Published online May 4, 2015. doi: 10.5492/wjccm.v4.i2.116
Peer-review started: October 2, 2014
First decision: November 14, 2014
Revised: December 24, 2014
Accepted: March 4, 2015
Article in press: March 5, 2015
Published online: May 4, 2015
Processing time: 206 Days and 0.1 Hours
Fluids are considered the cornerstone of therapy for many shock states, particularly states that are associated with relative or absolute hypovolemia. Fluids are also commonly used for many other purposes, such as renal protection from endogenous and exogenous substances, for the safe dilution of medications and as “maintenance” fluids. However, a large amount of evidence from the last decade has shown that fluids can have deleterious effects on several organ functions, both from excessive amounts of fluids and from their non-physiological electrolyte composition. Additionally, fluid prescription is more common in patients with systemic inflammatory response syndrome whose kidneys may have impaired mechanisms of electrolyte and free water excretion. These processes have been studied as separate entities (hypernatremia, hyperchloremic acidosis and progressive fluid accumulation) leading to worse outcomes in many clinical scenarios, including but not limited to acute kidney injury, worsening respiratory function, higher mortality and higher hospital and intensive care unit length-of-stays. In this review, we synthesize this evidence and describe this phenomenon as fluid and electrolyte overload with potentially deleterious effects. Finally, we propose a strategy to safely use fluids and thereafter wean patients from fluids, along with other caveats to be considered when dealing with fluids in the intensive care unit.
Core tip: Fluids are a cornerstone of the management of critically ill patients with systemic inflammatory response syndrome who are at risk of multiple organ dysfunction syndrome. However, as with any therapy, fluids can be associated with harm, such as added or worsening organ dysfunctions. Therefore, patients should be weaned from fluids when possible, sometimes through an active de-resuscitation strategy.