1
|
Saha B, Sahu G, Sharma P. A Novel Therapeutic Approach With Sodium Pyruvate on Vital Signs, Acid–Base, and Metabolic Disturbances in Rats With a Combined Blast and Hemorrhagic Shock. Front Neurol 2022; 13:938076. [PMID: 36034304 PMCID: PMC9400716 DOI: 10.3389/fneur.2022.938076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Blast injuries from improvised explosive devices (IEDs) are known to cause blast traumatic brain injuries (bTBIs), hemorrhagic shock (HS), organ damage, mitochondrial dysfunction, and subsequent free radical production. A pre-citric acid cycle reagent, pyruvate, is suggested to improve mitochondrial ATP production through the activation of the mitochondrial gatekeeper enzyme “pyruvate dehydrogenase complex (PDH).” Our study aimed to investigate the role of physiologic, metabolic, and mitochondrial effects of hypertonic sodium pyruvate resuscitation in rats with a combined blast and HS injury. Methods A pre-clinical rat model of combined injury with repetitive 20 PSI blast exposure accompanied with HS and fluid resuscitation (sodium pyruvate as metabolic adjuvant or hypertonic saline as control), followed by transfusion of shed blood was used in this study. Control sham animals (instrumental and time-matched) received anesthesia and cannulation, but neither received any injury nor treatment. The mean arterial pressure and heart rate were recorded throughout the experiment by a computerized program. Blood collected at T0 (baseline), T60 (after HS), and T180 (end) was analyzed for blood chemistry and mitochondrial PDH enzyme activity. Results Sodium pyruvate resuscitation significantly improved the mean arterial pressure (MAP), heart rate (HR), pulse pressure (PP), hemodynamic stability (Shock index), and autonomic response (Kerdo index) after the HS and/or blast injury. Compared with the baseline values, plasma lactate and lactate/pyruvate ratios were significantly increased. In contrast, base excess BE/(HCO3-) was low and the pH was also acidotic <7.3, indicating the sign of metabolic acidosis after blast and HS in all animal groups. Sodium pyruvate infusion significantly corrected these parameters at the end of the experiment. The PDH activity also improved after the sodium pyruvate infusion. Conclusion In our rat model of a combined blast and HS injury, hypertonic sodium pyruvate resuscitation was significantly effective in hemodynamic stabilization by correcting the acid–base status and mitochondrial mechanisms via its pyruvate dehydrogenase enzyme.
Collapse
|
2
|
Barton GP, Macdonald EB, Goss KN, Eldridge MW, Fain SB. Measuring the link between cardiac mechanical function and metabolism during hyperpolarized 13C-pyruvate magnetic resonance experiments. Magn Reson Imaging 2020; 68:9-17. [PMID: 31978518 PMCID: PMC7131884 DOI: 10.1016/j.mri.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/19/2019] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE The goal of this study was to develop a methodology to investigate the relationship between contractile function and hyperpolarized (HP) [1-13C]pyruvate metabolism in a small animal model. To achieve sufficient signal from HP 13C compounds, HP 13C MRS/MRSI has required relatively large infusion volumes relative to the total blood volume in small animal models, which may affect cardiac function. METHODS Eight female Sprague Dawley rats were imaged on a 4.7T scanner with a dual tuned 1H/13C volume coil. ECG and respiratory gated k-t spiral MRSI and an IDEAL based reconstruction to determine [1-13C]pyruvate metabolism in the myocardium. This was coupled with 1H cine MRI to determine ventricular volumes and mechanical function pre- and post-infusion of [1-13C]pyruvate. For comparison to the [1-13C]pyruvate experiments, three female Sprague Dawley rats were imaged with 1H cine MRI to determine myocardial function pre- and post-saline infusion. RESULTS We demonstrated significant changes in cardiac contractile function between pre- and post-infusion of [1-13C]pyruvate. Specifically, there was an increase in end-diastolic volume (EDV), stroke volume (SV), and ejection fraction (EF). Additionally, the ventricular vascular coupling ratio (VVCR) showed an improvement after [1-13C]pyruvate infusion, indicating increased systolic performance due to an increased arterial load. There was a moderate to strong relationship between the downstream metabolic conversion of pyruvate to bicarbonate and a strong relationship between the conversion of pyruvate to lactate and the cardiac mechanical function response. CONCLUSION The infusion of [1-13C]pyruvate resulted in demonstrable increases in contractile function which was related to pyruvate conversion to bicarbonate and lactate. The combined effects of the infusion volume and inotropic effects of pyruvate metabolism likely explains the augmentation in myocardial mechanical function seen in these experiments. Given the relationship between pyruvate metabolism and contractile function observed in this study, this methodological approach may be utilized to better understand cardiac metabolic and functional remodeling in heart disease.
Collapse
Affiliation(s)
| | | | - Kara N Goss
- Medicine University of Wisconsin, Madison, WI, USA; Pediatrics University of Wisconsin, Madison, WI, USA
| | - Marlowe W Eldridge
- Pediatrics University of Wisconsin, Madison, WI, USA; Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Sean B Fain
- Medical Physics, University of Wisconsin, Madison, WI, USA; Biomedical Engineering, University of Wisconsin, Madison, WI, USA; Radiology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
3
|
Kasper JD, Meyer RA, Beard DA, Wiseman RW. Effects of altered pyruvate dehydrogenase activity on contracting skeletal muscle bioenergetics. Am J Physiol Regul Integr Comp Physiol 2018; 316:R76-R86. [PMID: 30462525 DOI: 10.1152/ajpregu.00321.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During aerobic exercise (>65% of maximum oxygen consumption), the primary source of acetyl-CoA to fuel oxidative ATP synthesis in muscle is the pyruvate dehydrogenase (PDH) reaction. This study investigated how regulation of PDH activity affects muscle energetics by determining whether activation of PDH with dichloroacetate (DCA) alters the dynamics of the phosphate potential of rat gastrocnemius muscle during contraction. Twitch contractions were induced in vivo over a broad range of intensities to sample submaximal and maximal aerobic workloads. Muscle phosphorus metabolites were measured in vivo before and after DCA treatment by phosphorus nuclear magnetic resonance spectroscopy. At rest, DCA increased PDH activation compared with control (90 ± 12% vs. 23 ± 3%, P < 0.05), with parallel decreases in inorganic phosphate (Pi) of 17% (1.4 ± 0.2 vs. 1.7 ± 0.1 mM, P < 0.05) and an increase in the free energy of ATP hydrolysis (ΔGATP) (-66.2 ± 0.3 vs. -65.6 ± 0.2 kJ/mol, P < 0.05). During stimulation DCA increased steady-state phosphocreatine (PCr) and the magnitude of ΔGATP, with concomitant reduction in Pi and ADP concentrations. These effects were not due to kinetic alterations in PCr hydrolysis, resynthesis, or glycolytic ATP production and altered the flow-force relationship between mitochondrial ATP synthesis rate and ΔGATP. DCA had no significant effect at 1.0- to 2.0-Hz stimulation because physiological mechanisms at these high stimulation levels cause maximal activation of PDH. These data support a role of PDH activation in the regulation of the energetic steady state by altering the phosphate potential (ΔGATP) at rest and during contraction.
