1
|
Sager AR, Desai R, Mylavarapu M, Shastri D, Devaprasad N, Thiagarajan SN, Chandramohan D, Agrawal A, Gada U, Jain A. Cannabis use disorder and severe sepsis outcomes in cancer patients: Insights from a national inpatient sample. World J Crit Care Med 2025; 14:100844. [DOI: 10.5492/wjccm.v14.i2.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/08/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The burden of cannabis use disorder (CUD) in the context of its prevalence and subsequent cardiopulmonary outcomes among cancer patients with severe sepsis is unclear.
AIM To address this knowledge gap, especially due to rising patterns of cannabis use and its emerging pharmacological role in cancer.
METHODS By applying relevant International Classification of Diseases, Ninth and Tenth Revision, Clinical Modification codes to the National Inpatient Sample database between 2016-2020, we identified CUD(+) and CUD(-) arms among adult cancer admissions with severe sepsis. Comparing the two cohorts, we examined baseline demographic characteristics, epidemiological trends, major adverse cardiac and cerebrovascular events, respiratory failure, hospital cost, and length of stay. We used the Pearson χ2 d test for categorical variables and the Mann-Whitney U test for continuous, non-normally distributed variables. Multivariable regression analysis was used to control for potential confounders. A P value ≤ 0.05 was considered for statistical significance.
RESULTS We identified a total of 743520 cancer patients admitted with severe sepsis, of which 4945 had CUD. Demographically, the CUD(+) cohort was more likely to be younger (median age = 58 vs 69, P < 0.001), male (67.9% vs 57.2%, P < 0.001), black (23.7% vs 14.4%, P < 0.001), Medicaid enrollees (35.2% vs 10.7%, P < 0.001), in whom higher rates of substance use and depression were observed. CUD(+) patients also exhibited a higher prevalence of chronic pulmonary disease but lower rates of cardiovascular comorbidities. There was no significant difference in major adverse cardiac and cerebrovascular events between CUD(+) and CUD(-) cohorts on multivariable regression analysis. However, the CUD(+) cohort had lower all-cause mortality (adjusted odds ratio = 0.83, 95% confidence interval: 0.7-0.97, P < 0.001) and respiratory failure (adjusted odds ratio = 0.8, 95% confidence interval: 0.69-0.92, P = 0.002). Both groups had similar median length of stay, though CUD(+) patients were more likely to have higher hospital cost compared to CUD(-) patients (median = 94574 dollars vs 86615 dollars, P < 0.001).
CONCLUSION CUD(+) cancer patients with severe sepsis, who tended to be younger, black, males with higher rates of substance use and depression had paradoxically significantly lower odds of all-cause in-hospital mortality and respiratory failure. Future research should aim to better elucidate the underlying mechanisms for these observations.
Collapse
Affiliation(s)
- Avinaash R Sager
- Internal Medicine, St. Elizabeth’s Medical Center, Boston, MA 02135, United States
| | - Rupak Desai
- Outcomes Research, Independent Researcher, Atlanta, GA 30033, United States
| | | | - Dipsa Shastri
- Internal Medicine, East Tennessee State University, Johnson, TN 37614, United States
| | - Nikitha Devaprasad
- Internal Medicine, SRM Medical College Hospital and Research Center, Potheri 603211, India
| | - Shiva N Thiagarajan
- Internal Medicine, SRM Medical College Hospital and Research Center, Potheri 603211, India
| | - Deepak Chandramohan
- Department of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35001, United States
| | | | - Urmi Gada
- Infectious Diseases, Deenanath Hospital, Erandwane 411004, India
| | - Akhil Jain
- Department of Hematology and Medical Oncology, University of Iowa Hospitals and Clinics, Iowa, IA 52242, United States
| |
Collapse
|
2
|
Golnarnik G, Thiede B, Søland TM, Galtung HK, Haug TM. Hydrogen peroxide-induced oxidative stress alters protein expression in two rat salivary acinar cell lines. Arch Oral Biol 2025; 175:106254. [PMID: 40233540 DOI: 10.1016/j.archoralbio.2025.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
OBJECTIVES This study aimed to investigate the impact of hydrogen peroxide-induced oxidative stress on the protein expression profiles of submandibular and parotid acinar cells using a proteomic approach. We sought to evaluate how oxidative stress might contribute to salivary gland dysfunction and whether the two glands respond differently. DESIGN Immortalized rat parotid gland (PG) and submandibular gland (SMG) acinar epithelial cell lines were exposed to 50 µM and 150 µM hydrogen peroxide for 24 hr, followed by protein identification and quantification via liquid chromatography-mass spectrometry. Immunofluorescence microscopy and western blot analysis validated selected protein expressions, and cell viability was assessed using trypan blue exclusion assays. RESULTS Compared to controls, histone H4 expression increased in both cell types after hydrogen peroxide exposure, whereas voltage-dependent anion-selective channel 1, keratin 7, and keratin 8 increased only in parotid gland cells. Conversely, mitochondrial aldehyde dehydrogenase and kidney isoform glutaminase were downregulated in parotid gland cells. Basal expression of mitochondrial aldehyde dehydrogenase and catalase was higher in submandibular gland cells. At higher hydrogen peroxide concentrations, antioxidant proteins expression and cell viability were greater in submandibular gland cells compared to parotid gland cells. CONCLUSIONS Our results suggest that submandibular gland acinar cells exhibit greater resistance to oxidative stress compared to parotid gland cells, potentially due to distinct antioxidant and metabolic coping strategies. Understanding these gland-specific responses may contribute to future approaches to protect salivary glands from oxidative damage under pathological conditions.
Collapse
Affiliation(s)
- Golnaz Golnarnik
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Tine M Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Hilde K Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Trude M Haug
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Ali SB, Mohamed AS, Abdelfattah MA, Samir AB, Abdullah FY, Elsayed HA, Abdelhalem M, Elsadek N, Osama S, Mohamed SE, Fahmy SR. Potential protective efficacy of biogenic silver nanoparticles synthesised from earthworm extract in a septic mice model. BMC Biotechnol 2024; 24:79. [PMID: 39394109 PMCID: PMC11468494 DOI: 10.1186/s12896-024-00901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
Sepsis is an inevitable stage of bacterial invasion characterized by an uncontrolled inflammatory response resulting in a syndrome of multiorgan dysfunction. Most conventional antibiotics used to treat sepsis are efficacious, but they have undesirable side effects. The green synthesised Ag NPs were synthesized by 5 g of the earthworm extract dissolved in a volume of 500mL of distilled water and then added to 2,500 mL aqueous solution of 1mM silver nitrate at 40 °C. After 4 h, the mixture was then allowed to dry overnight at 60 °C. Later, Ag NPs were washed and collected. They were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, and transmission electron microscopy. Sepsis model as induced by feces-intraperitoneal injection method. Eighteen male mice were assigned into three main groups: the control group, the sepsis-model group, and the Ag NPs-treated group. The control group received a single oral dose of distilled water and, after two days, intraperitoneally injected with 30% glycerol in phosphate buffer saline. The Sepsis-model group received a single oral dose of distilled water. Ag NPs - The treated group received a single oral dose of 5.5 mg/kg of Ag NPs. After two days, the sepsis-model group and Ag NPs-treated group were intraperitoneally injected with 200 µL of faecal slurry. Ag NPs treatment in septic mice significantly decreased liver enzyme activities, total protein, and serum albumin. Moreover, Ag NPs significantly enhanced kidney function, as indicated by a significant decrease in the levels of creatinine, urea, and uric acid. In addition, Ag NPs showed a powerful antioxidant effect via the considerable reduction of malondialdehyde and nitric oxide levels and the increase in antioxidant content. The histopathological investigation showed clear improvement in hepatic and kidney architecture. Our findings demonstrate the protective efficacy of biogenic Ag NPs against sepsis-induced liver and kidney damage.
Collapse
Affiliation(s)
- Sara Bayoumi Ali
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | | | | | - Alia Baher Samir
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Manar Abdelhalem
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Nour Elsadek
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sara Osama
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Sohair R Fahmy
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Liu T, Xu Y, Hu S, Feng S, Zhang H, Zhu X, Wang C. Alanine, a potential amino acid biomarker of pediatric sepsis: a pilot study in PICU. Amino Acids 2024; 56:48. [PMID: 39060743 PMCID: PMC11281965 DOI: 10.1007/s00726-024-03408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Sepsis is characterized by a metabolic disorder of amino acid occurs in the early stage; however, the profile of serum amino acids and their alterations associated with the onset of sepsis remain unclear. Thus, our objective is to identify the specific kinds of amino acids as diagnostic biomarkers in pediatric patients with sepsis. Serum samples were collected from patients with sepsis admitted to the pediatric intensive care unit (PICU) between January 2019 and December 2019 on the 1st, 3rd and 7th day following admission. Demographic and laboratory variables were also retrieved from the medical records specified times. Serum amino acid concentrations were detected by UPLC-MS/MS system. PLS-DA (VIP > 1.0) and Kruskal-Wallis test (p < 0.05) were employed to identify potential biomarkers. Spearman's rank correlation analysis was conducted to find the potential association between amino acid levels and clinical features. The diagnostic utility for pediatric sepsis was assessed using receiver operating characteristic (ROC) curve analysis. Most of amino acid contents in serum were significantly decreased in patients with sepsis, but approached normal levels by the seventh day post-diagnosis. Threonine (THR), lysine (LYS), valine (VAL) and alanine (ALA) emerged as potential biomarkers related for sepsis occurrence, though they were not associated with PELOD/PELOD-2 scores. Moreover, alterations in serum THR, LYS and ALA were linked to complications of brain injury, and serum ALA levels were also related to sepsis-associated acute kidney injury. Further analysis revealed that ALA was significantly correlated with the Glasgow score, serum lactate and glucose levels, C-reactive protein (CRP), and other indicators for liver or kidney dysfunction. Notably, the area under the ROC curve (AUC) for ALA in distinguishing sepsis from healthy controls was 0.977 (95% CI: 0.925-1.000). The serum amino acid profile of children with sepsis is significantly altered compared to that of healthy controls. Notably, ALA shows promise as a potential biomarker for the early diagnosis in septic children.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, No. 355 Luding Road, Putuo District, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Yaya Xu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shaohua Hu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Shuyun Feng
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, No. 355 Luding Road, Putuo District, Shanghai, 200062, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Xiaodong Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, No. 355 Luding Road, Putuo District, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| |
Collapse
|
5
|
Tandon R, Tandon A. Unraveling the Multifaceted Role of Glutathione in Sepsis: A Comprehensive Review. Cureus 2024; 16:e56896. [PMID: 38659506 PMCID: PMC11042744 DOI: 10.7759/cureus.56896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Sepsis remains a formidable challenge in healthcare, characterized by a dysregulated host response to infection, leading to organ dysfunction and high mortality rates. Glutathione, a critical antioxidant and regulator of cellular redox balance, has emerged as a key player in the pathophysiology of sepsis. This comprehensive review explores the multifaceted role of glutathione in sepsis, focusing on its involvement in oxidative stress, immune modulation, and organ dysfunction. Glutathione depletion exacerbates oxidative damage and inflammatory responses, thereby contributing to the progression of sepsis. Understanding the intricate mechanisms underlying glutathione dysregulation in sepsis offers potential therapeutic avenues, with strategies targeting glutathione pathways showing promise in mitigating septic complications. However, further research is needed to optimize therapeutic approaches and identify biomarkers for patient stratification. Overall, this review underscores the importance of elucidating glutathione's role in sepsis management to improve clinical outcomes and reduce the global burden of this life-threatening condition.
