1
|
Shi Y, Hu Y, Xu GM, Ke Y. Development and validation of a predictive model for pulmonary infection risk in patients with traumatic brain injury in the ICU: a retrospective cohort study based on MIMIC-IV. BMJ Open Respir Res 2024; 11:e002263. [PMID: 39089740 DOI: 10.1136/bmjresp-2023-002263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE To develop a nomogram for predicting occurrence of secondary pulmonary infection in patients with critically traumatic brain injury (TBI) during their stay in the intensive care unit, to further optimise personalised treatment for patients and support the development of effective, evidence-based prevention and intervention strategies. DATA SOURCE This study used patient data from the publicly available MIMIC-IV (Medical Information Mart for Intensive Care IV) database. DESIGN A population-based retrospective cohort study. METHODS In this retrospective cohort study, 1780 patients with TBI were included and randomly divided into a training set (n=1246) and a development set (n=534). The impact of pulmonary infection on survival was analysed using Kaplan-Meier curves. A univariate logistic regression model was built in training set to identify potential factors for pulmonary infection, and independent risk factors were determined in a multivariate logistic regression model to build nomogram model. Nomogram performance was assessed with receiver operating characteristic (ROC) curves, calibration curves and Hosmer-Lemeshow test, and predictive value was assessed by decision curve analysis (DCA). RESULT This study included a total of 1780 patients with TBI, of which 186 patients (approximately 10%) developed secondary lung infections, and 21 patients died during hospitalisation. Among the 1594 patients who did not develop lung infections, only 85 patients died (accounting for 5.3%). The survival curves indicated a significant survival disadvantage for patients with TBI with pulmonary infection at 7 and 14 days after intensive care unit admission (p<0.001). Both univariate and multivariate logistic regression analyses showed that factors such as race other than white or black, respiratory rate, temperature, mechanical ventilation, antibiotics and congestive heart failure were independent risk factors for pulmonary infection in patients with TBI (OR>1, p<0.05). Based on these factors, along with Glasgow Coma Scale and international normalised ratio variables, a training set model was constructed to predict the risk of pulmonary infection in patients with TBI, with an area under the ROC curve of 0.800 in the training set and 0.768 in the validation set. The calibration curve demonstrated the model's good calibration and consistency with actual observations, while DCA indicated the practical utility of the predictive model in clinical practice. CONCLUSION This study established a predictive model for pulmonary infections in patients with TBI, which may help clinical doctors identify high-risk patients early and prevent occurrence of pulmonary infections.
Collapse
Affiliation(s)
- Yulin Shi
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yong Hu
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Guo Meng Xu
- Department of Rehabilitation Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yaoqi Ke
- Department of Respiratory Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
2
|
Shad A, Rewell SSJ, Macowan M, Gandasasmita N, Wang J, Chen K, Marsland B, O'Brien TJ, Li J, Semple BD. Modelling lung infection with Klebsiella pneumoniae after murine traumatic brain injury. J Neuroinflammation 2024; 21:122. [PMID: 38720343 PMCID: PMC11080247 DOI: 10.1186/s12974-024-03093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Pneumonia is a common comorbidity in patients with severe traumatic brain injury (TBI), and is associated with increased morbidity and mortality. In this study, we established a model of intratracheal Klebsiella pneumoniae administration in young adult male and female mice, at 4 days following an experimental TBI, to investigate how K. pneumoniae infection influences acute post-TBI outcomes. A dose-response curve determined the optimal dose of K. pneumoniae for inoculation (1 x 10^6 colony forming units), and administration at 4 days post-TBI resulted in transient body weight loss and sickness behaviors (hypoactivity and acute dyspnea). K. pneumoniae infection led to an increase in pro-inflammatory cytokines in serum and bronchoalveolar lavage fluid at 24 h post-infection, in both TBI and sham (uninjured) mice. By 7 days, when myeloperoxidase + neutrophil numbers had returned to baseline in all groups, lung histopathology was observed with an increase in airspace size in TBI + K. pneumoniae mice compared to TBI + vehicle mice. In the brain, increased neuroinflammatory gene expression was observed acutely in response to TBI, with an exacerbated increase in Ccl2 and Hmox1 in TBI + K. pneumoniae mice compared to either TBI or K. pneumoniae alone. However, the presence of neuroinflammatory immune cells in the injured brain, and the extent of damage to cortical and hippocampal brain tissue, was comparable between K. pneumoniae and vehicle-treated mice by 7 days. Examination of the fecal microbiome across a time course did not reveal any pronounced effects of either injury or K. pneumoniae on bacterial diversity or abundance. Together, these findings demonstrate that K. pneumoniae lung infection after TBI induces an acute and transient inflammatory response, primarily localized to the lungs with some systemic effects. However, this infection had minimal impact on secondary injury processes in the brain following TBI. Future studies are needed to evaluate the potential longer-term consequences of this dual-hit insult.
Collapse
Affiliation(s)
- Ali Shad
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
- Alfred Health, Prahran, VIC, Australia
| | - Sarah S J Rewell
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
- Alfred Health, Prahran, VIC, Australia
| | - Matthew Macowan
- Department of Immunology, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- GIN Discovery Program, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Natasha Gandasasmita
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
| | - Jiping Wang
- Department of Microbiology, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ke Chen
- Department of Microbiology, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ben Marsland
- Department of Immunology, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- GIN Discovery Program, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia
- Alfred Health, Prahran, VIC, Australia
- GIN Discovery Program, The School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia
| | - Jian Li
- Department of Microbiology, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, The School of Translational Medicine, Monash University, Level 6 Alfred Centre, 99 Commercial Rd, Melbourne, VIC, 3004 VIC, Australia.
- Alfred Health, Prahran, VIC, Australia.
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Gandasasmita N, Li J, Loane DJ, Semple BD. Experimental Models of Hospital-Acquired Infections After Traumatic Brain Injury: Challenges and Opportunities. J Neurotrauma 2024; 41:752-770. [PMID: 37885226 DOI: 10.1089/neu.2023.0453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Patients hospitalized after a moderate or severe traumatic brain injury (TBI) are at increased risk of nosocomial infections, including bacterial pneumonia and other upper respiratory tract infections. Infections represent a secondary immune challenge for vulnerable TBI patients that can lead to increased morbidity and poorer long-term prognosis. This review first describes the clinical significance of infections after TBI, delving into the known mechanisms by which a TBI can alter systemic immunological responses towards an immunosuppressive state, leading to promotion of increased vulnerability to infections. Pulmonary dysfunction resulting from respiratory tract infections is considered in the context of neurotrauma, including the bidirectional relationship between the brain and lungs. Turning to pre-clinical modeling, current laboratory approaches to study experimental TBI and lung infections are reviewed, to highlight findings from the limited key studies to date that have incorporated both insults. Then, practical decisions for the experimental design of animal studies of post-injury infections are discussed. Variables associated with the host animal, the infectious agent (e.g., species, strain, dose, and administration route), as well as the timing of the infection relative to the injury model are important considerations for model development. Together, the purpose of this review is to highlight the significant clinical need for increased pre-clinical research into the two-hit insult of a hospital-acquired infection after TBI to encourage further scientific enquiry in the field.
Collapse
Affiliation(s)
| | - Jian Li
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Taran S, Hamad DM, von Düring S, Malhotra AK, Veroniki AA, McCredie VA, Singh JM, Hansen B, Englesakis M, Adhikari NKJ. Factors associated with acute respiratory distress syndrome in brain-injured patients: A systematic review and meta-analysis. J Crit Care 2023; 77:154341. [PMID: 37235919 DOI: 10.1016/j.jcrc.2023.154341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/29/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE Acute respiratory distress syndrome (ARDS) is common in patients with acute brain injury admitted to the ICU. We aimed to identify factors associated with ARDS in this population. METHODS We searched MEDLINE, Embase, Cochrane Central, Scopus, and Web of Science from inception to January 14, 2022. Three reviewers independently screened articles and selected English-language studies reporting risk factors for ARDS in brain-injured adult patients. Data were extracted on ARDS incidence, adjusted and unadjusted risk factors, and clinical outcomes. Risk of bias was reported using the Quality in Prognostic Studies tool. Certainty of evidence was assessed using GRADE. RESULTS We selected 23 studies involving 6,961,284 patients with acute brain injury. The pooled cumulative incidence of ARDS after brain injury was 17.0% (95%CI 10.7-25.8). In adjusted analysis, factors associated with ARDS included sepsis (odds ratio (OR) 4.38, 95%CI 2.37-8.10; high certainty), history of hypertension (OR 3.11, 95%CI 2.31-4.19; high certainty), pneumonia (OR 2.69, 95%CI 2.35-3.10; high certainty), acute kidney injury (OR 1.44, 95%CI 1.30-1.59; moderate certainty), admission hypoxemia (OR 1.67, 95%CI 1.29-2.17; moderate certainty), male sex (OR 1.30, 95%CI 1.06-1.58; moderate certainty), and chronic obstructive pulmonary disease (OR 1.27, 95%CI 1.13-1.44; moderate certainty). Development of ARDS was independently associated with increased odds of in-hospital mortality (OR 3.12, 95% CI 1.39-7.00). CONCLUSIONS Multiple risk factors are associated with ARDS in brain-injured patients. These findings could be used to develop prognostic models for ARDS or as prognostic enrichment strategies for patient enrolment in future clinical trials.
Collapse
Affiliation(s)
- Shaurya Taran
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| | - Doulia M Hamad
- Department of Surgery, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada
| | - Stephan von Düring
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Intensive Care Division, Geneva University Hospitals (HUG) and Faculty of Medicine, University of Geneva, Switzerland
| | - Armaan K Malhotra
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Areti Angeliki Veroniki
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Victoria A McCredie
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Jeffrey M Singh
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Bettina Hansen
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada; Toronto Centre for Liver Disease, Toronto General Hospital, University Health Network, Toronto, ON, Canada; Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Marina Englesakis
- Library and Health Information Services, University Health Network, Toronto, ON, Canada
| | - Neill K J Adhikari
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Mrlian A, Smrcka M, Juran V, Navratil O, Neuman E, Duris K. Immune system disorders in the early post-injury period in patients after severe brain injury from the perspective of the severity of the injury. Neurol Sci 2023; 44:1031-1038. [PMID: 36355330 DOI: 10.1007/s10072-022-06482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Brain injuries are the most common cause of death in productive age. Besides the extent of the injury, other systemic factors can also affect the outcome. Patients suffering from severe brain injury often experience extracranial inflammatory complications during the early period of treatment. Here, we investigate the changes in immunity in patients with brain injury. METHODS 121 patients and 92 healthy controls were included in the research. Blood samples were collected on admission and analyzed by flow cytometry and biochemical methods. Multiple clusters of differentiation (CD) and antibody levels were investigated. The results were compared between patients and controls. In addition, results of two classes of severity (Glasgow Coma Scale, GCS, of 3-5 vs. 6-8) were also compared. RESULTS Parameters of humoral immunity in patients immediately after admission were significantly lower than those from healthy donors, with the exception of IgE elevated as much as to resemble allergic reaction (p < 0.01). Of cellular parameters, only natural killer (NK) cluster CD56 + was elevated (p < 0.01). Extracranial infectious complications were more common in patients with GCS 3-5. CONCLUSIONS Strong immune system disorders were observed in patients after severe brain injury, which may contribute to the worse outcome in such patients.