Collapse
Affiliation(s)
- Jonathan D Kasper
- Department of Physiology, Michigan State University , East Lansing, Michigan
| | - Ronald A Meyer
- Department of Physiology, Michigan State University , East Lansing, Michigan.,Department of Radiology, Michigan State University , East Lansing, Michigan
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| | - Robert W Wiseman
- Department of Physiology, Michigan State University , East Lansing, Michigan.,Department of Radiology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
4
|
Zabielska MA, Adamus J, Kowalski R, Gebicki J, Slominska EM, Khalpey Z, Smolenski RT. Cardioprotective effect of N-methylnicotinamide salt of pyruvate in experimental model of cardiac hypoxia. Pharmacol Rep 2018; 70:378-384. [PMID: 29477947 DOI: 10.1016/j.pharep.2017.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pyruvate improves contractility of normal, hypoxic, and post-ischemic myocardium. However, sodium overload is a major problem with its therapeutic application if sodium pyruvate is used. Development of alternative forms such as N-1-methylnicotinamide (MNA) pyruvate may help to overcome this problem. The aim of the study was to investigate the effect of MNA pyruvate in a murine model of cardiac ischemia. METHODS Seven month old male ApoE-/-LDLr-/- mice that develop myocardial infarction when exposed to hypoxic stress, were used in this study. Hypoxia (8% O2 in inspired air) was maintained for 8min and was followed by reoxygenation (21% O2 in inspired air). Four groups of mice were treated 10min before the hypoxic event by intravenous injection of MNA, MNA pyruvate, sodium pyruvate, and saline as control. The myocardial ischemia and damage was recorded by ECG. Four hours following the hypoxic episode serum troponin T and creatine kinase activity were measured. RESULTS Significant hypernatremia was found in the sodium pyruvate group. During hypoxia, control and MNA group developed profound STU depressions on ECG while no changes were observed in MNA pyruvate and sodium pyruvate group. Creatine kinase activity and troponin T content in the mice plasma were significantly higher in the control and MNA group as compared to the MNA pyruvate and sodium pyruvate group. CONCLUSIONS This study demonstrated that administration of MNA pyruvate prior to a hypoxia-induced cardiac event was cardioprotective. This intervention did not cause hypernatremia in contrast to sodium pyruvate.
Collapse
Affiliation(s)
- Magdalena A Zabielska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland; Department of Physiology, Medical University of Gdansk, Gdańsk, Poland
| | - Jan Adamus
- Institute of Applied Radiation Chemistry, Technical University of Lodz, Łódź, Poland
| | - Robert Kowalski
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdansk, Gdańsk, Poland
| | - Jerzy Gebicki
- Institute of Applied Radiation Chemistry, Technical University of Lodz, Łódź, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Zain Khalpey
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona, College of Medicine, Tuscon, USA
| | | |
Collapse
|
5
|
Mallet RT, Olivencia-Yurvati AH, Bünger R. Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application. Exp Biol Med (Maywood) 2017; 243:198-210. [PMID: 29154687 DOI: 10.1177/1535370217743919] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiac contractile function is adenosine-5'-triphosphate (ATP)-intensive, and the myocardium's high demand for oxygen and energy substrates leaves it acutely vulnerable to interruptions in its blood supply. The myriad cardioprotective properties of the natural intermediary metabolite pyruvate make it a potentially powerful intervention against the complex injury cascade ignited by myocardial ischemia-reperfusion. A readily oxidized metabolic substrate, pyruvate augments myocardial free energy of ATP hydrolysis to a greater extent than the physiological fuels glucose, lactate and fatty acids, particularly when it is provided at supra-physiological plasma concentrations. Pyruvate also exerts antioxidant effects by detoxifying reactive oxygen and nitrogen intermediates, and by increasing nicotinamide adenine dinucleotide phosphate reduced form (NADPH) production to maintain glutathione redox state. These enhancements of free energy and antioxidant defenses combine to augment sarcoplasmic reticular Ca2+ release and re-uptake central to cardiac mechanical performance and to restore β-adrenergic signaling of ischemically stunned myocardium. By minimizing Ca2+ mismanagement and oxidative stress, pyruvate suppresses inflammation in post-ischemic myocardium. Thus, pyruvate administration stabilized cardiac performance, augmented free energy of ATP hydrolysis and glutathione redox systems, and/or quelled inflammation in a porcine model of cardiopulmonary bypass, a canine model of cardiac arrest-resuscitation, and a caprine model of hypovolemia and hindlimb ischemia-reperfusion. Pyruvate's myriad benefits in preclinical models provide the mechanistic framework for its clinical application as metabolic support for myocardium at risk. Phase one trials have demonstrated pyruvate's safety and efficacy for intravenous resuscitation for septic shock, intracoronary infusion for heart failure and as a component of cardioplegia for cardiopulmonary bypass. The favorable outcomes of these trials, which argue for expanded, phase three investigations of pyruvate therapy, mirror findings in isolated, perfused hearts, underscoring the pivotal role of preclinical research in identifying clinical interventions for cardiovascular diseases. Impact statement This article reviews pyruvate's cardioprotective properties as an energy-yielding metabolic fuel, antioxidant and anti-inflammatory agent in mammalian myocardium. Preclinical research has shown these properties make pyruvate a powerful intervention to curb the complex injury cascade ignited by ischemia and reperfusion. In ischemically stunned isolated hearts and in large mammal models of cardiopulmonary bypass, cardiac arrest-resuscitation and hypovolemia, intracoronary pyruvate supports recovery of myocardial contractile function, intracellular Ca2+ homeostasis and free energy of ATP hydrolysis, and its antioxidant actions restore β-adrenergic signaling and suppress inflammation. The first clinical trials of pyruvate for cardiopulmonary bypass, fluid resuscitation and intracoronary intervention for congestive heart failure have been reported. Receiver operating characteristic analyses show remarkable concordance between pyruvate's beneficial functional and metabolic effects in isolated, perfused hearts and in patients recovering from cardiopulmonary bypass in which they received pyruvate- vs. L-lactate-fortified cardioplegia. This research exemplifies the translation of mechanism-oriented preclinical studies to clinical application and outcomes.
Collapse
Affiliation(s)
- Robert T Mallet
- 1 Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Albert H Olivencia-Yurvati
- 1 Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA.,2 Department of Medical Education, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Rolf Bünger
- 3 Emeritus Member of the American Physiological Society, McLean, VA 22101, USA
| |
Collapse
|
6
|
Hermann R, Mestre Cordero VE, Fernández Pazos MDLM, Reznik FJ, Vélez DE, Savino EA, Marina Prendes MG, Varela A. Differential effects of AMP-activated protein kinase in isolated rat atria subjected to simulated ischemia-reperfusion depending on the energetic substrates available. Pflugers Arch 2017; 470:367-383. [PMID: 29032506 DOI: 10.1007/s00424-017-2075-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 12/31/2022]
Abstract
AMP-activated protein kinase (AMPK) is a serine-threonine kinase that functions primarily as a metabolic sensor to coordinate anabolic and catabolic processes in the cell, via phosphorylation of multiple proteins involved in metabolic pathways, aimed to re-establish energy homeostasis at a cell-autonomous level. Myocardial ischemia and reperfusion represents a metabolic stress situation for myocytes. Whether AMPK plays a critical role in the metabolic and functional responses involved in these conditions remains uncertain. In this study, in order to gain a deeper insight into the role of endogenous AMPK activation during myocardial ischemia and reperfusion, we explored the effects of the pharmacological inhibition of AMPK on contractile function rat, contractile reserve, tissue lactate production, tissue ATP content, and cellular viability. For this aim, isolated atria subjected to simulated 75 min ischemia-75 min reperfusion (Is-Rs) in the presence or absence of the pharmacological inhibitor of AMPK (compound C) were used. Since in most clinical situations of ischemia-reperfusion the heart is exposed to high levels of fatty acids, the influence of palmitate present in the incubation medium was also investigated. The present results suggest that AMPK activity significantly increases during Is, remaining activated during Rs. The results support that intrinsic activation of AMPK has functional protective effects in the reperfused atria when glucose is the only available energetic substrate whereas it is deleterious when palmitate is also available. Cellular viability was not affected by either of these conditions.