Collapse
Affiliation(s)
- Ratan Tandon
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Tandon
- Pulmonology, Hari Daya Super Speciality Centre, Prayagraj, IND
| |
Collapse
|
6
|
Jennaro TS, Puskarich MA, Flott TL, McLellan LA, Jones AE, Pai MP, Stringer KA. Kidney function as a key driver of the pharmacokinetic response to high-dose L-carnitine in septic shock. Pharmacotherapy 2023; 43:1240-1250. [PMID: 37775945 PMCID: PMC10841498 DOI: 10.1002/phar.2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
STUDY OBJECTIVE Levocarnitine (L-carnitine) has shown promise as a metabolic-therapeutic for septic shock, where mortality approaches 40%. However, high-dose (≥ 6 grams) intravenous supplementation results in a broad range of serum concentrations. We sought to describe the population pharmacokinetics (PK) of high-dose L-carnitine, test various estimates of kidney function, and assess the correlation of PK parameters with pre-treatment metabolites in describing drug response for patients with septic shock. DESIGN Population PK analysis was done with baseline normalized concentrations using nonlinear mixed effect models in the modeling platform Monolix. Various estimates of kidney function, patient demographics, dose received, and organ dysfunction were tested as population covariates. DATA SOURCE We leveraged serum samples and metabolomics data from a phase II trial of L-carnitine in vasopressor-dependent septic shock. Serum was collected at baseline (T0); end-of-infusion (T12); and 24, 48, and 72 h after treatment initiation. PATIENTS AND INTERVENTION Patients were adaptively randomized to receive intravenous L-carnitine (6 grams, 12 grams, or 18 grams) or placebo. MEASUREMENTS AND MAIN RESULTS The final dataset included 542 serum samples from 130 patients randomized to L-carnitine. A two-compartment model with linear elimination and a fixed volume of distribution (17.1 liters) best described the data and served as a base structural model. Kidney function estimates as a covariate on the elimination rate constant (k) reliably improved model fit. Estimated glomerular filtration rate (eGFR), based on the 2021 Chronic Kidney Disease Epidemiology collaboration (CKD-EPI) equation with creatinine and cystatin C, outperformed creatinine clearance (Cockcroft-Gault) and older CKD-EPI equations that use an adjustment for self-identified race. CONCLUSIONS High-dose L-carnitine supplementation is well-described by a two-compartment population PK model in patients with septic shock. Kidney function estimates that leverage cystatin C provided superior model fit. Future investigations into high-dose L-carnitine supplementation should consider baseline metabolic status and dose adjustments based on renal function over a fixed or weight-based dosing paradigm.
Collapse
Affiliation(s)
- Theodore S. Jennaro
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Puskarich
- Department of Emergency Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Thomas L. Flott
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura A. McLellan
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Alan E. Jones
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Manjunath P. Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathleen A. Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Xiao M, Deng H, Mao W, Liu Y, Yang Q, Liu Y, Fan J, Li W, Liu D. U-shaped association between serum triglyceride levels and mortality among septic patients: An analysis based on the MIMIC-IV database. PLoS One 2023; 18:e0294779. [PMID: 38011086 PMCID: PMC10681221 DOI: 10.1371/journal.pone.0294779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Sepsis is characterized by upregulated lipolysis in adipose tissue and a high blood triglyceride (TG) level. It is still debated whether serum TG level is related to mortality in septic patients. The aim of this study is to investigate the association between serum TG level and mortality in septic patients admitted to the intensive care unit (ICU). METHODS Data from adult septic patients (≥18 years) admitted to the ICU for the first time were obtained from the Multiparameter Intelligent Monitoring in Intensive Care IV (MIMIC-IV) database. The patients' serum TG levels that were measured within the first week after ICU admission were extracted for statistical analysis. The endpoints were 28-day, ICU and in-hospital mortality. RESULTS A total of 2,782 septic patients were included. Univariate analysis indicated that the relationship between serum TG levels and the risk of mortality was significantly nonlinear. Both the Lowess smoothing technique and restricted cubic spline analyses revealed a U-shaped association between serum TG levels and mortality among septic patients. The lowest mortality rate was associated with a serum TG level of 300-500 mg/dL. Using 300∼500 mg/dL as the reference range, we found that both hypo-TG (<300 mg/dL) and hyper-TG (≥500 mg/dL) were associated with increased mortality. The result was further adjusted by Cox regression with and without the inclusion of some differential covariates. CONCLUSIONS There was a U-shaped association between serum TG and mortality in septic ICU patients. The optimal concentration of serum TG levels in septic ICU patients is 300-500 mg/dL.
Collapse
Affiliation(s)
- Min Xiao
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
| | - Hongbin Deng
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenjian Mao
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Yang
- Department of Critical Care Medicine, Jinling Hospital, Nanjing, China
| | - Yuxiu Liu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiemei Fan
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
| | - Dadong Liu
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
- Department of Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
8
|
Yang Q, Feng Z, Ding D, Kang C. CD3D and CD247 are the molecular targets of septic shock. Medicine (Baltimore) 2023; 102:e34295. [PMID: 37478215 PMCID: PMC10662883 DOI: 10.1097/md.0000000000034295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
Septic shock is a serious systemic disease with circulatory failure and abnormal cell metabolism caused by sepsis. However, the relationship between CD3D and CD247 and septic shock remains unclear. The septic shock datasets GSE33118 and GSE142255 profiles were generated from the gene expression omnibus databases GPl570, GPl17586. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. The construction and analysis of protein-protein interaction (PPI) network, functional enrichment analysis, gene set enrichment analysis (GSEA) were performed. Gene expression heat map was drawn. Immune infiltration analysis was performed. Comparative toxicogenomics database (CTD) analysis were performed to find the disease most related to the core gene. Targets can was used to screen miRNAs regulating the hub DEGs. 467 DEGs were identified. According to the gene ontology analysis, they were mainly enriched in the regulation of immune response, cell activation, signaling receptor activity, enzyme binding. Kyoto encyclopedia of genes and genomes analysis showed that they were mainly enriched in the TCR signaling pathway, Fc epsilon RI signaling pathway. GSEA showed that the DEGs were mainly enriched in immune response regulation, cell activation, TCR signaling pathway, Fc epsilon RI signaling pathway. Positive regulation of Fc receptor signaling pathway, PID IL12 2 pathway, immune response was observed in go enrichment items in the enrichment items of metascape. PPI networks got 5 core genes. Gene expression heat map showed that 5 core genes (CD247, Lck, cd3e, cd3d, ITK) were lowly expressed in the sepsis shock samples and highly expressed in the normal samples. CTD analysis showed that 5 core genes (CD247, Lck, cd3e, cd3d, ITK) were found to be associated with hemorrhage and necrosis. Low expression of cd3d, CD247 was observed in septic shock, and the lower the level of cd3d, CD247, the worse the prognosis.
Collapse
Affiliation(s)
- Qian Yang
- Intensive Care Unit, Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhijuan Feng
- Department of Critical Care Medicine, Air Force Medical Center, Beijing, China
| | - Danyang Ding
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Torres-Sangiao E, Giddey AD, Leal Rodriguez C, Tang Z, Liu X, Soares NC. Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens. Front Med (Lausanne) 2022; 9:850374. [PMID: 35586072 PMCID: PMC9108449 DOI: 10.3389/fmed.2022.850374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic “Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens,” this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Clinical Microbiology Lab, University Hospital Marqués de Valdecilla, Santander, Spain
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
- *Correspondence: Eva Torres-Sangiao,
| | - Alexander Dyason Giddey
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cristina Leal Rodriguez
- Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital, Herlev-Gentofte, Denmark
| | - Zhiheng Tang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nelson C. Soares
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Nelson C. Soares,
| |
Collapse
|
10
|
Lipcsey M, Bergquist M, Sirén R, Larsson A, Huss F, Pravda J, Furebring M, Sjölin J, Janols H. Urine Hydrogen Peroxide Levels and Their Relation to Outcome in Patients with Sepsis, Septic Shock, and Major Burn Injury. Biomedicines 2022; 10:848. [PMID: 35453598 PMCID: PMC9030456 DOI: 10.3390/biomedicines10040848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/29/2022] Open
Abstract
Hydrogen peroxide (H2O2) and oxidative stress have been suggested as possible instigators of both the systemic inflammatory response and the increased vascular permeability associated with sepsis and septic shock. We measured H2O2 concentrations in the urine of 82 patients with severe infections, such as sepsis, septic shock, and infections not fulfilling sepsis-3 criteria, in patients with major burn injury with associated systemic inflammation, and healthy subjects. The mean concentrations of H2O2 were found to be lower in patients with severe infections compared to burn injury patients and healthy subjects. Patients with acute kidney injury (AKI), vs. those without AKI, in all diagnostic groups displayed higher concentrations of urine H2O2 (p < 0.001). Likewise, urine concentrations of H2O2 were higher in non-survivors as compared to survivors (p < 0.001) at day 28 in all diagnostic groups, as well as in patients with severe infections and burn injury (p < 0.001 for both). In this cohort, increased H2O2 in urine is thus associated with mortality in patients with sepsis and septic shock as well as in patients with burn injury.
