1
|
Mori S, Ohtsuka T, Hashimoto K, Fujii Y, Harada E, Shigemori R, Kato D, Shibazaki T, Shimoda M. Gene expression profiles in respiratory settings in rats under extracorporeal membrane oxygenation. J Thorac Dis 2025; 17:31-41. [PMID: 39975719 PMCID: PMC11833566 DOI: 10.21037/jtd-24-1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/13/2024] [Indexed: 02/21/2025]
Abstract
Background Venovenous extracorporeal membrane oxygenation (VV-ECMO) is an effective lung protection strategy that avoids ventilator-induced lung injury. However, appropriate respiratory settings for VV-ECMO are yet to be established. This study aimed to elucidate the effects of ventilation under VV-ECMO using a newly developed rat VV-ECMO model and analyzed gene expression profiles. Methods Rats were assigned to three groups of five rats each: spontaneous breathing, conventional-protective ventilation, and ultra-protective ventilation. The conventional protective and ultraprotective ventilation groups received volume-controlled ventilation at a frequency of 60 and 20 beats/min, with tidal volumes of 6 and 3 mL/kg, respectively. VV-ECMO was performed at a pump flow rate of 20-30 mL/kg/min. At 120 min post initiation of VV-ECMO, rats were euthanized, and their lungs were harvested. Changes in gene expression were assessed using microarray analysis. Results Gene expression profile analyses revealed lowest expression of inflammation/immune promotion, cytotoxicity, and cell proliferation related genes (Defa5, Prg2, Siglec8, Atf3, Rnd1, Ctsg, and Gc), and the highest expression of inflammation/immune suppression related genes (Pp2d1) in the spontaneous breathing group as compared to that in the other two mechanical ventilation groups. Conclusions The findings of this study demonstrated that spontaneous breathing was the least invasive respiratory setting under VV-ECMO. Further, mechanical ventilation may be associated with lung injury even at low ventilation frequency and tidal volume.
Collapse
Affiliation(s)
- Shohei Mori
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kohei Hashimoto
- Department of Thoracic and Thyroid Surgery, Kyorin University, Tokyo, Japan
| | - Yutaka Fujii
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Eriko Harada
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Rintaro Shigemori
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Daiki Kato
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Takamasa Shibazaki
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Goedegebuur J, Smits FE, Snoep JWM, Rietveld PJ, van der Velde F, de Jonge E, Schoe A. Mechanical Power Is Associated With Mortality in Pressure-Controlled Ventilated Patients: A Dutch, Single-Center Cohort Study. Crit Care Explor 2024; 6:e1190. [PMID: 39699550 DOI: 10.1097/cce.0000000000001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
IMPORTANCE Mechanical power (MP) could serve as a valuable parameter in clinical practice to estimate the likelihood of adverse outcomes. However, the safety thresholds for MP in mechanical ventilation remain underexplored and contentious. OBJECTIVES This study aims to investigate the association between MP and hospital mortality across varying degrees of lung disease severity, classified by Pao2/Fio2 ratios. DESIGN, SETTING, AND PARTICIPANTS This is a retrospective cohort study using automatically extracted data. Patients admitted to the ICU of a tertiary referral hospital in The Netherlands between 2018 and 2024 and ventilated in pressure-controlled mode were included. MAIN OUTCOMES AND MEASURES Logistic regression, adjusted for age, sex, Acute Physiology and Chronic Health Evaluation-IV score, and Pao2/Fio2 ratio, was used to calculate the odds ratio (OR) for all-cause in-hospital mortality. RESULTS A total of 2184 patients were analyzed, with a mean age of 62.5 ± 13.8 years, of whom 1508 (70.2%) were male. The mean MP was highest in patients with the lowest Pao2/Fio2 ratios (21.5 ± 6.5 J/min) compared with those with the highest ratios (12.0 ± 3.8 J/min; p < 0.001). Adjusted analyses revealed that increased MP was associated with higher mortality (OR, 1.06; 95% CI, 1.03-1.09 per J/min increase). Similarly, MP normalized for body weight showed a stronger association with mortality (OR, 1.004; 95% CI, 1.002-1.006 per J/min/kg increase). An increase in mortality was seen when MP exceeded 16-18 J/min. CONCLUSIONS AND RELEVANCE Our findings demonstrate a significant association between MP and hospital mortality, even after adjusting for key confounders. Mortality increases notably when MP exceeds 16-18 J/min. Normalized MP presents an even stronger association with mortality. These results underscore the need for further research into ventilation strategies that consider MP adjustments.
Collapse
Affiliation(s)
- Jamilla Goedegebuur
- Department of Thrombosis and Hemostastis, Leiden University Medical Centre, Leiden, The Netherlands
| | - Floor E Smits
- Department of Intensive Care, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jacob W M Snoep
- Department of Intensive Care, Leiden University Medical Centre, Leiden, The Netherlands
| | - Petra J Rietveld
- Department of Intensive Care, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Evert de Jonge
- Department of Intensive Care, Leiden University Medical Centre, Leiden, The Netherlands
| | - Abraham Schoe
- Department of Intensive Care, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
3
|
Muñoz J, Cedeño JA, Castañeda GF, Visedo LC. Personalized ventilation adjustment in ARDS: A systematic review and meta-analysis of image, driving pressure, transpulmonary pressure, and mechanical power. Heart Lung 2024; 68:305-315. [PMID: 39214040 DOI: 10.1016/j.hrtlng.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) necessitates personalized treatment strategies due to its heterogeneity, aiming to mitigate Ventilator-Induced Lung Injury (VILI). Advanced monitoring techniques, including imaging, driving pressure, transpulmonary pressure, and mechanical power, present potential avenues for tailored interventions. OBJECTIVE To review some of the most important techniques for achieving greater personalization of mechanical ventilation in ARDS patients as evaluated in randomized clinical trials, by analyzing their effect on three clinically relevant aspects: mortality, ventilator-free days, and gas exchange. METHODS Following PRISMA guidelines, we conducted a systematic review and meta-analysis of Randomized Clinical Trials (RCTs) involving adult ARDS patients undergoing personalized ventilation adjustments. Outcomes were mortality (primary end-point), ventilator-free days, and oxygenation improvement. RESULTS Among 493 identified studies, 13 RCTs (n = 1255) met inclusion criteria. No personalized ventilation strategy demonstrated superior outcomes compared to traditional protocols. Meta-analysis revealed no significant reduction in mortality with image-guided (RR 0.88, 95 % CI 0.70-1.11), driving pressure-guided (RR 0.61, 95 % CI 0.29-1.30), or transpulmonary pressure-guided (RR 0.85, 95 % CI 0.58-1.24) strategies. Ventilator-free days and oxygenation outcomes showed no significant differences. CONCLUSION Our study does not support the superiority of personalized ventilation techniques over traditional protocols in ARDS patients. Further research is needed to standardize ventilation strategies and determine their impact on mechanical ventilation outcomes.
Collapse
Affiliation(s)
- Javier Muñoz
- ICU, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquedo 46, 28009 Madrid, Spain.
| | - Jamil Antonio Cedeño
- ICU, Hospital General Universitario Gregorio Marañón, C/ Dr. Esquedo 46, 28009 Madrid, Spain
| | | | - Lourdes Carmen Visedo
- C. S. San Juan de la Cruz, Pozuelo de Alarcón, C/ San Juan de la Cruz s/n, 28223 Madrid, Spain
| |
Collapse
|
4
|
Yang L, Wiersema UF, Bihari S, Broughton R, Roberts A, Kelley N, McEwen M. A self-regulated expiratory flow device for mechanical ventilation: a bench study. Intensive Care Med Exp 2024; 12:92. [PMID: 39414708 PMCID: PMC11484996 DOI: 10.1186/s40635-024-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Unregulated expiratory flow may contribute to ventilator-induced lung injury. The amount of energy dissipated into the lungs with tidal mechanical ventilation may be used to quantify potentially injurious ventilation. Previously reported devices for variable expiratory flow regulation (FLEX) require, either computer-controlled feedback, or an initial expiratory flow trigger. In this bench study we present a novel passive expiratory flow regulation device. METHODS The device was tested using a commercially available mechanical ventilator with a range of settings (tidal volume 420 ml and 630 ml, max. inspiratory flow rate 30 L/min and 50 L/min, respiratory rate 10 min-1, positive end-expiratory pressure 5 cmH2O), and a test lung with six different combinations of compliance and resistance settings. The effectiveness of the device was evaluated for reduction in peak expiratory flow, expiratory time, mean airway pressure, and the reduction of tidal dissipated energy (measured as the area within the airway pressure-volume loop). RESULTS Maximal and minimal reduction in peak expiratory flow was from 97.18 ± 0.41 L/min to 25.82 ± 0.07 L/min (p < 0.001), and from 44.11 ± 0.42 L/min to 26.30 ± 0.06 L/min, respectively. Maximal prolongation in expiratory time was recorded from 1.53 ± 0.06 s to 3.64 ± 0.21 s (p < 0.001). As a result of the extended expiration, the maximal decrease in I:E ratio was from 1:1.15 ± 0.03 to 1:2.45 ± 0.01 (p < 0.001). The greatest increase in mean airway pressure was from 10.04 ± 0.03 cmH2O to 17.33 ± 0.03 cmH2O. Dissipated energy was significantly reduced with the device under all test conditions (p < 0.001). The greatest reduction in dissipated energy was from 1.74 ± 0.00 J to 0.84 ± 0.00 J per breath. The least reduction in dissipated energy was from 0.30 ± 0.00 J to 0.16 ± 0.00 J per breath. The greatest and least percentage reduction in dissipated energy was 68% and 33%, respectively. CONCLUSIONS The device bench tested in this study demonstrated a significant reduction in peak expiratory flow rate and dissipated energy, compared to ventilation with unregulated expiratory flow. Application of the device warrants further experimental and clinical evaluation.
Collapse
Affiliation(s)
- Lianye Yang
- Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia
| | - Ubbo F Wiersema
- Intensive and Critical Care Unit, Flinders Medical Centre, South Adelaide Local Health Network, Flinders Lane, Bedford Park, Adelaide, SA, 5042, Australia
| | - Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, South Adelaide Local Health Network, Flinders Lane, Bedford Park, Adelaide, SA, 5042, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Roy Broughton
- Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia
| | - Andy Roberts
- Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia
| | - Nigel Kelley
- Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia
| | - Mark McEwen
- Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
5
|
Tanios M, Wu TT, Nguyen H(M, Smith L, Mahidhara R, Devlin JW. Comparing the impact of targeting limited driving pressure to low tidal volume ventilation on mortality in mechanically ventilated adults with COVID-19 ARDS: an exploratory target trial emulation. BMJ Open Respir Res 2024; 11:e002439. [PMID: 39353713 PMCID: PMC11448172 DOI: 10.1136/bmjresp-2024-002439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND An association between driving pressure (∆P) and the outcomes of invasive mechanical ventilation (IMV) may exist. However, the effect of a sustained limitation of ∆P on mortality in patients with acute respiratory distress syndrome (ARDS), including patients with COVID-19 (COVID-19-related acute respiratory distress syndrome (C-ARDS)) undergoing IMV, has not been rigorously evaluated. The use of emulations of a target trial in intensive care unit research remains in its infancy. To inform future, large ARDS target trials, we explored using a target trial emulation approach to analyse data from a cohort of IMV adults with C-ARDS to determine whether maintaining daily ∆p<15 cm H2O (in addition to traditional low tidal volume ventilation (LTVV) (tidal volume 5-7 cc/PBW+plateau pressure (Pplat) ≤30 cm H2O), compared with LTVV alone, affects the 28-day mortality. METHODS To emulate a target trial, adults with C-ARDS requiring >24 hours of IMV were considered to be assigned to limited ∆P or LTVV. Lung mechanics were measured twice daily after ventilator setting adjustments were made. To evaluate the effect of each lung-protective ventilation (LPV) strategy on the 28-day mortality, we fit a stabilised inverse probability weighted marginal structural model that adjusted for baseline and time-varying confounders known to affect protection strategy use/adherence or survival. RESULTS Among the 92 patients included, 27 (29.3%) followed limited ∆P ventilation, 23 (25.0%) the LTVV strategy and 42 (45.7%) received no LPV strategy. The adjusted estimated 28-day survival was 47.0% (95% CI 23%, 76%) in the limited ∆P group, 70.3% in the LTVV group (95% CI 37.6%, 100%) and 37.6% (95% CI 20.8%, 58.0%) in the no LPV strategy group. INTERPRETATION Limiting ∆P may not provide additional survival benefits for patients with C-ARDS over LTVV. Our results help inform the development of future target trial emulations focused on evaluating LPV strategies, including reduced ∆P, in adults with ARDS.
Collapse
Affiliation(s)
- Maged Tanios
- Long Beach Memorial Medical Center, Long Beach, California, USA
- Division of Pulmonary and Critical Care Medicine, University of California Irvine, Irvine, California, USA
| | - Ting Ting Wu
- Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Louisa Smith
- Pharmacy and Health Systems Sciences, Northeastern University - Boston Campus, Boston, Massachusetts, USA
| | - Raja Mahidhara
- Long Beach Memorial Medical Center, Long Beach, California, USA
- Sound Physicians, Tacoma, Washington, USA
| | - John W Devlin
- Pharmacy and Health Systems Sciences, Northeastern University - Boston Campus, Boston, Massachusetts, USA
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Lin J, Ou H, Luo B, Ling M, Lin F, Cen L, Hu Z, Ye L, Pan L. Capsaicin mitigates ventilator-induced lung injury by suppressing ferroptosis and maintaining mitochondrial redox homeostasis through SIRT3-dependent mechanisms. Mol Med 2024; 30:148. [PMID: 39266965 PMCID: PMC11391744 DOI: 10.1186/s10020-024-00910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/24/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is one of the severe complications in the clinic concerning mechanical ventilation (MV). Capsaicin (CAP) has anti-inflammatory and inhibitory effects on oxidative stress, which is a significant element causing cellular ferroptosis. Nevertheless, the specific role and potential mechanistic pathways through which CAP modulates ferroptosis in VILI remain elusive. METHODS VILI was established in vivo, and the pulmonary epithelial cell injury model induced by circulation stretching (CS) was established in vitro. Both mice and cells were pretreated with CAP. Transmission electron microscopy, ELISA, Western blot, immunofluorescence, RT-PCR, fluorescent probes, and other experimental methods were used to clarify the relationship between iron death and VILI in alveolar epithelial cells, and whether capsaicin alleviates VILI by inhibiting iron death and its specific mechanism. RESULTS Ferroptosis was involved in VILI by utilizing in vivo models. CAP inhibited ferroptosis and alleviated VILI's lung damage and inflammation, and this protective effect of CAP was dependent on maintaining mitochondrial redox system through SITR3 signaling. In the CS-caused lung epithelial cell injury models, CAP reduced pathological CS-caused ferroptosis and cell injury. Knockdown SIRT3 reversed the role of CAP on the maintaining mitochondria dysfunction under pathological CS and eliminated its subsequent advantageous impacts for ferroptosis against overstretching cells. CONCLUSION The outcomes showed that CAP alleviated ferroptosis in VILI via improving the activity of SITR3 to suppressing mitochondrial oxidative damage and maintaining mitochondrial redox homeostasis, illustrating its possibility as a novel therapeutic goal for VILI.