Collapse
Affiliation(s)
- Romina Hermann
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina.
| | - Victoria Evangelina Mestre Cordero
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - María de Las Mercedes Fernández Pazos
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - Federico Joaquín Reznik
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - Débora Elisabet Vélez
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - Enrique Alberto Savino
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - María Gabriela Marina Prendes
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| | - Alicia Varela
- Physiology Unit, Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires and IQUIMEFA-CONICET, Junín, 956, Buenos Aires, Argentina
| |
Collapse
|
7
|
Mitochondrial Bioenergetics During Ischemia and Reperfusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:141-167. [PMID: 28551786 DOI: 10.1007/978-3-319-55330-6_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During ischemia and reperfusion (I/R) mitochondria suffer a deficiency to supply the cardiomyocyte with chemical energy, but also contribute to the cytosolic ionic alterations especially of Ca2+. Their free calcium concentration ([Ca2+]m) mainly depends on mitochondrial entrance through the uniporter (UCam) and extrusion in exchange with Na+ (mNCX) driven by the electrochemical gradient (ΔΨm). Cardiac energetic is frequently estimated by the oxygen consumption, which determines metabolism coupled to ATP production and to the maintaining of ΔΨm. Nevertheless, a better estimation of heart energy consumption is the total heat release associated to ATP hydrolysis, metabolism, and binding reactions, which is measurable either in the presence or the absence of oxygenation or perfusion. Consequently, a mechano-calorimetrical approach on isolated hearts gives a tool to evaluate muscle economy. The mitochondrial role during I/R depends on the injury degree. We investigated the role of the mitochondrial Ca2+ transporters in the energetic of hearts stunned by a model of no-flow I/R in rat hearts. This chapter explores an integrated view of previous and new results which give evidences to the mitochondrial role in cardiac stunning by ischemia o hypoxia, and the influence of thyroid alterations and cardioprotective strategies, such as cardioplegic solutions (high K-low Ca, pyruvate) and the phytoestrogen genistein in both sex. Rat ventricles were perfused in a flow-calorimeter at either 30 °C or 37 °C to continuously measure the left ventricular pressure (LVP) and total heat rate (Ht). A pharmacological treatment was done before exposing to no-flow I and R. The post-ischemic contractile (PICR as %) and energetical (Ht) recovery and muscle economy (Eco: P/Ht) were determined during stunning. The functional interaction between mitochondria (Mit) and sarcoplasmic reticulum (SR) was evaluated with selective mitochondrial inhibitors in hearts reperfused with Krebs-10 mM caffeine-36 mM Na+. The caffeine induced contracture (CIC) was due to SR Ca2+ release, while relaxation mainly depends on mitochondrial Ca2+ uptake since neither SL-NCX nor SERCA are functional under this media. The ratio of area-under-curves over ischemic values (AUC-ΔHt/AUC-ΔLVP) estimates the energetical consumption (EC) to maintain CIC. Relaxation of CIC was accelerated by inhibition of mNCX or by adding the aerobic substrate pyruvate, while both increased EC. Contrarily, relaxation was slowed by cardioplegia (high K-low Ca Krebs) and by inhibition of UCam. Thus, Mit regulate the cytosolic [Ca2+] and SR Ca2+ content. Both, hyperthyroidism (HpT) and hypothyroidism (HypoT) reduced the peak of CIC but increased EC, in spite of improving PICR. Both, CIC and PICR in HpT were also sensitive to inhibition of mNCX or UCam, suggesting that Mit contribute to regulate the SR store and Ca2+ release. The interaction between mitochondria and SR and the energetic consequences were also analyzed for the effects of genistein in hearts exposed to I/R, and for the hypoxia/reoxygenation process. Our results give evidence about the mitochondrial regulation of both PICR and energetic consumption during stunning, through the Ca2+ movement.
Collapse
|
8
|
Gao E, Jiang Y, Li Z, Xue D, Zhang W. Association between high mobility group box‑1 protein expression and cell death in acute pancreatitis. Mol Med Rep 2017; 15:4021-4026. [PMID: 28440506 PMCID: PMC5436195 DOI: 10.3892/mmr.2017.6496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/20/2017] [Indexed: 01/03/2023] Open
Abstract
The present study used caerulein stimulation of AR42J rat pancreatic cells as an in vitro acute pancreatitis (AP) model to investigate proteins differentially expressed in apoptosis and necrosis. AR42J cells were stimulated with 10‑8mol/l caerulein and incubated for 24 h. Apoptosis and necrosis were detected using flow cytometry. The sorted Annexin V‑positive cells (apoptotic) and the Annexin V/propidium iodide double‑positive cells (necrotic) were analysed using proteomics. Results showed that numerous proteins were differentially expressed in these 2 groups. Functional enrichment analysis was performed on the differentially expressed genes using the Database for Annotation, Visualization and Integrated Discovery. High mobility group box‑1 protein (HMGB1) was specifically expressed in the necrosis group. Models of varying degrees of AP were established using caerulein at concentrations of 10‑9, 10‑8, 10‑7, 10‑6 and 10‑5 mol/l. The percentage of apoptotic and necrotic cells in each group was determined using flow cytometry. Protein expression levels of HMGB1 were detected by western blot analysis. The present study showed that as the concentration of caerulein increased, the percentage of necrotic cells and the protein expression levels of HMGB1 increased. HMGB1 is involved in many biological processes, including the chromosomal protein glycyl lysine isopeptide cross‑link. HMGB1 may be involved in the early stage of pancreatitis, potentially by inducing the development of cell death by necrosis. These results provide an experimental basis for clinical intervention in AP.
Collapse
Affiliation(s)
- Enjun Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanfeng Jiang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhituo Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Weihui Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
9
|
Kuzmiak-Glancy S, Jaimes R, Wengrowski AM, Kay MW. Oxygen demand of perfused heart preparations: how electromechanical function and inadequate oxygenation affect physiology and optical measurements. Exp Physiol 2016; 100:603-16. [PMID: 25865254 DOI: 10.1113/ep085042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/09/2015] [Indexed: 01/22/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically relevant measurements during ex vivo perfused heart studies.
Collapse
Affiliation(s)
- Sarah Kuzmiak-Glancy
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Rafael Jaimes
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Anastasia M Wengrowski
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.,Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| |
Collapse
|
10
|
Ruiz M, Gélinas R, Vaillant F, Lauzier B, Des Rosiers C. Metabolic Tracing Using Stable Isotope-Labeled Substrates and Mass Spectrometry in the Perfused Mouse Heart. Methods Enzymol 2015; 561:107-47. [PMID: 26358903 DOI: 10.1016/bs.mie.2015.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been a resurgence of interest for the field of cardiac metabolism catalyzed by evidence demonstrating a role of metabolic dysregulation in the pathogenesis of heart disease as well as the increased need for new therapeutic targets for patients with these diseases. In this regard, measuring substrate fluxes is critical in providing insight into the dynamics of cellular metabolism and in delineating the regulation of metabolite production and utilization. This chapter provides a comprehensive description of concepts, guidelines, and tips to assess metabolic fluxes relevant to energy substrate metabolism using (13)C-labeled substrates and (13)C-isotopomer analysis by gas chromatography-mass spectrometry (GC-MS), and the ex vivo working heart as study model. The focus will be on the mouse and on flux parameters, which are commonly assessed in the field, namely, those relevant to substrate selection for energy metabolism, specifically the relative contribution of carbohydrate (glucose, lactate, and pyruvate) and fatty acid oxidation to acetyl-CoA formation for citrate synthesis, glycolysis, as well as anaplerosis. We provide detailed procedures for the heart isolation and perfusion in the working mode as well as for sample processing for metabolite extraction and analysis by GC-MS and subsequent data processing for calculation of metabolic flux parameters. Finally, we address practical considerations and discuss additional applications and future challenges.
Collapse
Affiliation(s)
- Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Roselle Gélinas
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Fanny Vaillant
- IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux, Université de Bordeaux, Bordeaux, France; Inserm U1045 Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | | | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Jaimes R, Kuzmiak-Glancy S, Brooks DM, Swift LM, Posnack NG, Kay MW. Functional response of the isolated, perfused normoxic heart to pyruvate dehydrogenase activation by dichloroacetate and pyruvate. Pflugers Arch 2015; 468:131-142. [PMID: 26142699 DOI: 10.1007/s00424-015-1717-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022]
Abstract
Dichloroacetate (DCA) and pyruvate activate pyruvate dehydrogenase (PDH), a key enzyme that modulates glucose oxidation and mitochondrial NADH production. Both compounds improve recovery after ischemia in isolated hearts. However, the action of DCA and pyruvate in normoxic myocardium is incompletely understood. We measured the effect of DCA and pyruvate on contraction, mitochondrial redox state, and intracellular calcium cycling in isolated rat hearts during normoxic perfusion. Normalized epicardial NADH fluorescence (nNADH) and left ventricular developed pressure (LVDP) were measured before and after administering DCA (5 mM) or pyruvate (5 mM). Optical mapping of Rhod-2AM was used to measure cytosolic calcium kinetics. DCA maximally activated PDH, increasing the ratio of active to total PDH from 0.48 ± 0.03 to 1.03 ± 0.03. Pyruvate sub-maximally activated PDH to a ratio of 0.75 ± 0.02. DCA and pyruvate increased LVDP. When glucose was the only exogenous fuel, pyruvate increased nNADH by 21.4 ± 2.9 % while DCA reduced nNADH by 21.4 ± 6.1 % and elevated the incidence of premature ventricular contractions (PVCs). When lactate, pyruvate, and glucose were provided together as exogenous fuels, nNADH increased with DCA, indicating that PDH activation with glucose as the only exogenous fuel depletes PDH substrate. Calcium transient time-to-peak was shortened by DCA and pyruvate and SR calcium re-uptake was 30 % longer. DCA and pyruvate increased SR calcium load in myocyte monolayers. Overall, during normoxia when glucose is the only exogenous fuel, DCA elevates SR calcium, increases LVDP and contractility, and diminishes mitochondrial NADH. Administering DCA with plasma levels of lactate and pyruvate mitigates the drop in mitochondrial NADH and prevents PVCs.