Collapse
Affiliation(s)
- Miklos Lipcsey
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden;
| | - Maria Bergquist
- Department of Medical Sciences, Clinical Physiology, Uppsala University, 75185 Uppsala, Sweden
| | - Rebecca Sirén
- Department of Medicine, Danderyd Hospital, 18288 Stockholm, Sweden;
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, 75185 Uppsala, Sweden;
| | - Fredrik Huss
- Burn Center, Department of Plastic and Maxillofacial Surgery, Uppsala University Hospital, 75185 Uppsala, Sweden;
- Department of Surgical Sciences, Plastic Surgery, Uppsala University, 75185 Uppsala, Sweden
| | - Jay Pravda
- Inflammatory Disease Research Centre, Therashock LLC, Palm Beach Gardens, FL 33410, USA;
| | - Mia Furebring
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, 75185 Uppsala, Sweden; (M.F.); (J.S.); (H.J.)
| | - Jan Sjölin
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, 75185 Uppsala, Sweden; (M.F.); (J.S.); (H.J.)
| | - Helena Janols
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, 75185 Uppsala, Sweden; (M.F.); (J.S.); (H.J.)
| |
Collapse
|
11
|
Minasyan H. Oxygen therapy for sepsis and prevention of complications. Acute Crit Care 2022; 37:137-150. [PMID: 35545238 PMCID: PMC9184979 DOI: 10.4266/acc.2021.01200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Patients with sepsis have a wide range of respiratory disorders that can be treated with oxygen therapy. Experimental data in animal sepsis models show that oxygen therapy significantly increases survival, while clinical data on the use of different oxygen therapy protocols are ambiguous. Oxygen therapy, especially hyperbaric oxygenation, in patients with sepsis can aggravate existing oxidative stress and contribute to the development of disseminated intravascular coagulation. The purpose of this article is to compare experimental and clinical data on oxygen therapy in animals and humans, to discuss factors that can influence the results of oxygen therapy for sepsis treatment in humans, and to provide some recommendations for reducing oxidative stress and preventing disseminated intravascular coagulation during oxygen therapy.
Collapse
|
12
|
Assessment of Metabolic Dysfunction in Sepsis in a Retrospective Single-Centre Cohort. Crit Care Res Pract 2021; 2021:3045454. [PMID: 34966560 PMCID: PMC8712182 DOI: 10.1155/2021/3045454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/01/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Our primary aim was to assess selected metabolic dysfunction parameters, both independently and as a complement to the SOFA score, as predictors of short-term mortality in patients with infection admitted to the intensive care unit (ICU). Methods We retrospectively enrolled all consecutive adult patients admitted to the eight ICUs of Lille University Hospital, between January 2015 and September 2016, with suspected or confirmed infection. We selected seven routinely measured biological and clinical parameters of metabolic dysfunction (maximal arterial lactatemia, minimal and maximal temperature, minimal and maximal glycaemia, cholesterolemia, and triglyceridemia), in addition to age and the Charlson's comorbidity score. All parameters and SOFA scores were recorded within 24 h of admission. Results We included 956 patients with infection, among which 295 (30.9%) died within 90 days. Among the seven metabolic parameters investigated, only maximal lactatemia was associated with higher risk of 90-day hospital mortality in SOFA-adjusted analyses (SOFA-adjusted OR, 1.17; 95%CI, 1.10 to 1.25; p < 0.001). Age and the Charlson's comorbidity score were also statistically associated with a poor prognosis in SOFA-adjusted analyses. We were thus able to develop a metabolic failure, age, and comorbidity assessment (MACA) score based on scales of lactatemia, age, and the Charlson's score, intended for use in combination with the SOFA score. Conclusions The maximal lactatemia level within 24 h of ICU admission is the best predictor of short-term mortality among seven measures of metabolic dysfunction. Our combined "SOFA + MACA" score could facilitate early detection of patients likely to develop severe infections. Its accuracy requires further evaluation.
Collapse
|
13
|
McCreath G, Whitfield PD, Roe AJ, Watson MJ, Sim MAB. A Metabolomics approach for the diagnosis Of SecondAry InfeCtions in COVID-19 (MOSAIC): a study protocol. BMC Infect Dis 2021; 21:1204. [PMID: 34856937 PMCID: PMC8637512 DOI: 10.1186/s12879-021-06832-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background Critically ill patients with COVID-19 are at an increased risk of developing secondary bacterial infections. These are both difficult to diagnose and are associated with an increased mortality. Metabolomics may aid clinicians in diagnosing secondary bacterial infections in COVID-19 through identification and quantification of disease specific biomarkers, with the aim of identifying underlying causative microorganisms and directing antimicrobial therapy. Methods This is a multi-centre prospective diagnostic observational study. Patients with COVID-19 will be recruited from critical care units in three Scottish hospitals. Three serial blood samples will be taken from patients, and an additional sample taken if a patient shows clinical or microbiological evidence of secondary infection. Samples will be analysed using LC–MS and subjected to bioinformatic processing and statistical analysis to explore the metabolite changes associated with bacterial infections in COVID-19 patients. Comparisons of the data sets will be made with standard microbiological and biochemical methods of diagnosing infection. Discussion Metabolomics analyses may provide additional strategies for identifying secondary infections, which might permit faster initiation of specific tailored antimicrobial therapy to critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Gordan McCreath
- Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, University Place, Glasgow, Scotland.
| | - Phillip D Whitfield
- Glasgow Polyomics, University of Glasgow, Garscube Campus, Glasgow, Scotland
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, University Place, Glasgow, Scotland
| | - Malcolm J Watson
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasglow, G12 8QQ, Scotland
| | - Malcolm A B Sim
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasglow, G12 8QQ, Scotland
| |
Collapse
|
14
|
Yin T, Lai JJ, Huang WC, Kuo SC, Chiang TT, Yang YS. In vitro and in vivo comparison of eravacycline- and tigecycline-based combination therapies for tigecycline-resistant Acinetobacter baumannii. J Chemother 2021; 34:166-172. [PMID: 34818987 DOI: 10.1080/1120009x.2021.2005755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Several antimicrobial combination therapies are used to treat multiple drug resistant (MDR) and extensively drug resistant (XDR) Acinetobacter baumannii infections. A novel antibiotic, eravacycline, shows a higher potency than tigecycline. The efficacies of eravacycline-based therapies have not yet been evaluated. We demonstrated the effectiveness of eravacycline- and tigecycline-based combination therapies in XDR and especially tigecycline resistant A. baumannii. Thirteen eligible isolates were selected from 642 non-duplicate Acinetobacter blood isolates from four medical centres in 2010-2014. Tigecycline/imipenem and eravacycline/imipenem combinations were simultaneously effective against some isolates in vitro with fractional inhibitory concentration index of 0.5. In contrast, eravacycline- and tigecycline-based combination therapies provided no additional benefits in mouse survival compared to those for monotherapy. In summary, colistin is still the final resort for XDR-A. baumannii treatment according to the sensitivities. Owning to rapid development of resistance in A. baumannii, novel antibiotics are urgently needed.
Collapse
Affiliation(s)
- Ti Yin
- Nursing Department, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiun-Ji Lai
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Cheng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Tsung-Ta Chiang
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Sung Yang
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | |
Collapse
|
15
|
Liu T, Feng S, Zhang Y, Wang C. Commentary: Plasma Metabolic Profiling of Pediatric Sepsis in a Chinese Cohort. Front Cell Dev Biol 2021; 9:766357. [PMID: 34778274 PMCID: PMC8581402 DOI: 10.3389/fcell.2021.766357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tiantian Liu
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyun Feng
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Pravda J. Sepsis: Evidence-based pathogenesis and treatment. World J Crit Care Med 2021; 10:66-80. [PMID: 34316443 PMCID: PMC8291008 DOI: 10.5492/wjccm.v10.i4.66] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Sepsis can develop during the body’s response to a critical illness leading to multiple organ failure, irreversible shock, and death. Sepsis has been vexing health care providers for centuries due to its insidious onset, generalized metabolic dysfunction, and lack of specific therapy. A common factor underlying sepsis is the characteristic hypermetabolic response as the body ramps up every physiological system in its fight against the underlying critical illness. A hypermetabolic response requires supraphysiological amounts of energy, which is mostly supplied via oxidative phosphorylation generated ATP. A by-product of oxidative phosphorylation is hydrogen peroxide (H2O2), a toxic, membrane-permeable oxidizing agent that is produced in far greater amounts during a hypermetabolic state. Continued production of mitochondrial H2O2 can overwhelm cellular reductive (antioxidant) capacity leading to a build-up within cells and eventual diffusion into the bloodstream. H2O2 is a metabolic poison that can inhibit enzyme systems leading to organ failure, microangiopathic dysfunction, and irreversible septic shock. The toxic effects of H2O2 mirror the clinical and laboratory abnormalities observed in sepsis, and toxic levels of blood H2O2 have been reported in patients with septic shock. This review provides evidence to support a causal role for H2O2 in the pathogenesis of sepsis, and an evidence-based therapeutic intervention to reduce H2O2 levels in the body and restore redox homeostasis, which is necessary for normal organ function and vascular responsiveness.
Collapse
Affiliation(s)
- Jay Pravda
- Inflammatory Disease Research Centre, Therashock LLC, Palm Beach Gardens, FL 33410, United States
| |
Collapse
|
17
|
Sadek SA, Hassanein SS, Mohamed AS, Soliman AM, Fahmy SR. Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats. J Food Biochem 2021; 46:e13729. [PMID: 33871886 DOI: 10.1111/jfbc.13729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
The current study aimed to evaluate the antibacterial, anti-inflammatory, analgesic, and renoprotective effects of echinochrome pigment extracted from sea urchin. The disk diffusion method was used for the antibacterial activity of echinochrome against four different bacterial strains; Salmonella typhimurium, Pseudomonas aeroginosa, Staphylococcus aureus, and Listeria monocytogenes. While, acetic acid-induced writhing, formalin-induced licking, and hot plate latency assays evaluate the analgesic activity. The biochemical and oxidative stress markers of kidneys, as well as the histopathological examination, were measured to evaluate the renoprotective activity of echinochrome for cecal ligation and puncture-induced renal injury in rats. Echinochrome pigment exhibited in vitro antibacterial activity against all aforementioned bacterial species besides a powerful anti-inflammatory impact in vitro by the effective stabilization of the RBCs membrane and in vivo by decrease levels of serum IL6 and TNF-α. What's more, echinochrome showed a notable analgesic efficacy as well as an enhancement of the kidney's biochemical markers, oxidative stress status, and histopathological screening. Ech attenuated cecal ligation and puncture-induced renal injury by improving renal biomarkers, suppressing reactive oxygen species propagation as well as its antibacterial, anti-inflammatory, and anti-nociceptive activities. PRACTICAL APPLICATIONS: Sea urchins are rich in pharmacologically important quinone pigments, specifically echinochrome. The current study aimed to evaluate the role of echinochrome as a renal protective remedy in sepsis and clarify its biological activities. Echinochrome exhibited antibacterial activity in vitro against Salmonella typhimurium, Pseudomonas aeroginosa, Staphylococcus aureus, and Listeria monocytogenes. Our results revealed that echinochrome protects the kidney against damage caused by sepsis in rats. Echinochrome can use in the treatment of sepsis as an antibacterial, anti-inflammatory, and antioxidant agent.