Collapse
Affiliation(s)
- Andrej Mrlian
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and University Hospital, Brno, Czech Republic.
| | - Martin Smrcka
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and University Hospital, Brno, Czech Republic
| | - Vilem Juran
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and University Hospital, Brno, Czech Republic
| | - Ondrej Navratil
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and University Hospital, Brno, Czech Republic
| | - Eduard Neuman
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and University Hospital, Brno, Czech Republic
| | - Kamil Duris
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Association between temporal patterns of baroreflex sensitivity after traumatic brain injury and prognosis: a preliminary study. Neurol Sci 2023; 44:1653-1663. [PMID: 36609622 PMCID: PMC10102132 DOI: 10.1007/s10072-022-06579-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) may lead to an increase in intracranial pressure (ICP) as well as impairment of cerebral vascular reactivity and the autonomic nervous system. This study aimed to investigate individual patterns of changes in baroreflex sensitivity (BRS) along with the assessment of pressure reactivity index (PRx) and ICP after TBI. MATERIALS AND METHODS Twenty-nine TBI patients with continuous arterial blood pressure (ABP) and ICP monitoring were included. BRS was calculated using the sequential cross-correlation method. PRx was estimated using slow-wave oscillations of ABP and ICP. Outcome was assessed using the Glasgow Outcome Scale. RESULTS Pooled data analysis of the lower breakpoint during the week that followed TBI revealed that BRS reached a minimum about 2 days after TBI. In patients with good outcome, there was a significant increase in BRS during the 7 days following TBI: rp = 0.21; p = 0.008 and the temporal changes in BRS showed either a "U-shaped" pattern or a gradual increase over time. The BRS value after 1.5 days was found to be a significant predictor of mortality (cut-off BRS = 1.8 ms/mm Hg; AUC = 0.83). In patients with poor outcome, ICP and PRx increased while BRS remained low. CONCLUSIONS We found an association between temporal patterns of BRS and prognosis in the early days following TBI. Further research in a larger cohort of patients is needed to confirm the weight of these preliminary observations for prediction of prognosis in TBI patients.
Collapse
|
7
|
Chang HYM, Flahive J, Bose A, Goostrey K, Osgood M, Carandang R, Hall W, Muehlschlegel S. Predicting mortality in moderate-severe TBI patients without early withdrawal of life-sustaining treatments including ICU complications: The MYSTIC-score. J Crit Care 2022; 72:154147. [PMID: 36166912 DOI: 10.1016/j.jcrc.2022.154147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop and internally validate the MortalitY in Moderate-Severe TBI plus ICU Complications (MYSTIC)-Score to predict in-hospital mortality of msTBI patients without early (<24 h) withdrawal-of-life-sustaining treatments. METHODS We analyzed data from a Neuro-Trauma Intensive Care Unit prospectively collected between 11/2009-5/2019. Consecutive adult msTBI patients were included if Glasgow Coma Scale≤12, and neither died nor had withdrawal-of-life-sustaining treatments within 24 h of admission (n = 485). Using univariate and multivariable logistic regression in a random-split cohort approach (2/3 derivation;1/3 validation), we identified independent predictors of in-hospital mortality while adjusting for validated predictors of mortality (IMPACT-variables). We constructed the MYSTIC-Score and examined discrimination and calibration. RESULTS The MYSTIC-Score included the ICU complications brain edema, herniation, systemic inflammatory response syndrome, sepsis, acute kidney injury, cardiac arrest, and urinary tract infection. In the derivation cohort(n = 324), discrimination and calibration were excellent (area-under-the-receiver-operating-curve [AUC-ROC] = 0.95;Hosmer-Lemeshow p-value = 0.09, with p > 0.05 indicating good calibration). Internal validation revealed an AUC-ROC = 0.93 and Hosmer-Lemeshow-p-value = 0.76 (n = 161). CONCLUSIONS Certain ICU complications are independent predictors of in-hospital mortality and strengthen outcome prediction in msTBI when combined with validated admission predictors of mortality. However, external validation is needed to determine robustness and practical applicability of our model given the high potential for residual confounders.
Collapse
Affiliation(s)
- Han Yan Michelle Chang
- Departments of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA.
| | - Julie Flahive
- Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA.
| | - Abigail Bose
- Departments of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA.
| | - Kelsey Goostrey
- Departments of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA.
| | - Marcey Osgood
- Departments of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA; Surgery and University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA.
| | - Raphael Carandang
- Departments of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA; Surgery and University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA; Anesthesia/Critical Care, University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA.
| | - Wiley Hall
- Departments of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA; Surgery and University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA.
| | - Susanne Muehlschlegel
- Departments of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA; Surgery and University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA; Anesthesia/Critical Care, University of Massachusetts Chan Medical School, 55 Lake Ave North, S-5., Worcester, MA 01655, USA.
| |
Collapse
|
8
|
Wang R, Hua Y, He M, Xu J. Prognostic Value of Serum Procalcitonin Based Model in Moderate to Severe Traumatic Brain Injury Patients. J Inflamm Res 2022; 15:4981-4993. [PMID: 36065318 PMCID: PMC9440674 DOI: 10.2147/jir.s358621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Procalcitonin (PCT) is an acknowledged marker of systemic inflammatory response. Previous studies have not reached agreement on the association between serum PCT and outcome of traumatic brain injury (TBI) patients. We designed this study to confirm the prognostic value of PCT in isolated TBI and those with extracranial injury, respectively. Methods Patients hospitalized in our hospital for moderate-to-severe TBI between March 2015 and December 2019 were included. Logistic regression analysis was performed to validate the association between PCT and in-hospital mortality in these patients. AUC (area under the receiver operating characteristics curve) of PCT and constructed model were calculated and compared. Results Among the included 211 patients, 81 patients suffered a poor outcome, with a mortality rate of 38.4%. Non-survivors had a higher level of serum PCT (2.73 vs 0.72, p<0.001) and lower GCS (5 vs 7, p<0.001) on admission than survivors. AUC of single PCT for predicting mortality in isolated TBI and those with extracranial injury were 0.767 and 0.553, respectively. Multivariate logistic regression showed that GCS (OR=0.744, p=0.008), glucose (OR=1.236, p<0.001), cholesterol (OR=0.526, p=0.002), and PCT (OR=1.107, p=0.022) were independently associated with mortality of isolated TBI. The AUC of the prognostic model composed of GCS, glucose, cholesterol, and PCT was 0.868 in isolated TBI. Conclusion PCT is an efficient marker of outcome in isolated moderate-to-severe TBI but not those with extracranial injury. A prognostic model incorporating PCT is useful for clinicians to make early risk stratification for isolated TBI.
Collapse
Affiliation(s)
- Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yusi Hua
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Min He, Department of Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People’s Republic of China, Email
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Correspondence: Jianguo Xu, Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People’s Republic of China, Email
| |
Collapse
|
9
|
Erfani Z, Jelodari Mamaghani H, Rawling JA, Eajazi A, Deever D, Mirmoeeni S, Azari Jafari A, Seifi A. Pneumonia in Nervous System Injuries: An Analytic Review of Literature and Recommendations. Cureus 2022; 14:e25616. [PMID: 35784955 PMCID: PMC9249029 DOI: 10.7759/cureus.25616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Pneumonia is one of the most common complications in intensive care units and is the most common nosocomial infection in this setting. Patients with neurocritical conditions who are admitted to ICUs are no exception, and in fact, are more prone to infections such as pneumonia because of factors such as swallow dysfunction, need for mechanical ventilation, longer length of stay in hospitals, etc. Common central nervous system pathologies such as ischemic stroke, traumatic brain injury, subarachnoid hemorrhage, intracerebral hemorrhage, neuromuscular disorders, status epilepticus, and demyelinating diseases can cause long in-hospital admissions and increase the risk of pneumonia each with a mechanism of its own. Brain injury-induced immunosuppression syndrome is usually considered the common mechanism through which patients with critical central nervous system conditions become susceptible to different kinds of infection including pneumonia. Evaluating the patients and assessment of the risk factors can lead our attention toward better infection control in this population and therefore decrease the risk of infections in central nervous system injuries.
Collapse
|
10
|
Self-reported Vital Sign Assessment Practices of Neurologic Physical Therapists. Cardiopulm Phys Ther J 2022. [DOI: 10.1097/cpt.0000000000000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Chacón-Aponte AA, Durán-Vargas ÉA, Arévalo-Carrillo JA, Lozada-Martínez ID, Bolaño-Romero MP, Moscote-Salazar LR, Grille P, Janjua T. Brain-lung interaction: a vicious cycle in traumatic brain injury. Acute Crit Care 2022; 37:35-44. [PMID: 35172526 PMCID: PMC8918716 DOI: 10.4266/acc.2021.01193] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
The brain-lung interaction can seriously affect patients with traumatic brain injury, triggering a vicious cycle that worsens patient prognosis. Although the mechanisms of the interaction are not fully elucidated, several hypotheses, notably the "blast injury" theory or "double hit" model, have been proposed and constitute the basis of its development and progression. The brain and lungs strongly interact via complex pathways from the brain to the lungs but also from the lungs to the brain. The main pulmonary disorders that occur after brain injuries are neurogenic pulmonary edema, acute respiratory distress syndrome, and ventilator-associated pneumonia, and the principal brain disorders after lung injuries include brain hypoxia and intracranial hypertension. All of these conditions are key considerations for management therapies after traumatic brain injury and need exceptional case-by-case monitoring to avoid neurological or pulmonary complications. This review aims to describe the history, pathophysiology, risk factors, characteristics, and complications of brain-lung and lung-brain interactions and the impact of different old and recent modalities of treatment in the context of traumatic brain injury.
Collapse
Affiliation(s)
| | | | | | - Iván David Lozada-Martínez
- Colombian Clinical Research Group in Neurocritical Care, University of Cartagena, Cartagena, Colombia
- Latin American Council of Neurocritical Care (CLaNi), Cartagena, Colombia
- Global Neurosurgery Committee, World Federation of Neurosurgical Societies, Cartagena, Colombia
- Medical and Surgical Research Center, Cartagena, Colombia
| | | | - Luis Rafael Moscote-Salazar
- Colombian Clinical Research Group in Neurocritical Care, University of Cartagena, Cartagena, Colombia
- Latin American Council of Neurocritical Care (CLaNi), Cartagena, Colombia
- Medical and Surgical Research Center, Cartagena, Colombia
| | - Pedro Grille
- Department of Intensive Care, Hospital Maciel, Montevideo, Uruguay
| | - Tariq Janjua
- Department of Intensive Care, Regions Hospital, St. Paul, MN, USA
| |
Collapse
|
12
|
Fan TH, Huang M, Gedansky A, Price C, Robba C, Hernandez AV, Cho SM. Prevalence and Outcome of Acute Respiratory Distress Syndrome in Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Lung 2021; 199:603-610. [PMID: 34779897 PMCID: PMC8590970 DOI: 10.1007/s00408-021-00491-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 11/01/2022]
Abstract
OBJECTIVES Acute respiratory distress syndrome (ARDS) in patients with traumatic brain injury (TBI) is associated with increased mortality. Information on the prevalence of ARDS and its neurological outcome after TBI is sparse. We aimed to systematically review the prevalence, risk factors, and outcome of ARDS in TBI population. DATA SOURCES PubMed and four other databases (Embase, Cochrane Library, Web of Science Core Collection, and Scopus) from inception to July 6, 2020. STUDY SELECTION Randomized controlled trials (RCTs) and observational studies in patients older than 18 years old. DATA EXTRACTION Two independent reviewers extracted the data. Study quality was assessed by the Cochrane Risk of Bias tool for RCTs, the Newcastle-Ottawa Scale for cohort and case-control studies. Good neurological outcome was defined as Glasgow Outcome Scale ≥ 4. Random-effects meta-analyses were conducted to estimate pooled outcome prevalence and their 95% confidence intervals (CI). DATA SYNTHESIS We included 20 studies (n = 2830) with median age of 44 years (interquartile range [IQR] = 35-47, 64% male) and 79% (n = 2237) suffered severe TBI. In meta-analysis, 19% patients (95% CI = 0.13-0.27, I2 = 93%) had ARDS after TBI. The median time from TBI to ARDS was 3 days (IQR = 2-5). Overall survival at discharge for the TBI cohort was 70% (95% CI = 0.64-0.75; I2 = 85%) and good neurological outcome at any time was achieved in 31% of TBI patients (95% CI = 0.23-0.40; I2 = 88%). TBI cohort without ARDS had higher survival (67% vs. 57%, p = 0.01) and good neurological outcomes (34% vs. 23%, p = 0.02) compared to those with ARDS. We did not find any specific risk factors for developing ARDS. CONCLUSION In this meta-analysis, approximately one in five patients had ARDS shortly after TBI with the median time of 3 days. The presence of ARDS was associated with worse neurological outcome and mortality in TBI. Further research on prevention and intervention strategy of TBI-associated ARDS is warranted.