Collapse
Affiliation(s)
- Rafael Jaimes
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA
| | - Sarah Kuzmiak-Glancy
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA
| | - Daina M Brooks
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA
| | - Luther M Swift
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20052, USA
| | - Nikki G Posnack
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20052, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800 22nd Street NW, Suite 5000, Washington, DC, 20052, USA.
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
12
|
Cherry BH, Nguyen AQ, Hollrah RA, Williams AG, Hoxha B, Olivencia-Yurvati AH, Mallet RT. Pyruvate stabilizes electrocardiographic and hemodynamic function in pigs recovering from cardiac arrest. Exp Biol Med (Maywood) 2015; 240:1774-84. [PMID: 26088865 DOI: 10.1177/1535370215590821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/05/2015] [Indexed: 11/15/2022] Open
Abstract
Cardiac electromechanical dysfunction may compromise recovery of patients who are initially resuscitated from cardiac arrest, and effective treatments remain elusive. Pyruvate, a natural intermediary metabolite, energy substrate, and antioxidant, has been found to protect the heart from ischemia-reperfusion injury. This study tested the hypothesis that pyruvate-enriched resuscitation restores hemodynamic, metabolic, and electrolyte homeostasis following cardiac arrest. Forty-two Yorkshire swine underwent pacing-induced ventricular fibrillation and, after 6 min pre-intervention arrest, 4 min precordial compressions followed by transthoracic countershocks. After defibrillation and recovery of spontaneous circulation, the pigs were monitored for another 4 h. Sodium pyruvate or NaCl were infused i.v. (0.1 mmol·kg(-1)·min(-1)) throughout precordial compressions and the first 60 min recovery. In 8 of the 24 NaCl-infused swine, the first countershock converted ventricular fibrillation to pulseless electrical activity unresponsive to subsequent countershocks, but only 1 of 18 pyruvate-treated swine developed pulseless electrical activity (relative risk 0.17; 95% confidence interval 0.13-0.22). Pyruvate treatment also lowered the dosage of vasoconstrictor phenylephrine required to maintain systemic arterial pressure at 15-60 min recovery, hastened clearance of excess glucose, elevated arterial bicarbonate, and raised arterial pH; these statistically significant effects persisted up to 3 h after sodium pyruvate infusion, while infusion-induced hypernatremia subsided. These results demonstrate that pyruvate-enriched resuscitation achieves electrocardiographic and hemodynamic stability in swine during the initial recovery from cardiac arrest. Such metabolically based treatment may offer an effective strategy to support cardiac electromechanical recovery immediately after cardiac arrest.
Collapse
Affiliation(s)
- Brandon H Cherry
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Institute of Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Anh Q Nguyen
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Roger A Hollrah
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Arthur G Williams
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Besim Hoxha
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albert H Olivencia-Yurvati
- Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Department of Surgery, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Robert T Mallet
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Department of Surgery, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| |
Collapse
|
13
|
Schooley JF, Namboodiri AMA, Cox RT, Bünger R, Flagg TP. Acetate transiently inhibits myocardial contraction by increasing mitochondrial calcium uptake. BMC PHYSIOLOGY 2014; 14:12. [PMID: 25488103 PMCID: PMC4274725 DOI: 10.1186/s12899-014-0012-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 11/24/2014] [Indexed: 02/02/2023]
Abstract
Background There is a close relationship between cardiovascular disease and cardiac energy metabolism, and we have previously demonstrated that palmitate inhibits myocyte contraction by increasing Kv channel activity and decreasing the action potential duration. Glucose and long chain fatty acids are the major fuel sources supporting cardiac function; however, cardiac myocytes can utilize a variety of substrates for energy generation, and previous studies demonstrate the acetate is rapidly taken up and oxidized by the heart. In this study, we tested the effects of acetate on contractile function of isolated mouse ventricular myocytes. Results Acute exposure of myocytes to 10 mM sodium acetate caused a marked, but transient, decrease in systolic sarcomere shortening (1.49 ± 0.20% vs. 5.58 ± 0.49% in control), accompanied by a significant increase in diastolic sarcomere length (1.81 ± 0.01 μm vs. 1.77 ± 0.01 μm in control), with a near linear dose response in the 1–10 mM range. Unlike palmitate, acetate caused no change in action potential duration; however, acetate markedly increased mitochondrial Ca2+ uptake. Moreover, pretreatment of cells with the mitochondrial Ca2+ uptake blocker, Ru-360 (10 μM), markedly suppressed the effect of acetate on contraction. Conclusions Lehninger and others have previously demonstrated that the anions of weak aliphatic acids such as acetate stimulate Ca2+ uptake in isolated mitochondria. Here we show that this effect of acetate appears to extend to isolated cardiac myocytes where it transiently modulates cell contraction.
Collapse
Affiliation(s)
- James F Schooley
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| | - Aryan M A Namboodiri
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| | - Rachel T Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University for the Health Sciences, Bethesda, 20814, MD, USA.
| | - Rolf Bünger
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| | - Thomas P Flagg
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University for the Health Sciences, 4301 Jones Bridge Road, Rm. C-2114, Bethesda, 20814, MD, USA.
| |
Collapse
|
14
|
Bonazzola P, Ragone MI, Consolini AE. Effects of pyruvate on the energetics of rat ventricles stunned by ischemia–reperfusion. Can J Physiol Pharmacol 2014; 92:386-98. [DOI: 10.1139/cjpp-2013-0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pyruvate (Pyr) was proposed as an additive to cold high-K+–low-Ca2+ cardioplegia (CPG) to protect the heart during surgery. We explored whether Pyr and CPG would work synergistically to protect rat hearts from stunning during ischemia–reperfusion (I/R). We measured the heat release and contractility of perfused ventricles during I/R, and the cytosolic and mitochondrial [Ca2+] in cardiomyocytes by confocal microscopy. We found that under cold-CPG (30 °C), 10 mmol·L−1 Pyr reduced the post-ischemic contractile recovery (PICR) as well as muscle economy, when added either before ischemia or during I/R, which was reversed by blockade of UCam. In noncardioplegic hearts, Pyr was cardioprotective when it was present during I/R, more so at 37 °C than at 30 °C, with improved economy. In cardiomyocytes, the addition of Pyr to CPG slightly increased the mitochondrial [Ca2+] but decreased cytosolic [Ca2+]. The results suggest that Pyr only protects hearts from stunning when present before ischemia and during reperfusion, and that it dampens the cardioprotective properties of CPG. The mechanisms underlying such different behavior depend on the dynamic balance between Pyr stimulation of the energetic state and mitochondrial Ca2+ uptake. Our results support the use of Pyr in stunned hearts, but not in cold high-K+ cardioplegia.