Collapse
Affiliation(s)
- Shimaa A Sadek
- Physiology, Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sarah S Hassanein
- Physiology, Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayman S Mohamed
- Physiology, Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Amel M Soliman
- Physiology, Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sohair R Fahmy
- Physiology, Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
18
|
Caicedo A, Zambrano K, Sanon S, Luis Vélez J, Montalvo M, Jara F, Moscoso SA, Vélez P, Maldonado A, Velarde G. The diversity and coexistence of extracellular mitochondria in circulation: A friend or foe of the immune system. Mitochondrion 2021; 58:270-284. [PMID: 33662580 DOI: 10.1016/j.mito.2021.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
The diversity and coexistence of extracellular mitochondria may have a key role in the maintenance of health and progression of disease. Studies report that active mitochondria can be found physiologically outside of cells and circulating in the blood without inducing an inflammatory response. In addition, inactive or harmed mitochondria have been recognized as activators of immune cells, as they play an essential role in diseases characterized by the metabolic deregulation of these cells, such as sepsis. In this review we analyze key aspects regarding the existence of a diversity of extracellular mitochondria, their coexistence in body fluids and their effects on various immune cells. Additionally, we introduce models of how extracellular mitochondria could be interacting to maintain health and affect disease prognosis. Unwrapped mitochondria (freeMitos) can exist as viable, active, inactive or harmed organelles. Mitochondria can also be found wrapped in a membrane (wrappedMitos) that may differ depending on the cell of origin. Mitochondrial fragments can also be present in various body fluids as DAMPs, as mtDNA enclosed in vesicles or as circulating-cell-free mtDNA (ccf-mtDNA). Interestingly, the great quantity of evidence regarding the levels of ccf-mtDNA and their correlation with aging and disease allows for the identification of the diversity, but not type, of extracellular mitochondria. The existence of a diversity of mitochondria and their effects on immune cells opens a new concept in the biomedical field towards the understanding of health, the progression of disease and the development of mitochondria as therapeutic agents.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Serena Sanon
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Cornell University - Ithaca, United States
| | - Jorge Luis Vélez
- Universidad Central del Ecuador, Facultad de Ciencias Médicas, Quito, Ecuador; Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Mario Montalvo
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Fernando Jara
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Santiago Aguayo Moscoso
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Pablo Vélez
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Augusto Maldonado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, United States; Hospital General Docente de Calderón, Quito, Ecuador
| | - Gustavo Velarde
- Universidad Central del Ecuador, Facultad de Ciencias Médicas, Quito, Ecuador; Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| |
Collapse
|
19
|
Ji M, Lee H, Kim Y, Seo C, Oh S, Jung ID, Park J, Paik M. Metabolomic Study of Normal and Modified Nucleosides in the Urine of Mice with Lipopolysaccharide‐Induced Sepsis by
LC–MS
/
MS. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Moongi Ji
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| | - Hyeon‐Seong Lee
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| | - Youngbae Kim
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| | - Chan Seo
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| | - Songjin Oh
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| | | | - Jae‐Hyun Park
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
- DanDi Bioscience Seoul Republic of Korea
| | - Man‐Jeong Paik
- College of Pharmacy, Sunchon National University Suncheon Republic of Korea
| |
Collapse
|
20
|
Yang HW, Choi S, Song H, Lee MJ, Kwon JE, Lee HAR, Kim K. Effect of Hyperbaric Oxygen Therapy on Acute Liver Injury and Survival in a Rat Cecal Slurry Peritonitis Model. Life (Basel) 2020; 10:life10110283. [PMID: 33203111 PMCID: PMC7696772 DOI: 10.3390/life10110283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The effects of hyperbaric oxygen therapy (HBOT) in sepsis remain unclear. This study evaluated its effects on acute liver injury and survival in a rat model. METHODS Cecal slurry peritonitis was induced in male rats, which were then randomly allocated into the HBOT and control groups. In the survival experiment, six 90 min HBOT sessions (2.6 atmospheres absolute 100% oxygen) were performed over 48 h; the survival rate was determined 14 days after sepsis induction. In the acute liver injury experiment, three HBOT sessions were performed, followed by liver and plasma harvesting, 24 h after sepsis induction. Serum levels of alanine aminotransferase (ALT), interleukin (IL)-6, and IL-10 were measured, and the hepatic injury scores were determined. Reactive oxygen species (ROS) generation was detected by 2',7'-dihydrodichlorofluorescein diacetate (H2DCF-DA) assay. Western blot assays assessed protein kinase B (Akt), phosphorylated-Akt (p-Akt), glycogen synthase kinase (GSK)-3β, phosphorylated-GSK-3β, and cleaved caspase-3 levels. RESULTS Survival in the HBOT group (57.1%) was significantly higher than that in the controls (12.5%, p = 0.029), whereas IL-6, IL-10, and ALT levels were significantly lower in the HBOT group. The ROS generation was significantly inhibited to a greater extent in the HBOT group than in the control group. Additionally, in the HBOT group, the p-Akt and p-GSK-3β increased significantly and cleaved caspase-3 levels decreased significantly. CONCLUSIONS HBOT showed a beneficial effect on acute liver injury and rat survival by enhancing the Akt signaling pathway and decreasing apoptosis.
Collapse
Affiliation(s)
- Hee Won Yang
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon 16499, Korea; (H.W.Y.); (H.S.)
| | - Sangchun Choi
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon 16499, Korea; (H.W.Y.); (H.S.)
- Correspondence: (S.C.); (K.K.)
| | - Hakyoon Song
- Department of Emergency Medicine, Ajou University School of Medicine, Suwon 16499, Korea; (H.W.Y.); (H.S.)
| | - Min Ji Lee
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Ji Eun Kwon
- Department of Pathology, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Han A. Reum Lee
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Korea;
| | - Kyuseok Kim
- Department of Emergency Medicine, CHA University School of Medicine, Seongnam 13497, Korea;
- Correspondence: (S.C.); (K.K.)
| |
Collapse
|
21
|
Zhang H, Zhang SJ, Lyn N, Florentino A, Li A, Davies KJA, Forman HJ. Down regulation of glutathione and glutamate cysteine ligase in the inflammatory response of macrophages. Free Radic Biol Med 2020; 158:53-59. [PMID: 32682927 PMCID: PMC7484362 DOI: 10.1016/j.freeradbiomed.2020.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 06/06/2020] [Indexed: 11/22/2022]
Abstract
Glutathione (GSH) plays critical roles in the inflammatory response by acting as the master substrate for antioxidant enzymes and an important anti-inflammatory agent. In the early phase of the inflammatory response of macrophages, GSH content is decreased due to the down regulation of the catalytic subunit of glutamate cysteine ligase (GCLC). In the current study we investigated the underlying mechanism for this phenomenon. In human THP1-differentiated macrophages, GCLC mRNA had a half-life of 4 h under basal conditions, and it was significantly reduced to less than 2 h upon exposure to lipopolysaccharide (LPS), suggesting an increased decay of GCLC mRNA in the inflammatory response. The half-life of GCLC protein was >10 h under basal conditions, and upon LPS exposure the degradation rate of GCLC protein was significantly increased. The pan-caspase inhibitor Z-VAD-FMK but not the proteasome inhibitor MG132, prevented the down regulation of GCLC protein caused by LPS. Both caspase inhibitor Z-LEVD-FMK and siRNA of caspase-5 abrogated LPS-induced degradation of GCLC protein. In addition, supplement with γ-GC, the GCLC product, efficiently restored GSH content and suppressed the induction of NF-κB activity by LPS. In conclusion, these data suggest that GCLC down-regulation in the inflammatory response of macrophages is mediated through both increased mRNA decay and caspase-5-mediated GCLC protein degradation, and γ-GC is an efficient agent to restore GSH and regulate the inflammatory response.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Sarah Jiuqi Zhang
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Natalie Lyn
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Abigail Florentino
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Andrew Li
- Department of Neurobiology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089, USA; Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
22
|
Jennaro TS, Puskarich MA, McCann MR, Gillies CE, Pai MP, Karnovsky A, Evans CR, Jones AE, Stringer KA. Using l-Carnitine as a Pharmacologic Probe of the Interpatient and Metabolic Variability of Sepsis. Pharmacotherapy 2020; 40:913-923. [PMID: 32688453 DOI: 10.1002/phar.2448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The objective of this review is to discuss the therapeutic use and differential treatment response to Levo-carnitine (l-carnitine) treatment in septic shock, and to demonstrate common lessons learned that are important to the advancement of precision medicine approaches to sepsis. We propose that significant interpatient variability in the metabolic response to l-carnitine and clinical outcomes can be used to elucidate the mechanistic underpinnings that contribute to sepsis heterogeneity. METHODS A narrative review was conducted that focused on explaining interpatient variability in l-carnitine treatment response. Relevant biological and patient-level characteristics considered include genetic, metabolic, and morphomic phenotypes; potential drug interactions; and pharmacokinetics (PKs). MAIN RESULTS Despite promising results in a phase I study, a recent phase II clinical trial of l-carnitine treatment in septic shock showed a nonsignificant reduction in mortality. However, l-carnitine treatment induces significant interpatient variability in l-carnitine and acylcarnitine concentrations over time. In particular, administration of l-carnitine induces a broad, dynamic range of serum concentrations and measured peak concentrations are associated with mortality. Applied systems pharmacology may explain variability in drug responsiveness by using patient characteristics to identify pretreatment phenotypes most likely to derive benefit from l-carnitine. Moreover, provocation of sepsis metabolism with l-carnitine offers a unique opportunity to identify metabolic response signatures associated with patient outcomes. These approaches can unmask latent metabolic pathways deranged in the sepsis syndrome and offer insight into the pathophysiology, progression, and heterogeneity of the disease. CONCLUSIONS The compiled evidence suggests there are several potential explanations for the variability in carnitine concentrations and clinical response to l-carnitine in septic shock. These serve as important confounders that should be considered in interpretation of l-carnitine clinical studies and broadly holds lessons for future clinical trial design in sepsis. Consideration of these factors is needed if precision medicine in sepsis is to be achieved.