Collapse
Affiliation(s)
- Tracey H Fan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Merry Huang
- Department of Neurology, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - Aron Gedansky
- Department of Neurology, Cleveland Clinic, Neurological Institute, Cleveland, OH, USA
| | - Carrie Price
- Albert S. Cook Library, Towson University, Towson, MD, USA
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Adrian V Hernandez
- Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, Department of Pharmacy Practice, University of Connecticut School of Pharmacy, Storrs, Mansfield, CT, USA
- Unidad de Revisiones Sistemáticas y Meta-Análisis (URSIGET), Vicerrectorado de Investigación, Universidad San Ignacio de Loyola (USIL), Lima, Peru
| | - Sung-Min Cho
- Division of Neuroscience Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Johns Hopkins University, 600 N. Wolfe Street, Phipps 455, Baltimore, MD, 21287, USA.
| |
Collapse
|
13
|
Ziaka M, Exadaktylos A. Brain-lung interactions and mechanical ventilation in patients with isolated brain injury. Crit Care 2021; 25:358. [PMID: 34645485 PMCID: PMC8512596 DOI: 10.1186/s13054-021-03778-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022] Open
Abstract
During the last decade, experimental and clinical studies have demonstrated that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after brain injury (BI). The pathophysiology of these brain–lung interactions are complex and involve neurogenic pulmonary oedema, inflammation, neurodegeneration, neurotransmitters, immune suppression and dysfunction of the autonomic system. The systemic effects of inflammatory mediators in patients with BI create a systemic inflammatory environment that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery and infections. Indeed, previous studies have shown that in the presence of a systemic inflammatory environment, specific neurointensive care interventions—such as MV—may significantly contribute to the development of lung injury, regardless of the underlying mechanisms. Although current knowledge supports protective ventilation in patients with BI, it must be born in mind that ABI-related lung injury has distinct mechanisms that involve complex interactions between the brain and lungs. In this context, the role of extracerebral pathophysiology, especially in the lungs, has often been overlooked, as most physicians focus on intracranial injury and cerebral dysfunction. The present review aims to fill this gap by describing the pathophysiology of complications due to lung injuries in patients with a single ABI, and discusses the possible impact of MV in neurocritical care patients with normal lungs.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Influence of Concomitant Extracranial Injury on Functional and Cognitive Recovery From Mild Versus Moderateto Severe Traumatic Brain Injury. J Head Trauma Rehabil 2021; 35:E513-E523. [PMID: 32472833 DOI: 10.1097/htr.0000000000000575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the effect of extracranial injury (ECI) on 6-month outcome in patients with mild traumatic brain injury (TBI) versus moderate-to-severe TBI. PARTICIPANTS/SETTING Patients with TBI (n = 135) or isolated orthopedic injury (n = 25) admitted to a UK major trauma center and healthy volunteers (n = 99). DESIGN Case-control observational study. MAIN MEASURES Primary outcomes: (a) Glasgow Outcome Scale Extended (GOSE), (b) depression, (c) quality of life (QOL), and (d) cognitive impairment including verbal fluency, episodic memory, short-term recognition memory, working memory, sustained attention, and attentional flexibility. RESULTS Outcome was influenced by both TBI severity and concomitant ECI. The influence of ECI was restricted to mild TBI; GOSE, QOL, and depression outcomes were significantly poorer following moderate-to-severe TBI than after isolated mild TBI (but not relative to mild TBI plus ECI). Cognitive impairment was driven solely by TBI severity. General health, bodily pain, semantic verbal fluency, spatial recognition memory, working memory span, and attentional flexibility were unaffected by TBI severity and additional ECI. CONCLUSION The presence of concomitant ECI ought to be considered alongside brain injury severity when characterizing the functional and neurocognitive effects of TBI, with each presenting challenges to recovery.
Collapse
|
15
|
Exploratory Evaluation of the Relationship Between iNKT Cells and Systemic Cytokine Profiles of Critically Ill Patients with Neurological Injury. Neurocrit Care 2021; 35:617-630. [PMID: 34061312 DOI: 10.1007/s12028-021-01234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Neurological injury can alter the systemic immune system, modifying the functional capacity of immune cells and causing a dysfunctional balance of cytokines, although mechanisms remain incompletely understood. The objective of this study was to assess the temporal relationship between changes in the activation status of circulating invariant natural killer T (iNKT) cells and the balance of plasma cytokines among critically ill patients with neurological injury. METHODS We conducted an exploratory prospective observational study of adult (18 years or older) intensive care unit (ICU) patients with acute neurological injury (n = 20) compared with ICU patients without neurological injury (n = 22) and healthy controls (n = 10). Blood samples were collected on days 1, 2, 4, 7, 14, and 28 following ICU admission to analyze the activation status of circulating iNKT cells by flow cytometry and the plasma concentration of inflammation-relevant immune mediators, including T helper 1 (TH1) and T helper 2 (TH2) cytokines, by multiplex bead-based assay. RESULTS Invariant natural killer T cells were activated in both ICU patient groups compared with healthy controls. Neurological patients had decreased levels of multiple immune mediators, including TH1 cytokines (interferon-γ, tumor necrosis factor-α, and interleukin-12p70), indicative of immunosuppression. This led to a greater than twofold increase in the ratio of TH2/TH1 cytokines early after injury (days 1 - 2) compared with healthy controls, a shift that was also observed for ICU controls. Systemic TH2/TH1 cytokine ratios were positively associated with iNKT cell activation in the neurological patients and negatively associated in ICU controls. These relationships were strongest for the CD4+ iNKT cell subset compared with the CD4- iNKT cell subset. The relationships to individual cytokines similarly differed between patient groups. Forty percent of the neurological patients developed an infection; however, differences for the infection subgroup were not identified. CONCLUSIONS Critically ill patients with neurological injury demonstrated altered systemic immune profiles early after injury, with an association between activated peripheral iNKT cells and elevated systemic TH2/TH1 cytokine ratios. This work provides further support for a brain-immune axis and the ability of neurological injury to have far-reaching effects on the body's immune system.
Collapse
|
16
|
Mitigating the stress response to improve outcomes for older patients undergoing emergency surgery with the addition of beta-adrenergic blockade. Eur J Trauma Emerg Surg 2021; 48:799-810. [PMID: 33847766 PMCID: PMC9001541 DOI: 10.1007/s00068-021-01647-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
As population age, healthcare systems and providers are likely to experience a substantial increase in the proportion of elderly patients requiring emergency surgery. Emergency surgery, compared with planned surgery, is strongly associated with increased risks of adverse postoperative outcomes due to the short time available for diagnosis, optimization, and intervention in patients presenting with physiological derangement. These patient populations, who are often frail and burdened with a variety of co-morbidities, have lower reserves to deal with the stress of the acute condition and the required emergency surgical intervention. In this review article, we discuss topical areas where mitigation of the physiological stress posed by the acute condition and asociated surgical intervention may be feasible. We consider the impact of the adrenergic response and use of beta blockers for these high-risk patients and discuss common risk factors such as frailty and delirium. A proactive multidisciplinary approach to peri-operative care aimed at mitigation of the stress response and proactive management of common conditions in the older emergency surgical patient could yield more favorable outcomes.
Collapse
|
17
|
Caronni A, Liaci E, Bianchi A, Viganò A, Marenco F, Comanducci A, Cabrini DM, Meloni M, Alberoni M, Farina E, Bianco M, Galeri S, Devalle G, Navarro J. Clinical course of SARS-CoV-2 infection in patients with severe acquired brain injury and a disorder of consciousness: an observational study. Brain Inj 2021; 35:520-529. [PMID: 33587672 DOI: 10.1080/02699052.2021.1887937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: SARS-CoV-2 infection can cause the coronavirus disease (COVID), ranging from flu-like symptoms to interstitial pneumonia. Mortality is high in COVID pneumonia and it is the highest among the frailest. COVID could be particularly serious in patients with severe acquired brain injury (SABI), such as those with a disorder of consciousness. We here describe a cohort of patients with a disorder of consciousness exposed to SARS-CoV-2 early after their SABI.Materials and methods: The full cohort of 11 patients with SABI hospitalized in March 2020 in the IRCCS Fondazione Don Gnocchi rehabilitation (Milan, Italy) was recruited. Participants received SARS-CoV-2 testing and different clinical and laboratory data were collected.Results: Six patients contracted SARS-CoV-2 and four of them developed the COVID. Of these, one patient had ground-glass opacities on the chest CT scan, while the remaining three developed consolidations. No patient died and the overall respiratory involvement was mild, requiring in the worst cases low-flow oxygen.Conclusions: Here we report the clinical course of a cohort of patients with SABI exposed to SARS-CoV-2. The infection spread among patients and caused COVID in some of them. Unexpectedly, COVID was moderate, caused at most mild respiratory distress and did not result in fatalities.
Collapse
Affiliation(s)
| | - Emanuele Liaci
- Scuola di Specializzazione in Medicina Fisica e Riabilitativa, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Anna Bianchi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy
| | | | | | | | | | - Mario Meloni
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy
| | | | | | | | - Silvia Galeri
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy
| | - Guya Devalle
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Milano, Italy
| |
Collapse
|
18
|
Komisarow JM, Chen F, Vavilala MS, Laskowitz D, James ML, Krishnamoorthy V. Epidemiology and Outcomes of Acute Respiratory Distress Syndrome Following Isolated Severe Traumatic Brain Injury. J Intensive Care Med 2020; 37:68-74. [PMID: 33191844 DOI: 10.1177/0885066620972001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with traumatic brain injury (TBI) are at risk for extra-cranial complications, such as the acute respiratory distress syndrome (ARDS). We conducted an analysis of risk factors, mortality, and healthcare utilization associated with ARDS following isolated severe TBI. The National Trauma Data Bank (NTDB) dataset files from 2007-2014 were used to identify adult patients who suffered isolated [other body region-specific Abbreviated Injury Scale (AIS) < 3] severe TBI [admission total Glasgow Coma Scale (GCS) from 3 to 8 and head region-specific AIS >3]. In-hospital mortality was compared between patients who developed ARDS and those who did not. Utilization of healthcare resources (ICU length of stay, hospital length of stay, duration of mechanical ventilation, and frequency of tracheostomy and gastrostomy tube placement) was also examined. This retrospective cohort study included 38,213 patients with an overall ARDS occurrence of 7.5%. Younger age, admission tachycardia, pre-existing vascular and respiratory diseases, and pneumonia were associated with the development of ARDS. Compared to patients without ARDS, patients that developed ARDS experienced increased in-hospital mortality (OR 1.13, 95% CI 1.01-1.26), length of stay (p = <0.001), duration of mechanical ventilation (p = < 0.001), and placement of tracheostomy (OR 2.70, 95% CI 2.34-3.13) and gastrostomy (OR 2.42, 95% CI 2.06-2.84). After isolated severe TBI, ARDS is associated with increased mortality and healthcare utilization. Future studies should focus on both prevention and management strategies specific to TBI-associated ARDS.
Collapse
Affiliation(s)
| | - Fangyu Chen
- School of Medicine, 12277Duke University, Durham, NC, USA
| | - Monica S Vavilala
- Department of Anesthesiology, 7284University of Washington, Seattle, WA, USA
| | | | - Michael L James
- Department of Neurology, 12277Duke University, Durham, NC, USA.,Department of Anesthesiology, 12277Duke University, Durham, NC, USA
| | | |
Collapse
|
19
|
Abstract
Traumatic brain injury leads to cellular damage which in turn results in the rapid release of damage-associated molecular patterns (DAMPs) that prompt resident cells to release cytokines and chemokines. These in turn rapidly recruit neutrophils, which assist in limiting the spread of injury and removing cellular debris. Microglia continuously survey the CNS (central nervous system) compartment and identify structural abnormalities in neurons contributing to the response. After some days, when neutrophil numbers start to decline, activated microglia and astrocytes assemble at the injury site—segregating injured tissue from healthy tissue and facilitating restorative processes. Monocytes infiltrate the injury site to produce chemokines that recruit astrocytes which successively extend their processes towards monocytes during the recovery phase. In this fashion, monocytes infiltration serves to help repair the injured brain. Neurons and astrocytes also moderate brain inflammation via downregulation of cytotoxic inflammation. Depending on the severity of the brain injury, T and B cells can also be recruited to the brain pathology sites at later time points.