Collapse
Affiliation(s)
- Jinyuan Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Huajin Ou
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Bijun Luo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
| | - Maoyao Ling
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Liming Cen
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Zhaokun Hu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Liu Ye
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China.
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China.
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China.
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China.
| |
Collapse
|
7
|
Aydın BS, Açıkgöz E. Effect of the prone position on mechanical power in elective surgical patients under general anesthesia: A prospective observational study. Saudi Med J 2024; 45:814-820. [PMID: 39074888 PMCID: PMC11288489 DOI: 10.15537/smj.2024.45.8.20240242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVES To evaluate how the prone position influences mechanical power (MP) during elective surgical procedures. METHODS In this prospective study carried out at Karadeniz Ereğli Government Hospital, Zonguldak, Turkey, from January 2024 to February 2024, 76 patients under general anesthesia were evaluated at different time points during the surgical procedure. Hemodynamic, laboratory, and mechanical ventilation data were also recorded. RESULTS The MP increased in the prone position at the beginning of surgery. Transitioning to the supine position at the end of surgery led to a decrease in MP. At the end of surgery, the mean MP in supine and prone positions was found to be higher compared to those measured in the first hour of surgery. Mechanical power and body mass index (BMI) exhibited a significant positive correlation. CONCLUSION Position changes influence MP. Returning to the prone position increases MP. An increase in BMI is associated with an increase in MP.ANZCTR Reg. No.: ACTRN12623001281684.
Collapse
Affiliation(s)
- Berrak S. Aydın
- From the Department of Anesthesiology and Reanimation, Karadeniz Ereğli Government Hospital, Zonguldak, Turkey.
| | - Eren Açıkgöz
- From the Department of Anesthesiology and Reanimation, Karadeniz Ereğli Government Hospital, Zonguldak, Turkey.
| |
Collapse
|
8
|
Buiteman-Kruizinga LA, Serpa Neto A, Botta M, List SS, de Boer BH, van Velzen P, Bühler PK, Wendel Garcia PD, Schultz MJ, van der Heiden PLJ, Paulus F. Effect of automated versus conventional ventilation on mechanical power of ventilation-A randomized crossover clinical trial. PLoS One 2024; 19:e0307155. [PMID: 39078857 PMCID: PMC11288413 DOI: 10.1371/journal.pone.0307155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Mechanical power of ventilation, a summary parameter reflecting the energy transferred from the ventilator to the respiratory system, has associations with outcomes. INTELLiVENT-Adaptive Support Ventilation is an automated ventilation mode that changes ventilator settings according to algorithms that target a low work-and force of breathing. The study aims to compare mechanical power between automated ventilation by means of INTELLiVENT-Adaptive Support Ventilation and conventional ventilation in critically ill patients. MATERIALS AND METHODS International, multicenter, randomized crossover clinical trial in patients that were expected to need invasive ventilation > 24 hours. Patients were randomly assigned to start with a 3-hour period of automated ventilation or conventional ventilation after which the alternate ventilation mode was selected. The primary outcome was mechanical power in passive and active patients; secondary outcomes included key ventilator settings and ventilatory parameters that affect mechanical power. RESULTS A total of 96 patients were randomized. Median mechanical power was not different between automated and conventional ventilation (15.8 [11.5-21.0] versus 16.1 [10.9-22.6] J/min; mean difference -0.44 (95%-CI -1.17 to 0.29) J/min; P = 0.24). Subgroup analyses showed that mechanical power was lower with automated ventilation in passive patients, 16.9 [12.5-22.1] versus 19.0 [14.1-25.0] J/min; mean difference -1.76 (95%-CI -2.47 to -10.34J/min; P < 0.01), and not in active patients (14.6 [11.0-20.3] vs 14.1 [10.1-21.3] J/min; mean difference 0.81 (95%-CI -2.13 to 0.49) J/min; P = 0.23). CONCLUSIONS In this cohort of unselected critically ill invasively ventilated patients, automated ventilation by means of INTELLiVENT-Adaptive Support Ventilation did not reduce mechanical power. A reduction in mechanical power was only seen in passive patients. STUDY REGISTRATION Clinicaltrials.gov (study identifier NCT04827927), April 1, 2021. URL OF TRIAL REGISTRY RECORD https://clinicaltrials.gov/study/NCT04827927?term=intellipower&rank=1.
Collapse
Affiliation(s)
- Laura A. Buiteman-Kruizinga
- Department of Intensive Care, Reinier de Graaf Hospital, Delft, the Netherlands
- Department of Intensive Care, Amsterdam University Medical Centers ‘Location AMC’, Amsterdam, the Netherlands
| | - Ary Serpa Neto
- Department of Intensive Care, Amsterdam University Medical Centers ‘Location AMC’, Amsterdam, the Netherlands
- Australian and New Zealand Intensive Care–Research Centre (ANZIC–RC), Monash University, Melbourne, Australia
- Department of Intensive Care, Austin Hospital, Melbourne, Australia
- Department of Critical Care, University of Melbourne, Melbourne, Australia
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Michela Botta
- Department of Intensive Care, Amsterdam University Medical Centers ‘Location AMC’, Amsterdam, the Netherlands
| | - Stephanie S. List
- Department of Intensive Care, Dijklander Hospital ‘Location Hoorn’, Hoorn, the Netherlands
| | - Ben H. de Boer
- Department of Intensive Care, Dijklander Hospital ‘Location Hoorn’, Hoorn, the Netherlands
| | - Patricia van Velzen
- Department of Intensive Care, Dijklander Hospital ‘Location Hoorn’, Hoorn, the Netherlands
| | - Philipp Karl Bühler
- Institute of Intensive Care Medicine, University Hospital Zürich, Zürich, Switzerland
| | | | - Marcus J. Schultz
- Department of Intensive Care, Amsterdam University Medical Centers ‘Location AMC’, Amsterdam, the Netherlands
- Mahidol–Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University Wien, Vienna, Austria
| | | | - Frederique Paulus
- Department of Intensive Care, Amsterdam University Medical Centers ‘Location AMC’, Amsterdam, the Netherlands
- ACHIEVE, Centre of Applied Research, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
Adrish M, Doppalapudi S, Lvovsky D. Driving pressure decoded: Precision strategies in adult respiratory distress syndrome management. World J Crit Care Med 2024; 13:92441. [PMID: 38855266 PMCID: PMC11155505 DOI: 10.5492/wjccm.v13.i2.92441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024] Open
Abstract
Mechanical ventilation (MV) is an important strategy for improving the survival of patients with respiratory failure. However, MV is associated with aggravation of lung injury, with ventilator-induced lung injury (VILI) becoming a major concern. Thus, ventilation protection strategies have been developed to minimize complications from MV, with the goal of relieving excessive breathing workload, improving gas exchange, and minimizing VILI. By opting for lower tidal volumes, clinicians seek to strike a balance between providing adequate ventilation to support gas exchange and preventing overdistension of the alveoli, which can contribute to lung injury. Additionally, other factors play a role in optimizing lung protection during MV, including adequate positive end-expiratory pressure levels, to maintain alveolar recruitment and prevent atelectasis as well as careful consideration of plateau pressures to avoid excessive stress on the lung parenchyma.
Collapse
Affiliation(s)
- Muhammad Adrish
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Sai Doppalapudi
- Department of Medicine, BronxCare Health System/Icahn School of Medicine at Mount Sinai, Bronx, NY 10467, United States
| | - Dmitry Lvovsky
- Department of Medicine, BronxCare Health System/Icahn School of Medicine at Mount Sinai, Bronx, NY 10467, United States
| |
Collapse
|
10
|
Tonelli R, Rizzoni R, Grasso S, Cortegiani A, Ball L, Samarelli AV, Fantini R, Bruzzi G, Tabbì L, Cerri S, Manicardi L, Andrisani D, Gozzi F, Castaniere I, Smit MR, Paulus F, Bos LDJ, Clini E, Marchioni A. Stress-strain curve and elastic behavior of the fibrotic lung with usual interstitial pneumonia pattern during protective mechanical ventilation. Sci Rep 2024; 14:13158. [PMID: 38849437 PMCID: PMC11161630 DOI: 10.1038/s41598-024-63670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Patients with acute exacerbation of lung fibrosis with usual interstitial pneumonia (EUIP) pattern are at increased risk for ventilator-induced lung injury (VILI) and mortality when exposed to mechanical ventilation (MV). Yet, lack of a mechanical model describing UIP-lung deformation during MV represents a research gap. Aim of this study was to develop a constitutive mathematical model for UIP-lung deformation during lung protective MV based on the stress-strain behavior and the specific elastance of patients with EUIP as compared to that of acute respiratory distress syndrome (ARDS) and healthy lung. Partitioned lung and chest wall mechanics were assessed for patients with EUIP and primary ARDS (1:1 matched based on body mass index and PaO2/FiO2 ratio) during a PEEP trial performed within 24 h from intubation. Patient's stress-strain curve and the lung specific elastance were computed and compared with those of healthy lungs, derived from literature. Respiratory mechanics were used to fit a novel mathematical model of the lung describing mechanical-inflation-induced lung parenchyma deformation, differentiating the contributions of elastin and collagen, the main components of lung extracellular matrix. Five patients with EUIP and 5 matched with primary ARDS were included and analyzed. Global strain was not different at low PEEP between the groups. Overall specific elastance was significantly higher in EUIP as compared to ARDS (28.9 [22.8-33.2] cmH2O versus 11.4 [10.3-14.6] cmH2O, respectively). Compared to ARDS and healthy lung, the stress/strain curve of EUIP showed a steeper increase, crossing the VILI threshold stress risk for strain values greater than 0.55. The contribution of elastin was prevalent at lower strains, while the contribution of collagen was prevalent at large strains. The stress/strain curve for collagen showed an upward shift passing from ARDS and healthy lungs to EUIP lungs. During MV, patients with EUIP showed different respiratory mechanics, stress-strain curve and specific elastance as compared to ARDS patients and healthy subjects and may experience VILI even when protective MV is applied. According to our mathematical model of lung deformation during mechanical inflation, the elastic response of UIP-lung is peculiar and different from ARDS. Our data suggest that patients with EUIP experience VILI with ventilatory setting that are lung-protective for patients with ARDS.
Collapse
Affiliation(s)
- Roberto Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Raffaella Rizzoni
- Department of Engineering, University of Ferrara, via Saragat 1, Ferrara, Italy.
| | - Salvatore Grasso
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Ionica (DiMePre-J) Sezione di Anestesiologia e Rianimazione, Università degli Studi di Bari "Aldo Moro", Ospedale Policlinico, Bari, Italy
| | - Andrea Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, Palermo, Italy
- Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, Palermo, Italy
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Riccardo Fantini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Giulia Bruzzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Stefania Cerri
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Linda Manicardi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Dario Andrisani
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Filippo Gozzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Ivana Castaniere
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Marry R Smit
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederique Paulus
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Enrico Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| |
Collapse
|
11
|
Rali AS, Tran L, Balakrishna A, Senussi M, Kapur NK, Metkus T, Tedford RJ, Lindenfeld J. Guide to Lung-Protective Ventilation in Cardiac Patients. J Card Fail 2024; 30:829-837. [PMID: 38513887 DOI: 10.1016/j.cardfail.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 03/23/2024]
Abstract
The incidence of acute respiratory insufficiency has continued to increase among patients admitted to modern-day cardiovascular intensive care units. Positive pressure ventilation (PPV) remains the mainstay of treatment for these patients. Alterations in intrathoracic pressure during PPV has distinct effects on both the right and left ventricles, affecting cardiovascular performance. Lung-protective ventilation (LPV) minimizes the risk of further lung injury through ventilator-induced lung injury and, hence, an understanding of LPV and its cardiopulmonary interactions is beneficial for cardiologists.
Collapse
Affiliation(s)
- Aniket S Rali
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN.
| | - Lena Tran
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN
| | - Aditi Balakrishna
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Mourad Senussi
- Department of Medicine, Baylor St. Luke's Medical Center, Houston, TX
| | - Navin K Kapur
- Division of Cardiovascular Diseases, Tufts Medical Center, Boston, MA
| | - Thomas Metkus
- Departments of Medicine and Surgery, Divisions of Cardiology and Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan J Tedford
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC
| | - Joann Lindenfeld
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
12
|
Serafini SC, van Meenen DMP, Pisani L, Neto AS, Ball L, de Abreu MG, Algera AG, Azevedo L, Bellani G, Dondorp AM, Fan E, Laffey JG, Pham T, Tschernko EM, Schultz MJ, van der Woude MCE. Different ventilation intensities among various categories of patients ventilated for reasons other than ARDS--A pooled analysis of 4 observational studies. J Crit Care 2024; 81:154531. [PMID: 38341938 DOI: 10.1016/j.jcrc.2024.154531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
PURPOSE We investigated driving pressure (ΔP) and mechanical power (MP) and associations with clinical outcomes in critically ill patients ventilated for reasons other than ARDS. MATERIALS AND METHODS Individual patient data analysis of a pooled database that included patients from four observational studies of ventilation. ΔP and MP were compared among invasively ventilated non-ARDS patients with sepsis, with pneumonia, and not having sepsis or pneumonia. The primary endpoint was ΔP; secondary endpoints included MP, ICU mortality and length of stay, and duration of ventilation. RESULTS This analysis included 372 (11%) sepsis patients, 944 (28%) pneumonia patients, and 2040 (61%) patients ventilated for any other reason. On day 1, median ΔP was higher in sepsis (14 [11-18] cmH2O) and pneumonia patients (14 [11-18]cmH2O), as compared to patients not having sepsis or pneumonia (13 [10-16] cmH2O) (P < 0.001). Median MP was also higher in sepsis and pneumonia patients. ΔP, as opposed to MP, was associated with ICU mortality in sepsis and pneumonia patients. CONCLUSIONS The intensity of ventilation differed between patients with sepsis or pneumonia and patients receiving ventilation for any other reason; ΔP was associated with higher mortality in sepsis and pneumonia patients. REGISTRATION This post hoc analysis was not registered; the individual studies that were merged into the used database were registered at clinicaltrials.gov: NCT01268410 (ERICC), NCT02010073 (LUNG SAFE), NCT01868321 (PRoVENT), and NCT03188770 (PRoVENT-iMiC).