Collapse
Affiliation(s)
- Theodore S Jennaro
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A Puskarich
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, Minnesota, USA.,Department of Emergency Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marc R McCann
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher E Gillies
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), School of Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Institute for Data Science, Office of Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles R Evans
- Michigan Regional Comprehensive Metabolomics Resource Core (MRC2), University of Michigan, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alan E Jones
- Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), School of Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Liu Z, Xie L, Qiu K, Liao X, Rees TW, Zhao Z, Ji L, Chao H. An Ultrasmall RuO 2 Nanozyme Exhibiting Multienzyme-like Activity for the Prevention of Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31205-31216. [PMID: 32628016 DOI: 10.1021/acsami.0c07886] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative stress induced by reactive oxygen species (ROS) is one of the major pathological mechanisms of acute kidney injury (AKI). Inorganic nanomaterial-mediated antioxidant therapy is considered a promising method for the prevention of AKI; however, currently available antioxidants for AKI exhibit limited clinical efficacy due to the glomerular filtration threshold (∼6 nm). To address this issue, we developed ultrasmall RuO2 nanoparticles (RuO2NPs) (average size ≈ 2 nm). The NPs show excellent antioxidant activity and low biological toxicity. In addition, they can pass through the glomerulus to be excreted. These properties in combination make the ultrasmall RuO2NPs promising as a nanozyme for the prevention of AKI. The NP catalytic properties mimic the activity of catalase, peroxidase, superoxide dismutase, and glutathione peroxidase. The nanozyme can be efficiently and rapidly absorbed by human embryonic kidney cells while significantly reducing ROS-induced apoptosis by eliminating excess ROS. After intravenous injection, the ultrasmall RuO2NPs significantly inhibit the development of AKI in mice. In vivo toxicity experiments demonstrate the biosafety of the NPs after long-term preventing. The multienzyme-like activity and biocompatibility of the ultrasmall RuO2NPs makes them of great interest for applications in the fields of biomedicine and biocatalysis.
Collapse
Affiliation(s)
- Zhou Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zizhuo Zhao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 400201, P. R. China
| |
Collapse
|
24
|
Pravda J. Hydrogen peroxide and disease: towards a unified system of pathogenesis and therapeutics. Mol Med 2020; 26:41. [PMID: 32380940 PMCID: PMC7204068 DOI: 10.1186/s10020-020-00165-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Although the immune response has a prominent role in the pathophysiology of ulcerative colitis, sepsis, and systemic lupus erythematosus, a primary immune causation has not been established to explain the pathogenesis of these diseases. However, studies have reported significantly elevated levels of colonic epithelial hydrogen peroxide (a known colitic agent) in ulcerative colitis prior to the appearance of colitis. And patients with sepsis are reported to have toxic levels of blood hydrogen peroxide, whose pathologic effects mirror the laboratory and clinical abnormalities observed in sepsis. More recently, evidence supports a causal role for cellular hydrogen peroxide (a potent apoptotic agent) in the enhanced apoptosis believed to be the driving force behind auto-antigenic exposure and chronic immune activation in systemic lupus erythematosus. The different biological properties of hydrogen peroxide exert distinct pathologic effects depending on the site of accumulation within the body resulting in a unique disease patho-phenotype. On a cellular level, the build-up of hydrogen peroxide triggers apoptosis resulting in systemic lupus erythematosus, on a tissue level (colonic epithelium) excess hydrogen peroxide leads to inflammation and ulcerative colitis, and on a systemic level the pathologic effects of toxic concentrations of blood hydrogen peroxide result in bioenergetic failure and microangiopathic dysfunction leading to multiple organ failure and circulatory shock, characteristic of advanced sepsis. The aim of this paper is to provide a unified evidence-based common causal role for hydrogen peroxide in the pathogenesis of ulcerative colitis, sepsis, and systemic lupus erythematosus. Based on this new theory of pathogenesis, a novel evidence-based treatment of sepsis is also discussed.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The current review focuses on recent clinical evidence and updated guideline recommendations on the effects of enteral vs. parenteral nutrition in adult critically ill patients with (septic) shock. RECENT FINDIGS The largest multicenter randomized-controlled trial showed that the route of nutrient supply was unimportant for 28-day and 90-day mortality, infectious morbidity and length of stay in mechanically ventilated patients with shock. The enteral route, however, was associated with lower macronutrient intake and significantly higher frequency of hypoglycemia and moderate-to-severe gastrointestinal complications. Integrating these findings into recent meta-analyses confirmed that the route per se has no effect on mortality and that interactions with (infectious) morbidity are inconsistent or questionable. SUMMARY The strong paradigm of favoring the enteral over the parenteral route in critically ill patients has been challenged. As a consequence, updated guidelines recommend withholding enteral nutrition in patients with uncontrolled shock. It is still unclear, however, whether parenteral nutrition is advantageous in patients with shock although benefits are conceivable in light of less gastrointestinal complications. Thus far, no guideline has addressed indications for parenteral nutrition in these patients. By considering recent scientific evidence, specific guideline recommendations, and expert opinions, we present a clinical algorithm that may facilitate decision-making when feeding critically ill patients with shock.
Collapse
|
26
|
Li Y, Long J, Chen J, Zhang J, Qin Y, Zhong Y, Liu F, Peng Z. Analysis of Spatiotemporal Urine Protein Dynamics to Identify New Biomarkers for Sepsis-Induced Acute Kidney Injury. Front Physiol 2020; 11:139. [PMID: 32194432 PMCID: PMC7063463 DOI: 10.3389/fphys.2020.00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of sepsis and contributes to increased mortality. Discovery of reliable biomarkers could enable identification of individuals with high AKI risk as well as early AKI detection and AKI progression monitoring. However, the current methods are insensitive and non-specific. This study aimed to identify new biomarkers through label-free mass spectrometry (MS) analysis of a sepsis model induced by cecal ligation and puncture (CLP). Urine samples were collected from septic rats at 0, 3, 6, 12, 24, and 48 h. Protein isolated from urine was subjected to MS. Immunoregulatory biological processes, including immunoglobin production and wounding and defense responses, were upregulated at early time points. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses identified 77 significantly changed pathways. We further examined the consistently differentially expressed proteins to seek biomarkers that can be used for early diagnosis. Notably, the expression of PARK7 and CDH16 were changed in a continuous manner and related to the level of Scr in urine from patients. Therefore, PARK7 and CDH16 were confirmed to be novel biomarkers after validation in sepsis human patients. In summary, our study analyzed the proteomics of AKI at multiple time points, elucidated the related biological processes, and identified novel biomarkers for early diagnosis of sepsis-induced AKI, and our findings provide a theoretical basis for further research on the molecular mechanisms.
Collapse
Affiliation(s)
- Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junke Long
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaquan Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Qin
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanjun Zhong
- ICU Center, The Second Xiangya Hospital, Central South University, Furong, China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Harberts E, Liang T, Yoon SH, Opene BN, McFarland MA, Goodlett DR, Ernst RK. Toll-like Receptor 4-Independent Effects of Lipopolysaccharide Identified Using Longitudinal Serum Proteomics. J Proteome Res 2020; 19:1258-1266. [PMID: 32037835 DOI: 10.1021/acs.jproteome.9b00765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sepsis remains one of the most lethal and costly conditions treated in U.S. hospitals, with approximately 50% of cases caused by Gram-negative bacterial infections. Septic shock is induced when lipopolysaccharide (LPS), the main component of Gram-negative outer bacterial membrane, signals through the Toll-like receptor 4 (TLR4) complex. Lethal endotoxemia, a model for septic shock, was induced in WT C57BL6 and TLR4-/- mice by administration of Escherichia coli LPS. WT LPS treated mice showed high morbidity, while PBS treated LPS and treated TLR4-/- mice did not. ANOVA analysis of label-free quantification of longitudinal serum proteome revealed 182 out of 324 proteins in LPS injected WT mice that were significantly changed across four time points (0, 6, 12, and 18 h). No significant changes were identified in the two control groups. From the 182 identified proteins, examples of known sepsis biomarkers were validated by ELISA, which showed similar trends as MS proteomics data. Longitudinal analysis within individual mice produced 3-fold more significantly changed proteins than pair-wise comparison. A subsequent global analysis of WT and TLR4-/- mice identified pathways activated independent of TLR4. These pathways represent possible compensatory mechanisms that allow for control of Gram-negative bacterial infection regardless of host immune status.
Collapse
Affiliation(s)
- Erin Harberts
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States
| | - Tao Liang
- Department of Pharmaceutical Science, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Sung Hwan Yoon
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States
| | - Belita N Opene
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States
| | - Melinda A McFarland
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland 21201, United States
| | - David R Goodlett
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States.,University of Gdansk, International Centre for Cancer Vaccine Science, 80-308 Gdansk, Poland, EU
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
28
|
Gusev EY, Zotova NV. Cellular Stress and General Pathological Processes. Curr Pharm Des 2020; 25:251-297. [PMID: 31198111 DOI: 10.2174/1381612825666190319114641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
From the viewpoint of the general pathology, most of the human diseases are associated with a limited number of pathogenic processes such as inflammation, tumor growth, thrombosis, necrosis, fibrosis, atrophy, pathological hypertrophy, dysplasia and metaplasia. The phenomenon of chronic low-grade inflammation could be attributed to non-classical forms of inflammation, which include many neurodegenerative processes, pathological variants of insulin resistance, atherosclerosis, and other manifestations of the endothelial dysfunction. Individual and universal manifestations of cellular stress could be considered as a basic element of all these pathologies, which has both physiological and pathophysiological significance. The review examines the causes, main phenomena, developmental directions and outcomes of cellular stress using a phylogenetically conservative set of genes and their activation pathways, as well as tissue stress and its role in inflammatory and para-inflammatory processes. The main ways towards the realization of cellular stress and its functional blocks were outlined. The main stages of tissue stress and the classification of its typical manifestations, as well as its participation in the development of the classical and non-classical variants of the inflammatory process, were also described. The mechanisms of cellular and tissue stress are structured into the complex systems, which include networks that enable the exchange of information with multidirectional signaling pathways which together make these systems internally contradictory, and the result of their effects is often unpredictable. However, the possible solutions require new theoretical and methodological approaches, one of which includes the transition to integral criteria, which plausibly reflect the holistic image of these processes.