Collapse
|
20
|
Comorbid Conditions Among Adults 50 Years and Older With Traumatic Brain Injury: Examining Associations With Demographics, Healthcare Utilization, Institutionalization, and 1-Year Outcomes. J Head Trauma Rehabil 2020; 34:224-232. [PMID: 30829819 DOI: 10.1097/htr.0000000000000470] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To assess the relationship of acute complications, preexisting chronic diseases, and substance abuse with clinical and functional outcomes among adults 50 years and older with moderate-to-severe traumatic brain injury (TBI). DESIGN Prospective cohort study. PARTICIPANTS Adults 50 years and older with moderate-to-severe TBI (n = 2134). MEASURES Clusters of comorbid health conditions empirically derived from non-injury International Classification of Diseases, Ninth Revision codes, demographic/injury variables, and outcome (acute and rehabilitation length of stay [LOS], Functional Independence Measure efficiency, posttraumatic amnesia [PTA] duration, institutionalization, rehospitalization, and Glasgow Outcome Scale-Extended (GOS-E) at 1 year). RESULTS Individuals with greater acute hospital complication burden were more often middle-aged men, injured in motor vehicle accidents, and had longer LOS and PTA. These same individuals experienced higher rates of 1-year rehospitalization and greater odds of unfavorable GOS-E scores at 1 year. Those with greater chronic disease burden were more likely to be rehospitalized at 1 year. Individuals with more substance abuse burden were most often younger (eg, middle adulthood), black race, less educated, injured via motor vehicle accidents, and had an increased risk for institutionalization. CONCLUSION Preexisting health conditions and acute complications contribute to TBI outcomes. This work provides a foundation to explore effects of comorbidity prevention and management on TBI recovery in older adults.
Collapse
|
21
|
Mrozek S, Gobin J, Constantin JM, Fourcade O, Geeraerts T. Crosstalk between brain, lung and heart in critical care. Anaesth Crit Care Pain Med 2020; 39:519-530. [PMID: 32659457 DOI: 10.1016/j.accpm.2020.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 05/05/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
Abstract
Extracerebral complications, especially pulmonary and cardiovascular, are frequent in brain-injured patients and are major outcome determinants. Two major pathways have been described: brain-lung and brain-heart interactions. Lung injuries after acute brain damages include ventilator-associated pneumonia (VAP), acute respiratory distress syndrome (ARDS) and neurogenic pulmonary œdema (NPE), whereas heart injuries can range from cardiac enzymes release, ECG abnormalities to left ventricle dysfunction or cardiogenic shock. The pathophysiologies of these brain-lung and brain-heart crosstalk are complex and sometimes interconnected. This review aims to describe the epidemiology and pathophysiology of lung and heart injuries in brain-injured patients with the different pathways implicated and the clinical implications for critical care physicians.
Collapse
Affiliation(s)
- Ségolène Mrozek
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France.
| | - Julie Gobin
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Michel Constantin
- Department of anaesthesia and critical care, Sorbonne university, La Pitié-Salpêtrière hospital, Assistance publique-Hôpitaux de Paris, Paris, France
| | - Olivier Fourcade
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France
| | - Thomas Geeraerts
- Department of anaesthesia and critical care, university hospital of Toulouse, university Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
22
|
Picetti E, Pelosi P, Taccone FS, Citerio G, Mancebo J, Robba C. VENTILatOry strategies in patients with severe traumatic brain injury: the VENTILO Survey of the European Society of Intensive Care Medicine (ESICM). CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:158. [PMID: 32303255 PMCID: PMC7165367 DOI: 10.1186/s13054-020-02875-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Background Severe traumatic brain injury (TBI) patients often develop acute respiratory failure. Optimal ventilator strategies in this setting are not well established. We performed an international survey to investigate the practice in the ventilatory management of TBI patients with and without respiratory failure. Methods An electronic questionnaire, including 38 items and 3 different clinical scenarios [arterial partial pressure of oxygen (PaO2)/inspired fraction of oxygen (FiO2) > 300 (scenario 1), 150–300 (scenario 2), < 150 (scenario 3)], was available on the European Society of Intensive Care Medicine (ESICM) website between November 2018 and March 2019. The survey was endorsed by ESICM. Results There were 687 respondents [472 (69%) from Europe], mainly intensivists [328 (48%)] and anesthesiologists [206 (30%)]. A standard protocol for mechanical ventilation in TBI patients was utilized by 277 (40%) respondents and a specific weaning protocol by 198 (30%). The most common tidal volume (TV) applied was 6–8 ml/kg of predicted body weight (PBW) in scenarios 1–2 (72% PaO2/FIO2 > 300 and 61% PaO2/FiO2 150–300) and 4–6 ml/kg/PBW in scenario 3 (53% PaO2/FiO2 < 150). The most common level of highest positive end-expiratory pressure (PEEP) used was 15 cmH2O in patients with a PaO2/FiO2 ≤ 300 without intracranial hypertension (41% if PaO2/FiO2 150–300 and 50% if PaO2/FiO2 < 150) and 10 cmH2O in patients with intracranial hypertension (32% if PaO2/FiO2 150–300 and 33% if PaO2/FiO2 < 150). Regardless of the presence of intracranial hypertension, the most common carbon dioxide target remained 36–40 mmHg whereas the most common PaO2 target was 81–100 mmHg in all the 3 scenarios. The most frequent rescue strategies utilized in case of refractory respiratory failure despite conventional ventilator settings were neuromuscular blocking agents [406 (88%)], recruitment manoeuvres [319 (69%)] and prone position [292 (63%)]. Conclusions Ventilatory management, targets and practice of adult severe TBI patients with and without respiratory failure are widely different among centres. These findings may be helpful to define future investigations in this topic.
Collapse
Affiliation(s)
- Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy.
| | - Paolo Pelosi
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan - Bicocca, Monza, Italy
| | - Jordi Mancebo
- Department of Intensive Care, Sant Pau Hospital, Barcelona, Spain
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | | |
Collapse
|
23
|
Sun M, Brady RD, Wanrooy B, Mychasiuk R, Yamakawa GR, Casillas-Espinosa PM, Wong CHY, Shultz SR, McDonald SJ. Experimental traumatic brain injury does not lead to lung infection. J Neuroimmunol 2020; 343:577239. [PMID: 32302792 DOI: 10.1016/j.jneuroim.2020.577239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) patients often experience post-traumatic infections, especially in the lung. Pulmonary infection is associated with unfavorable outcomes and increased mortality rates in TBI patients; however, our understanding of the underlying mechanisms is poor. Here we used a lateral fluid percussion injury (LFPI) model in rats to investigate whether TBI could lead to spontaneous lung infection. Analysis of bacterial load in lung tissue indicated no occurrence of spontaneous lung infection at 24 h, 48 h, and 7 d following LFPI. This may suggest that exogenous infectious agents play a crucial role in post-TBI infection in patients.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Brooke Wanrooy
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC 3168, Australia.
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC 3168, Australia.
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
24
|
Beta-Blocker Therapy in Severe Traumatic Brain Injury: A Prospective Randomized Controlled Trial. World J Surg 2020; 44:1844-1853. [DOI: 10.1007/s00268-020-05391-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Background
Observational studies have demonstrated improved outcomes in TBI patients receiving in-hospital beta-blockers. The aim of this study is to conduct a randomized controlled trial examining the effect of beta-blockers on outcomes in TBI patients.
Methods
Adult patients with severe TBI (intracranial AIS ≥ 3) were included in the study. Hemodynamically stable patients at 24 h after injury were randomized to receive either 20 mg propranolol orally every 12 h up to 10 days or until discharge (BB+) or no propranolol (BB−). Outcomes of interest were in-hospital mortality and Glasgow Outcome Scale-Extended (GOS-E) score on discharge and at 6-month follow-up. Subgroup analysis including only isolated severe TBI (intracranial AIS ≥ 3 with extracranial AIS ≤ 2) was carried out. Poisson regression models were used.
Results
Two hundred nineteen randomized patients of whom 45% received BB were analyzed. There were no significant demographic or clinical differences between BB+ and BB− cohorts. No significant difference in in-hospital mortality (adj. IRR 0.6 [95% CI 0.3–1.4], p = 0.2) or long-term functional outcome was measured between the cohorts (p = 0.3). One hundred fifty-four patients suffered isolated severe TBI of whom 44% received BB. The BB+ group had significantly lower mortality relative to the BB− group (18.6% vs. 4.4%, p = 0.012). On regression analysis, propranolol had a significant protective effect on in-hospital mortality (adj. IRR 0.32, p = 0.04) and functional outcome at 6-month follow-up (GOS-E ≥ 5 adj. IRR 1.2, p = 0.02).
Conclusion
Propranolol decreases in-hospital mortality and improves long-term functional outcome in isolated severe TBI. This randomized trial speaks in favor of routine administration of beta-blocker therapy as part of a standardized neurointensive care protocol.
Level of evidence
Level II; therapeutic.
Study type
Therapeutic study.
Collapse
|
25
|
Uhlich R, Pierce V, Kerby J, Bosarge P, Hu P. Splenectomy does not affect the development of pneumonia following severe traumatic brain injury. Brain Behav Immun Health 2020; 1:100007. [PMID: 38377417 PMCID: PMC8474628 DOI: 10.1016/j.bbih.2019.100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
The cholinergic anti-inflammatory pathway offers a proposed mechanism to describe the increased risk of pneumonia following severe traumatic brain injury (sTBI). Vagal activity transmitted to the spleen results in decreased inflammatory cytokine production and immunosuppression. However, no clinical evidence exists. We sought to compare pneumonia rates among patients with TBI and splenectomy using a retrospective analysis of all trauma patients with splenic injury requiring splenectomy or TBI admitted to an ACS verified level one trauma center from 2011 to 2016. Admission Glasgow Coma Score (GCS) ≤ 8 was used to identify sTBI. Pneumonia was defined by respiratory culture obtained by bronchoalveolar lavage. Analysis included χ2 and one-way analysis of variance followed by multivariate logistic regression to determine the association of sTBI and splenectomy of development of pneumonia. Four hundred and twenty-seven patients were included for primary analysis, 247 with sTBI, 180 with splenectomy, and 14 with both sTBI and splenectomy. Rates of pneumonia were increased, although not significant among patients with sTBI and splenectomy and both sTBI alone (71.4 vs. 49.4%, p = 0.11). On multivariate regression, the risk of pneumonia was increased with both splenectomy and sTBI (OR 3.18; 95% CI, 0.75-13.45) and sTBI alone, although significant in the latter only (OR 3.56; 95% CI, 2.12-5.97). Based on these results, splenectomy does not appear to influence the development of pulmonary immunosuppression and pneumonia following sTBI.