Collapse
Affiliation(s)
- Patricia Bonazzola
- Cátedra de Biofísica, Facultad de Odontología e Instituto de Investigaciones Cardiológicas (CONICET, Facultad de Medicina), Universidad de Buenos Aires (UBA), Argentina
| | - María Inés Ragone
- Cátedra de Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, Argentina
| | - Alicia E. Consolini
- Cátedra de Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, Argentina
| |
Collapse
|
15
|
Gurji HA, White DW, Hoxha B, Sun J, Harbor JP, Schulz DR, Williams AG, Olivencia-Yurvati AH, Mallet RT. Pyruvate-enriched resuscitation: metabolic support of post-ischemic hindlimb muscle in hypovolemic goats. Exp Biol Med (Maywood) 2014; 239:240-9. [PMID: 24414481 DOI: 10.1177/1535370213514329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tourniquet-imposed ischemia-reperfusion of extremities generates reactive oxygen and nitrogen species (RONS), which can disrupt intermediary metabolism and ATP production. This study tested the hypothesis that fluid resuscitation with pyruvate, a natural antioxidant and metabolic fuel, ameliorates the deleterious effects of ischemia-reperfusion on intermediary metabolism in skeletal muscle. Anesthetized male goats (∼25 kg) were bled to a mean arterial pressure of 48 ± 1 mmHg and then subjected to 90 min hindlimb ischemia with a tourniquet and femoral crossclamp, followed by 4-h reperfusion. Lactated Ringers (LR) or pyruvate Ringers (PR) was infused intravenous for 90 min, from 30 min ischemia to 30 min reperfusion, to deliver 0.05 mmol kg(-1) min(-1) lactate or pyruvate. Time controls (TC) underwent neither hemorrhage nor hindlimb ischemia. Lipid peroxidation product 8-isoprostane, RONS-sensitive aconitase and creatine kinase activities, antioxidant superoxide dismutase activity, and phosphocreatine phosphorylation potential ([PCr]/[{Cr}{P(i)}]), an index of tissue energy state, were measured in reperfused gastrocnemius at 90 min resuscitation (n = 6 all groups) and 3.5 h post-resuscitation (n = 8 TC, 9 LR, 10 PR). PR more effectively than LR suppressed 8-isoprostane formation, prevented inactivation of aconitase and creatine kinase, doubled superoxide dismutase activity, and augmented [PCr]/([Cr][P(i)]). Pyruvate-enriched Ringer's is metabolically superior to Ringer's lactate for fluid resuscitation of tourniqueted muscle.
Collapse
Affiliation(s)
- Hunaid A Gurji
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gurji HA, White DW, Hoxha B, Sun J, Olivencia-Yurvati AH, Mallet RT. Pyruvate-fortified resuscitation stabilizes cardiac electrical activity and energy metabolism during hypovolemia. World J Crit Care Med 2013; 2:56-64. [PMID: 24701417 PMCID: PMC3953871 DOI: 10.5492/wjccm.v2.i4.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/20/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To test the hypothesis that fluid resuscitation with Ringer’s solution enriched with pyruvate (PR), a physiological antioxidant and energy substrate, affords protection of myocardial metabolism and electrophysiological performance superior to lactated Ringer’s (LR) during hypovolemia and hindlimb ischemia-reperfusion.
METHODS: Male domestic goats (25-30 kg) were exsanguinated to a mean arterial pressure of 48 ± 1 mmHg. Right hindlimb ischemia was imposed for 90 min by applying a tourniquet and femoral crossclamp. LR or PR, infused iv, delivered 0.05 mmol/kg per minute L-lactate or pyruvate, respectively, from 30 min hindlimb ischemia until 30 min post-ischemia. Time controls (TC) underwent neither hemorrhage, hindlimb ischemia nor resuscitation. Goats were sacrificed and left ventricular myocardium biopsied at 90 min fluid resuscitation (n = 6 per group) or 3.5 h later (n = 9 LR, 10 PR, 8 TC).
RESULTS: Myocardial 8-isoprostane content, phosphocreatine phosphorylation potential, creatine kinase activity, and heart rate-adjusted QT interval (QTc) variability were evaluated at 90 min resuscitation and 3.5 h post-resuscitation. PR sharply lowered pro-arrhythmic QTc variability vs LR (P < 0.05); this effect persisted 3.5 h post-resuscitation. PR lowered myocardial 8-isoprostane content, a product of oxidative stress, by 39 and 37% during and 3.5 h after resuscitation, respectively, vs LR. Creatine kinase activity fell 42% post-LR vs TC (P < 0.05), but was stable post-PR (P < 0.02 vs post-LR). PR doubled phosphocreatine phosphorylation potential, a measure of ATP free energy state, vs TC and LR (P < 0.05); this energetic enhancement persisted 3.5 h post-resuscitation.
CONCLUSION: By augmenting myocardial energy state and protecting creatine kinase activity, pyruvate-enriched resuscitation stabilized cardiac electrical function during central hypovolemia and hindlimb ischemia-reperfusion.
Collapse
|
17
|
Torres CAA, Varian KD, Canan CH, Davis JP, Janssen PML. The positive inotropic effect of pyruvate involves an increase in myofilament calcium sensitivity. PLoS One 2013; 8:e63608. [PMID: 23691074 PMCID: PMC3655183 DOI: 10.1371/journal.pone.0063608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/04/2013] [Indexed: 01/26/2023] Open
Abstract
Pyruvate is a metabolic fuel that is a potent inotropic agent. Despite its unique inotropic and antioxidant properties, the molecular mechanism of its inotropic mechanism is still largely unknown. To examine the inotropic effect of pyruvate in parallel with intracellular calcium handling under near physiological conditions, we measured pH, myofilament calcium sensitivity, developed force, and calcium transients in ultra thin rabbit heart trabeculae at 37 °C loaded iontophoretically with the calcium indicator bis-fura-2. By contrasting conditions of control versus sarcoplasmic reticulum block (with either cyclopiazonic acid and ryanodine or with thapsigargin) we were able to characterize and isolate the effects of pyruvate on sarcoplasmic reticulum calcium handling and developed force. A potassium contracture technique was subsequently utilized to assess the force-calcium relationship and thus the myofilament calcium sensitivity. Pyruvate consistently increased developed force whether or not the sarcoplasmic reticulum was blocked (16.8±3.5 to 24.5±5.1 vs. 6.9±2.6 to 12.5±4.4 mN/mm(2), non-blocked vs. blocked sarcoplasmic reticulum respectively, p<0.001, n = 9). Furthermore, the sensitizing effect of pyruvate on the myofilaments was demonstrated by potassium contractures (EC50 at baseline versus 20 minutes of pyruvate infusion (peak force development) was 701±94 vs. 445±65 nM, p<0.01, n = 6). This study is the first to demonstrate that a leftward shift in myofilament calcium sensitivity is an important mediator of the inotropic effect of pyruvate. This finding can have important implications for future development of therapeutic strategies in the management of heart failure.
Collapse
Affiliation(s)
- Carlos A. A. Torres
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Kenneth D. Varian
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Cynthia H. Canan
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan P. Davis
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
18
|
Lai RC, Yeo RWY, Tan KH, Lim SK. Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation. Regen Med 2013; 8:197-209. [DOI: 10.2217/rme.13.4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
19
|
Nagendran J, Waller TJ, Dyck JRB. AMPK signalling and the control of substrate use in the heart. Mol Cell Endocrinol 2013; 366:180-93. [PMID: 22750050 DOI: 10.1016/j.mce.2012.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/29/2012] [Accepted: 06/21/2012] [Indexed: 12/21/2022]
Abstract
All mammalian cells rely on adenosine triphosphate (ATP) to maintain function and for survival. The heart has the highest basal ATP demand of any organ due to the necessity for continuous contraction. As such, the ability of the cardiomyocyte to monitor cellular energy status and adapt the supply of substrates to match the energy demand is crucial. One important serine/threonine protein kinase that monitors cellular energy status in the heart is adenosine monophosphate activated protein kinase (AMPK). AMPK is also a key enzyme that controls multiple catabolic and anabolic biochemical pathways in the heart and indirectly plays a crucial role in regulating cardiac function in both physiological and pathophysiological conditions. Herein, we review the involvement of AMPK in myocardial fatty acid and glucose transport and utilization, as it relates to basal cardiac function. We also assess the literature amassed on cardiac AMPK and discuss the controversies surrounding the role of AMPK in physiological and pathophysiological processes in the heart. The work reviewed herein also emphasizes areas that require further investigation for the purpose of eventually translating this information into improved patient care.