Collapse
Affiliation(s)
- Eugeny Yu Gusev
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation
| | - Natalia V Zotova
- Laboratory of the Immunology of Inflammation, Institute of Immunology and Physiology, Yekaterinburg, Russian Federation.,Department of Medical Biochemistry and Biophysics, Ural Federal University named after B.N.Yeltsin, Yekaterinburg, Russian Federation
| |
Collapse
|
29
|
Dinu AR, Rogobete AF, Bratu T, Popovici SE, Bedreag OH, Papurica M, Bratu LM, Sandesc D. Cannabis Sativa Revisited-Crosstalk between microRNA Expression, Inflammation, Oxidative Stress, and Endocannabinoid Response System in Critically Ill Patients with Sepsis. Cells 2020; 9:E307. [PMID: 32012914 PMCID: PMC7072707 DOI: 10.3390/cells9020307] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Critically ill patients with sepsis require a multidisciplinary approach, as this situation implies multiorgan distress, with most of the bodily biochemical and cellular systems being affected by the condition. Moreover, sepsis is characterized by a multitude of biochemical interactions and by dynamic changes of the immune system. At the moment, there is a gap in our understanding of the cellular, genetic, and molecular mechanisms involved in sepsis. One of the systems intensely studied in recent years is the endocannabinoid signaling pathway, as light was shed over a series of important interactions of cannabinoid receptors with biochemical pathways, specifically for sepsis. Furthermore, a series of important implications on inflammation and the immune system that are induced by the activity of cannabinoid receptors stimulated by the delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) have been noticed. One of the most important is their ability to reduce the biosynthesis of pro-inflammatory mediators and the modulation of immune mechanisms. Different studies have reported that cannabinoids can reduce oxidative stress at mitochondrial and cellular levels. The aim of this review paper was to present, in detail, the important mechanisms modulated by the endocannabinoid signaling pathway, as well as of the molecular and cellular links it has with sepsis. At the same time, we wish to present the possible implications of cannabinoids in the most important biological pathways involved in sepsis, such as inflammation, redox activity, immune system, and epigenetic expression.
Collapse
Affiliation(s)
- Anca Raluca Dinu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Alexandru Florin Rogobete
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Tiberiu Bratu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Sonia Elena Popovici
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Marius Papurica
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| | - Lavinia Melania Bratu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
| | - Dorel Sandesc
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.R.D.); (A.F.R.); (S.E.P.); (M.P.); (L.M.B.); (D.S.)
- Clinic of Anaesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 325100 Timisoara, Romania
| |
Collapse
|
30
|
Sulfur and nitrogen doped carbon quantum dots for detection of glutathione and reduction of cellular nitric oxide in microglial cells. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-019-00466-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Li X, Zhu Z, Zhou T, Cao X, Lu T, He J, Liang Y, Liu C, Dou Z, Shen B. Predictive value of combined serum FGF21 and free T3 for survival in septic patients. Clin Chim Acta 2019; 494:31-37. [PMID: 30853459 DOI: 10.1016/j.cca.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND We examined the correlation between thyroid hormone (TH) concentrations and the serum fibroblast growth factor 21 (FGF21) concentration in septic patients and to assess the collaborative value of these factors in predicting 28-day mortality in septic patients. METHODS A total of 120 consecutive patients with sepsis were divided into two groups according to their survival or death within 28 days after initial diagnosis of sepsis. RESULTS Patients in the non-survivor group had significantly higher serum FGF21 concentrations but lower total and free triiodothyronine (T3) and tetraiodothyronine (T4) concentrations than those in the survivor group. Thyroid hormone concentrations, including T3, free T3, T4 and free T4, were significantly negatively correlated with the ∆SOFA and APACHE II scores as well as the serum FGF21, IL-6, tumor necrosis factor-α, IL-10, procalcitonin, and C-reactive protein concentrations. Logistic regression analysis showed that the ∆SOFA score, serum FGF21 concentration, and free T3 concentration were significant predictors of 28-day mortality. The model with variables of ∆SOFA score and serum FGF21 and free T3 concentrations had the greatest area under the curve of 0.969. CONCLUSION The addition of free T3 and serum FGF21 to ∆SOFA score provided a significantly improved ability to predict 28-day mortality in septic patients.
Collapse
Affiliation(s)
- Xing Li
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Zexiang Zhu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China.
| | - Tinghong Zhou
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Xiaoyu Cao
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Ting Lu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Jiafen He
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Yan Liang
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Chuankai Liu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Zhoulin Dou
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Bin Shen
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| |
Collapse
|
32
|
Ro SH, Jang Y, Bae J, Kim IM, Schaecher C, Shomo ZD. Autophagy in Adipocyte Browning: Emerging Drug Target for Intervention in Obesity. Front Physiol 2019; 10:22. [PMID: 30745879 PMCID: PMC6360992 DOI: 10.3389/fphys.2019.00022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022] Open
Abstract
Autophagy, lipophagy, and mitophagy are considered to be the major recycling processes for protein aggregates, excess fat, and damaged mitochondria in adipose tissues in response to nutrient status-associated stress, oxidative stress, and genotoxic stress in the human body. Obesity with increased body weight is often associated with white adipose tissue (WAT) hypertrophy and hyperplasia and/or beige/brown adipose tissue atrophy and aplasia, which significantly contribute to the imbalance in lipid metabolism, adipocytokine secretion, free fatty acid release, and mitochondria function. In recent studies, hyperactive autophagy in WAT was observed in obese and diabetic patients, and inhibition of adipose autophagy through targeted deletion of autophagy genes in mice improved anti-obesity phenotypes. In addition, active mitochondria clearance through activation of autophagy was required for beige/brown fat whitening – that is, conversion to white fat. However, inhibition of autophagy seemed detrimental in hypermetabolic conditions such as hepatic steatosis, atherosclerosis, thermal injury, sepsis, and cachexia through an increase in free fatty acid and glycerol release from WAT. The emerging concept of white fat browning–conversion to beige/brown fat–has been controversial in its anti-obesity effect through facilitation of weight loss and improving metabolic health. Thus, proper regulation of autophagy activity fit to an individual metabolic profile is necessary to ensure balance in adipose tissue metabolism and function, and to further prevent metabolic disorders such as obesity and diabetes. In this review, we summarize the effect of autophagy in adipose tissue browning in the context of obesity prevention and its potential as a promising target for the development of anti-obesity drugs.
Collapse
Affiliation(s)
- Seung-Hyun Ro
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Yura Jang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiyoung Bae
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Isaac M Kim
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Cameron Schaecher
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Zachery D Shomo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
33
|
Abstract
Inflammation is an adaptive process to the noxious stimuli that the human body is constantly exposed to. From the local inflammatory response to a full-blown systemic inflammation, a wide complex sequence of events occurs. Persistent immunosuppression and catabolism may ensue, until multiple organ failure finally sets in. And since clinically useful and specific biomarkers are lacking, diagnosis may come late. A thorough understanding of these events (how they begin, how they evolve, and how to modulate them) is imperative, but as yet poorly studied. This review aims to consolidate current knowledge of these events so that the management of these patients is not only evidence-based, but also built on an understanding of the inner workings of the human body in health and in disease.
Collapse
Affiliation(s)
- Miguel Lourenço Varela
- Internal Medicine 1, Hospital de Faro, Centro Hospitalar Universitário do Algarve, Rua Leão Penedo, Faro, 8000-386, Portugal.
- Intensive Care Medicine 1, Hospital de Faro, Centro Hospitalar Universitário do Algarve, Rua Leão Penedo, Faro, 8000-386, Portugal.
| | - Mihail Mogildea
- Internal Medicine 1, Hospital de Faro, Centro Hospitalar Universitário do Algarve, Rua Leão Penedo, Faro, 8000-386, Portugal
| | - Ignacio Moreno
- Internal Medicine 1, Hospital de Faro, Centro Hospitalar Universitário do Algarve, Rua Leão Penedo, Faro, 8000-386, Portugal
| | - Ana Lopes
- Internal Medicine 1, Hospital de Faro, Centro Hospitalar Universitário do Algarve, Rua Leão Penedo, Faro, 8000-386, Portugal
| |
Collapse
|
34
|
Kosyreva AM, Makarova OV, Kakturskiy LV, Mikhailova LP, Boltovskaya MN, Rogov KA. Sex differences of inflammation in target organs, induced by intraperitoneal injection of lipopolysaccharide, depend on its dose. J Inflamm Res 2018; 11:431-445. [PMID: 30519071 PMCID: PMC6233486 DOI: 10.2147/jir.s178288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The aim of our research was to study sex differences and the severity of inflammatory changes in target organs and the peculiarities of immunological disorders when low and high doses of lipopolysaccharide (LPS) were administered to rats. Methods Male and female 2- to 3-month-old Wistar rats (200–250 g) were injected intraperitoneally with Escherichia coli LPS in one of two doses: 1.5 or 15 mg/kg. In a day after the LPS injection, we studied endotoxin, corticosterone, sex steroids, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity levels in the serum; morphological disorders in the lung, liver, thymus, and spleen; ex vivo production of IL-2, IL-4, tumor necrosis factor (TNF), and interferon γ (IFNγ) by splenic cells activated by ConA; and relative amount of T- and B-lymphocytes in the peripheral blood. Results After the injection of low-dose LPS, the serum endotoxin level increased only in males and was combined with a more pronounced inflammatory response in the lungs and thymus and an increase in ALT and AST activity levels without any changes in corticosterone level. After the injection of high-dose LPS, the inflammatory and pathological changes in the target organs manifested as severe endotoxemia and sex differences of pathological changes in the lungs and liver were not revealed. The level of production of IL-2, IL-4, IFNγ, and TNF by splenic cells and the number of T-lymphocytes, including cytotoxic cells, in the peripheral blood, decreased in males, which is an evidence of a pronounced suppression of the immune response. Conclusion We have shown that the morphofunctional changes in the organs of the immune system in females and males, as well as the intensity of the sex differences of inflammation, depend on the severity of systemic inflammatory response, induced by different doses of LPS.