Collapse
Affiliation(s)
- Rindi Uhlich
- Department of Surgery, University of Alabama at Birmingham, 701 19th Street South, LHRB 112, Birmingham, AL, 35294, USA
| | - Virginia Pierce
- Division of Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, 701 19th Street South, LHRB 112, Birmingham, AL, 35294, USA
| | - Jeffrey Kerby
- Division of Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, 1922 7th Avenue South, KB 120, Birmingham, AL, 35294, USA
| | - Patrick Bosarge
- Division of Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, 701 19th Street South, LHRB 112, Birmingham, AL, 35294, USA
| | - Parker Hu
- Division of Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, 701 19th Street South, LHRB 112, Birmingham, AL, 35294, USA
| |
Collapse
|
26
|
Ability of Fibrin Monomers to Predict Progressive Hemorrhagic Injury in Patients with Severe Traumatic Brain Injury. Neurocrit Care 2019; 33:182-195. [PMID: 31797276 DOI: 10.1007/s12028-019-00882-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Progressive hemorrhagic injury (PHI) is common in patients with severe traumatic brain injury (TBI) and is associated with poor outcomes. TBI-associated coagulopathy is frequent and has been described as risk factor for PHI. This coagulopathy is a dynamic process involving hypercoagulable and hypocoagulable states either one after the other either concomitant. Fibrin monomers (FMs) are a direct marker of thrombin action and thus reflect coagulation activation. This study sought to determine the ability of FM to predict PHI after severe TBI. METHODS We conducted a prospective, observational study including all severe TBI patients admitted in the trauma center. Between September 2011 and September 2016, we enrolled patients with severe TBI into the derivation cohort. Between October 2016 and December 2018, we recruited the validation cohort on the same basis. Study protocol included FM measurements and standard coagulation test at admission and two computed tomography (CT) scans (upon arrival and at least 6 h thereafter). A PHI was defined by an increment in size of initial lesion (25% or more) or the development of a new hemorrhage in the follow-up CT scan. Multivariate logistic regression analysis was applied to identify predictors of PHI. RESULTS Overall, 106 patients were included in the derivation cohort. Fifty-four (50.9%) experienced PHI. FM values were higher in these patients (151 [136.8-151] vs. 120.5 [53.3-151], p < 0.0001). The ROC curve demonstrated that FM had a fair accuracy to predict the occurrence of PHI with an area under curve of 0.7 (95% CI [0.6-0.79]). The best threshold was determined at 131.7 μg/ml. In the validation cohort of 54 patients, this threshold had a negative predictive value of 94% (95% CI [71-100]) and a positive predictive value of 49% (95% CI [32-66]). The multivariate logistic regression analysis identified 2 parameters associated with PHI: FM ≥ 131.7 (OR 6.8; 95% CI [2.8-18.1]) and Marshall category (OR 1.7; 95% CI [1.3-2.2]). Coagulopathy was not associated with PHI (OR 1.3; 95% CI [0.5-3.0]). The proportion of patients with an unfavorable functional neurologic outcome at 6-months follow-up was higher in patients with positive FM: 59 (62.1%) versus 16 (29.1%), p < 0.0001. CONCLUSIONS FM levels at admission had a fair accuracy to predict PHI in patients with severe TBI. FM values ≥ 131.7 μg/ml are independently associated with the occurrence of PHI.
Collapse
|
27
|
Armstead WM, Vavilala MS. Cerebral Perfusion Pressure Directed-Therapy Modulates Cardiac Dysfunction After Traumatic Brain Injury to Influence Cerebral Autoregulation in Pigs. Neurocrit Care 2019; 31:476-485. [PMID: 31115824 PMCID: PMC6868312 DOI: 10.1007/s12028-019-00735-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an important contributor to morbidity and mortality. Low cerebral perfusion pressure (CPP, mean arterial pressure [MAP] minus intracranial pressure) after TBI is associated with cerebral ischemia, impaired cerebral autoregulation, and poor outcomes. Normalization of CPP and limitation of cerebral autoregulation impairment is a key therapeutic goal. However, some vasoactive agents used to elevate MAP such as phenylephrine (Phe) improve outcome in females but not male piglets after TBI while dopamine (DA) does so in both sexes. Clinical evidence has implicated neurological injuries as a cause of cardiac dysfunction, and we recently described cardiac dysfunction after TBI. Cardiac dysfunction may, in turn, influence brain health. One mechanism of myocyte injury may involve catecholamine excess. We therefore tested the hypothesis that TBI caused cardiac dysfunction and catecholamine excess which may reciprocally be modulated by vasoactive agent choice to normalize CPP and prevent impairment of cerebral autoregulation after injury. METHODS TBI was produced in anesthetized pigs equipped with a closed cranial window, and Phe or DA administered to normalize CPP. RESULTS Plasma cardiac enzymes troponin and creatine kinase and catecholamines epinephrine and norepinephrine were elevated by TBI, such release potentiated by Phe in males but blocked in female piglets and blocked in both sexes after DA. Cerebral autoregulation was impaired after TBI, worsened by Phe in males but protected in females and males treated with DA. Papaverine-induced dilation was unchanged by fluid percussion brain injury, DA, and Phe. CONCLUSIONS These data indicate that pressor choice in elevation of CPP is important in limiting cardiac dysfunction and suggest that DA protects cerebral autoregulation in both sexes via reduction of cardiac biomarkers of injury and catecholamines released after TBI.
Collapse
Affiliation(s)
- William M Armstead
- Departments of Anesthesiology and Critical Care, University of Pennsylvania, 3620 Hamilton Walk, JM3, Philadelphia, PA, 19104, USA.
- Pharmacology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Monica S Vavilala
- Department of Anesthesiology, Pediatrics, and Neurological Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Lee S, Hwang H, Yamal JM, Goodman JC, Aisiku IP, Gopinath S, Robertson CS. IMPACT probability of poor outcome and plasma cytokine concentrations are associated with multiple organ dysfunction syndrome following traumatic brain injury. J Neurosurg 2019; 131:1931-1937. [PMID: 30641838 DOI: 10.3171/2018.8.jns18676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/14/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a major cause of morbidity and mortality. Multiple organ dysfunction syndrome (MODS) occurs frequently after TBI and independently worsens outcome. The present study aimed to identify potential admission characteristics associated with post-TBI MODS. METHODS The authors performed a secondary analysis of a recent randomized clinical trial studying the effects of erythropoietin and blood transfusion threshold on neurological recovery after TBI. Admission clinical, demographic, laboratory, and imaging parameters were used in a multivariable Cox regression analysis to identify independent risk factors for MODS following TBI, defined as maximum total Sequential Organ Failure Assessment (SOFA) score > 7 within 10 days of TBI. RESULTS Two hundred patients were initially recruited and 166 were included in the final analysis. Respiratory dysfunction was the most common nonneurological organ system dysfunction, occurring in 62% of the patients. International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) probability of poor outcome at admission was significantly associated with MODS following TBI (odds ratio [OR] 8.88, 95% confidence interval [CI] 1.94-42.68, p < 0.05). However, more commonly used measures of TBI severity, such as the Glasgow Coma Scale, Injury Severity Scale, and Marshall classification, were not associated with post-TBI MODS. In addition, initial plasma concentrations of interleukin (IL)-6, IL-8, and IL-10 were significantly associated with the development of MODS (OR 1.47, 95% CI 1.20-1.80, p < 0.001 for IL-6; OR 1.26, 95% CI 1.01-1.58, p = 0.042 for IL-8; OR 1.77, 95% CI 1.24-2.53, p = 0.002 for IL-10) as well as individual organ dysfunction (SOFA component score ≥ 1). Finally, MODS following TBI was significantly associated with mortality (OR 5.95, 95% CI 2.18-19.14, p = 0.001), and SOFA score was significantly associated with poor outcome at 6 months (Glasgow Outcome Scale score < 4) when analyzed as a continuous variable (OR 1.21, 95% CI 1.06-1.40, p = 0.006). CONCLUSIONS Admission IMPACT probability of poor outcome and initial plasma concentrations of IL-6, IL-8, and IL-10 were associated with MODS following TBI.
Collapse
Affiliation(s)
| | - Hyunsoo Hwang
- 2Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston School of Public Health, Houston, Texas; and
| | - Jose-Miguel Yamal
- 2Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston School of Public Health, Houston, Texas; and
| | - J Clay Goodman
- 3Pathology & Immunology, Baylor College of Medicine, Houston
| | - Imoigele P Aisiku
- 4Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
29
|
Rani P, Panda NB, Hazarika A, Ahluwalia J, Chhabra R. Trauma-Induced Coagulopathy: Incidence and Outcome in Patients with Isolated Traumatic Brain Injury in a Level I Trauma Care Center in India. Asian J Neurosurg 2019; 14:1175-1180. [PMID: 31903359 PMCID: PMC6896631 DOI: 10.4103/ajns.ajns_126_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Context: Trauma-induced coagulopathy (TIC) is life-threatening in head injury patients, and there is a lack of Indian data on its incidence and outcome. Aims: In this study, incidence and outcome related to coagulopathy were assessed in patients with moderate-to-severe isolated traumatic brain injury (iTBI). Settings and Design: A prospective observational study carried out in patients admitted within 24 h of injury. Materials and Methods: One hundred patients with moderate-to-severe iTBI were included. Samples for coagulation tests (prothrombin time [PT], PT index [PTI], international normalization ratio [INR], activated partial thromboplastin time, and platelet count) were collected at 5 points of time for 72 h. TIC was diagnosed if any three readings were abnormal during this period. Patients were also followed up posthospital discharge using the Glasgow Outcome Score (GOS) at 1 and 3 months. Statistical Analysis: Data were analyzed using SPSS ver. 21. Logistic regression analysis was employed to determine individual coagulation test as best predictors for mortality. P < 0.05 was considered statistically significant. Results: The incidence of TIC was found to be 62%; it was 63.75% in severe head injury and 55% in moderate head injury patients. Deranged INR at the time of hospital admission (odds ratio [OR] 4.38) and PTI at 24 h (OR 3.913) are highly predictive of mortality. There was no significant difference in GOS score at 1 and 3 months. Conclusions: The incidence of TIC in our study was 62% among iTBI patients. It contributes to increased mortality at 1 and 3 months. However, the neurological outcome was not different in between the groups.
Collapse
Affiliation(s)
- Poonam Rani
- Department of Anaesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nidhi Bidyut Panda
- Department of Anaesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amarjyoti Hazarika
- Department of Anaesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jasmina Ahluwalia
- Department of Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajesh Chhabra
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
30
|
Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:352. [PMID: 31718695 PMCID: PMC6852966 DOI: 10.1186/s13054-019-2626-z] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) survivors experience a high prevalence of cognitive impairment with concomitantly impaired functional status and quality of life, often persisting months after hospital discharge. In this review, we explore the pathophysiological mechanisms underlying cognitive impairment following ARDS, the interrelations between mechanisms and risk factors, and interventions that may mitigate the risk of cognitive impairment. Risk factors for cognitive decline following ARDS include pre-existing cognitive impairment, neurological injury, delirium, mechanical ventilation, prolonged exposure to sedating medications, sepsis, systemic inflammation, and environmental factors in the intensive care unit, which can co-occur synergistically in various combinations. Detection and characterization of pre-existing cognitive impairment imparts challenges in clinical management and longitudinal outcome study enrollment. Patients with brain injury who experience ARDS constitute a distinct population with a particular combination of risk factors and pathophysiological mechanisms: considerations raised by brain injury include neurogenic pulmonary edema, differences in sympathetic activation and cholinergic transmission, effects of positive end-expiratory pressure on cerebral microcirculation and intracranial pressure, and sensitivity to vasopressor use and volume status. The blood-brain barrier represents a physiological interface at which multiple mechanisms of cognitive impairment interact, as acute blood-brain barrier weakening from mechanical ventilation and systemic inflammation can compound existing chronic blood-brain barrier dysfunction from Alzheimer’s-type pathophysiology, rendering the brain vulnerable to both amyloid-beta accumulation and cytokine-mediated hippocampal damage. Although some contributory elements, such as the presenting brain injury or pre-existing cognitive impairment, may be irreversible, interventions such as minimizing mechanical ventilation tidal volume, minimizing duration of exposure to sedating medications, maintaining hemodynamic stability, optimizing fluid balance, and implementing bundles to enhance patient care help dramatically to reduce duration of delirium and may help prevent acquisition of long-term cognitive impairment.