Collapse
Affiliation(s)
- Simon Corrado Serafini
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genova, Italy; Department of Intensive Care, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands.
| | - David M P van Meenen
- Department of Intensive Care, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands; Department of Anesthesiology, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands
| | - Luigi Pisani
- Department of Intensive Care, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands; Section of Operational Research, Doctors with Africa, Padova, Italy; Department of Anesthesiology and Intensive Care Medicine, Miulli Regional Hospital, Acquaviva delle Fonti, Italy; Mahidol-Oxford Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; Department of Critical Care, Melbourne Medical School, University of Melbourne, Austin Hospital, Melbourne, Australia; Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genova, Italy; Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Marcelo Gama de Abreu
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Geke Algera
- Department of Intensive Care, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands
| | - Luciano Azevedo
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; Department of Emergency Medicine, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Giacomo Bellani
- Centro Interdipartimentale di Scienze Mediche (CISMed), Università di Trento, Italy; UOC anesthesia and Intensive Care 1, Ospedale Santa Chiara, APSS, Trento, Italy
| | - Arjen M Dondorp
- Mahidol-Oxford Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, School of Medicine, National University of Ireland, and Galway University Hospitals Ireland, Galway, Ireland
| | - Tai Pham
- Equipe d'Epidémiologie Respiratoire integrative, Université Paris-Saclay, Paris, France; Department of Intensive Care, Hôpital de Bicêtre, Paris, France
| | - Edda M Tschernko
- Clinical Department of Cardiothoracic Vascular Surgery Anesthesia and Intensive Care Medicine, Medical University Wien, Vienna, Austria
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam UMC, location 'AMC', Amsterdam, the Netherlands; Mahidol-Oxford Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nuffield Department of Medicine, University of Oxford, Oxford, UK; Clinical Department of Cardiothoracic Vascular Surgery Anesthesia and Intensive Care Medicine, Medical University Wien, Vienna, Austria
| | | |
Collapse
|
13
|
Sottile PD, Smith B, Stroh JN, Albers DJ, Moss M. Flow-Limited and Reverse-Triggered Ventilator Dyssynchrony Are Associated With Increased Tidal and Dynamic Transpulmonary Pressure. Crit Care Med 2024; 52:743-751. [PMID: 38214566 PMCID: PMC11018465 DOI: 10.1097/ccm.0000000000006180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
OBJECTIVES Ventilator dyssynchrony may be associated with increased delivered tidal volumes (V t s) and dynamic transpulmonary pressure (ΔP L,dyn ), surrogate markers of lung stress and strain, despite low V t ventilation. However, it is unknown which types of ventilator dyssynchrony are most likely to increase these metrics or if specific ventilation or sedation strategies can mitigate this potential. DESIGN A prospective cohort analysis to delineate the association between ten types of breaths and delivered V t , ΔP L,dyn , and transpulmonary mechanical energy. SETTING Patients admitted to the medical ICU. PATIENTS Over 580,000 breaths from 35 patients with acute respiratory distress syndrome (ARDS) or ARDS risk factors. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Patients received continuous esophageal manometry. Ventilator dyssynchrony was identified using a machine learning algorithm. Mixed-effect models predicted V t , ΔP L,dyn , and transpulmonary mechanical energy for each type of ventilator dyssynchrony while controlling for repeated measures. Finally, we described how V t , positive end-expiratory pressure (PEEP), and sedation (Richmond Agitation-Sedation Scale) strategies modify ventilator dyssynchrony's association with these surrogate markers of lung stress and strain. Double-triggered breaths were associated with the most significant increase in V t , ΔP L,dyn , and transpulmonary mechanical energy. However, flow-limited, early reverse-triggered, and early ventilator-terminated breaths were also associated with significant increases in V t , ΔP L,dyn , and energy. The potential of a ventilator dyssynchrony type to increase V t , ΔP L,dyn , or energy clustered similarly. Increasing set V t may be associated with a disproportionate increase in high-volume and high-energy ventilation from double-triggered breaths, but PEEP and sedation do not clinically modify the interaction between ventilator dyssynchrony and surrogate markers of lung stress and strain. CONCLUSIONS Double-triggered, flow-limited, early reverse-triggered, and early ventilator-terminated breaths are associated with increases in V t , ΔP L,dyn , and energy. As flow-limited breaths are more than twice as common as double-triggered breaths, further work is needed to determine the interaction of ventilator dyssynchrony frequency to cause clinically meaningful changes in patient outcomes.
Collapse
Affiliation(s)
- Peter D Sottile
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado | Anschutz Medical Campus, Aurora, CO, 80045
| | - Bradford Smith
- Department of Bioengineering, University of Colorado | Anschutz Medical Campus, Aurora, CO, 80045
- Division of Pediatric Pulmonary and Sleep Medicine, University of Colorado | Anschutz Medical Campus, Aurora, CO, 80045
| | - Jake N Stroh
- Department of Bioengineering, University of Colorado | Anschutz Medical Campus, Aurora, CO, 80045
| | - David J Albers
- Department of Bioengineering, University of Colorado | Anschutz Medical Campus, Aurora, CO, 80045
- Department of Biomedical Informatics, University of Colorado | Anschutz Medical Campus, Aurora, CO, 80045
| | - Marc Moss
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado | Anschutz Medical Campus, Aurora, CO, 80045
| |
Collapse
|
14
|
Simonte R, Cammarota G, Vetrugno L, De Robertis E, Longhini F, Spadaro S. Advanced Respiratory Monitoring during Extracorporeal Membrane Oxygenation. J Clin Med 2024; 13:2541. [PMID: 38731069 PMCID: PMC11084162 DOI: 10.3390/jcm13092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Advanced respiratory monitoring encompasses a diverse range of mini- or noninvasive tools used to evaluate various aspects of respiratory function in patients experiencing acute respiratory failure, including those requiring extracorporeal membrane oxygenation (ECMO) support. Among these techniques, key modalities include esophageal pressure measurement (including derived pressures), lung and respiratory muscle ultrasounds, electrical impedance tomography, the monitoring of diaphragm electrical activity, and assessment of flow index. These tools play a critical role in assessing essential parameters such as lung recruitment and overdistention, lung aeration and morphology, ventilation/perfusion distribution, inspiratory effort, respiratory drive, respiratory muscle contraction, and patient-ventilator synchrony. In contrast to conventional methods, advanced respiratory monitoring offers a deeper understanding of pathological changes in lung aeration caused by underlying diseases. Moreover, it allows for meticulous tracking of responses to therapeutic interventions, aiding in the development of personalized respiratory support strategies aimed at preserving lung function and respiratory muscle integrity. The integration of advanced respiratory monitoring represents a significant advancement in the clinical management of acute respiratory failure. It serves as a cornerstone in scenarios where treatment strategies rely on tailored approaches, empowering clinicians to make informed decisions about intervention selection and adjustment. By enabling real-time assessment and modification of respiratory support, advanced monitoring not only optimizes care for patients with acute respiratory distress syndrome but also contributes to improved outcomes and enhanced patient safety.
Collapse
Affiliation(s)
- Rachele Simonte
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06100 Perugia, Italy; (R.S.); (E.D.R.)
| | - Gianmaria Cammarota
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Edoardo De Robertis
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06100 Perugia, Italy; (R.S.); (E.D.R.)
| | - Federico Longhini
- Department of Medical and Surgical Sciences, Università della Magna Graecia, 88100 Catanzaro, Italy
- Anesthesia and Intensive Care Unit, “R. Dulbecco” University Hospital, 88100 Catanzaro, Italy
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44100 Ferrara, Italy;
| |
Collapse
|
15
|
Händel C, Frerichs I, Weiler N, Bergh B. Prediction and simulation of PEEP setting effects with machine learning models. Med Intensiva 2024; 48:191-199. [PMID: 38135579 DOI: 10.1016/j.medine.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/20/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE To establish a new machine learning-based method to adjust positive end-expiratory pressure (PEEP) using only already routinely measured data. DESIGN Retrospective observational study. SETTING Intensive care unit (ICU). PATIENTS OR PARTICIPANTS 51811 mechanically ventilated patients in multiple ICUs in the USA (data from MIMIC-III and eICU databases). INTERVENTIONS No interventions. MAIN VARIABLES OF INTEREST Success parameters of ventilation (arterial partial pressures of oxygen and carbon dioxide and respiratory system compliance) RESULTS: The multi-tasking neural network model performed significantly best for all target tasks in the primary test set. The model predicts arterial partial pressures of oxygen and carbon dioxide and respiratory system compliance about 45 min into the future with mean absolute percentage errors of about 21.7%, 10.0% and 15.8%, respectively. The proposed use of the model was demonstrated in case scenarios, where we simulated possible effects of PEEP adjustments for individual cases. CONCLUSIONS Our study implies that machine learning approach to PEEP titration is a promising new method which comes with no extra cost once the infrastructure is in place. Availability of databases with most recent ICU patient data is crucial for the refinement of prediction performance.
Collapse
Affiliation(s)
- Claas Händel
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Medical Informatics, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Inéz Frerichs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Björn Bergh
- Department of Medical Informatics, University Medical Centre Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
16
|
Mounier R, Diop S, Kallel H, Constantin JM, Roujansky A. Tidal volume in mechanically ventilated patients: Searching for Cinderella's shoe rather than 6 mL/kg for all. Anaesth Crit Care Pain Med 2024; 43:101356. [PMID: 38365168 DOI: 10.1016/j.accpm.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Affiliation(s)
- R Mounier
- Department of Anaesthesiology and Critical Care, Georges Pompidou European Hospital, Paris, France; Université Paris, Paris, France; INSERM U955, Équipe 15, Institut Mondor de la Recherche Biomédicale, Université Paris-Est-Créteil, France.
| | - S Diop
- Department of Anesthesiology, Marie Lannelongue Hospital, Paris Saint Joseph Hospital, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; Cardiothoracic Intensive Care Unit. Marie Lannelongue Hospital, Paris Saint Joseph Hospital, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France
| | - H Kallel
- Réanimation Polyvalente, Centre Hospitalier de Cayenne, Cayenne, French Guiana; Tropical Biome et Immunopathologie CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana
| | - J M Constantin
- Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne University, GRC 29, AP-HP, DMU DREAM, Paris, France
| | - A Roujansky
- Réanimation Polyvalente, Centre Hospitalier de Cayenne, Cayenne, French Guiana; Tropical Biome et Immunopathologie CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana
| |
Collapse
|
17
|
Rubulotta F, Blanch Torra L, Naidoo KD, Aboumarie HS, Mathivha LR, Asiri AY, Sarlabous Uranga L, Soussi S. Mechanical Ventilation, Past, Present, and Future. Anesth Analg 2024; 138:308-325. [PMID: 38215710 DOI: 10.1213/ane.0000000000006701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Mechanical ventilation (MV) has played a crucial role in the medical field, particularly in anesthesia and in critical care medicine (CCM) settings. MV has evolved significantly since its inception over 70 years ago and the future promises even more advanced technology. In the past, ventilation was provided manually, intermittently, and it was primarily used for resuscitation or as a last resort for patients with severe respiratory or cardiovascular failure. The earliest MV machines for prolonged ventilatory support and oxygenation were large and cumbersome. They required a significant amount of skills and expertise to operate. These early devices had limited capabilities, battery, power, safety features, alarms, and therefore these often caused harm to patients. Moreover, the physiology of MV was modified when mechanical ventilators moved from negative pressure to positive pressure mechanisms. Monitoring systems were also very limited and therefore the risks related to MV support were difficult to quantify, predict and timely detect for individual patients who were necessarily young with few comorbidities. Technology and devices designed to use tracheostomies versus endotracheal intubation evolved in the last century too and these are currently much more reliable. In the present, positive pressure MV is more sophisticated and widely used for extensive period of time. Modern ventilators use mostly positive pressure systems and are much smaller, more portable than their predecessors, and they are much easier to operate. They can also be programmed to provide different levels of support based on evolving physiological concepts allowing lung-protective ventilation. Monitoring systems are more sophisticated and knowledge related to the physiology of MV is improved. Patients are also more complex and elderly compared to the past. MV experts are informed about risks related to prolonged or aggressive ventilation modalities and settings. One of the most significant advances in MV has been protective lung ventilation, diaphragm protective ventilation including noninvasive ventilation (NIV). Health care professionals are familiar with the use of MV and in many countries, respiratory therapists have been trained for the exclusive purpose of providing safe and professional respiratory support to critically ill patients. Analgo-sedation drugs and techniques are improved, and more sedative drugs are available and this has an impact on recovery, weaning, and overall patients' outcome. Looking toward the future, MV is likely to continue to evolve and improve alongside monitoring techniques and sedatives. There is increasing precision in monitoring global "patient-ventilator" interactions: structure and analysis (asynchrony, desynchrony, etc). One area of development is the use of artificial intelligence (AI) in ventilator technology. AI can be used to monitor patients in real-time, and it can predict when a patient is likely to experience respiratory distress. This allows medical professionals to intervene before a crisis occurs, improving patient outcomes and reducing the need for emergency intervention. This specific area of development is intended as "personalized ventilation." It involves tailoring the ventilator settings to the individual patient, based on their physiology and the specific condition they are being treated for. This approach has the potential to improve patient outcomes by optimizing ventilation and reducing the risk of harm. In conclusion, MV has come a long way since its inception, and it continues to play a critical role in anesthesia and in CCM settings. Advances in technology have made MV safer, more effective, affordable, and more widely available. As technology continues to improve, more advanced and personalized MV will become available, leading to better patients' outcomes and quality of life for those in need.
Collapse
Affiliation(s)
- Francesca Rubulotta
- From the Department of Critical Care Medicine, McGill University, Montreal, Quebec, Canada
| | - Lluis Blanch Torra
- Department of Critical Care, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Kuban D Naidoo
- Division of Critical Care, University of Witwatersrand, Johannesburg, South Africa
| | - Hatem Soliman Aboumarie
- Department of Anaesthetics, Critical Care and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield Hospitals, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - Lufuno R Mathivha
- Department of Anaesthetics, Critical Care and Mechanical Circulatory Support, The Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand
| | - Abdulrahman Y Asiri
- Department of Internal Medicine and Critical Care, King Khalid University Medical City, Abha, Saudi Arabia
- Department of Critical Care Medicine, McGill University
| | - Leonardo Sarlabous Uranga
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Sabri Soussi
- Department of Anesthesia and Pain Management, University Health Network - Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto
- UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), Institut national de la santé et de la recherche médicale (INSERM), Université de Paris Cité, France
| |
Collapse
|
18
|
Thornton LT, Kummer RL, Marini JJ. The place of positive end expiratory pressure in ventilator-induced lung injury generation. Curr Opin Crit Care 2024; 30:4-9. [PMID: 38085885 DOI: 10.1097/mcc.0000000000001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Describe the rationale for concern and accumulating pathophysiologic evidence regarding the adverse effects of high-level positive end expiratory pressure (PEEP) on excessive mechanical stress and ventilator-induced lung injury (VILI). RECENT FINDINGS Although the inclusion of PEEP in numerical estimates of mechanical power may be theoretically debated, its potential to increase stress, strain, and mean airway pressure are not. Recent laboratory data in a variety of animal models demonstrate that higher levels of PEEP coupled with additional fluids needed to offset its impediment of hemodynamic function are associated with increased VILI. Moreover, counteracting end-tidal hyperinflation by external chest wall pressure may paradoxically improve respiratory mechanics, indicating that lower PEEP helps protect the small 'baby lung' of advanced acute respiratory distress syndrome (ARDS). SUMMARY The potentially adverse effects of PEEP on VILI can be considered in three broad categories. First, the contribution of PEEP to total mechanical energy expressed through mechanical power, raised mean airway pressure, and end-tidal hyperinflation; second, the hemodynamic consequences of altered cardiac loading, heightened pulmonary vascular stress and total lung water; and third, the ventilatory consequences of compromised carbon dioxide eliminating efficiency. Minimizing ventilation demands, optimized body positioning and care to avoid unnecessary PEEP are central to lung protection in all stages of ARDS.