Collapse
Affiliation(s)
- Anna M Kosyreva
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Olga V Makarova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Lev V Kakturskiy
- Department of Pathology, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia
| | - Liliya P Mikhailova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Marina N Boltovskaya
- Department of Reproductive Pathology, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia
| | - Konstantin A Rogov
- Department of Pathology, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia
| |
Collapse
|
35
|
Rajendrakumar SK, Revuri V, Samidurai M, Mohapatra A, Lee JH, Ganesan P, Jo J, Lee YK, Park IK. Peroxidase-Mimicking Nanoassembly Mitigates Lipopolysaccharide-Induced Endotoxemia and Cognitive Damage in the Brain by Impeding Inflammatory Signaling in Macrophages. NANO LETTERS 2018; 18:6417-6426. [PMID: 30247915 DOI: 10.1021/acs.nanolett.8b02785] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oxidative stress during sepsis pathogenesis remains the most-important factor creating imbalance and dysregulation in immune-cell function, usually observed following initial infection. Hydrogen peroxide (H2O2), a potentially toxic reactive oxygen species (ROS), is excessively produced by pro-inflammatory immune cells during the initial phases of sepsis and plays a dominant role in regulating the pathways associated with systemic inflammatory immune activation. In the present study, we constructed a peroxide scavenger mannosylated polymeric albumin manganese dioxide (mSPAM) nanoassembly to catalyze the decomposition of H2O2 responsible for the hyper-activation of pro-inflammatory immune cells. In a detailed manner, we investigated the role of mSPAM nanoassembly in modulating the expression and secretion of pro-inflammatory markers elevated in bacterial lipopolysaccharide (LPS)-mediated endotoxemia during sepsis. Through a facile one-step solution-phase approach, hydrophilic bovine serum albumin reduced manganese dioxide (BM) nanoparticles were synthesized and subsequently self-assembled with cationic mannosylated disulfide cross-linked polyethylenimine (mSP) to formulate mSPAM nanoassembly. In particular, we observed that the highly stable mSPAM nanoassembly suppressed HIF1α expression by scavenging H2O2 in LPS-induced macrophage cells. Initial investigation revealed that a significant reduction of free radicals by the treatment of mSPAM nanoassembly has reduced the infiltration of neutrophils and other leukocytes in a local endotoxemia animal model. Furthermore, therapeutic studies in a systemic endotoxemia model demonstrated that mSPAM treatment reduced TNF-α and IL-6 inflammatory cytokines in serum, in turn circumventing organ damage done by the inflammatory macrophages. Interestingly, we also observed that the reduction of these inflammatory cytokines by mSPAM nanoassembly further prevented IBA-1 immuno-positive microglial cell activation in the brain and consequently improved the cognitive function of the animals. Altogether, the administration of mSPAM nanoassembly scavenged H2O2 and suppressed HIF1α expression in LPS-stimulated macrophages and thereby inhibited the progression of local and systemic inflammation as well as neuroinflammation in an LPS-induced endotoxemia model. This mSPAM nanoassembly system could serve as a potent anti-inflammatory agent, and we further anticipate its successful application in treating various inflammation-related diseases.
Collapse
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University , Chonnam National University Medical School , Gwangju 61469 , Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering , Korea National University of Transportation , Chungju 27469 , Republic of Korea
| | - Manikandan Samidurai
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University , Chonnam National University Medical School , Gwangju 61469 , Republic of Korea
- NeuroMedical Convergence Lab, Biomedical Research Institute , Chonnam National University Hospital , Jebong-ro, Gwangju 501-757 , Republic of Korea
| | - Adityanarayan Mohapatra
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University , Chonnam National University Medical School , Gwangju 61469 , Republic of Korea
| | - Jae Hyuk Lee
- Department of Pathology , Chonnam National University Hwasun Hospital, Chonnam National University Medical School , Hwasun 58128 , Republic of Korea
| | - Palanivel Ganesan
- Nanotechnology Research Center, Department of Biotechnology and Applied Life Science, College of Biomedical and Health Science , Konkuk University GLOCAL Campus , Chungju 380-701 , Republic of Korea
| | - Jihoon Jo
- NeuroMedical Convergence Lab, Biomedical Research Institute , Chonnam National University Hospital , Jebong-ro, Gwangju 501-757 , Republic of Korea
| | - Yong-Kyu Lee
- Department of Green Bioengineering , Korea National University of Transportation , Chungju 27469 , Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University , Chonnam National University Medical School , Gwangju 61469 , Republic of Korea
| |
Collapse
|
36
|
Abstract
During sepsis, the alarmin HMGB1 is released from tissues and promotes systemic inflammation that results in multi-organ damage, with the kidney particularly susceptible to injury. The severity of inflammation and pro-damage signaling mediated by HMGB1 appears to be dependent on the alarmin's redox state. Therefore, we examined HMGB1 redox in kidney cells during sepsis. Using intravital microscopy, CellROX labeling of kidneys in live mice indicated increased ROS generation in the kidney perivascular endothelium and tubules during lipopolysaccharide (LPS)-induced sepsis. Subsequent CellROX and MitoSOX labeling of LPS-stressed endothelial and kidney proximal tubule cells demonstrated increased ROS generation in these cells as sepsis worsens. Consequently, HMGB1 oxidation increased in the cytoplasm of kidney cells during its translocation from the nucleus to the circulation, with the degree of oxidation dependent on the severity of sepsis, as measured in in vivo mouse samples using a thiol assay and mass spectrometry (LC-MS/MS). The greater the oxidation of HMGB1, the greater the ability of the alarmin to stimulate pro-inflammatory cyto-/chemokine release (measured by Luminex Multiplex) and alter mitochondrial ATP generation (Luminescent ATP Detection Assay). Administration of glutathione and thioredoxin inhibitors to cell cultures enhanced HMGB1 oxidation during sepsis in endothelial and proximal tubule cells, respectively. In conclusion, as sepsis worsens, ROS generation and HMGB1 oxidation increases in kidney cells, which enhances HMGB1's pro-inflammatory signaling. Conversely, the glutathione and thioredoxin systems work to maintain the protein in its reduced state.
Endotoxins (LPS) increase cellular oxidative stress during sepsis. During its translocation, HMGB1 gets oxidized in the cytoplasm. Thioredoxin and glutathione keep HMGB1 in a reduced redox state during sepsis. HMGB1 oxidation enhances its stimulation of inflammatory cyto-/chemokine release.
Collapse
|
37
|
Weis S, Carlos AR, Moita MR, Singh S, Blankenhaus B, Cardoso S, Larsen R, Rebelo S, Schäuble S, Del Barrio L, Mithieux G, Rajas F, Lindig S, Bauer M, Soares MP. Metabolic Adaptation Establishes Disease Tolerance to Sepsis. Cell 2017. [PMID: 28622511 PMCID: PMC5480394 DOI: 10.1016/j.cell.2017.05.031] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sepsis is an often lethal syndrome resulting from maladaptive immune and metabolic responses to infection, compromising host homeostasis. Disease tolerance is a defense strategy against infection that preserves host homeostasis without exerting a direct negative impact on pathogens. Here, we demonstrate that induction of the iron-sequestering ferritin H chain (FTH) in response to polymicrobial infections is critical to establish disease tolerance to sepsis. The protective effect of FTH is exerted via a mechanism that counters iron-driven oxidative inhibition of the liver glucose-6-phosphatase (G6Pase), and in doing so, sustains endogenous glucose production via liver gluconeogenesis. This is required to prevent the development of hypoglycemia that otherwise compromises disease tolerance to sepsis. FTH overexpression or ferritin administration establish disease tolerance therapeutically. In conclusion, disease tolerance to sepsis relies on a crosstalk between adaptive responses controlling iron and glucose metabolism, required to maintain blood glucose within a physiologic range compatible with host survival.
Ferritin is required to establish disease tolerance to sepsis Iron heme represses liver G6Pase during sepsis Ferritin counters G6Pase repression and sustains blood glucose levels after sepsis Liver gluconeogenesis is required to establish disease tolerance to sepsis
Collapse
Affiliation(s)
- Sebastian Weis
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | | | | | - Sumnima Singh
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | | - Silvia Cardoso
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Rasmus Larsen
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Sofia Rebelo
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Sascha Schäuble
- Language and Information Engineering Laboratory, Friedrich-Schiller-University, 07743 Jena, Germany
| | | | - Gilles Mithieux
- INSERM U1213, Université Claude Bernard Lyon, 69100 Villeurbanne, France
| | - Fabienne Rajas
- INSERM U1213, Université Claude Bernard Lyon, 69100 Villeurbanne, France
| | - Sandro Lindig
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | | |
Collapse
|
38
|
Allanki S, Dixit M, Thangaraj P, Sinha NK. Analysis and modelling of septic shock microarray data using Singular Value Decomposition. J Biomed Inform 2017; 70:77-84. [PMID: 28499953 DOI: 10.1016/j.jbi.2017.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 11/26/2022]
Abstract
Being a high throughput technique, enormous amounts of microarray data has been generated and there arises a need for more efficient techniques of analysis, in terms of speed and accuracy. Finding the differentially expressed genes based on just fold change and p-value might not extract all the vital biological signals that occur at a lower gene expression level. Besides this, numerous mathematical models have been generated to predict the clinical outcome from microarray data, while very few, if not none, aim at predicting the vital genes that are important in a disease progression. Such models help a basic researcher narrow down and concentrate on a promising set of genes which leads to the discovery of gene-based therapies. In this article, as a first objective, we have used the lesser known and used Singular Value Decomposition (SVD) technique to build a microarray data analysis tool that works with gene expression patterns and intrinsic structure of the data in an unsupervised manner. We have re-analysed a microarray data over the clinical course of Septic shock from Cazalis et al. (2014) and have shown that our proposed analysis provides additional information compared to the conventional method. As a second objective, we developed a novel mathematical model that predicts a set of vital genes in the disease progression that works by generating samples in the continuum between health and disease, using a simple normal-distribution-based random number generator. We also verify that most of the predicted genes are indeed related to septic shock.