Collapse
Affiliation(s)
- Jeevan Nagendran
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
20
|
Suranadi IW, Demaison L, Chaté V, Peltier S, Richardson M, Leverve X. An increase in the redox state during reperfusion contributes to the cardioprotective effect of GIK solution. J Appl Physiol (1985) 2012; 113:775-84. [PMID: 22797310 DOI: 10.1152/japplphysiol.01153.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study aimed at determining whether glucose-insulin-potassium (GIK) solutions modify the NADH/NAD(+) ratio during postischemic reperfusion and whether their cardioprotective effect can be attributed to this change in part through reduction of the mitochondrial reactive oxygen species (ROS) production. The hearts of 72 rats were perfused with a buffer containing glucose (5.5 mM) and hexanoate (0.5 mM). They were maintained in normoxia for 30 min and then subjected to low-flow ischemia (0.5% of the preischemic coronary flow for 20 min) followed by reperfusion (45 min). From the beginning of ischemia, the perfusate was subjected to various changes: enrichment with GIK solution, enrichment with lactate (2 mM), enrichment with pyruvate (2 mM), enrichment with pyruvate (2 mM) plus ethanol (2 mM), or no change for the control group. Left ventricular developed pressure, heart rate, coronary flow, and oxygen consumption were monitored throughout. The lactate/pyruvate ratio of the coronary effluent, known to reflect the cytosolic NADH/NAD(+) ratio and the fructose-6-phosphate/dihydroxyacetone-phosphate (F6P/DHAP) ratio of the reperfused myocardium, were evaluated. Mitochondrial ROS production was also estimated. The GIK solution improved the recovery of mechanical function during reperfusion. This was associated with an enhanced cytosolic NADH/NAD(+) ratio and reduced mitochondrial ROS production. The cardioprotection was also observed when the hearts were perfused with fluids known to increase the cytosolic NADH/NAD(+) ratio (lactate, pyruvate plus ethanol) compared with the other fluids (control and pyruvate groups). The hearts with a high mechanical recovery also displayed a low F6P/DHAP ratio, suggesting that an accelerated glycolysis rate may be responsible for increased cytosolic NADH production. In conclusion, the cardioprotection induced by GIK solutions could occur through an increase in the cytosolic NADH/NAD(+) ratio, leading to a decrease in mitochondrial ROS production.
Collapse
Affiliation(s)
- I W Suranadi
- Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | | | | | | | | | | |
Collapse
|
21
|
Consolini AE, Ragone MI, Bonazzola P. Mitochondrial and cytosolic calcium in rat hearts under high-K(+) cardioplegia and pyruvate: mechano-energetic performance. Can J Physiol Pharmacol 2011; 89:485-96. [PMID: 21812526 DOI: 10.1139/y11-042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-K(+)-cardioplegia (CPG) and pyruvate (Pyr) are used as cardioprotective agents. Considering that mitochondria play a critical role in cardiac dysfunction, we investigated the effect of CPG on mitochondrial Ca(2+) uptake and sarcorreticular (SR) calcium handling. Cytosolic and mitochondrial Ca(2+), as well as mitochondrial membrane potential (ΔΨm) were assessed in rat cardiomyocytes by confocal microscopy. Mechano-calorimetrical correlation was studied in perfused hearts. CPG did not modify JC-1 (ΔΨm), but transiently increased, by up to 1.8 times, the Fura-2 (intracellular Ca concentration, [Ca(2+)]i) and Rhod-2 (mitochondrial free Ca concentration [Ca(2+)]m) fluorescence of resting cells, with exponential decays. The addition of 5 µmol·L(-1) thapsigargin (Tpg) increased the Rhod-2 fluorescence in a group of cells without any effect on the Fura-2 signal. In rat hearts perfused with CPG, 1 µmol·L(-1) Tpg decreased resting heat rate (ΔH(r): -0.44 ± 0.07 mW·g(-1)), while the addition of 5 µmol·L(-1) KB-R7943 increased resting pressure (ΔrLVP by +5.26 ± 1.10 mm Hg; 1 mm Hg = 133.322 Pa). The addition of 10 mmol·L(-1) Pyr to CPG increased H(r) (+3.30 ± 0.24 mW·g(-1)) and ΔrLVP (+2.2 ± 0.4 mm Hg), which are effects potentiated by KB-R7943. The results suggest that under CPG, (i) there was an increase in [Ca(2+)]i and [Ca(2+)]m (without changing ΔΨm) that decayed by exothermic removal mechanisms; (ii) mitochondrial Ca(2+) uptake contributed to the removal of cytosolic Ca(2+), in a process that was potentiated by inhibition of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), and reduced by KB-R7943; (iii) under these conditions, SERCA represents the main energetic consumer; (iv) Pyr increased the energetic performance of hearts,mainly by inducing mitochondrial metabolism.
Collapse
Affiliation(s)
- A E Consolini
- Cátedra de Farmacología, Dept. Ciencias Biológicas, Universidad Nacional de La Plata (UNLP), Argentina.
| | | | | |
Collapse
|
22
|
Role of mitochondrial phosphate carrier in metabolism-secretion coupling in rat insulinoma cell line INS-1. Biochem J 2011; 435:421-30. [PMID: 21265734 DOI: 10.1042/bj20101708] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In pancreatic β-cells, glucose-induced mitochondrial ATP production plays an important role in insulin secretion. The mitochondrial phosphate carrier PiC is a member of the SLC25 (solute carrier family 25) family and transports Pi from the cytosol into the mitochondrial matrix. Since intramitochondrial Pi is an essential substrate for mitochondrial ATP production by complex V (ATP synthase) and affects the activity of the respiratory chain, Pi transport via PiC may be a rate-limiting step for ATP production. We evaluated the role of PiC in metabolism-secretion coupling in pancreatic β-cells using INS-1 cells manipulated to reduce PiC expression by siRNA (small interfering RNA). Consequent reduction of the PiC protein level decreased glucose (10 mM)-stimulated insulin secretion, the ATP:ADP ratio in the presence of 10 mM glucose and elevation of intracellular calcium concentration in response to 10 mM glucose without affecting the mitochondrial membrane potential (Δψm) in INS-1 cells. In experiments using the mitochondrial fraction of INS-1 cells in the presence of 1 mM succinate, PiC down-regulation decreased ATP production at various Pi concentrations ranging from 0.001 to 10 mM, but did not affect Δψm at 3 mM Pi. In conclusion, the Pi supply to mitochondria via PiC plays a critical role in ATP production and metabolism-secretion coupling in INS-1 cells.
Collapse
|
23
|
Research strategies in the study of the pro-oxidant nature of polyphenol nutraceuticals. J Toxicol 2011; 2011:467305. [PMID: 21776260 PMCID: PMC3135211 DOI: 10.1155/2011/467305] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/12/2011] [Indexed: 12/13/2022] Open
Abstract
Polyphenols of phytochemicals are thought to exhibit chemopreventive effects against cancer. These plant-derived antioxidant polyphenols have a dual nature, also acting as pro-oxidants, generating reactive oxygen species (ROS), and causing oxidative stress. When studying the overall cytotoxicity of polyphenols, research strategies need to distinguish the cytotoxic component derived from the polyphenol per se from that derived from the generated ROS. Such strategies include (a) identifying hallmarks of oxidative damage, such as depletion of intracellular glutathione and lipid peroxidation, (b) classical manipulations, such as polyphenol exposures in the absence and presence of antioxidant enzymes (i.e., catalase and superoxide dismutase) and of antioxidants (e.g., glutathione and N-acetylcysteine) and cotreatments with glutathione depleters, and (c) more recent manipulations, such as divalent cobalt and pyruvate to scavenge ROS. Attention also must be directed to the influence of iron and copper ions and to the level of polyphenols, which mediate oxidative stress.