Collapse
Affiliation(s)
- Lauren T Thornton
- University of Minnesota, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Minneapolis, St. Paul, Minnesota, USA
| | | | | |
Collapse
|
19
|
Caljé-van der Klei T, Sun Q, Chase JG, Zhou C, Tawhai MH, Knopp JL, Möller K, Heines SJ, Bergmans DC, Shaw GM. Pulmonary response prediction through personalized basis functions in a virtual patient model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107988. [PMID: 38171168 DOI: 10.1016/j.cmpb.2023.107988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/16/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Recruitment maneuvers with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveoli collapse. However, determining a safe, effective, and patient-specific PEEP is not standardized, and this more optimal PEEP level evolves with patient condition, requiring personalised monitoring and care approaches to maintain optimal ventilation settings. METHODS This research examines 3 physiologically relevant basis function sets (exponential, parabolic, cumulative) to enable better prediction of elastance evolution for a virtual patient or digital twin model of MV lung mechanics, including novel elements to model and predict distension elastance. Prediction accuracy and robustness are validated against recruitment maneuver data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0 to 12 cmH2O) and 14 pressure-controlled ventilation (PCV) patients at 4 different baseline PEEP levels (6 to 12 cmH2O), yielding 623 and 294 prediction cases, respectively. Predictions were made up to 12 cmH2O of added PEEP ahead, covering 6 × 2 cmH2O PEEP steps. RESULTS The 3 basis function sets yield median absolute peak inspiratory pressure (PIP) prediction error of 1.63 cmH2O for VCV patients, and median peak inspiratory volume (PIV) prediction error of 0.028 L for PCV patients. The exponential basis function set yields a better trade-off of overall performance across VCV and PCV prediction than parabolic and cumulative basis function sets from other studies. Comparing predicted and clinically measured distension prediction in VCV demonstrated consistent, robust high accuracy with R2 = 0.90-0.95. CONCLUSIONS The results demonstrate recruitment mechanics are best captured by an exponential basis function across different mechanical ventilation modes, matching physiological expectations, and accurately capture, for the first time, distension mechanics to within 5-10 % accuracy. Enabling the risk of lung injury to be predicted before changing ventilator settings. The overall outcomes significantly extend and more fully validate this digital twin or virtual mechanical ventilation patient model.
Collapse
Affiliation(s)
- Trudy Caljé-van der Klei
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Qianhui Sun
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand; University of Liége, Liége, Belgium
| | - J Geoffrey Chase
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Cong Zhou
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jennifer L Knopp
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Knut Möller
- Institute for Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Serge J Heines
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, Netherlands
| | - Dennis C Bergmans
- Department of Intensive Care, School of Medicine, Maastricht University, Maastricht, Netherlands
| | - Geoffrey M Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
20
|
Huang E, Han H, Qin K, Du X. Delineation and authentication of ferroptosis genes in ventilator-induced lung injury. BMC Med Genomics 2024; 17:31. [PMID: 38254192 PMCID: PMC10804751 DOI: 10.1186/s12920-024-01804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Mechanical ventilation, a critical support strategy for individuals enduring severe respiratory failure and general anesthesia, paradoxically engenders ventilator-induced lung injury (VILI). Ferrostatin-1 mitigates lung injury via ferroptosis inhibition, yet the specific ferroptosis genes contributing significantly to VILI remain obscure. METHODS Leveraging the Gene Expression Omnibus database, we acquired VILI-associated datasets and identified differentially expressed genes (DEGs). To identify the hub genes, we constructed a protein-protein interaction network and used three parameters from CytoHubba. Consequently, we identified hub genes and ferroptosis genes as ferroptosis hub genes for VILI (VFHGs). We conducted enrichment analysis and established receiver operating characteristic (ROC) curves for VFHGs. Subsequently, to confirm the correctness of the VFHGs, control group mice and VILI mouse models, as well as external dataset validation, were established. For further research, a gene-miRNA network was established. Finally, the CIBERSORT algorithm was used to fill the gap in the immune infiltration changes in the lung during VILI. RESULTS We identified 64 DEGs and 4 VFHGs (Il6,Ptgs2,Hmox1 and Atf3) closely related to ferroptosis. ROC curves demonstrated the excellent diagnostic performance of VFHGs in VILI. PCR and external dataset validation of the VILI model demonstrated the accuracy of VFHGs. Subsequently, the gene-miRNA network was successfully established. Ultimately, an Immune cell infiltration analysis associated with VILI was generated. CONCLUSIONS The results emphasize the importance of 4 VFHGs and their involvement in ferroptosis in VILI, confirming their potential as diagnostic biomarkers for VILI.
Collapse
Affiliation(s)
- Enhao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, China
| | - Hanghang Han
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, China
| | - Ke Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, China
| | - Xueke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530007, China.
| |
Collapse
|
21
|
Al-Khalisy H, Nieman GF, Kollisch-Singule M, Andrews P, Camporota L, Shiber J, Manougian T, Satalin J, Blair S, Ghosh A, Herrmann J, Kaczka DW, Gaver DP, Bates JHT, Habashi NM. Time-Controlled Adaptive Ventilation (TCAV): a personalized strategy for lung protection. Respir Res 2024; 25:37. [PMID: 38238778 PMCID: PMC10797864 DOI: 10.1186/s12931-023-02615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/25/2023] [Indexed: 01/22/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Gary F Nieman
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | - Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Luigi Camporota
- Health Centre for Human and Applied Physiological Sciences, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, USA
| | | | - Joshua Satalin
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Sarah Blair
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Auyon Ghosh
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | | | | | | | - Nader M Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|
22
|
Xie Y, Shi J, Liu S, Chen X, Wang Y, Li X, Yan Y. Association of elastic power in mechanical ventilation with the severity of acute respiratory distress syndrome: a retrospective study. Eur J Med Res 2024; 29:5. [PMID: 38173033 PMCID: PMC10763103 DOI: 10.1186/s40001-023-01577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Mechanical power (MP) is the total energy released into the entire respiratory system per minute which mainly comprises three components: elastic static power, Elastic dynamic power and resistive power. However, the energy to overcome resistance to the gas flow is not the key factor in causing lung injury, but the elastic power (EP) which generates the baseline stretch of the lung fibers and overcomes respiratory system elastance may be closely related to the ARDS severity. Thus, this study aimed to investigate whether EP is superior to other ventilator variables for predicting the severity of lung injury in ARDS patients. METHODS We retrieved patient data from the Medical Information Mart for Intensive Care III (MIMIC-III) database. The retrieved data involved adults (≥ 18 years) diagnosed with ARDS and subjected to invasive mechanical ventilation for ≥ 48 h. We employed univariate and multivariate logistic regression analyses to investigate the correlation between EP and development of moderate-severe ARDS. Furthermore, we utilized restricted cubic spline models to assess whether there is a linear association between EP and incidence of moderate-severe ARDS. In addition, we employed a stratified linear regression model and likelihood ratio test in subgroups to identify potential modifications and interactions. RESULTS Moderate-severe ARDS occurred in 73.4% (296/403) of the patients analyzed. EP and MP were significantly associated with moderate-severe ARDS (odds ratio [OR] 1.21, 95% confidence interval [CI] 1.15-1.28, p < 0.001; and OR 1.15, 95%CI 1.11-1.20, p < 0.001; respectively), but EP showed a higher area-under-curve (95%CI 0.72-0.82, p < 0.001) than plateau pressure, driving pressure, and static lung compliance in predicting ARDS severity. The optimal cutoff value for EP was 14.6 J/min with a sensitivity of 75% and specificity of 66%. Quartile analysis revealed that the relationship between EP and ARDS severity remained robust and reliable in subgroup analysis. CONCLUSION EP is a good ventilator variable associated with ARDS severity and can be used for grading ARDS severity. Close monitoring of EP is advised in patients undergoing mechanical ventilation. Additional experimental trials are needed to investigate whether adjusting ventilator variables according to EP can yield significant improvements in clinical outcomes.
Collapse
Affiliation(s)
- Yongpeng Xie
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Jiaxin Shi
- Department of Respiratory and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Suxia Liu
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Xiaobing Chen
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Yanli Wang
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Xiaomin Li
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China.
| | - Yao Yan
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China.
- Department of Critical Care Medicine, The Second people,s Hospital of Lianyungang City, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
23
|
Statlender L, Shvartser L, Teppler S, Bendavid I, Kushinir S, Azullay R, Singer P. Predicting invasive mechanical ventilation in COVID 19 patients: A validation study. PLoS One 2024; 19:e0296386. [PMID: 38166095 PMCID: PMC10760863 DOI: 10.1371/journal.pone.0296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
INTRODUCTION The decision to intubate and ventilate a patient is mainly clinical. Both delaying intubation (when needed) and unnecessarily invasively ventilating (when it can be avoided) are harmful. We recently developed an algorithm predicting respiratory failure and invasive mechanical ventilation in COVID-19 patients. This is an internal validation study of this model, which also suggests a categorized "time-weighted" model. METHODS We used a dataset of COVID-19 patients who were admitted to Rabin Medical Center after the algorithm was developed. We evaluated model performance in predicting ventilation, regarding the actual endpoint of each patient. We further categorized each patient into one of four categories, based on the strength of the prediction of ventilation over time. We evaluated this categorized model performance regarding the actual endpoint of each patient. RESULTS 881 patients were included in the study; 96 of them were ventilated. AUC of the original algorithm is 0.87-0.94. The AUC of the categorized model is 0.95. CONCLUSIONS A minor degradation in the algorithm accuracy was noted in the internal validation, however, its accuracy remained high. The categorized model allows accurate prediction over time, with very high negative predictive value.
Collapse
Affiliation(s)
- Liran Statlender
- Department of Gefneral Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | | | | | - Itai Bendavid
- Department of Gefneral Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Shiri Kushinir
- Rabin Medical Center Research Authority, Beilinson Hospital, Petah Tikva, Israel
| | - Roy Azullay
- TSG IT Advanced Systems Ltd., Or Yehuda, Israel
| | - Pierre Singer
- Department of Gefneral Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| |
Collapse
|
24
|
Lichter Y, Gal Oz A, Carmi U, Adi N, Nini A, Angel Y, Nevo A, Aviram D, Moshkovits I, Goder N, Stavi D. Kinetics of C-reactive protein during extracorporeal membrane oxygenation. Int J Artif Organs 2024; 47:41-48. [PMID: 38031425 PMCID: PMC10787388 DOI: 10.1177/03913988231213511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND The exposure of blood to the artificial circuit during extracorporeal membrane oxygenation (ECMO) can induce an inflammatory response. C-reactive protein (CRP) is a commonly used biomarker of systemic inflammation. METHODS In this retrospective observational study, we analyzed results of daily plasma CRP measurements in 110 critically ill patients, treated with ECMO. We compared CRP levels during the first 5 days of ECMO operation, between different groups of patients according to ECMO configurations, Coronavirus disease 2019 (COVID-19) status, and mechanical ventilation parameters. RESULTS There was a statistically significant decrease in CRP levels during the first 5 days of veno-venous (VV) ECMO (173 ± 111 mg/L, 154 ± 107 mg/L, 127 ± 97 mg/L, 114 ± 100 mg/L and 118 ± 90 mg/L for days 1-5 respectively, p < 0.001). Simultaneously, there was a significant reduction in ventilatory parameters, as represented by the mechanical power (MP) calculation, from 24.02 ± 14.53 J/min to 6.18 ± 4.22 J/min within 3 h of VV ECMO initiation (p < 0.001). There was non-significant trend of increase in CRP level during the first 5 days of veno arterial (VA) ECMO (123 ± 80 mg/L, 179 ± 91 mg/L, 203 ± 90 mg/L, 179 ± 95 mg/L and 198 ± 93 for days 1-5 respectively, p = 0.126) and no significant change in calculated MP (from 14.28 ± 8.56 J/min to 10.81 ± 8.09 J/min within 3 h if ECMO initiation, p = 0.071). CONCLUSIONS We observed a significant decrease in CRP levels during the first 5 days of VV ECMO support, and suggest that the concomitant reduction in ventilatory MP may have mitigated the degree of alveolar stress and strain that could have contributed to a decrease in the systemic inflammatory process.
Collapse
Affiliation(s)
- Yael Lichter
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Gal Oz
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Carmi
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nimrod Adi
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaph Nini
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoel Angel
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Andrey Nevo
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Aviram
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itay Moshkovits
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Goder
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dekel Stavi
- Division of Anesthesia, Pain Management and Intensive Care, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Wu SH, Kor CT, Chi SH, Li CY. Categorizing Acute Respiratory Distress Syndrome with Different Severities by Oxygen Saturation Index. Diagnostics (Basel) 2023; 14:37. [PMID: 38201346 PMCID: PMC10795683 DOI: 10.3390/diagnostics14010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The oxygen saturation index (OSI), defined by FIO2/SpO2 multiplied by the mean airway pressure, has been reported to exceed the Berlin definition in predicting the mortality of acute respiratory distress syndrome (ARDS). The OSI has served as an alternative to the Berlin definition in categorizing pediatric ARDS. However, the use of the OSI for the stratification of adult ARDS has not been reported. A total of 379 invasively ventilated adult ARDS patients were retrospectively studied. The ARDS patients were classified into three groups by their incidence rate of mortality: mild (OSI < 14.69), moderate (14.69 < OSI < 23.08) and severe (OSI > 23.08). OSI-based categorization was highly correlated with the Berlin definition by a Kendall's tau of 0.578 (p < 0.001). The Kaplan-Meier curves of the three OSI-based groups were significantly different (p < 0.001). By the Berlin definition, the hazard ratio for 28-day mortality was 0.58 (0.33-1.05) and 0.95 (0.55-1.67) for the moderate and severe groups, respectively (compared to the mild group). In contrast, the corresponding hazard ratio was 1.01 (0.69-1.47) and 2.39 (1.71-3.35) for the moderate and severe groups defined by the OSI. By multivariate analysis, OSI-based severe ARDS was independently associated with 28-D or 90-D mortality. In conclusion, we report the first OSI-based stratification for adult ARDS and find that it serves well as an alternative to the Berlin definition.