Collapse
Affiliation(s)
- Cina Sasannejad
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - E Wesley Ely
- Critical Illness, Brain Dysfunction, Survivorship (CIBS) Center, Department of Pulmonary and Critical Care Medicine, Veteran's Affairs Tennessee Valley Geriatric Research Education and Clinical Center (GRECC), Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shouri Lahiri
- Division of Neurocritical Care, Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA. .,Division of Neurocritical Care, Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA. .,Division of Neurocritical Care, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, AHSP Building, Suite A6600, A8103, Los Angeles, CA, 90048, USA.
| |
Collapse
|
31
|
Kerr N, de Rivero Vaccari JP, Dietrich WD, Keane RW. Neural-respiratory inflammasome axis in traumatic brain injury. Exp Neurol 2019; 323:113080. [PMID: 31626746 DOI: 10.1016/j.expneurol.2019.113080] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. Approximately 20-25% of TBI subjects develop Acute Lung Injury (ALI), but the pathomechanisms of TBI-induced ALI remain poorly defined. Currently, mechanical ventilation is the only therapeutic intervention for TBI-induced lung injury. Our recent studies have shown that the inflammasome plays an important role in the systemic inflammatory response leading to lung injury-post TBI. Here, we outline the role of the extracellular vesicle (EV)-mediated inflammasome signaling in the etiology of TBI-induced ALI. Furthermore, we evaluate the efficacy of a low molecular weight heparin (Enoxaparin, a blocker of EV uptake) and a monoclonal antibody against apoptosis speck-like staining protein containing a caspase recruitment domain (anti-ASC) as therapeutics for TBI-induced lung injury. We demonstate that activation of an EV-mediated Neural-Respiratory Inflammasome Axis plays an essential role in TBI-induced lung injury and disruption of this axis has therapeutic potential as a treatment strategy.
Collapse
Affiliation(s)
- Nadine Kerr
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America
| | - Robert W Keane
- Department of Neurological Surgery, University of Miami Miller School of Medicine, United States of America; Miami Project to Cure Paralysis, United States of America; Department of Physiology and Biophysics, University of Miami Miller School fo Medicine, 1600 NW10th Avenue, Miami, FL 33136, United States of America.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This article summarizes updated data and knowledge on healthcare-associated infections in the neurocritical care unit, with a focus on central nervous system infections and systemic infectious complications in patients with acute brain disease. It also reviews the concept of brain injury-induced immune modulation, an underlying mechanism to explain why the neuro-ICU population is particularly susceptible to infections. RECENT FINDINGS Healthcare-associated infections in the neuro-ICU are common: up to 40 % of meningitides in the developed world are now healthcare-associated. The number of gram-negative infections is rising. New diagnostic approaches attempt to aid in the diagnosis of healthcare-associated meningitis and ventriculitis. Healthcare-associated infections in the neurocritical care unit remain a challenge for diagnosis, treatment, and prevention. Gaining a better understanding of at-risk patients and development of preventative strategies will be the goal for future investigation.
Collapse
Affiliation(s)
- Katharina M Busl
- Departments of Neurology and Neurosurgery, McKnight Brain Institute L3-100, University of Florida College of Medicine, 1149 Newell Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
33
|
Adediran T, Drumheller BC, McCunn M, Stein DM, Albrecht JS. Sex Differences in In-hospital Complications Among Older Adults After Traumatic Brain Injury. J Surg Res 2019; 243:427-433. [PMID: 31279269 DOI: 10.1016/j.jss.2019.05.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/23/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Older adults have the highest rates of hospitalization and mortality after traumatic brain injury (TBI) and suffer poorer outcomes compared with younger adults with similar injuries. Non-neurological complications can significantly impact outcomes. Evidence suggests that women may have better outcomes after TBI. However, sex differences in in-hospital complications among older adults after TBI have not been studied. The objective of this study was to assess sex differences in in-hospital complications after TBI among adults aged 65 y and older. METHODS We conducted a retrospective cohort study of adults aged ≥65 y treated for isolated moderate to severe TBI at the R Adams Cowley Shock Trauma Center between 1996 and 2012. Using the Shock Trauma Center registry, we identified TBI using the International Classification of Disease, Ninth Revision, Clinical Modification codes and required an abbreviated injury scale head score ≥3, abbreviated injury scale scores for other body regions ≤2, and a blunt injury mechanism. We searched the Shock Trauma Center registry for the International Classification of Disease, Ninth Revision, Clinical Modification codes representing in-hospital complications. RESULTS Of 2511 patients meeting inclusion criteria, 1283 (51.1%) were men and 635 (25.1%) developed an in-hospital complication. Men were more likely than women to develop an in-hospital complication (28.1% versus 22.0, P < 0.001). In an adjusted analysis, men were at increased risk of any in-hospital complication (hazards ratio 1.23; 95% confidence interval 1.05, 1.44) compared with women. CONCLUSIONS Older men were more likely to have any in-hospital complications than women.
Collapse
Affiliation(s)
- Timileyin Adediran
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Byron C Drumheller
- Program in Trauma, Department of Surgery, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maureen McCunn
- Department of Anesthesiology, Divisions of Trauma Anesthesiology and Surgical Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Deborah M Stein
- Program in Trauma, Department of Surgery, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jennifer S Albrecht
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
34
|
Armstead WM, Vavilala MS. Improving Understanding and Outcomes of Traumatic Brain Injury Using Bidirectional Translational Research. J Neurotrauma 2019; 37:2372-2380. [PMID: 30834818 DOI: 10.1089/neu.2018.6119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent clinical trials in traumatic brain injury (TBI) have failed to demonstrate therapeutic effects even when there appears to be good evidence for efficacy in one or more appropriate pre-clinical models. While existing animal models mimic the injury, difficulties in translating promising therapeutics are exacerbated by the lack of alignment of discrete measures of the underlying injury pathology between the animal models and human subjects. To address this mismatch, we have incorporated reverse translation of bedside experience to inform pre-clinical studies in a large animal (pig) model of TBI that mirror practical clinical assessments. Cerebral autoregulation is impaired after TBI, contributing to poor outcome. Cerebral perfusion pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP) and thereby limit impairment of cerebral autoregulation and neurological deficits. Vasoactive agents clinically used to elevate MAP to increase CPP after TBI, such as phenylephrine (Phe), dopamine (DA), norepinephrine (NE), and epinephrine (EPI), however, have not been compared sufficiently regarding effect on CPP, autoregulation, and survival after TBI, and clinically, current vasoactive agent use is variable. The cerebral effects of these clinically commonly used vasoactive agents are not known. This review will emphasize pediatric work and will describe bidirectional translational studies using a more human-like animal model of TBI to identify better therapeutic strategies to improve outcome post-injury. These studies in addition investigated the mechanism(s) involved in improvement of outcome in the setting of TBI.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care and University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica S Vavilala
- Department of Anesthesiology, Pediatrics, and Neurological Surgery, and Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
35
|
Acute Tubular Injury is Associated With Severe Traumatic Brain Injury: in Vitro Study on Human Tubular Epithelial Cells. Sci Rep 2019; 9:6090. [PMID: 30988316 PMCID: PMC6465296 DOI: 10.1038/s41598-019-42147-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/15/2019] [Indexed: 01/12/2023] Open
Abstract
Acute kidney injury following traumatic brain injury is associated with poor outcome. We investigated in vitro the effects of plasma of brain injured patients with acute tubular kidney injury on kidney tubular epithelial cell function. we performed a prospective observational clinical study in ICU in a trauma centre of the University hospital in Italy including twenty-three ICU patients with traumatic brain injury consecutively enrolled. Demographic data were recorded on admission: age 39 ± 19, Glasgow Coma Score 5 (3–8). Neutrophil Gelatinase-Associated Lipocalin and inflammatory mediators were measured in plasma on admission and after 24, 48 and 72 hours; urine were collected for immunoelectrophoresis having healthy volunteers as controls. Human renal proximal tubular epithelial cells were stimulated with patients or controls plasma. Adhesion of freshly isolated human neutrophils and trans-epithelial electrical resistance were assessed; cell viability (XTT assay), apoptosis (TUNEL staining), Neutrophil Gelatinase-Associated Lipocalin and Megalin expression (quantitative real-time PCR) were measured. All patients with normal serum creatinine showed increased plasmatic Neutrophil Gelatinase-Associated Lipocalin and increased urinary Retinol Binding Protein and α1-microglobulin. Neutrophil Gelatinase-Associated Lipocalin was significantly correlated with both inflammatory mediators and markers of tubular damage. Patient’ plasma incubated with tubular cells significantly increased adhesion of neutrophils, reduced trans-epithelial electrical resistance, exerted a cytotoxic effect and triggered apoptosis and down-regulated the endocytic receptor Megalin compared to control. Plasma of brain injured patients with increased markers of subclinical acute kidney induced a pro-inflammatory phenotype, cellular dysfunction and apoptotic death in tubular epithelial cells.
Collapse
|
36
|
Ventilatory Strategies in the Brain-injured Patient. Int Anesthesiol Clin 2019; 56:131-146. [PMID: 29227316 DOI: 10.1097/aia.0000000000000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Bodanapally UK, Archer-Arroyo KL, Dreizin D, Shanmuganathan K, Schwartzbauer G, Li G, Fleiter TR. Dual-Energy Computed Tomography Imaging of Head: Virtual High-Energy Monochromatic (190 keV) Images Are More Reliable Than Standard 120 kV Images for Detecting Traumatic Intracranial Hemorrhages. J Neurotrauma 2019; 36:1375-1381. [PMID: 30328766 DOI: 10.1089/neu.2018.5985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-energy monochromatic (190 keV) images may be more reliable than standard 120 kV Images for detecting intracranial hemorrhages. We aimed to retrospectively compare virtual high monochromatic (190 keV) and standard 120 kV images from dual-energy computed tomography (CT; DECT) for the diagnosis of intracranial hemorrhages in traumatic brain injury (TBI). We analyzed admission CT studies in 100 trauma patients. Three radiologists independently reviewed four image sets: 120 kV and 190 keV (thin [1 mm] and thick [5 mm] section) images for the presence of various types of intracranial hemorrhages. The proportions of positive variables were compared and differences calculated by McNemar test and sensitivities determined by contingency tables. Randomly selected hemorrhagic lesions were analyzed for contrast index (CI). Thin-section 190 keV images were superior in the detection of subdural hematomas (SDH) (p < 0.0001), supratentorial contusions (p < 0.0001), and epidural hematomas (EDH) (p = 0.014), when compared with standard 120 kV images. However, 190 keV images were inferior to standard 120 kV images in diagnosis of subarachnoid hemorrhage (SAH) (thin-sections, p = 0.059; thick-sections, 0.0075). The 190 keV images yielded moderate increase in CI of contusions (Cohen's d > 0.53) and a large increase in CI of extra-axial hematomas (Cohen's d > 0.86). Our results indicate that virtual high monochromatic (190 keV, thin-section) images combined with standard 120 kV images may provide optimal diagnostic performance for evaluation of patients suspected of TBI.