Collapse
|
24
|
Kim HJ, Kim SW, Lee JK, Yoon SH. A Simple and Sensitive High Performance Liquid Chromatography-Electrospray Ionization/Mass Spectrometry Method for the Quantification of Ethyl Pyruvate in Rat Plasma. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.4.1221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Effects of Ethyl Pyruvate and Other α-Keto Carboxylic Acid Derivatives in a Rat Model of Multivisceral Ischemia and Reperfusion. J Surg Res 2011; 165:151-7. [DOI: 10.1016/j.jss.2009.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/20/2009] [Accepted: 07/08/2009] [Indexed: 11/18/2022]
|
26
|
Abarbanell AM. Structure and lipophilicity--the keys to understanding the function of pyruvate derivatives for ischemia/reperfusion? J Surg Res 2010; 164:72-3. [PMID: 20371086 DOI: 10.1016/j.jss.2009.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/17/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
Affiliation(s)
- Aaron M Abarbanell
- Department of Surgery, 2017 Van Nuys Medical Science Bldg., 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
27
|
The biochemical basis for the anti-inflammatory and cytoprotective actions of ethyl pyruvate and related compounds. Biochem Pharmacol 2010; 80:151-9. [PMID: 20230800 DOI: 10.1016/j.bcp.2010.03.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 12/12/2022]
Abstract
Pyruvate is an important metabolic intermediate, and also is an effective scavenger of hydrogen peroxide and other reactive oxygen species (ROS). Pharmacological administration of pyruvate has been shown to improve organ function in animal models of oxidant-mediated cellular injury. However, pyruvate is relatively unstable in aqueous solutions, which could limit the therapeutic potential of this compound. Ethyl pyruvate (EP), a simple derivative of pyruvic acid, is also an ROS scavenger, but seems to exert pharmacological effects, such as suppression of inflammation, which are at least quantitatively different and in some instances are qualitatively distinct from those exerted by pyruvate anion. Treatment with EP has been shown to improve survival and/or ameliorate organ dysfunction in a wide variety of pre-clinical models of acute illnesses, such as severe sepsis, acute pancreatitis and stroke. Using other animal models, some studies have demonstrated that more prolonged treatment with EP can ameliorate inflammatory bowel disease or slow the rate of growth of malignant tumors. In a clinical trial of patients undergoing cardiac surgery, treatment with EP was shown to be safe, but it failed to improve outcome. The true therapeutic potential of EP and related compounds remains to be elucidated. In this review, some of the biochemical mechanisms, which might be responsible for the pharmacological effects of EP, are discussed.
Collapse
|
28
|
Moreno KX, Sabelhaus SM, Merritt ME, Sherry AD, Malloy CR. Competition of pyruvate with physiological substrates for oxidation by the heart: implications for studies with hyperpolarized [1-13C]pyruvate. Am J Physiol Heart Circ Physiol 2010; 298:H1556-64. [PMID: 20207817 DOI: 10.1152/ajpheart.00656.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbon 13 nuclear magnetic resonance (NMR) isotopomer analysis was used to measure the rates of oxidation of long-chain fatty acids, ketones, and pyruvate to determine the minimum pyruvate concentration ([pyruvate]) needed to suppress oxidation of these alternative substrates. Substrate mixtures were chosen to represent either the fed or fasted state. At physiological [pyruvate], fatty acids and ketones supplied the overwhelming majority of acetyl-CoA. Under conditions mimicking the fed state, 3 mM pyruvate provided approximately 80% of acetyl-CoA, but under fasting conditions 6 mM pyruvate contributed only 33% of acetyl-CoA. Higher [pyruvate], 10-25 mM, was associated with transient reduced cardiac output, but overall hemodynamic performance was unchanged after equilibration. These observations suggested that 3-6 mM pyruvate in the coronary arteries would be an appropriate target for studies with hyperpolarized [1-(13)C]pyruvate. However, the metabolic products of 3 mM hyperpolarized [1-(13)C]pyruvate could not be detected in the isolated heart during perfusion with a physiological mixture of substrates including 3% albumin. In the presence of albumin even at high concentrations of pyruvate, 20 mM, hyperpolarized H(13)CO(3)(-) could be detected only in the absence of competing substrates. Highly purified albumin (but not albumin from plasma) substantially reduced the longitudinal relaxation time of [1-(13)C]pyruvate. In conclusion, studies of cardiac metabolism using hyperpolarized [1-(13)C]pyruvate are sensitive to the effects of competing substrates on pyruvate oxidation.
Collapse
Affiliation(s)
- Karlos X Moreno
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
29
|
Fink MP. The therapeutic potential of pyruvate. J Surg Res 2010; 164:218-20. [PMID: 20451918 DOI: 10.1016/j.jss.2010.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/07/2010] [Accepted: 01/27/2010] [Indexed: 11/30/2022]
Affiliation(s)
- Mitchell P Fink
- Department of Surgery (10H2-MF), VA Greater Los Angeles, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA.
| |
Collapse
|
30
|
Bhattacharya P, Ross BD, Bünger R. Cardiovascular applications of hyperpolarized contrast media and metabolic tracers. Exp Biol Med (Maywood) 2009; 234:1395-416. [PMID: 19934362 DOI: 10.3181/0904-mr-135] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Modern hyperpolarization technology enhances the recordable magnetic resonance signal four to five orders of magnitude, making in vivo assessments of tracer pathways and metabolic compartments feasible. Existing hyperpolarization instrumentation and previous tracer studies using hydroxyethylpropionate (HEP) as an extracellular marker and 14-carbon label pyruvate as examples are described and reviewed as applicable to the working heart. Future metabolic imaging based on the use of hyperpolarized pyruvate needs to consider extra- and intra-cellular label dilution due to glycolysis, lactate oxidation and protein degradation. This dilution can substantially decrease the recordable signals from PDH flux (oxidative decarboxylation of pyruvate) and other pyruvate pathways. The review of previous literature and data suggests that the (13)C-alanine signal is a better index of mitochondrially oxidized pyruvate than L-lactate. These facts and considerations will help in the interpretation of the in vivo recorded hyperpolarization signals of metabolic tracers and contrast media.
Collapse
Affiliation(s)
- Pratip Bhattacharya
- Enhanced MR Laboratory, Huntington Medical Research Institutes, 10 Pico Street, Pasadena, CA 91105.
| | | | | |
Collapse
|
31
|
Babich H, Liebling EJ, Burger RF, Zuckerbraun HL, Schuck AG. Choice of DMEM, formulated with or without pyruvate, plays an important role in assessing the in vitro cytotoxicity of oxidants and prooxidant nutraceuticals. In Vitro Cell Dev Biol Anim 2009; 45:226-33. [DOI: 10.1007/s11626-008-9168-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Accepted: 12/16/2008] [Indexed: 01/23/2023]
|
32
|
Unal B, Karabeyoglu M, Huner T, Canbay E, Eroglu A, Yildirim O, Dolapci M, Bilgihan A, Cengiz O. Ethyl pyruvate protects colonic anastomosis from ischemia-reperfusion injury. Surg Innov 2008; 16:21-5. [PMID: 19064591 DOI: 10.1177/1553350608328584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ethyl pyruvate is a simple derivative in Ca(+2)- and K(+)-containing balanced salt solution of pyruvate to avoid the problems associated with the instability of pyruvate in solution. It has been shown to ameliorate the effects of ischemia-reperfusion (I/R) injury in many organs. It has also been shown that I/R injury delays the healing of colonic anastomosis. In this study, the effect of ethyl pyruvate on the healing of colon anastomosis and anastomotic strength after I/R injury was investigated. Anastomosis of the colon was performed in 32 adult male Wistar albino rats divided into 4 groups of 8 individuals: (1) sham-operated control group (group 1); (2) 30 minutes of intestinal I/R by superior mesenteric artery occlusion (group 2); (3) I/R+ ethyl pyruvate (group 3), ethyl pyruvate was administered as a 50-mg/kg/d single dose; and (4) I/R+ ethyl pyruvate (group 4), ethyl pyruvate administration was repeatedly (every 6 hours) at the same dose (50 mg/kg). On the fifth postoperative day, animals were killed. Perianastomotic tissue hydroxyproline contents and anastomotic bursting pressures were measured in all groups. When the anastomotic bursting pressures and tissue hydroxyproline contents were compared, it was found that they were decreased in group 2 when compared with groups 1, 3, and 4 (P < .05). Both anastomotic bursting pressure (P = .005) and hydroxyproline content (P < .001) levels were found to be significantly increased with ethyl pyruvate administration when compared with group 2. When ethyl pyruvate administration doses were compared, a significant difference was not observed (P > .05). Ethyl pyruvate significantly prevents the delaying effect of I/R injury on anastomotic strength and healing independent from doses of administration.