Collapse
Affiliation(s)
- Shin-Hwar Wu
- Division of Critical Care Internal Medicine, Department of Emergency Medicine and Critical Care, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Chew-Teng Kor
- Big Data Center, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Graduate Institute of Statistics and Information Science, National Changhua University of Education, Changhua 50006, Taiwan
| | - Shu-Hua Chi
- Section of Respiratory Therapy, Department of Emergency Medicine and Critical Care, Changhua Christian Hospital, Changhua 50006, Taiwan; (S.-H.C.); (C.-Y.L.)
| | - Chun-Yu Li
- Section of Respiratory Therapy, Department of Emergency Medicine and Critical Care, Changhua Christian Hospital, Changhua 50006, Taiwan; (S.-H.C.); (C.-Y.L.)
| |
Collapse
|
26
|
Rehman TA, John K, Maslow A. Protective Lung Ventilation: What Do We Know?-"In An Investigation, Details Matter"-Jack Reacher TV Series. J Cardiothorac Vasc Anesth 2023; 37:2572-2576. [PMID: 37423839 PMCID: PMC10264327 DOI: 10.1053/j.jvca.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023]
Affiliation(s)
- T A Rehman
- Department of Anesthesiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - K John
- Department of Anesthesiology, Rhode Island Hospital, Providence, RI
| | - A Maslow
- Department of Anesthesiology, Rhode Island Hospital, Providence, RI.
| |
Collapse
|
27
|
Xie Y, Yan Y, Shi J, Luo J, Wang Y, Chen H, Li X. Elastic power, a novel predictor of the severity and prognosis of ARDS. J Crit Care 2023; 78:154380. [PMID: 37480658 DOI: 10.1016/j.jcrc.2023.154380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/13/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE To explore the predictive value of the new comprehensive respiratory mechanics parameters elastic power (EP) and elastic power normalized to the compliance (Cst-EP) in the evaluation of the severity and 28-day prognosis of ARDS patients. METHODS The MIMIC-III database was used to identify ARDS patients under invasive mechanical ventilation for at least 48 h. Their baseline data and ventilatory variables were collected. EP, elastic energy, driving pressure and mechanical power were calculated according to the corresponding formulas. Their value in assessing the severity of ARDS was evaluated. The correlation between Cst-EP and 28-day prognosis of ARDS patients was analyzed. RESULTS EP was independently associated with the severity of the ARDS and the odds ratio (OR) was 1.301 [95% CI (1.190-1.423), p < 0.001]. It has higher accuracy for the severity of ARDS, with an optimal cut-off value of 14.6 J/min. The Cst-EP was significantly associated with increased risk of death and the hazard ratio (HR) per 100 J/min × cmH2O/ml × 10-3 was 1.169 [95% CI (1.093-1.250), p < 0.001]. In addition, the 28-day cumulative survival rate of the high Cst-EP group was significantly lower than that of the low Cst-EP group. CONCLUSION EP can be used to predict the severity of ARDS, and Cst-EP is associated with mortality during controlled mechanical ventilation in ARDS.
Collapse
Affiliation(s)
- Yongpeng Xie
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China
| | - Yao Yan
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China; Department of Critical Care Medicine, The Second People's Hospital of Lianyungang City, Lianyungang 222000, Jiangsu, China
| | - Jiaxin Shi
- Department of Respiratory and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China
| | - Jiye Luo
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China
| | - Yanli Wang
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China
| | - Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao Road, Gulou District, Nanjing 210009, Jiangsu,China..
| | - Xiaomin Li
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| |
Collapse
|
28
|
Thornton LT, Marini JJ. Optimized ventilation power to avoid VILI. J Intensive Care 2023; 11:57. [PMID: 37986109 PMCID: PMC10658809 DOI: 10.1186/s40560-023-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
The effort to minimize VILI risk must be multi-pronged. The need to adequately ventilate, a key determinant of hazardous power, is reduced by judicious permissive hypercapnia, reduction of innate oxygen demand, and by prone body positioning that promotes both efficient pulmonary gas exchange and homogenous distributions of local stress. Modifiable ventilator-related determinants of lung protection include reductions of tidal volume, plateau pressure, driving pressure, PEEP, inspiratory flow amplitude and profile (using longer inspiration to expiration ratios), and ventilation frequency. Underappreciated conditional cofactors of importance to modulate the impact of local specific power may include lower vascular pressures and blood flows. Employed together, these measures modulate ventilation power with the intent to avoid VILI while achieving clinically acceptable targets for pulmonary gas exchange.
Collapse
Affiliation(s)
- Lauren T Thornton
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis/St Paul, MN, USA
| | - John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis/St Paul, MN, USA.
| |
Collapse
|
29
|
Burša F, Oczka D, Jor O, Sklienka P, Frelich M, Stigler J, Vodička V, Ekrtová T, Penhaker M, Máca J. The Impact of Mechanical Energy Assessment on Mechanical Ventilation: A Comprehensive Review and Practical Application. Med Sci Monit 2023; 29:e941287. [PMID: 37669252 PMCID: PMC10492505 DOI: 10.12659/msm.941287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 09/07/2023] Open
Abstract
Mechanical ventilation (MV) provides basic organ support for patients who have acute hypoxemic respiratory failure, with acute respiratory distress syndrome as the most severe form. The use of excessive ventilation forces can exacerbate the lung condition and lead to ventilator-induced lung injury (VILI); mechanical energy (ME) or power can characterize such forces applied during MV. The ME metric combines all MV parameters affecting the respiratory system (ie, lungs, chest, and airways) into a single value. Besides evaluating the overall ME, this parameter can be also related to patient-specific characteristics, such as lung compliance or patient weight, which can further improve the value of ME for characterizing the aggressiveness of lung ventilation. High ME is associated with poor outcomes and could be used as a prognostic parameter and indicator of the risk of VILI. ME is rarely determined in everyday practice because the calculations are complicated and based on multiple equations. Although low ME does not conclusively prevent the possibility of VILI (eg, due to the lung inhomogeneity and preexisting damage), individualization of MV settings considering ME appears to improve outcomes. This article aims to review the roles of bedside assessment of mechanical power, its relevance in mechanical ventilation, and its associations with treatment outcomes. In addition, we discuss methods for ME determination, aiming to propose the most suitable method for bedside application of the ME concept in everyday practice.
Collapse
Affiliation(s)
- Filip Burša
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic
| | - David Oczka
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science,VSB – Technical University of Ostrava, Ostrava, Czech Republic
| | - Ondřej Jor
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic
| | - Peter Sklienka
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic
| | - Michal Frelich
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jan Stigler
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic
| | - Vojtech Vodička
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic
| | - Tereza Ekrtová
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic
| | - Marek Penhaker
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science,VSB – Technical University of Ostrava, Ostrava, Czech Republic
| | - Jan Máca
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic
| |
Collapse
|
30
|
Davies IM, Polglase GR. Inflating or Overinflation? New Evidence for Lung Injury at Birth. Am J Respir Crit Care Med 2023; 208:517-518. [PMID: 37450842 PMCID: PMC10492251 DOI: 10.1164/rccm.202306-1053ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Indya M Davies
- Department of Obstetrics and Gynaecology Monash University Clayton, Victoria, Australia and The Ritchie Centre Hudson Institute of Medical Research Clayton Victoria, Australia
| | - Graeme R Polglase
- Department of Obstetrics and Gynaecology Monash University Clayton, Victoria, Australia and The Ritchie Centre Hudson Institute of Medical Research Clayton Victoria, Australia
| |
Collapse
|
31
|
Buiteman-Kruizinga LA, van Meenen DMP, Bos LDJ, van der Heiden PLJ, Paulus F, Schultz MJ. A closed-loop ventilation mode that targets the lowest work and force of breathing reduces the transpulmonary driving pressure in patients with moderate-to-severe ARDS. Intensive Care Med Exp 2023; 11:42. [PMID: 37442844 DOI: 10.1186/s40635-023-00527-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION The driving pressure (ΔP) has an independent association with outcome in patients with acute respiratory distress syndrome (ARDS). INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop mode of ventilation that targets the lowest work and force of breathing. AIM To compare transpulmonary and respiratory system ΔP between closed-loop ventilation and conventional pressure controlled ventilation in patients with moderate-to-severe ARDS. METHODS Single-center randomized cross-over clinical trial in patients in the early phase of ARDS. Patients were randomly assigned to start with a 4-h period of closed-loop ventilation or conventional ventilation, after which the alternate ventilation mode was selected. The primary outcome was the transpulmonary ΔP; secondary outcomes included respiratory system ΔP, and other key parameters of ventilation. RESULTS Thirteen patients were included, and all had fully analyzable data sets. Compared to conventional ventilation, with closed-loop ventilation the median transpulmonary ΔP with was lower (7.0 [5.0-10.0] vs. 10.0 [8.0-11.0] cmH2O, mean difference - 2.5 [95% CI - 2.6 to - 2.1] cmH2O; P = 0.0001). Inspiratory transpulmonary pressure and the respiratory rate were also lower. Tidal volume, however, was higher with closed-loop ventilation, but stayed below generally accepted safety cutoffs in the majority of patients. CONCLUSIONS In this small physiological study, when compared to conventional pressure controlled ventilation INTELLiVENT-ASV reduced the transpulmonary ΔP in patients in the early phase of moderate-to-severe ARDS. This closed-loop ventilation mode also led to a lower inspiratory transpulmonary pressure and a lower respiratory rate, thereby reducing the intensity of ventilation. Trial registration Clinicaltrials.gov, NCT03211494, July 7, 2017. https://clinicaltrials.gov/ct2/show/NCT03211494?term=airdrop&draw=2&rank=1 .
Collapse
Affiliation(s)
- Laura A Buiteman-Kruizinga
- Department of Intensive Care, Reinier de Graaf Hospital, Delft, The Netherlands.
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands.
| | - David M P van Meenen
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- Department of Anesthesia, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- Department of Respiratory Medicine, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
| | | | - Frederique Paulus
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- ACHIEVE, Centre of Applied Research, Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Grasselli G, Calfee CS, Camporota L, Poole D, Amato MBP, Antonelli M, Arabi YM, Baroncelli F, Beitler JR, Bellani G, Bellingan G, Blackwood B, Bos LDJ, Brochard L, Brodie D, Burns KEA, Combes A, D'Arrigo S, De Backer D, Demoule A, Einav S, Fan E, Ferguson ND, Frat JP, Gattinoni L, Guérin C, Herridge MS, Hodgson C, Hough CL, Jaber S, Juffermans NP, Karagiannidis C, Kesecioglu J, Kwizera A, Laffey JG, Mancebo J, Matthay MA, McAuley DF, Mercat A, Meyer NJ, Moss M, Munshi L, Myatra SN, Ng Gong M, Papazian L, Patel BK, Pellegrini M, Perner A, Pesenti A, Piquilloud L, Qiu H, Ranieri MV, Riviello E, Slutsky AS, Stapleton RD, Summers C, Thompson TB, Valente Barbas CS, Villar J, Ware LB, Weiss B, Zampieri FG, Azoulay E, Cecconi M. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med 2023; 49:727-759. [PMID: 37326646 PMCID: PMC10354163 DOI: 10.1007/s00134-023-07050-7] [Citation(s) in RCA: 294] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/24/2023] [Indexed: 06/17/2023]
Abstract
The aim of these guidelines is to update the 2017 clinical practice guideline (CPG) of the European Society of Intensive Care Medicine (ESICM). The scope of this CPG is limited to adult patients and to non-pharmacological respiratory support strategies across different aspects of acute respiratory distress syndrome (ARDS), including ARDS due to coronavirus disease 2019 (COVID-19). These guidelines were formulated by an international panel of clinical experts, one methodologist and patients' representatives on behalf of the ESICM. The review was conducted in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement recommendations. We followed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to assess the certainty of evidence and grade recommendations and the quality of reporting of each study based on the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) network guidelines. The CPG addressed 21 questions and formulates 21 recommendations on the following domains: (1) definition; (2) phenotyping, and respiratory support strategies including (3) high-flow nasal cannula oxygen (HFNO); (4) non-invasive ventilation (NIV); (5) tidal volume setting; (6) positive end-expiratory pressure (PEEP) and recruitment maneuvers (RM); (7) prone positioning; (8) neuromuscular blockade, and (9) extracorporeal life support (ECLS). In addition, the CPG includes expert opinion on clinical practice and identifies the areas of future research.
Collapse
Affiliation(s)
- Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Daniele Poole
- Operative Unit of Anesthesia and Intensive Care, S. Martino Hospital, Belluno, Italy
| | | | - Massimo Antonelli
- Department of Anesthesiology Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Yaseen M Arabi
- Intensive Care Department, Ministry of the National Guard - Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Francesca Baroncelli
- Department of Anesthesia and Intensive Care, San Giovanni Bosco Hospital, Torino, Italy
| | - Jeremy R Beitler
- Center for Acute Respiratory Failure and Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University, New York, NY, USA
| | - Giacomo Bellani
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, APSS Trento, Trento, Italy
| | - Geoff Bellingan
- Intensive Care Medicine, University College London, NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Bronagh Blackwood
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Lieuwe D J Bos
- Intensive Care, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Laurent Brochard
- Keenan Research Center, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Daniel Brodie
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Karen E A Burns
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Division of Critical Care, Unity Health Toronto - Saint Michael's Hospital, Toronto, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - Alain Combes
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, F-75013, Paris, France
- Service de Médecine Intensive-Réanimation, Institut de Cardiologie, APHP Sorbonne Université Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Sonia D'Arrigo
- Department of Anesthesiology Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandre Demoule
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service de Médecine Intensive - Réanimation (Département R3S), Paris, France
| | - Sharon Einav
- Shaare Zedek Medical Center and Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Niall D Ferguson
- Department of Medicine, Division of Respirology and Critical Care, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Departments of Medicine and Physiology, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Jean-Pierre Frat
- CHU De Poitiers, Médecine Intensive Réanimation, Poitiers, France
- INSERM, CIC-1402, IS-ALIVE, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France
| | - Luciano Gattinoni
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Claude Guérin
- University of Lyon, Lyon, France
- Institut Mondor de Recherches Biomédicales, INSERM 955 CNRS 7200, Créteil, France
| | - Margaret S Herridge
- Critical Care and Respiratory Medicine, University Health Network, Toronto General Research Institute, Institute of Medical Sciences, Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Carol Hodgson
- The Australian and New Zealand Intensive Care Research Center, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Intensive Care, Alfred Health, Melbourne, Australia
| | - Catherine L Hough
- Division of Pulmonary, Allergy and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Samir Jaber
- Anesthesia and Critical Care Department (DAR-B), Saint Eloi Teaching Hospital, University of Montpellier, Research Unit: PhyMedExp, INSERM U-1046, CNRS, 34295, Montpellier, France
| | - Nicole P Juffermans
- Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken Der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Cologne, Germany
| | - Jozef Kesecioglu
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Arthur Kwizera
- Makerere University College of Health Sciences, School of Medicine, Department of Anesthesia and Intensive Care, Kampala, Uganda
| | - John G Laffey
- Anesthesia and Intensive Care Medicine, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
- Anesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospitals Groups, Galway, Ireland
| | - Jordi Mancebo
- Intensive Care Department, Hospital Universitari de La Santa Creu I Sant Pau, Barcelona, Spain
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Alain Mercat
- Département de Médecine Intensive Réanimation, CHU d'Angers, Université d'Angers, Angers, France
| | - Nuala J Meyer
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Marc Moss
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, Sinai Health System, University of Toronto, Toronto, Canada
| | - Sheila N Myatra
- Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Michelle Ng Gong
- Division of Pulmonary and Critical Care Medicine, Montefiore Medical Center, Bronx, New York, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Laurent Papazian
- Bastia General Hospital Intensive Care Unit, Bastia, France
- Aix-Marseille University, Faculté de Médecine, Marseille, France
| | - Bhakti K Patel
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mariangela Pellegrini
- Anesthesia and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Perner
- Department of Intensive Care, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Lise Piquilloud
- Adult Intensive Care Unit, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Marco V Ranieri
- Alma Mater Studiorum - Università di Bologna, Bologna, Italy
- Anesthesia and Intensive Care Medicine, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
| | - Elisabeth Riviello
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Arthur S Slutsky
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Renee D Stapleton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Charlotte Summers
- Department of Medicine, University of Cambridge Medical School, Cambridge, UK
| | - Taylor B Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Carmen S Valente Barbas
- University of São Paulo Medical School, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jesús Villar
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Lorraine B Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Björn Weiss
- Department of Anesthesiology and Intensive Care Medicine (CCM CVK), Charitè - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Fernando G Zampieri
- Academic Research Organization, Albert Einstein Hospital, São Paulo, Brazil
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Elie Azoulay
- Médecine Intensive et Réanimation, APHP, Hôpital Saint-Louis, Paris Cité University, Paris, France
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Anesthesia and Intensive Care Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
33
|
Marrazzo F, Spina S, Zadek F, Forlini C, Bassi G, Giudici R, Bellani G, Fumagalli R, Langer T. PEEP Titration Is Markedly Affected by Trunk Inclination in Mechanically Ventilated Patients with COVID-19 ARDS: A Physiologic, Cross-Over Study. J Clin Med 2023; 12:3914. [PMID: 37373608 PMCID: PMC10299565 DOI: 10.3390/jcm12123914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Changing trunk inclination affects lung function in patients with ARDS. However, its impacts on PEEP titration remain unknown. The primary aim of this study was to assess, in mechanically ventilated patients with COVID-19 ARDS, the effects of trunk inclination on PEEP titration. The secondary aim was to compare respiratory mechanics and gas exchange in the semi-recumbent (40° head-of-the-bed) and supine-flat (0°) positions following PEEP titration. METHODS Twelve patients were positioned both at 40° and 0° trunk inclination (randomized order). The PEEP associated with the best compromise between overdistension and collapse guided by Electrical Impedance Tomography (PEEPEIT) was set. After 30 min of controlled mechanical ventilation, data regarding respiratory mechanics, gas exchange, and EIT parameters were collected. The same procedure was repeated for the other trunk inclination. RESULTS PEEPEIT was lower in the semi-recumbent than in the supine-flat position (8 ± 2 vs. 13 ± 2 cmH2O, p < 0.001). A semi-recumbent position with optimized PEEP resulted in higher PaO2:FiO2 (141 ± 46 vs. 196 ± 99, p = 0.02) and a lower global inhomogeneity index (46 ± 10 vs. 53 ± 11, p = 0.008). After 30 min of observation, a loss of aeration (measured by EIT) was observed only in the supine-flat position (-153 ± 162 vs. 27 ± 203 mL, p = 0.007). CONCLUSIONS A semi-recumbent position is associated with lower PEEPEIT and results in better oxygenation, less derecruitment, and more homogenous ventilation compared to the supine-flat position.