Collapse
Affiliation(s)
- Srinivas Allanki
- Laboratory of Vascular Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai 600 036, India.
| | - Madhulika Dixit
- Laboratory of Vascular Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Paul Thangaraj
- Department of Cardiothoracic Surgery, Apollo Hospital, Chennai 600 006, India
| | - Nandan Kumar Sinha
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
39
|
Doctor A, Zimmerman J, Agus M, Rajasekaran S, Wardenburg JB, Fortenberry J, Zajicek A, Typpo K. Pediatric Multiple Organ Dysfunction Syndrome: Promising Therapies. Pediatr Crit Care Med 2017; 18:S67-S82. [PMID: 28248836 PMCID: PMC5333132 DOI: 10.1097/pcc.0000000000001053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To describe the state of the science, identify knowledge gaps, and offer potential future research questions regarding promising therapies for children with multiple organ dysfunction syndrome presented during the Eunice Kennedy Shriver National Institute of Child Health and Human Development Workshop on Pediatric Multiple Organ Dysfunction Syndrome (March 26-27, 2015). DATA SOURCES Literature review, research data, and expert opinion. STUDY SELECTION Not applicable. DATA EXTRACTION Moderated by an expert from the field, issues relevant to the association of multiple organ dysfunction syndrome with a variety of conditions were presented, discussed, and debated with a focus on identifying knowledge gaps and research priorities. DATA SYNTHESIS Summary of presentations and discussion supported and supplemented by relevant literature. CONCLUSIONS Among critically ill children, multiple organ dysfunction syndrome is relatively common and associated with significant morbidity and mortality. For outcomes to improve, effective therapies aimed at preventing and treating this condition must be discovered and rigorously evaluated. In this article, a number of potential opportunities to enhance current care are highlighted including the need for a better understanding of the pharmacokinetics and pharmacodynamics of medications, the effect of early and optimized nutrition, and the impact of effective glucose control in the setting of multiple organ dysfunction syndrome. Additionally, a handful of the promising therapies either currently being implemented or developed are described. These include extracorporeal therapies, anticytokine therapies, antitoxin treatments, antioxidant approaches, and multiple forms of exogenous steroids. For the field to advance, promising therapies and other therapies must be assessed in rigorous manner and implemented accordingly.
Collapse
Affiliation(s)
- Allan Doctor
- Departments of Pediatrics (Critical Care Medicine) and Biochemistry, Washington University in Saint Louis
| | - Jerry Zimmerman
- Department of Pediatrics (Critical Care Medicine), University of Washington, Seattle, WA
| | - Michael Agus
- Department of Pediatrics (Critical Care Medicine), Harvard University, Boston, MA
| | - Surender Rajasekaran
- Department of Pediatrics (Critical Care Medicine), Michigan State University, Grand Rapids, MI
| | | | - James Fortenberry
- Department of Pediatrics (Critical Care Medicine), Emory University, Atlanta, GA
| | - Anne Zajicek
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, NICHD
| | - Katri Typpo
- Department of Pediatrics (Critical Care Medicine), University of Arizona, Phoenix, AZ
| |
Collapse
|
40
|
Affiliation(s)
- Gui-E Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery/Daping Hospital, Third Military Medical University, China
| | | | | |
Collapse
|
41
|
Wasserstrum Y, Lotan D, Itelman E, Barbarova I, Kogan M, Klempfner R, Dagan A, Segal G. Corrected QT interval anomalies are associated with worse prognosis among patients suffering from sepsis. Intern Med J 2016; 46:1204-1211. [DOI: 10.1111/imj.13170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Y. Wasserstrum
- Sackler School of Medicine, Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - D. Lotan
- Internal Medicine ‘T’, Chaim Sheba Medical Center, Tel Ha'Shomer, Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - E. Itelman
- Sackler School of Medicine, Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - I. Barbarova
- Internal Medicine ‘T’, Chaim Sheba Medical Center, Tel Ha'Shomer, Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - M. Kogan
- Internal Medicine ‘T’, Chaim Sheba Medical Center, Tel Ha'Shomer, Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - R. Klempfner
- Leviev Heart Institute, Chaim Sheba Medical Center, Tel Ha'Shomer, Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - A. Dagan
- Internal Medicine ‘T’, Chaim Sheba Medical Center, Tel Ha'Shomer, Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - G. Segal
- Internal Medicine ‘T’, Chaim Sheba Medical Center, Tel Ha'Shomer, Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
42
|
Daga MK, Khan NA, Singh H, Chhoda A, Mattoo S, Gupta BK. Markers of Oxidative Stress and Clinical Outcome in Critically ill Septic Patients: A Preliminary Study from North India. J Clin Diagn Res 2016; 10:OC35-8. [PMID: 27656484 DOI: 10.7860/jcdr/2016/19500.8384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/27/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Sepsis is the leading cause of mortality in non-coronary Intensive Care Units (ICUs). Oxidative stress is one of the important features in pathogenesis of sepsis. AIM This study was undertaken to evaluate levels of oxidants and antioxidants in patients with sepsis admitted to ICU. STUDY DESIGN This was a non-interventional clinical case-control study undertaken at a tertiary level teaching hospital in New Delhi, India. MATERIALS AND METHODS Forty-six consecutive non-pediatric patients admitted to ICU with sepsis were included and subjected to detailed history, physical examination and investigations. Blood samples were drawn to evaluate oxidant Malondialdehyde (MDA) and antioxidant (alpha-tocopherol) levels. Acute Physiology and Chronic Health Evaluation II (APACHE II) and Organ Dysfunction and/or Infection (ODIN) scores were calculated and patients followed up for outcomes. Twenty age and sex matched healthy subjects served as controls. RESULTS Mean levels of malondialdehyde were higher in patients than controls (17.2±3.8nm/ml versus 4.6±1.6nm/ml, p<0.001) while levels of alpha-tocopherol were lower (3.2±1.3μg/ml versus 9.9±2.0μg/ml, p<0.001). The mean APACHE II and ODIN scores were 18.1±9.3 and 1.7±1.3 respectively in patients. These scores were two to three fold higher in non survivor patients (n=22) in comparison with survivors (n=18) (p<0.001). There was no significant difference between the two groups in oxidants and antioxidants levels (p>0.05). However, a significant and positive correlation was observed between oxidant -antioxidant levels and APACHE II, ODIN and International Normalized Ratio (INR) scores in septic patients overall. CONCLUSION The oxidants in septic patients were significantly higher while antioxidants were significantly lower than healthy controls. There was also a significant correlation with APACHE II and ODIN scores. A large patient population based study may draw more specific conclusions.
Collapse
Affiliation(s)
- Mradul Kumar Daga
- Director Professor, Department of Medicine, Maulana Azad Medical College , New Delhi, India
| | - Naushad Ahmad Khan
- Research Associate, Department of Medicine, Maulana Azad Medical College , New Delhi, India
| | - Harpreet Singh
- Assistant Professor, Department of Medicine, Maulana Azad Medical College , New Delhi, India
| | - Ankit Chhoda
- Senior Resident, Department of Medicine, Maulana Azad Medical College , New Delhi, India
| | - Sahil Mattoo
- Resident, Department of Medicine, Maulana Azad Medical College , New Delhi, India
| | - Basant Kumar Gupta
- Resident, Department of Medicine, Maulana Azad Medical College , New Delhi, India
| |
Collapse
|
43
|
Zamani MM, Keshavarz-Fathi M, Fakhri-Bafghi MS, Hirbod-Mobarakeh A, Rezaei N, Bahrami A, Nader ND. Survival benefits of dexmedetomidine used for sedating septic patients in intensive care setting: A systematic review. J Crit Care 2016; 32:93-100. [DOI: 10.1016/j.jcrc.2015.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022]
|
44
|
LEI MING, LIU XINXIN. Vagus nerve electrical stimulation inhibits serum levels of S100A8 protein in septic shock rats. Mol Med Rep 2016; 13:4122-8. [DOI: 10.3892/mmr.2016.5002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
|
45
|
Kang H, Mao Z, Zhao Y, Yin T, Song Q, Pan L, Hu X, Hu J, Zhou F. Ethyl pyruvate protects against sepsis by regulating energy metabolism. Ther Clin Risk Manag 2016; 12:287-94. [PMID: 26966369 PMCID: PMC4770074 DOI: 10.2147/tcrm.s97989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Ethyl pyruvate (EP) is a derivative of pyruvic acid that has been demonstrated to be a potential scavenger of reactive oxygen species as well as an anti-inflammatory agent. In this study, we investigated the protective effects of EP and its role in regulating the energy metabolism in the livers of cecal-ligation-and-puncture-induced septic mice. Methods The animals were treated intraperitoneally with 0.2 mL of Ringer’s lactate solution or an equivalent volume of Ringer’s lactate solution containing EP immediately after cecal ligation and puncture. Each mouse in the Sham group was only subjected to a laparotomy. At 30-, 60-, 180-, and 360-minute time points, we measured the histopathological alterations of the intestines, and the plasma levels of interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor-α, and the total antioxidative capacity, malondialdehyde content, and lactate and lactate/pyruvate levels in livers. Furthermore, we detected the levels of adenosine triphosphate, total adenylate, and energy charge in the livers. Results Our results demonstrated that the administration of EP significantly improved the survival rate and reduced intestinal histological alterations. EP inhibited the plasma levels of IL-1β, IL-6, and tumor necrosis factor-α and increased the IL-10 level. EP significantly inhibited the elevation of the malondialdehyde, lactate, and lactate/pyruvate levels and enhanced the total antioxidative capacity levels in the liver tissues. The downregulation of the adenosine triphosphate, total adenylate, and energy charge levels in the liver tissues was reversed in the septic mice treated with EP. Conclusion The results suggest that EP administration effectively modulates the energy metabolism, which may be an important component in treatment of sepsis.
Collapse
Affiliation(s)
- Hongjun Kang
- Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhi Mao
- Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yan Zhao
- Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Ting Yin
- Department of Critical Care Medicine, The Centre Hospital of BaoTou, BaoTou, People's Republic of China
| | - Qing Song
- Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Liang Pan
- Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xin Hu
- Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jie Hu
- Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Feihu Zhou
- Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|