Collapse
Affiliation(s)
- Uttam K Bodanapally
- 1 Department of Diagnostic Radiology and Nuclear Medicine, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Krystal L Archer-Arroyo
- 2 Department of Diagnostic Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - David Dreizin
- 1 Department of Diagnostic Radiology and Nuclear Medicine, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kathirkamanathan Shanmuganathan
- 1 Department of Diagnostic Radiology and Nuclear Medicine, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gary Schwartzbauer
- 3 Department of Neurosurgery, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Guang Li
- 1 Department of Diagnostic Radiology and Nuclear Medicine, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Thorsten R Fleiter
- 1 Department of Diagnostic Radiology and Nuclear Medicine, R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Yang Y, Ye Y, Chen C, Kong C, Su X, Zhang X, Bai W, He X. Acute Traumatic Brain Injury Induces CD4+ and CD8+ T Cell Functional Impairment by Upregulating the Expression of PD-1 via the Activated Sympathetic Nervous System. Neuroimmunomodulation 2019; 26:43-57. [PMID: 30695785 DOI: 10.1159/000495465] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/14/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Traumatic brain injury (TBI) induces immunosuppression in the acute phase, and the activation of the sympathetic nervous system (SNS) might play a role in this process, but the mechanism involved is unknown. Herein, we explored the impact of acute (a)TBI on the peripheral immune system and its correlation with the SNS and the T cell exhaustion marker, PD-1 (programmed cell death-1). METHODS Flow cytometry (FCM) was performed to analyze the expression of T cell markers and intracellular cytokines, interferon-γ and tumor necrosis factor-α, and the T cell exhaustion marker, PD-1, in the peripheral blood mononuclear cells (PBMCs) of TBI rats. Enzyme-linked immunosorbent assay (ELISA) was performed to analyze the concentration of norepinephrine (NE) in the serum. Propranolol was administrated to block the SNS in vivo and NE stimulation was used to imitate the activation of the SNS in vitro. RESULTS We found that the concentration of NE was significantly elevated after TBI, and the dysfunction of CD4+ and CD8+ T cells was reversed by the SNS blocker propranolol in vivo and imitated by the SNS neurotransmitter NE in vitro. The expression of PD-1 on CD4+ and CD8+ T cells was upregulated after aTBI, which was reversed by propranolol administration in vivo and imitated by NE stimulation in vitro. Furthermore, the PD-1 blocker reversed the dysfunction of CD4+ and CD8+T cells in vitro. CONCLUSION Our findings demonstrated that aTBI activated the SNS, and further upregulated the expression of PD-1 on CD4+ and CD8+ T cells, which, in turn, impaired their function and contributed to immunosuppression.
Collapse
Affiliation(s)
- Yongxiang Yang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
- Department of Neurosurgery, PLA 422nd Hospital, Zhanjiang, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
- Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Chen Chen
- Institute of Psychology, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Chuiguang Kong
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xinhong Su
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Wei Bai
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China,
| |
Collapse
|
39
|
Deng H, Yue JK, Winkler EA, Dhall SS, Manley GT, Tarapore PE. Adult Firearm-Related Traumatic Brain Injury in United States Trauma Centers. J Neurotrauma 2018; 36:322-337. [PMID: 29855212 DOI: 10.1089/neu.2017.5591] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Civilian firearm injury is an important public health concern in the United States. Gunshot wounds to the head (GSWH) remain in need of update and systematic characterization. We identify predictors of prolonged hospital length of stay (HLOS), intensive care unit length of stay (ICU LOS), medical complications, mortality, and discharge disposition from a population-based sample using the National Sample Program (NSP) of the National Trauma Data Bank (NTDB), years 2003-2012. Statistical significance was assessed at α < 0.001 to correct for multiple comparisons. In total, 8148 adult GSWH patients were included extrapolating to 32,439 national incidents. Age was 36.6 ± 16.4 years and 64.4% were severe traumatic brain injury (TBI; Glasgow Coma Scale [GCS] score 3-8). Assault (49.2%), handgun (50.3%), and residential injury (43.2%) were of highest incidence. HLOS and ICU LOS were 7.7 ± 14.2 and 5.7 ± 13.4 days, respectively. Overall mortality was 54.6%; suicide/self-injury was associated with the highest mortality rate (71.6%). GCS, Injury Severity Score, and hypotension were significant predictors for outcomes overall. Medicare/Medicaid patients had longer HLOS compared to private/commercial insured (mean increase, 4.4 days; 95% confidence interval [2.6-6.3]). Compared to the Midwest, the South had longer HLOS (mean increase, 3.7 days; [2.0-5.4]) and higher odds of complications (odds ratio [OR], 1.7 [1.4-2.0]); the West had lower odds of complications (OR, 0.6; [0.5-0.7]). Versus handgun, shotgun (OR, 0.3; [0.2-0.4]) and hunting rifle (OR, 0.5; [0.4-0.8]) resulted in lower mortality. Patients with government/other insurance had higher odds of discharging home compared to private/commercially insured (OR, 1.7; [1.3-2.3]). In comparison to level I trauma centers, level II trauma centers had lower odds of discharge to home (OR, 0.7; [0.5-0.8]). Our results support hypotension, injury severity, injury intent, firearm type, and U.S. geographical location as important prognostic variables in firearm-related TBI. Improved understanding of civilian GSWH is critical to promoting increased awareness of firearm injuries as a public health concern and reducing its debilitating injury burden to patients, families, and healthcare systems.
Collapse
Affiliation(s)
- Hansen Deng
- 1 Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,2 Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, California
| | - John K Yue
- 1 Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,2 Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, California
| | - Ethan A Winkler
- 1 Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,2 Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, California
| | - Sanjay S Dhall
- 1 Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,2 Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, California
| | - Geoffrey T Manley
- 1 Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,2 Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, California
| | - Phiroz E Tarapore
- 1 Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.,2 Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, California
| |
Collapse
|
40
|
Ogunlade J, Elia C, Duong J, Yanez PJ, Dong F, Wacker MR, Menoni R, Goldenberg T, Miulli DE. Severe Traumatic Brain Injury Requiring Surgical Decompression in the Young Adult: Factors Influencing Morbidity and Mortality - A Retrospective Analysis. Cureus 2018; 10:e3042. [PMID: 30258741 PMCID: PMC6153092 DOI: 10.7759/cureus.3042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/23/2018] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Severe traumatic brain injury (TBI) is a leading cause of morbidity and mortality among young adults. The clinical outcome may also be difficult to predict. We aim to identify the factors predictive of favorable and unfavorable clinical outcomes for youthful patients with severe TBI who have the option of surgical craniotomy or surgical craniectomy. METHODS A retrospective review at a single Level II trauma center was conducted, identifying patients aged 18 to 30 years with isolated severe TBI with a mass-occupying lesion requiring emergent (< 6 hours from time of arrival) surgical decompression. Glasgow Coma Scale (GCS) score on arrival, type of surgery performed, mechanism of injury, length of hospital stay, Glasgow Outcome Score (GOS), mortality, and radiographic findings were recorded. A favorable outcome was a GOS of four or five at 30 days post operation, while an unfavorable outcome was GOS of 1 to 3. RESULTS Fifty patients were included in the final analysis. Closed head injuries (skull and dura intact), effacement of basal cisterns, disproportional midline shift (MLS), and GCS 3-5 on arrival all correlated with statistically significant higher rate of mortality and poor 30-day functional outcome. All mortalities (6/50 patients) were positive for each of these findings. CONCLUSIONS Closed head injuries, the presenting GCS 3-5, the presence of MLS disproportional to the space occupying lesion (SOL), and effacement of basal cisterns on the initial computed tomography of the head all correlated with unfavorable 30-day outcome. Future prospective studies investigating a larger cohort may provide further insight into patients suffering from severe TBI.
Collapse
Affiliation(s)
- John Ogunlade
- Neurosurgery, Riverside University Health System Medical Center, Riverside, USA
| | - Chris Elia
- Neurosurgery, Riverside University Health System Medical Center, Riverside, USA
| | - Jason Duong
- Neurosurgery, Riverside University Health System Medical Center, Rancho Cucamonga, USA
| | | | - Fanglong Dong
- Clinical Research, Western University of Health Sciences, Pomona, USA
| | | | | | - Todd Goldenberg
- Neurosurgery, Kaiser Permanente Fontana Medical Center, Fontana, USA
| | - Dan E Miulli
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| |
Collapse
|
41
|
Barmparas G, Harada MY, Ko A, Dhillon NK, Smith EJT, Li T, Mohseni S, Ley EJ. The Effect of Early Positive Cultures on Mortality in Ventilated Trauma Patients. Surg Infect (Larchmt) 2018; 19:410-416. [PMID: 29608419 DOI: 10.1089/sur.2017.268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The purpose was to examine the incidence of positive cultures in a highly susceptible subset of trauma patients admitted to the surgical intensive care unit (SICU) for mechanical ventilation and to examine the impact of their timing on outcomes. PATIENTS AND METHODS A retrospective review was conducted of blunt trauma patients admitted to the SICU for mechanical ventilation at a level I trauma center over a five-year period. All urine, blood, and sputum cultures were abstracted. Patients with at least one positive culture were compared with those with negative or no cultures. The primary outcome was mortality. A Cox regression model with a time-dependent variable was utilized to calculate the adjusted hazard ratio (AHR). RESULTS The median age of 635 patients meeting inclusion criteria was 46 and 74.2% were male. A total of 298 patients (46.9%) had at least one positive culture, with 28.9% occurring within two days of admission. Patients with positive cultures were more likely to be severely injured with an injury severity score (ISS) ≥16 (68.5% vs. 45.1%, p < 0.001). Overall mortality was 22%. Patients who had their first positive culture within two and three days from admission had a significantly higher AHR for mortality (AHR: 14.46, p < 0.001 and AHR: 10.59, p = 0.028, respectively) compared to patients with a positive culture at day six or later. CONCLUSIONS Early positive cultures are common among trauma patients requiring mechanical ventilation and are associated with higher mortality. Early identification with "damage control cultures" obtained on admission to aid with early targeted treatment might be justified.
Collapse
Affiliation(s)
- Galinos Barmparas
- 1 Cedars-Sinai Medical Center , Department of Surgery, Division of Acute Care Surgery and Surgical Critical Care, Los Angeles, California
| | - Megan Y Harada
- 1 Cedars-Sinai Medical Center , Department of Surgery, Division of Acute Care Surgery and Surgical Critical Care, Los Angeles, California
| | - Ara Ko
- 1 Cedars-Sinai Medical Center , Department of Surgery, Division of Acute Care Surgery and Surgical Critical Care, Los Angeles, California
| | - Navpreet K Dhillon
- 1 Cedars-Sinai Medical Center , Department of Surgery, Division of Acute Care Surgery and Surgical Critical Care, Los Angeles, California
| | - Eric J T Smith
- 1 Cedars-Sinai Medical Center , Department of Surgery, Division of Acute Care Surgery and Surgical Critical Care, Los Angeles, California
| | - Tong Li
- 1 Cedars-Sinai Medical Center , Department of Surgery, Division of Acute Care Surgery and Surgical Critical Care, Los Angeles, California
| | - Shahin Mohseni
- 2 Orebro University Hospital , Department of Surgery, Division of Trauma and Emergency Surgery, Orebro, Sweden
| | - Eric J Ley
- 1 Cedars-Sinai Medical Center , Department of Surgery, Division of Acute Care Surgery and Surgical Critical Care, Los Angeles, California
| |
Collapse
|
42
|
Paroxysmal Sympathetic Hyperactivity: Diagnostic Criteria, Complications, and Treatment after Traumatic Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2018. [DOI: 10.1007/s40141-018-0175-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Sun M, McDonald SJ, Brady RD, O'Brien TJ, Shultz SR. The influence of immunological stressors on traumatic brain injury. Brain Behav Immun 2018; 69:618-628. [PMID: 29355823 DOI: 10.1016/j.bbi.2018.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, and typically involves a robust immune response. Although a great deal of preclinical research has been conducted to identify an effective treatment, all phase III clinical trials have been unsuccessful to date. These translational shortcomings are in part due to a failure to recognize and account for the heterogeneity of TBI, including how extracranial factors can influence the aftermath of TBI. For example, most preclinical studies have utilized isolated TBI models in young adult males, while clinical trials typically involve highly heterogeneous patient populations (e.g., different mechanisms of injury, a range of ages, presence of polytrauma or infection). This paper will review the current, albeit limited literature related to how TBI is affected by common concomitant immunological stressors. In particular, discussion will focus on whether extracranial trauma (i.e., polytrauma), infection, and age/immunosenescence can influence TBI pathophysiology, and thereby may result in a different brain injury than what would have occurred in an isolated TBI. It is concluded that these immunological stressors are all likely to be TBI modifiers that should be further studied and could impact translational treatment strategies.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
44
|
Liao WI, Chien WC, Chung CH, Wang JC, Chung TT, Chu SJ, Tsai SH. Valproic acid attenuates the risk of acute respiratory failure in patients with subarachnoid hemorrhage. QJM 2018; 111:89-96. [PMID: 29048544 DOI: 10.1093/qjmed/hcx199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Valproic acid (VPA) has shown potent anti-inflammatory effect and attenuates acute lung injury. AIM To determine whether the use of VPA is associated with a decreased risk of acute respiratory failure (ARF) in patients with subarachnoid hemorrhage (SAH). DESIGN The Taiwan National Health Insurance Research Database was used to analyse all patients newly diagnosed with SAH from 2000 to 2010. The VPA users were matched for age, gender and index date in 1:2 ratios with randomly selected non-VPA users as a comparison group. METHODS Multivariate Cox regression was used to identify the predictors of ARF and to compare the incidence rates of ARF among SAH patients using and not using VPA. RESULTS The study cohort included 16 228 newly diagnosed SAH patients, from which 521 VPA users and 1042 matched non-VPA-exposed individuals were selected. In the VPA-treated cohort and the non-VPA-treated cohort, 117 and 289 patients developed ARF, respectively. Any use of VPA was associated with a 16% decreased risk of ARF requiring mechanical ventilation in 30-day tracking of the SAH patients (adjusted hazard ratio [HR], 0.840, 95% confidence interval [CI], 0.676-0.945). Age, sepsis and pneumonia were identified as independent predictors of ARF in patients with SAH. After stratification, VPA users showed a lower risk of ARF among SAH patients complicated with pneumonia compared with non-users of VPA (adjusted HR, 0.816, 95% CI, 0.652-0.921). CONCLUSIONS Any use of VPA was associated with a reduced risk of ARF in patients with SAH. VPA may be beneficial for decreasing the risk of pneumonia-induced ARF in patients with SAH.