Collapse
Affiliation(s)
- Francesco Marrazzo
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
| | - Stefano Spina
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
| | - Francesco Zadek
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (F.Z.); (G.B.)
| | - Clarissa Forlini
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
| | - Gabriele Bassi
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
| | - Riccardo Giudici
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (F.Z.); (G.B.)
- Department of Anesthesia and Intensive Care 1, Santa Chiara Hospital, APSS Trento, 38122 Trento, Italy
| | - Roberto Fumagalli
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (F.Z.); (G.B.)
| | - Thomas Langer
- Department of Anesthesia and Critical Care, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy; (F.M.); (S.S.); (C.F.); (G.B.); (R.G.); (R.F.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (F.Z.); (G.B.)
| |
Collapse
|
34
|
Bittner E, Sheridan R. Acute Respiratory Distress Syndrome, Mechanical Ventilation, and Inhalation Injury in Burn Patients. Surg Clin North Am 2023; 103:439-451. [PMID: 37149380 PMCID: PMC10028407 DOI: 10.1016/j.suc.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Respiratory failure occurs with some frequency in seriously burned patients, driven by a combination of inflammatory and infection factors. Inhalation injury contributes to respiratory failure in some burn patients via direct mucosal injury and indirect inflammation. In burn patients, respiratory failure leading to acute respiratory distress syndrome, with or without inhalation injury, is effectively managed using principles evolved for non-burn critically ill patients.
Collapse
Affiliation(s)
- Edward Bittner
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA; Department of Anesthesia, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Robert Sheridan
- Department of Surgery, Massachusetts General Hospital and Shriners Hospital for Children, 51 Blossom Street, Boston, MA 02114, USA.
| |
Collapse
|
35
|
Rehder KJ, Alibrahim OS. Mechanical Ventilation during ECMO: Best Practices. Respir Care 2023; 68:838-845. [PMID: 37225656 PMCID: PMC10208991 DOI: 10.4187/respcare.10908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Adults and children who require extracorporeal membrane oxygenation for respiratory failure remain at risk for ongoing lung injury if ventilator management is not optimized. This review serves as a guide to assist the bedside clinician in ventilator titration for patients on extracorporeal membrane oxygenation, with a focus on lung-protective strategies. Existing data and guidelines for extracorporeal membrane oxygenation ventilator management are reviewed, including non-conventional ventilation modes and adjunct therapies.
Collapse
Affiliation(s)
- Kyle J Rehder
- Division of Pediatric Critical Care, Duke Children's Hospital, Durham, North Carolina.
| | - Omar S Alibrahim
- Division of Pediatric Critical Care, Duke Children's Hospital, Durham, North Carolina
| |
Collapse
|
36
|
Lee JE, Kim HY, Lee KW, Kim GS. Second-generation supraglottic airway in laparoscopic donor nephrectomy. Sci Rep 2023; 13:8406. [PMID: 37225750 DOI: 10.1038/s41598-023-34691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Supraglottic airway (SGA) may have advantages over endotracheal tube (ETT) regarding laryngospasm, coughing, sore throat, and hemodynamic changes; however, studies on the use of SGA in laparoscopic donor nephrectomy (LDN) are lacking. Here, we aimed to confirm the safety and feasibility of second-generation SGA in LDN and compare them with those of ETT. Enrolled adult donors (aged > 18 years) who underwent LDN between August 2018 and November 2021 were divided into two groups-ETT vs. SGA. Airway pressure, lung compliance, desaturation, and hypercapnia were recorded during surgery. After propensity score matching for baseline characteristics and surgical duration, 82 and 152 donors were included in the ETT and SGA groups, respectively, and their outcomes were compared. The peak airway pressure was lower in the SGA group than in the ETT group 5 min after pneumoperitoneum. Dynamic lung compliance was higher in the SGA group than in the ETT group during surgery. There were no cases of intraoperative desaturation, hypercapnia, or postoperative aspiration pneumonitis. The use of second-generation SGA, a safe alternative to ETT for LDN, resulted in reduced airway resistance and increased lung compliance, which suggests its benefits for airway management in kidney donors.
Collapse
Affiliation(s)
- Ja Eun Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ha Yeon Kim
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gaab Soo Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Guilló-Moreno V, Gutiérrez-Martínez A, Serrano-Zueras C, Santos-González M, Romero-Berrocal A, García-Fernández J. Shortened Automatic Lung Recruitment Maneuvers in an In Vivo Model of Neonatal ARDS. Respir Care 2023; 68:628-637. [PMID: 36396332 PMCID: PMC10171351 DOI: 10.4187/respcare.10438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The aim of this study was to assess the safety and efficacy of 2 protocols for automatic lung recruitment maneuvers (LRMs) using stepwise increases in PEEP in a neonatal ARDS model. These protocols were designed with lower maximum opening pressures than traditional methods and differ each one in the duration of the opening phases (short vs prolonged). We described hemodynamic changes through invasive monitoring, and we analyzed if the behavior of the variables depends on the duration of the opening phase of the LRM. METHODS We designed a prospective, experimental study with 10 Landrace x Large White pigs < 48 h old. Under general anesthesia, tracheal intubation, invasive hemodynamic monitoring with a pediatric arterial thermodilution catheter was performed. An ARDS model was developed with bronchoalveolar lavages. Two types of LRMs were performed in each piglet, with a maximum peak inspiratory pressure (PIP) of 30 cm H2O and a PEEP 15 cm H2O applied during 8.5 s in the short LRM and 17 s in the prolonged LRM. A comparative analysis by virtue of the Wilcoxon signed-rank test and a regression analysis using generalized estimation equation were performed. RESULTS We found that both LRMs were effective regarding oxygenation and respiratory mechanics. Shortening the duration of the opening phase and lowering the maximum opening pressures to PIP 30 and PEEP 15 cm H2O were above the critical opening pressure to reverse alveolar collapse in our neonatal ARDS model. Although we observed hemodynamic variations during both types of LRMs, these were well tolerated. CONCLUSIONS Our LRM protocols exceeded critical opening pressures to reverse alveolar collapse in our neonatal ARDS model. This range of pressures might involve less hemodynamic disturbance. Duration of the maximum opening pressure step is a determining factor for hemodynamic alterations.
Collapse
Affiliation(s)
- Verónica Guilló-Moreno
- Department of Anaesthesiology, Intensive Care and Pain, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain.
| | - Alberto Gutiérrez-Martínez
- Department of Anaesthesiology, Intensive Care and Pain, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Clara Serrano-Zueras
- Department of Anaesthesiology, Intensive Care and Pain, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Martín Santos-González
- Medical and Surgical Research Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Antonio Romero-Berrocal
- Department of Anaesthesiology, Intensive Care and Pain, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Javier García-Fernández
- Department of Anaesthesiology, Intensive Care and Pain, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| |
Collapse
|
38
|
Kundu R, Ghosh S, Todi S. An observational study on the timing of intubation and outcome in COVID-19 ARDS patients who were treated with high flow nasal oxygen prior to invasive mechanical ventilation: A time series analysis (InOutHFNO trial). Indian J Anaesth 2023; 67:439-444. [PMID: 37333694 PMCID: PMC10269977 DOI: 10.4103/ija.ija_672_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/12/2023] [Accepted: 03/01/2023] [Indexed: 06/20/2023] Open
Abstract
Background and Aims Prolonged high flow nasal oxygen (HFNO) application might delay intubation and increase mortality in acute hypoxemic respiratory failure (AHRF) patients. Intubation in coronavirus disease 2019 (COVID-19) AHRF (CAHRF) patients 24 to 48 hours after HFNO initiation has been associated with increased mortality in previous studies. This cut-off period is variable in previous studies. A time series analysis could reflect more robust data on outcome in relation to HFNO duration before intubation in CAHRF. Methods A retrospective study was conducted at 30-bedded ICU of a tertiary care teaching hospital from July 2020 to August 2021. The study cohort comprised 116 patients who required HFNO and were subsequently intubated following HFNO failure. A time series analysis of patient outcomes on each day of HFNO application prior to invasive mechanical ventilation (IMV) was done. Results ICU and hospital mortality was 67.2%. Beyond day 4 of HFNO application, there was a trend towards increased risk-adjusted ICU and hospital mortality for each day delay in intubation of CAHRF patients on HFNO [OR 2.718; 95% CI 0.957-7.721; P 0.061]. This trend was maintained till day 8 of HFNO application, after which there was 100% mortality. Taking day four as a cut-off in the timeline of HFNO application, we have observed an absolute mortality benefit of 15% with early intubation despite a higher APACHE-IV score than the late intubation group. Conclusion IMV beyond the 4th day of HFNO initiation in CAHRF patients increases mortality.
Collapse
Affiliation(s)
- Rupak Kundu
- Department of Critical Care Medicine, AMRI Hospital, Dhakuria, Kolkata, India
| | - Sounak Ghosh
- Department of Internal Medicine, AMRI Hospital, Dhakuria, Kolkata, India
- Department of Academics and Research, AMRI Hospital, Dhakuria, Kolkata, India
| | - Subhash Todi
- Department of Critical Care Medicine, AMRI Hospital, Dhakuria, Kolkata, India
- Department of Internal Medicine, AMRI Hospital, Dhakuria, Kolkata, India
- Department of Academics and Research, AMRI Hospital, Dhakuria, Kolkata, India
| |
Collapse
|
39
|
Becker S, Schnitzler R, Rembecki M, Geppert J, Kurz CT, Wichelhaus LM, Timmesfeld N, Zahn PK. Individualized flow-controlled versus conventional pressure-controlled ventilation in on-pump heart surgery (FLOWVENTIN HEARTSURG): study protocol for a randomized controlled trial. Trials 2023; 24:195. [PMID: 36922825 PMCID: PMC10018968 DOI: 10.1186/s13063-023-07201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND In on-pump cardiac surgery, lungs are at high risk of periprocedural organ impairment because of atelectasis formation, ventilator-induced lung injury, and hyperinflammation due to the cardiopulmonary bypass which results in postoperative pulmonary complications in half of this patient population. The new ventilation mode flow-controlled ventilation (FCV) uniquely allows full control of ins- and expiratory airway flows. This approach reduces the mechanical power of invasive ventilation as a possible cause of ventilator-induced lung injury. The scope of FLOWVENTIN HEARTSURG is to compare perioperative individualized FCV with best clinical practice pressure-controlled ventilation (PVC) modes in patients with elective on-pump cardiac surgery procedures. We hypothesize that the postoperative inflammatory response can be reduced by the perioperative application of FCV compared to PCV. METHODS FLOWVENTIN HEARTSURG is a single-center, randomized, parallel-group trial with two intervention arms: perioperative PCV modes (n = 70, PCV group) with an individualized positive end-expiratory pressure (PEEP) and a tidal volume of 6-8 ml/kg predicted bodyweight compared to perioperative FCV (n = 70, FCV group) with an individualized PEEP and driving pressure, resulting in a liberal tidal volume. As the primary study endpoint interleukin 8 plasma level is assessed 6 h after cardiopulmonary bypass as a surrogate biomarker of systemic and pulmonary inflammation. As secondary aims clinically relevant patient outcomes are analyzed, e.g., perioperative lung function regarding oxygenation indices, postoperative pulmonary and extra-pulmonary complications, SIRS-free days as well as ICU and total inpatient stays. As additional sub-studies with an exploratory approach perioperative right ventricular function parameters are assessed by echocardiography and perioperative lung aeration by electrical impedance tomography. DISCUSSION Current paradigms regarding protective low tidal volume ventilation are consciously left in the FCV intervention group in order to reduce mechanical power as a determinant of ventilator-induced lung injury in this high-risk patient population and procedures. This approach will be compared in a randomized controlled trial with current best clinical practice PCV in FLOWVENTIN HEARTSURG. TRIAL REGISTRATION German Clinical Trials Register DRKS00018956 . Registered on 12 June 2020 (Version 1), last update on 22 August 2022 (Version 4).
