37-54. [PMID: 27226955 PMCID: PMC4873559 DOI: 10.5493/wjem.v6.i2.37] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3' untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3' UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases.
Collapse
|
49
|
Akbarpour M, Goudy KS, Cantore A, Russo F, Sanvito F, Naldini L, Annoni A, Roncarolo MG. Insulin B chain 9-23 gene transfer to hepatocytes protects from type 1 diabetes by inducing Ag-specific FoxP3+ Tregs. Sci Transl Med 2016; 7:289ra81. [PMID: 26019217 DOI: 10.1126/scitranslmed.aaa3032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antigen (Ag)-specific tolerance in type 1 diabetes (T1D) in human has not been achieved yet. Targeting lentiviral vector (LV)-mediated gene expression to hepatocytes induces active tolerance toward the encoded Ag. The insulin B chain 9-23 (InsB9-23) is an immunodominant T cell epitope in nonobese diabetic (NOD) mice. To determine whether auto-Ag gene transfer to hepatocytes induces tolerance and control of T1D, NOD mice were treated with integrase-competent LVs (ICLVs) that selectively target the expression of InsB9-23 to hepatocytes. ICLV treatment induced InsB9-23-specific effector T cells but also FoxP3(+) regulatory T cells (Tregs), which halted islet immune cell infiltration, and protected from T1D. Moreover, ICLV treatment combined with a single suboptimal dose of anti-CD3 monoclonal antibody (mAb) is effective in T1D reversal. Splenocytes from LV.InsB9-23-treated mice, but not from LV.OVA (ovalbumin)-treated control mice, stopped diabetes development, demonstrating that protection is Ag-specific. Depletion of CD4(+)CD25(+)FoxP3(+) T cells led to diabetes progression, indicating that Ag-specific FoxP3(+) Tregs mediate protection. Integrase-defective LVs (IDLVs).InsB9-23, which alleviate the concerns for insertional mutagenesis and support transient transgene expression in hepatocytes, were also efficient in protecting from T1D. These data demonstrate that hepatocyte-targeted auto-Ag gene expression prevents and resolves T1D and that stable integration of the transgene is not required for this protection. Gene transfer to hepatocytes can be used to induce Ag-specific tolerance in autoimmune diseases.
Collapse
Affiliation(s)
- Mahzad Akbarpour
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy. Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Kevin S Goudy
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Francesca Sanvito
- Pathology Unit, Department of Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy. Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy. Vita-Salute San Raffaele University, Milan 20132, Italy. Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Ethical and regulatory aspects of genome editing. Blood 2016; 127:2553-60. [PMID: 27053531 DOI: 10.1182/blood-2016-01-678136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/18/2016] [Indexed: 12/26/2022] Open
Abstract
Gene editing is a rapidly developing area of biotechnology in which the nucleotide sequence of the genome of living cells is precisely changed. The use of genome-editing technologies to modify various types of blood cells, including hematopoietic stem cells, has emerged as an important field of therapeutic development for hematopoietic disease. Although these technologies offer the potential for generation of transformative therapies for patients suffering from myriad disorders of hematopoiesis, their application for therapeutic modification of primary human cells is still in its infancy. Consequently, development of ethical and regulatory frameworks that ensure their safe and effective use is an increasingly important consideration. Here, we review a number of issues that have the potential to impact the clinical implementation of genome-editing technologies, and suggest paths forward for resolving them such that new therapies can be safely and rapidly translated to the clinic.
Collapse
|