Collapse
Affiliation(s)
- W-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - W-C Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - C-H Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - J-C Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - T-T Chung
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - S-J Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - S-H Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
45
|
Bundles of care for resuscitation from hemorrhagic shock and severe brain injury in trauma patients-Translating knowledge into practice. J Trauma Acute Care Surg 2018; 81:780-94. [PMID: 27389129 DOI: 10.1097/ta.0000000000001161] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Dwivedi AK, Sharma A, Sinha VD. Comparative Study of Derangement of Coagulation Profile between Adult and Pediatric Population in Moderate to Severe Traumatic Brain Injury: A Prospective Study in a Tertiary Care Trauma Center. Asian J Neurosurg 2018; 13:1123-1127. [PMID: 30459880 PMCID: PMC6208204 DOI: 10.4103/ajns.ajns_16_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Object: Coagulopathy is a common occurrence following traumatic brain injury (TBI). There are various studies showing incidence and risk factors of coagulopathy and their correlation with poor outcome in adult as well as paediatric age groups. Exact incidence, associated risk factors, treatment guideline for coagulopathy and its impact on outcome are still lacking. In our study we compared the adults and paediatric age groups TBI patients for incidence and risk factors of coagulopathy and its impact on outcome. Methods: Prospective study of 200 patients including 152 adult patients (age > 18 years) and 48 paediatric (Age < 18 years) patients of TBI admitted in intensive care unit of trauma centre of a tertiary care centre was performed from august 2015 to march 2016. Both population were further subdivided into moderate TBI and severe TBI as per Glasgow coma score (GCS). Patient with long bone injury, chest injury and abdominal injuries, coagulation disorder, liver disease, medical disease like diabetes mellitus and hypertension were excluded from study. Coagulation profile were compared in the both groups (Adult and paediatric) and correlated with the outcome. Chi- Square test, student t test and Odds ratios were used for statistical analysis. Results: Mean age among the adult and paediatric population were 37.89 ± 11.88 years and 11.41 ± 5.90, respectively. Among the patient with moderate TBI, coagulopathy was seen in 30% patients of adult TBI whereas it was 12.5% among the paediatric TBI (P = 0.185). Among the severe TBI group coagulopathy was observed in 68.03% and 37.5% of adult and paediatric age group respectively (P = 0.0016). There was significant correlation found between midline shift and coagulopathy in the paediatric age group (P = 0.022; OR - 4.58). E. There was significant association of coagulopathy and contusion on CT scan among the adult population (P = 0.007; OR - 3.487) found whereas no such correlation were observed in paediatric population. Conclusion: Coagulopathy was significantly higher among the adult patient with severe TBI as compare to paediatric patient with severe TBI. There was no statistically significant difference in mortality among patients of both the age groups with coagulopathy.
Collapse
Affiliation(s)
- Ashish Kumar Dwivedi
- Department of Neurosurgery, Artemis Agrim Institute of Neurosciences, Gurgaon, Haryana, India
| | - Achal Sharma
- Department of Neurosurgery, S.M.S. Medical College, Jaipur, Rajasthan, India
| | - Virendra Deo Sinha
- Department of Neurosurgery, S.M.S. Medical College, Jaipur, Rajasthan, India
| |
Collapse
|
47
|
Goyal K, Hazarika A, Khandelwal A, Sokhal N, Bindra A, Kumar N, Kedia S, Rath GP. Non- Neurological Complications after Traumatic Brain Injury: A Prospective Observational Study. Indian J Crit Care Med 2018; 22:632-638. [PMID: 30294128 PMCID: PMC6161576 DOI: 10.4103/ijccm.ijccm_156_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction and Aims Recognizing and treating nonneurological complications occurring in traumatic brain injury (TBI) patients during intensive care unit (ICU) stay are challenging. The aim is to estimate various nonneurological complications in TBI patients. The secondary aim is to see the effect of these complications on ICU stay, disability, and mortality. Materials and Methods This was a prospective observational study at the neuro-ICU of a Level-I trauma center. A total of 154 TBI patients were enrolled. The period of the study was from admission to discharge from ICU or demise. Inclusion criteria were patients aged >16 years and patients with severe TBI (Glasgow coma score [GCS] ≤8). Nonneurological complications were frequent in TBI patients. Results We observed respiratory complications to be the most common (61%). Other complications, in the decreasing order, included dyselectrolytemia (46.1%), cardiovascular (34.4%), coagulopathy (33.1%), sepsis (26%), abdominal complications (17.5%), and acute kidney injury (AKI, 3.9%). The presence of systemic complications except AKI was found to be significantly associated with increased ICU stay. Most of the patients of AKI died early in ICU. Respiratory dysfunction was found to be independently associated with 3.05 times higher risk of worsening clinical condition (disability) (P < 0.018). The presence of cardiovascular complications during ICU stay (4.2 times, P < 0.005), AKI (24.7 times, P < 0.02), coagulopathy (3.13 times, P < 0.047), and GCS <6 (4.2 times, P < 0.006) of TBI was independently associated with significantly increased risk of ICU mortality. Conclusion TBI patients tend to have poor outcome due to concomitant nonneurological complications. These have significant bearing on ICU stay, disability, and mortality.
Collapse
Affiliation(s)
- Keshav Goyal
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Amarjyoti Hazarika
- Department of Anaesthesiology and Intensive Care, PGIMER, Chandigarh, India
| | - Ankur Khandelwal
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Navdeep Sokhal
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Bindra
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Niraj Kumar
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Shweta Kedia
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Girija P Rath
- Department of Neuroanaesthesiology and Critical Care, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
48
|
Acute Traumatic Coagulopathy Accompanying Isolated Traumatic Brain Injury is Associated with Worse Long-Term Functional and Cognitive Outcomes. Neurocrit Care 2017; 24:361-70. [PMID: 26293923 DOI: 10.1007/s12028-015-0191-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Approximately one-third of patients with isolated traumatic brain injury (iTBI) present with acute traumatic coagulopathy (ATC). ATC is associated with increased morbidity and mortality. Its effects on long-term functional and cognitive outcomes are not as well characterized. METHODS Data from the Citicoline Brain Injury Treatment Trial (COBRIT) were analyzed retrospectively. Exclusion criteria were renal failure or malignancy, and any extracranial injury severity score >3. ATC was defined as INR > 1.3, PTT > 38 s, or platelets < 100 K, determined at baseline, and during the first 7 days of hospitalization. RESULTS Six hundred forty-seven patients were included; 21 % were found to have ATC. Highest incidence occurred at baseline, and Day Two. Forty-two percent of ATC patients had a GCS < 8, compared with 11.3 % of non-ATC patients (p < 0.001). A significantly higher proportion of ATC patients was transfused blood products, required greater than 4L of fluids, demonstrated hyperthermia and hypothermia, were hypotensive and demonstrated elevated lactate when compared to non-ATC patients. In-hospital mortality, mean hospital length of stay, incidence of DVT and seizures were also significantly higher in ATC patients. A significantly lower portion of ATC patients had good outcomes on the GOS-E (i.e., score > 6), and the DRS (i.e., score < 2) at 180 days, for which ATC was found to be an independent predictor with binary logistic regression. ATC patients also performed significantly worse on several components of the CVLT-II at 180 days. CONCLUSIONS ATC accompanying iTBI is associated with worse functional and cognitive outcomes at 180 days.
Collapse
|
49
|
Krishnamoorthy V, Chaikittisilpa N, Kiatchai T, Vavilala M. Hypertension After Severe Traumatic Brain Injury: Friend or Foe? J Neurosurg Anesthesiol 2017; 29:382-387. [PMID: 27648804 PMCID: PMC5357208 DOI: 10.1097/ana.0000000000000370] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) is a major public health problem, with severe TBI contributing to a large number of deaths and disability worldwide. Early hypotension has been linked with poor outcomes following severe TBI, and guidelines suggest early and aggressive management of hypotension after TBI. Despite these recommendations, no guidelines exist for the management of hypertension after severe TBI, although observational data suggests that early hypertension is also associated with an increased risk of mortality after severe TBI. The purpose of this review is to discuss the underlying pathophysiology of hypertension after TBI, provide an overview of the current clinical data on early hypertension after TBI, and discuss future research that should test the benefits and harms of treating high blood pressure in TBI patients.
Collapse
Affiliation(s)
- Vijay Krishnamoorthy
- Department of Anesthesiology and Pain Medicine, University of Washington
- Harborview Injury Prevention and Research Center, University of Washington
| | - Nophanan Chaikittisilpa
- Department of Anesthesiology and Pain Medicine, University of Washington
- Harborview Injury Prevention and Research Center, University of Washington
| | - Taniga Kiatchai
- Department of Anesthesiology and Pain Medicine, University of Washington
- Harborview Injury Prevention and Research Center, University of Washington
| | - Monica Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington
- Harborview Injury Prevention and Research Center, University of Washington
| |
Collapse
|
50
|
Abstract
OBJECTIVE Prior studies have suggested that traumatic brain injury may affect cardiac function. Our study aims were to determine the frequency, longitudinal course, and admission risk factors for systolic dysfunction in patients with moderate-severe traumatic brain injury. DESIGN Prospective cohort study. SETTING Level 1 trauma center. MEASUREMENTS Transthoracic echocardiogram within 1 day and over the first week after moderate-severe traumatic brain injury; transthoracic echocardiogram within 1 day after mild traumatic brain injury (comparison group). MEASUREMENTS AND MAIN RESULTS Systolic function was assessed by transthoracic echocardiogram, and systolic dysfunction was defined as fractional shortening less than 25%. Multivariable Poisson regression models examined admission risk factors for systolic dysfunction. Systolic function in 32 patients with isolated moderate-severe traumatic brain injury and 32 patients with isolated mild traumatic brain injury (comparison group) was assessed with transthoracic echocardiogram. Seven (22%) moderate-severe traumatic brain injury and 0 (0%) mild traumatic brain injury patients had systolic dysfunction within the first day after injury (p < 0.01). All patients with early systolic dysfunction recovered in 1 week. Younger age (relative risk, 0.87; 95% CI, 0.79-0.94; for 1 yr increase in age) and lower admission Glasgow Coma Scale score (relative risk, 0.34; 95% CI, 0.20-0.58; for one unit increase in Glasgow Coma Scale) were independently associated with the development of systolic dysfunction among moderate-severe traumatic brain injury patients. CONCLUSIONS Early systolic dysfunction can occur in previously healthy patients with moderate-severe traumatic brain injury, and it is reversible over the first week of hospitalization. Younger age and lower admission Glasgow Coma Scale score are independently associated with the development of systolic dysfunction after moderate-severe traumatic brain injury.
Collapse
|