Collapse
Affiliation(s)
- Simon Becker
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle de La Camp-Platz 1, 44789, Bochum, Germany.
| | - Romina Schnitzler
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle de La Camp-Platz 1, 44789, Bochum, Germany
| | - Martin Rembecki
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle de La Camp-Platz 1, 44789, Bochum, Germany
| | - Johannes Geppert
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle de La Camp-Platz 1, 44789, Bochum, Germany
| | - Christian T Kurz
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle de La Camp-Platz 1, 44789, Bochum, Germany
| | - Lisa-Marie Wichelhaus
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle de La Camp-Platz 1, 44789, Bochum, Germany
| | - Nina Timmesfeld
- Department of Medical Informatics, Biometry & Epidemiology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Peter K Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle de La Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
40
|
Jo YY, Chang YJ, Lee D, Kim YB, Jung J, Kwak HJ. Comparisons of Mechanical Power and Respiratory Mechanics in Pressure-Controlled Ventilation and Volume-Controlled Ventilation during Laparoscopic Cholecystectomy in Elderly Patients. J Pers Med 2023; 13:jpm13020201. [PMID: 36836435 PMCID: PMC9967818 DOI: 10.3390/jpm13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
We compared the effects of pressure-controlled volume-guaranteed ventilation (PCV) and volume-controlled ventilation (VCV) on respiratory mechanics and mechanical power (MP) in elderly patients undergoing laparoscopy. Fifty patients aged 65-80 years scheduled for laparoscopic cholecystectomy were randomly assigned to either the VCV group (n = 25) or the PCV group (n = 25). The ventilator had the same settings in both modes. The change in MP over time was insignificant between the groups (p = 0.911). MP significantly increased during pneumoperitoneum in both groups compared with anesthesia induction (IND). The increase in MP from IND to 30 min after pneumoperitoneum (PP30) was not different between the VCV and PCV groups. The change in driving pressure (DP) over time were significantly different between the groups during surgery, and the increase in DP from IND to PP30 was significantly higher in the VCV group than in the PCV group (both p = 0.001). Changes in MP during PCV and VCV were similar in elderly patients, and MP increased significantly during pneumoperitoneum in both groups. However, MP did not reach clinical significance (≥12 J/min). In contrast, the PCV group had a significantly lower increase in DP after pneumoperitoneum than the VCV group.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyun Jeong Kwak
- Correspondence: ; Tel.: +82-32-460-3637; Fax: +82-32-469-6319
| |
Collapse
|
41
|
Lu Z, Fang P, Xia D, Li M, Li S, Wang Y, Fu L, Sun G, You Q. The impact of aspirin exposure prior to intensive care unit admission on the outcomes for patients with sepsis-associated acute respiratory failure. Front Pharmacol 2023; 14:1125611. [PMID: 36937880 PMCID: PMC10014538 DOI: 10.3389/fphar.2023.1125611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives: This present study aimed to infer the association between aspirin exposure prior to ICU admission and the clinical outcomes of patients with Sepsis-associated acute respiratory failure (S-ARF). Methods: We obtained data from the Medical Information Mart for Intensive Care IV 2.0. Patients were divided into pre-ICU aspirin exposure group and Non-aspirin exposure group based on whether they took aspirin before ICU admission. The primary outcome is 28-day mortality. Augmented inverse propensity weighted was used to explore the average treatment effect (ATE) of the pre-ICU aspirin exposure. A generalized additive mixed model was used to analyze the longitudinal data of neutrophil to lymphocyte ratio (NLR), red cell distribution width (RDW), oxygenation index (P/F), dynamic lung compliance (Cdyn), mechanical power (MP), and mechanical power normalized to predicted body weight (WMP) in the two groups. A multiple mediation model was constructed to explore the possible mediators between pre-ICU aspirin exposure and outcomes of patients with S-ARF. Results: A total of 2090 S-ARF patients were included in this study. Pre-ICU aspirin exposure decreased 28-day mortality (ATE, -0.1945, 95% confidence interval [CI], -0.2786 to -0.1103, p < 0.001), 60-day mortality (ATE, -0.1781, 95% Cl, -0.2647 to -0.0915, p < 0.001), and hospital mortality (ATE, -0.1502, 95%CI, -0.2340 to -0.0664, p < 0.001). In subgroup analysis, the ATE for 28-day mortality, 60-day mortality, and hospital mortality were not statistically significant in the coronary care unit group, high-dose group (over 100 mg/d), and no invasive mechanical ventilation (IMV) group. After excluding these non-beneficiaries, Cdyn and P/F ratio of the pre-ICU aspirin exposure group increased by 0.31mL/cmH2O (SE, 0.21, p = 0.016), and 0.43 mmHg (SE, 0.24, p = 0.041) every hour compared to that of non-aspirin exposure group after initialing IMV. The time-weighted average of NLR, Cdyn, WMP played a mediating role of 8.6%, 24.7%, and 13% of the total effects of pre-ICU aspirin exposure and 28-day mortality, respectively. Conclusion: Pre-ICU aspirin exposure was associated with decreased 28-day mortality, 60-day mortality, and hospital mortality in S-ARF patients except those admitted to CCU, and those took a high-dose aspirin or did not receive IMV. The protective effect of aspirin may be mediated by a low dynamic level of NLR and a high dynamic level of Cdyn and WMP. The findings should be interpreted cautiously, given the sample size and potential for residual confounding.
Collapse
Affiliation(s)
- Zongqing Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Pu Fang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dunling Xia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengdie Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Seruo Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Lin Fu, ; Gengyun Sun, ; Qinghai You,
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Lin Fu, ; Gengyun Sun, ; Qinghai You,
| | - Qinghai You
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Lin Fu, ; Gengyun Sun, ; Qinghai You,
| |
Collapse
|
42
|
Al Hashim AH, Al-Zakwani I, Al Jadidi A, Al Harthi R, Al Naabi M, Biyappu R, Kodange S, Asati NK, Al Barhi T, Mohan M, Jagadeesan J, Sachez M, Sycaayao PS, Al Amrani K, Al Khalili H, Al Mamari R, Al-Busaidi M. Early Prone versus Supine Positioning in Moderate to Severe Coronavirus Disease 2019 Patients with Acute Respiratory Distress Syndrome. Oman Med J 2023; 38:e465. [PMID: 36895639 PMCID: PMC9990371 DOI: 10.5001/omj.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022] Open
Abstract
Objectives This study sought to determine whether early prone positioning of patients with moderate to severe COVID-19-related acute respiratory distress syndrome (ARDS) lowers the mortality rate. Methods We conducted a retrospective study using data from intensive care units of two tertiary centers in Oman. Adult patients with moderate to severe COVID-19-related ARDS with a PaO2/FiO2 ratio < 150 on FiO2 of 60% or more and a positive end-expiratory pressure of at least 8 cm H2O who were admitted between 1 May 2020 and 31 October 2020 were selected as participants. All patients were intubated and subjected to mechanical ventilation within 48 hours of admission and placed in either prone or supine position. Mortality was measured and compared between the patients from the two groups. Results A total of 235 patients were included (120 in the prone group and 115 in the supine group). There were no significant differences in mortality (48.3% vs. 47.8%; p =0.938) and discharge rates (50.8% vs. 51.3%; p =0.942) between the prone and supine groups, respectively. Conclusions Early prone positioning of patients with COVID-19-related ARDS does not result in a significant reduction in mortality.
Collapse
Affiliation(s)
- Abdul Hakeem Al Hashim
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Ibrahim Al-Zakwani
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Abdullah Al Jadidi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Ruqaiya Al Harthi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Maadh Al Naabi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Ramakrishna Biyappu
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Sonali Kodange
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Naveen Kumar Asati
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Tamadher Al Barhi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Mudhun Mohan
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Jayachandiran Jagadeesan
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Micheline Sachez
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Praisemabel S Sycaayao
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Khalfan Al Amrani
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Huda Al Khalili
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Rashid Al Mamari
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| | - Mujahid Al-Busaidi
- 1Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,2Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,3Anesthesia and Intensive Care Unit, Khoula Hospital, Muscat, Oman.,4Anesthesia and General Surgery, Oman Medical Specialty Board, Muscat, Oman.,5Anesthesia and Intensive Care Unit, Sultan Qaboos University Hospital, Muscat, Oman.,6Emergency Medicine, Sultan Qaboos University Hospital, Muscat, Oman.,7Anesthesia and Intensive Care Unit, Royal Hospital, Muscat, Oman
| |
Collapse
|
43
|
Mechanical Power in Prone Position Intubated Patients with COVID-19-Related ARDS: A Cohort Study. Crit Care Res Pract 2023; 2023:6604313. [PMID: 36911499 PMCID: PMC9995186 DOI: 10.1155/2023/6604313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/04/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Background Respiratory monitoring of mechanical ventilation (MV) is relevant and challenging in COVID-19. Mechanical power (MP) is a novel and promising monitoring tool in acute distress respiratory syndrome (ARDS), representing the amount of energy transferred from the ventilator to the patient. It encompasses several setting parameters and patient-dependent variables that could cause lung injury. MP can therefore be an additional tool in the assessment of these patients. Objective This study aims to evaluate respiratory monitoring through MP and its relationship with mortality in patients with COVID-19-related ARDS (CARDS) under mechanical ventilation (MV) and prone position (PP) strategies. Methods Retrospective, unicentric, and cohort studies. We included patients with CARDS under invasive MV and PP strategies. Information regarding MP, ventilation, and gas exchange was collected at 3 moments: (1) prior to the first PP, (2) during the first PP, and (3) during the last PP. We tested the relationship between MP and VR with in-hospital mortality. Results We included 91 patients. There was a statistically significant difference in MP measurements between survivors and nonsurvivors only in the last prone position (p < 0.001). This is due to the significant increase in MP measurements in nonsurvivors (difference from the baseline: 3.63 J/min; 95% CI: 0.31 to 6.94), which was not observed in the group that survived (difference from the baseline: 0.02 J/min; 95% CI: -2.66 to 2.70). In multivariate analysis, MP (p=0.009) was associated with hospital death when corrected for confounder variables (SAPS 3 score, mechanical ventilation time, age, and number of prone sessions). Conclusions MP is an independent predictor of mortality in PP patients with CARDS.
Collapse
|
44
|
Donohue KN, Sivanushanthan S, Etling E, Hockstein M, Yohannes S, Clark P. Incidence of barotrauma in patients with COVID-19 (alpha- and beta-predominant period) requiring mechanical ventilation: Single-center retrospective study. SAGE Open Med 2023; 11:20503121231159479. [PMID: 36941897 PMCID: PMC10020859 DOI: 10.1177/20503121231159479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Objective We sought to determine predictors, incidence, and interventions required for patients who developed barotrauma. Pneumothorax, subcutaneous emphysema, and pneumomediastinum have all been reported as complications related to COVID-19-positive patients requiring invasive mechanical ventilation. Methods In this retrospective study, clinical and imaging data from COVID-19 patients were collected and reviewed by two independent intensivists between January 4, 2020 and January 10, 2020. Data were used to identify COVID-19-positive patients requiring invasive mechanical ventilation and the incidence of barotrauma. Two separate cohorts were created as non-injured (no barotrauma) and injured (barotrauma present). We then sought to identify the risk factors for barotrauma in the non-injured cohort on Days 0, 7, 10, and 14 after intubation and day of injury in the injured cohort. Results Of the 264 patients with COVID-19, 55.8% were African American. The non-injured group was older (60 ± 15 versus 49 ± 16, p = 0.006), with male predominance in the injured group versus non-injured group (75% versus 55%). A total of 16 (6.5%) patients developed one or more complications of barotrauma, defined as subcutaneous emphysema, pneumothorax, or pneumomediastinum. Length of stay was longer for the injured group versus non-injured group (47 versus 25 days). Plateau pressure (p = 0.024), fraction of inspired oxygen (p < 0.001), and driving pressure (p = 0.001) were statistically significant in injured cohort. Mortality rate in non-injured versus injured was 49.4% versus 69%. Using random effect model, fraction of inspired oxygen (p = 0.003) and mean airway pressure (p = 0.010) were significant at the time of injury. When comparing alive versus deceased in the injured cohort, thoracostomy placement in alive versus deceased was 80% versus 54.5%. Conclusion COVID acute respiratory distress syndrome patients requiring invasive mechanical ventilation had a higher rate of barotrauma and were younger than those who did not develop barotrauma. Possible interventions to be considered to decrease barotrauma are decreased driving pressure goal and universal use of esophageal balloon manometry.
Collapse
Affiliation(s)
| | | | - Emily Etling
- Georgetown University School of
Medicine, Washington, DC, USA
| | - Michael Hockstein
- Department of Critical Care, MedStar
Washington Hospital Center, Washington, DC, USA
| | - Seife Yohannes
- Department of Critical Care, MedStar
Washington Hospital Center, Washington, DC, USA
| | - Paul Clark
- Department of Critical Care, MedStar
Washington Hospital Center, Washington, DC, USA
- Paul Clark, Department of Critical Care,
Medstar Washington Hospital Center, 110 Irving St NW, Washington, DC 20010, USA.
| |
Collapse
|
45
|
Effect of mechanical power on mortality in invasively ventilated ICU patients without the acute respiratory distress syndrome: An analysis of three randomised clinical trials. Ugeskr Laeger 2023; 40:21-28. [PMID: 36398740 DOI: 10.1097/eja.0000000000001778] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The mechanical power of ventilation (MP) has an association with outcome in invasively ventilated patients with the acute respiratory distress syndrome (ARDS). Whether a similar association exists in invasively ventilated patients without ARDS is less certain. OBJECTIVE To investigate the association of mechanical power with mortality in ICU patients without ARDS. DESIGN This was an individual patient data analysis that uses the data of three multicentre randomised trials. SETTING This study was performed in academic and nonacademic ICUs in the Netherlands. PATIENTS One thousand nine hundred and sixty-two invasively ventilated patients without ARDS were included in this analysis. The median [IQR] age was 67 [57 to 75] years, 706 (36%) were women. MAIN OUTCOME MEASURES The primary outcome was the all-cause mortality at day 28. Secondary outcomes were the all-cause mortality at day 90, and length of stay in ICU and hospital. RESULTS At day 28, 644 patients (33%) had died. Hazard ratios for mortality at day 28 were higher with an increasing MP, even when stratified for its individual components (driving pressure ( P < 0.001), tidal volume ( P < 0.001), respiratory rate ( P < 0.001) and maximum airway pressure ( P = 0.001). Similar associations of mechanical power (MP) were found with mortality at day 90, lengths of stay in ICU and hospital. Hazard ratios for mortality at day 28 were not significantly different if patients were stratified for MP, with increasing levels of each individual component. CONCLUSION In ICU patients receiving invasive ventilation for reasons other than ARDS, MP had an independent association with mortality. This finding suggests that MP holds an added predictive value over its individual components, making MP an attractive measure to monitor and possibly target in these patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02159196, ClinicalTrials.gov Identifier: NCT02153294, ClinicalTrials.gov Identifier: NCT03167580.
Collapse
|
46
|
Haudebourg AF, Tuffet S, Perier F, Razazi K, de Prost N, Mekontso Dessap A, Carteaux G. Driving pressure-guided ventilation decreases the mechanical power compared to predicted body weight-guided ventilation in the Acute Respiratory Distress Syndrome. Crit Care 2022; 26:185. [PMID: 35725498 PMCID: PMC9208543 DOI: 10.1186/s13054-022-04054-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Whether targeting the driving pressure (∆P) when adjusting the tidal volume in mechanically ventilated patients with the acute respiratory distress syndrome (ARDS) may decrease the risk of ventilator-induced lung injury remains a matter of research. In this study, we assessed the effect of a ∆P-guided ventilation on the mechanical power. Methods We prospectively included adult patients with moderate-to-severe ARDS. Positive end expiratory pressure was set by the attending physician and kept constant during the study. Tidal volume was first adjusted to target 6 ml/kg of predicted body weight (PBW-guided ventilation) and subsequently modified within a range from 4 to 10 ml/kg PBW to target a ∆P between 12 and 14 cm H2O. The respiratory rate was then re-adjusted within a range from 12 to 40 breaths/min until EtCO2 returned to its baseline value (∆P-guided ventilation). Mechanical power was computed at each step. Results Fifty-one patients were included between December 2019 and May 2021. ∆P-guided ventilation was feasible in all but one patient. The ∆P during PBW-guided ventilation was already within the target range of ∆P-guided ventilation in five (10%) patients, above in nine (18%) and below in 36 (72%). The change from PBW- to ∆P-guided ventilation was thus accompanied by an overall increase in tidal volume from 6.1 mL/kg PBW [5.9–6.2] to 7.7 ml/kg PBW [6.2–8.7], while respiratory rate was decreased from 29 breaths/min [26–32] to 21 breaths/min [16–28] (p < 0.001 for all comparisons). ∆P-guided ventilation was accompanied by a significant decrease in mechanical power from 31.5 J/min [28–35.7] to 28.8 J/min [24.6–32.6] (p < 0.001), representing a relative decrease of 7% [0–16]. With ∆P-guided ventilation, the PaO2/FiO2 ratio increased and the ventilatory ratio decreased. Conclusion As compared to a conventional PBW-guided ventilation, a ∆P-guided ventilation strategy targeting a ∆P between 12 and 14 cm H2O required to change the tidal volume in 90% of the patients. Such ∆P-guided ventilation significantly reduced the mechanical power. Whether this physiological observation could be associated with clinical benefit should be assessed in clinical trials.
Collapse
|
47
|
Mechanical power is associated with weaning outcome in critically ill mechanically ventilated patients. Sci Rep 2022; 12:19634. [PMID: 36385129 PMCID: PMC9669041 DOI: 10.1038/s41598-022-21609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Several single-center studies have evaluated the predictive performance of mechanical power (MP) on weaning outcomes in prolonged invasive mechanical ventilation (IMV) patients. The relationship between MP and weaning outcomes in all IMV patients has rarely been studied. A retrospective study was conducted on MIMIC-IV patients with IMV for more than 24 h to investigate the correlation between MP and weaning outcome using logistic regression model and subgroup analysis. The discriminative ability of MP, MP normalized to dynamic lung compliance (Cdyn-MP) and MP normalized to predicted body weight (PBW-MP) on weaning outcome were evaluated by analyzing the area under the receiver-operating characteristic (AUROC). Following adjustment for confounding factors, compared with the reference group, the Odds Ratio of weaning failure in the maximum MP, Cdyn-MP, and PBW-MP groups increased to 3.33 [95%CI (2.04-4.53), P < 0.001], 3.58 [95%CI (2.27-5.56), P < 0.001] and 5.15 [95%CI (3.58-7.41), P < 0.001], respectively. The discriminative abilities of Cdyn-MP (AUROC 0.760 [95%CI 0.745-0.776]) and PBW-MP (AUROC 0.761 [95%CI 0.744-0.779]) were higher than MP (AUROC 0.745 [95%CI 0.730-0.761]) (P < 0.05). MP is associated with weaning outcomes in IMV patients and is an independent predictor of the risk of weaning failure. Cdyn-MP and PBW-MP showed higher ability in weaning failure prediction than MP.
Collapse
|
48
|
Dam TA, Roggeveen LF, van Diggelen F, Fleuren LM, Jagesar AR, Otten M, de Vries HJ, Gommers D, Cremer OL, Bosman RJ, Rigter S, Wils EJ, Frenzel T, Dongelmans DA, de Jong R, Peters MAA, Kamps MJA, Ramnarain D, Nowitzky R, Nooteboom FGCA, de Ruijter W, Urlings-Strop LC, Smit EGM, Mehagnoul-Schipper DJ, Dormans T, de Jager CPC, Hendriks SHA, Achterberg S, Oostdijk E, Reidinga AC, Festen-Spanjer B, Brunnekreef GB, Cornet AD, van den Tempel W, Boelens AD, Koetsier P, Lens J, Faber HJ, Karakus A, Entjes R, de Jong P, Rettig TCD, Arbous S, Vonk SJJ, Machado T, Herter WE, de Grooth HJ, Thoral PJ, Girbes ARJ, Hoogendoorn M, Elbers PWG. Predicting responders to prone positioning in mechanically ventilated patients with COVID-19 using machine learning. Ann Intensive Care 2022; 12:99. [PMID: 36264358 PMCID: PMC9583049 DOI: 10.1186/s13613-022-01070-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Background For mechanically ventilated critically ill COVID-19 patients, prone positioning has quickly become an important treatment strategy, however, prone positioning is labor intensive and comes with potential adverse effects. Therefore, identifying which critically ill intubated COVID-19 patients will benefit may help allocate labor resources. Methods From the multi-center Dutch Data Warehouse of COVID-19 ICU patients from 25 hospitals, we selected all 3619 episodes of prone positioning in 1142 invasively mechanically ventilated patients. We excluded episodes longer than 24 h. Berlin ARDS criteria were not formally documented. We used supervised machine learning algorithms Logistic Regression, Random Forest, Naive Bayes, K-Nearest Neighbors, Support Vector Machine and Extreme Gradient Boosting on readily available and clinically relevant features to predict success of prone positioning after 4 h (window of 1 to 7 h) based on various possible outcomes. These outcomes were defined as improvements of at least 10% in PaO2/FiO2 ratio, ventilatory ratio, respiratory system compliance, or mechanical power. Separate models were created for each of these outcomes. Re-supination within 4 h after pronation was labeled as failure. We also developed models using a 20 mmHg improvement cut-off for PaO2/FiO2 ratio and using a combined outcome parameter. For all models, we evaluated feature importance expressed as contribution to predictive performance based on their relative ranking. Results The median duration of prone episodes was 17 h (11–20, median and IQR, N = 2632). Despite extensive modeling using a plethora of machine learning techniques and a large number of potentially clinically relevant features, discrimination between responders and non-responders remained poor with an area under the receiver operator characteristic curve of 0.62 for PaO2/FiO2 ratio using Logistic Regression, Random Forest and XGBoost. Feature importance was inconsistent between models for different outcomes. Notably, not even being a previous responder to prone positioning, or PEEP-levels before prone positioning, provided any meaningful contribution to predicting a successful next proning episode. Conclusions In mechanically ventilated COVID-19 patients, predicting the success of prone positioning using clinically relevant and readily available parameters from electronic health records is currently not feasible. Given the current evidence base, a liberal approach to proning in all patients with severe COVID-19 ARDS is therefore justified and in particular regardless of previous results of proning. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-022-01070-0.
Collapse
Affiliation(s)
- Tariq A Dam
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Luca F Roggeveen
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Fuda van Diggelen
- Quantitative Data Analytics Group, Department of Computer Science, Faculty of Science, VU University, Amsterdam, The Netherlands
| | - Lucas M Fleuren
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ameet R Jagesar
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Martijn Otten
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Heder J de Vries
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Diederik Gommers
- Department of Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Olaf L Cremer
- Intensive Care, UMC Utrecht, Utrecht, The Netherlands
| | | | - Sander Rigter
- Department of Anesthesiology and Intensive Care, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Evert-Jan Wils
- Department of Intensive Care, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Tim Frenzel
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dave A Dongelmans
- Department of Intensive Care Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Remko de Jong
- Intensive Care, Bovenij Ziekenhuis, Amsterdam, The Netherlands
| | - Marco A A Peters
- Intensive Care, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands
| | - Marlijn J A Kamps
- Intensive Care, Catharina Ziekenhuis Eindhoven, Eindhoven, The Netherlands
| | | | - Ralph Nowitzky
- Intensive Care, HagaZiekenhuis, Den Haag, The Netherlands
| | | | - Wouter de Ruijter
- Department of Intensive Care Medicine, Northwest Clinics, Alkmaar, The Netherlands
| | | | - Ellen G M Smit
- Intensive Care, Spaarne Gasthuis, Haarlem en Hoofddorp, The Netherlands
| | | | - Tom Dormans
- Intensive Care, Zuyderland MC, Heerlen, The Netherlands
| | | | | | | | | | - Auke C Reidinga
- ICU, SEH, BWC, Martiniziekenhuis, Groningen, The Netherlands
| | | | - Gert B Brunnekreef
- Department of Intensive Care, Ziekenhuisgroep Twente, Almelo, The Netherlands
| | - Alexander D Cornet
- Department of Intensive Care, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Walter van den Tempel
- Department of Intensive Care, Ikazia Ziekenhuis Rotterdam, Rotterdam, The Netherlands
| | | | - Peter Koetsier
- Intensive Care, Medisch Centrum Leeuwarden, Leeuwarden, The Netherlands
| | - Judith Lens
- ICU, IJsselland Ziekenhuis, Capelle aan den IJssel, The Netherlands
| | | | - A Karakus
- Department of Intensive Care, Diakonessenhuis Hospital, Utrecht, The Netherlands
| | - Robert Entjes
- Department of Intensive Care, Adrz, Goes, The Netherlands
| | - Paul de Jong
- Department of Anesthesia and Intensive Care, Slingeland Ziekenhuis, Doetinchem, The Netherlands
| | - Thijs C D Rettig
- Department of Anesthesiology, Intensive Care and Pain Medicine, Amphia Ziekenhuis, Breda, The Netherlands
| | | | | | | | | | - Harm-Jan de Grooth
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Patrick J Thoral
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Armand R J Girbes
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mark Hoogendoorn
- Quantitative Data Analytics Group, Department of Computer Science, Faculty of Science, VU University, Amsterdam, The Netherlands
| | - Paul W G Elbers
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
49
|
Mingote Á, Marrero García R, Santos González M, Castejón R, Salas Antón C, Vargas Nuñez JA, García-Fernández J. Individualizing mechanical ventilation: titration of driving pressure to pulmonary elastance through Young's modulus in an acute respiratory distress syndrome animal model. Crit Care 2022; 26:316. [PMID: 36258235 PMCID: PMC9578179 DOI: 10.1186/s13054-022-04184-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Background Mechanical ventilation increases the risk of lung injury (VILI). Some authors propose that the way to reduce VILI is to find the threshold of driving pressure below which VILI is minimized. In this study, we propose a method to titrate the driving pressure to pulmonary elastance in an acute respiratory distress syndrome model using Young’s modulus and its consequences on ventilatory-induced lung injury.
Material and methods 20 Wistar Han male rats were used. After generating an acute respiratory distress syndrome, two groups were studied: (a) standard protective mechanical ventilation: 10 rats received 150 min of mechanical ventilation with driving pressure = 14 cm H2O, tidal volume < 6 mL/kg) and (b) individualized mechanical ventilation: 10 rats received 150 min of mechanical ventilation with an individualized driving pressure according to their Young’s modulus. In both groups, an individualized PEEP was programmed in the same manner. We analyzed the concentration of IL-6, TNF-α, and IL-1ß in BAL and the acute lung injury score in lung tissue postmortem.
Results Global driving pressure was different between the groups (14 vs 11 cm H2O, p = 0.03). The individualized mechanical ventilation group had lower concentrations in bronchoalveolar lavage of IL-6 (270 pg/mL vs 155 pg/mL, p = 0.02), TNF-α (292 pg/mL vs 139 pg/mL, p < 0.01) and IL-1ß (563 pg/mL vs 131 pg/mL, p = 0.05). They presented lower proportion of lymphocytes (96% vs 79%, p = 0.05) as well as lower lung injury score (6.0 points vs 2.0 points, p = 0.02). Conclusion In our model, individualization of DP to pulmonary elastance through Young’s modulus decreases lung inflammation and structural lung injury without a significant impact on oxygenation.
Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04184-w.
Collapse
Affiliation(s)
- Álvaro Mingote
- grid.411171.30000 0004 0425 3881Anaesthesia, Critical Care and Pain Unit, Puerta de Hierro Majadahonda Universitary Hospital, Majadahonda. c/Manuel de Falla, 1, 28222 Madrid, Spain ,grid.5515.40000000119578126Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Ramsés Marrero García
- grid.410458.c0000 0000 9635 9413Anaesthesia, Critical Care Department and Pain Unit, Clinic Hospital, Barcelona, Spain
| | - Martín Santos González
- grid.411171.30000 0004 0425 3881Medical and Surgical Research Unit, Puerta de Hierro Majadahonda Universitary Hospital, Madrid, Spain
| | - Raquel Castejón
- Internal Medicine Laboratory, Puerta de Hierro Majadahonda Universitary Hospital Research Institute, Madrid, Spain
| | - Clara Salas Antón
- grid.411171.30000 0004 0425 3881Pathology Unit, Puerta de Hierro Majadahonda Universitary Hospital, Madrid, Spain
| | - Juan Antonio Vargas Nuñez
- grid.411171.30000 0004 0425 3881Internal Medicine Unit, Puerta de Hierro Majadahonda Universitary Hospital, Madrid, Spain ,grid.5515.40000000119578126Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Javier García-Fernández
- grid.411171.30000 0004 0425 3881Anaesthesia, Critical Care and Pain Unit, Puerta de Hierro Majadahonda Universitary Hospital, Majadahonda. c/Manuel de Falla, 1, 28222 Madrid, Spain ,grid.5515.40000000119578126Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
50
|
Jeon K. Critical Care Management Following Lung Transplantation. J Chest Surg 2022; 55:325-331. [PMID: 35924541 PMCID: PMC9358155 DOI: 10.5090/jcs.22.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Postoperative critical care management for lung transplant recipients in the intensive care unit (ICU) has expanded in recent years due to its complexity and impact on clinical outcomes. The practical aspects of post-transplant critical care management, especially regarding ventilation and hemodynamic management during the early postoperative period in the ICU, are discussed in this brief review. Monitoring in the ICU provides information on the patient’s clinical status, diagnostic assessment of complications, and future management plans since lung transplantation involves unique pathophysiological conditions and risk factors for complications. After lung transplantation, the grafts should be appropriately ventilated with lung protective strategies to prevent ventilator-induced lung injury, as well as to promote graft function and maintain adequate gas exchange. Hypotension and varying degrees of pulmonary edema are common in the immediate postoperative lung transplantation setting. Ventricular dysfunction in lung transplant recipients should also be considered. Therefore, adequate volume and hemodynamic management with vasoactive agents based on their physiological effects and patient response are critical in the early postoperative lung transplantation period. Integrated management provided by a professional multidisciplinary team is essential for the critical care management of lung transplant recipients in the ICU.
Collapse
Affiliation(s)
- Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|