Collapse
Affiliation(s)
- B Unal
- Department of Surgery, Faculty of Medicine, Inonu University, Malatya, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Olson AK, Hyyti OM, Cohen GA, Ning XH, Sadilek M, Isern N, Portman MA. Superior cardiac function via anaplerotic pyruvate in the immature swine heart after cardiopulmonary bypass and reperfusion. Am J Physiol Heart Circ Physiol 2008; 295:H2315-20. [PMID: 18849332 DOI: 10.1152/ajpheart.00739.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyruvate produces inotropic responses in the adult reperfused heart. Pyruvate oxidation and anaplerotic entry into the tricarboxylic acid (TCA) cycle via carboxylation are linked to the stimulation of contractile function. The goals of this study were to determine if these metabolic pathways operate and are maintained in the developing myocardium after reperfusion. Immature male swine (age: 10-18 days) were subjected to cardiopulmonary bypass (CPB). Intracoronary infusion of [2-(13)C]pyruvate (to achieve an estimated final concentration of 8 mM) was given for 35 min, starting either during weaning (group I) and after its discontinuation (group II) or without (control) CPB. Hemodynamic data were collected. 13C NMR spectroscopy was used to determine the fraction of pyruvate entering the TCA cycle via pyruvate carboxylation (PC) to total TCA cycle entry (PC plus decarboxlyation via pyruvate dehydrogenase). Liquid chromatography-mass spectrometry was used to determine total glutamate enrichment. Pyruvate infusion starting during the weaning of mechanical circulatory support improved maximum dP/dt (P<0.05) but waiting to start the infusion until after the discontinuation of CPB did not. Glutamate fractional enrichment was confirmed by liquid chromatography-mass spectroscopy as adequate (>5%) to provide signal to noise in the NMR experiment in all groups. The ratio of pyruvate carboxylase to total pyruvate entry into the TCA cycle did not differ between groups (group I: 20+/-4%, group II: 23+/-7%, and control: 27+/-7%). These data show that robust PC operates in the neonatal pig heart and is maintained during reperfusion under conditions that emulate CPB and reperfusion in human infants.
Collapse
Affiliation(s)
- Aaron K Olson
- Department of Pediatrics, University of Washington, Children's Hospital and Regional Medical Center, MSW 4841, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Bina S, Muldoon S, Bünger R. Effects of ryanodine on skeletal muscle lactate and pyruvate in malignant hyperthermia-susceptible and normal swine as assessed by microdialysis. Eur J Anaesthesiol 2008; 25:48-57. [PMID: 17686208 DOI: 10.1017/s0265021507001238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The caffeine/halothane contracture test in North America and the in vitro contracture test in Europe are currently the only validated bioassays for diagnosing malignant hyperthermia susceptibility and phenotyping families. Both tests are invasive requiring surgical muscle biopsy. Here, we report first use of the selective ryanodine receptor type I agonist ryanodine in a percutaneous microdialysis protocol designed to test whether microdialysis-induced local metabolic responses of skeletal muscle due to ryanodine receptor activation can differentiate between malignant hyperthermia-sensitive and normal pigs. METHODS Six microdialysis catheters were implanted percutaneously into the adductor muscles of the right and left thighs of malignant hyperthermia-susceptible (n = 9) and normal (n = 8) anaesthetized (ketamine/propofol) and mechanically ventilated swine. Systemic blood gases, haemodynamic parameters and creatine kinase levels were measured before, during and after microdialysis perfusion of ryanodine. After a post-implantation equilibration period of 30 min, one catheter perfused (2 micro min-1) with 0.9% NaCl (control) and was compared with the remaining five catheters perfused with increasing concentrations of ryanodine (0.2-100 micromol). Lactate and pyruvate levels were measured enzymatically. RESULTS Continuous perfusion with ryanodine revealed dose-dependent sigmoidal increases in the dialysate lactate and lactate-pyruvate ratio parameters; these effects were greatly augmented in malignant hyperthermia-susceptible pigs compared to normal pigs (two- to threefold): estimated EC50 greatly decreased (>19-fold) while the maximum effect increased (>twofold) in the malignant hyperthermia-susceptible group. CONCLUSION The in vivo percutaneous microdialysis protocol for skeletal muscle, using ryanodine as the ryanodine receptor type I agonist and dialysed lactate-pyruvate parameters as metabolic index, can reproducibly differentiate between malignant hyperthermia-susceptible and normal swine.
Collapse
Affiliation(s)
- S Bina
- Uniformed services University of the Health Sciences, Department of Anesthesiology, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
36
|
Epperly M, Jin S, Nie S, Cao S, Zhang X, Franicola D, Wang H, Fink MP, Greenberger JS. Ethyl Pyruvate, a Potentially Effective Mitigator of Damage after Total-Body Irradiation. Radiat Res 2007; 168:552-9. [DOI: 10.1667/rr1009.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 08/03/2007] [Indexed: 11/03/2022]
|
37
|
Mollen KP, McCloskey CA, Tanaka H, Prince JM, Levy RM, Zuckerbraun BS, Billiar TR. Hypoxia activates c-Jun N-terminal kinase via Rac1-dependent reactive oxygen species production in hepatocytes. Shock 2007; 28:270-7. [PMID: 17545941 DOI: 10.1097/shk.0b013e3180485acd] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The earliest events after the induction of hemorrhagic shock (HS) are complex and poorly understood. We have recently demonstrated that decreased tissue perfusion and hypoxia during HS lead to an increased phosphorylation of c-Jun N-terminal kinase (JNK) in vivo. The purpose of these investigations was to test the hypothesis that hypoxia activates JNK via Rac1-dependent reactive oxygen species (ROS) signaling. Mice subjected to HS and resuscitated with Ringer's ethyl pyruvate solution (REPS) or N-acetylcysteine (NAC), two scavengers of ROS, demonstrated decreased levels of phosphorylated JNK. Exposure of primary mouse hepatocytes in culture to 1% oxygen led to increased production of ROS and phosphorylation of JNK. The duration of hypoxia correlated with the level of generation of ROS and JNK activation. The phosphorylation of JNK was attenuated in the presence of ROS scavengers or the nicotinamide adenosine dinucleotide phosphate [NDA(P)H] oxidase inhibitor, diphenyleneiodonium (DPI). In addition, hypoxia increased activation of Rac1. Inhibition of Rac1 activation by adenoviral gene transfer of dominant-negative Rac1 (AdRac1) attenuated both ROS formation and JNK activation. Together, these data suggest that ROS generation during hypoxia in the liver directly leads to JNK activation in a Rac1-dependent process.
Collapse
Affiliation(s)
- Kevin P Mollen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
do Nascimento P, Vaid SU, Hoskins SL, Espana JM, Kinsky MP, Kramer GC. Hypertonic 15% sodium pyruvate offers no initial resuscitation advantage compared with 8% hypertonic NACl in sheep with multiple hemorrhages. Shock 2007; 27:565-71. [PMID: 17438463 DOI: 10.1097/01.shk.0000245015.96419.73] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Initial fluid resuscitation of hemorrhagic shock might be enhanced by the infusion of monocarboxylate-energy substrates. We evaluated hemodynamics, metabolism, and fluid dynamics for initial resuscitation of hemorrhage using small volume 15% sodium pyruvate solution (HPY) compared with osmotically matched 8% hypertonic saline (HS). Instrumented conscious sheep were hemorrhaged 25 mL/kg at time zero through 15 min (T0-T15) and 5 mL/kg for 5 min at T50 to T55 and T70 to T75. Fluid resuscitation from T30 to T180 was performed by a computer-controlled closed-loop system, which titrated infusion rate to a mean arterial pressure of 90 mmHg. Initial infusion was 4 mL/kg of either HPY or HS, followed by the administration of lactated Ringer. Both HPY and HS restored cardiac index similarly. The lactate/pyruvate ratio was used to assess metabolic debt and was significantly higher (T180), whereas oxygen delivery was significantly lower (T120) with HPY versus HS. Total fluid administered was similar, with 43.7 +/- 6.2 mL/kg for HPY and 39.4 +/- 6.8 mL/kg for HS. Plasma volume was similarly increased and approached baseline values for both groups. Initial resuscitation with small volume HPY offered no hemodynamic or metabolic advantage compared with small volume HS when the fluids were infused to an end point pressure.
Collapse
Affiliation(s)
- Paulo do Nascimento
- Resuscitation Research Laboratory, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0801, USA
| | | | | | | | | | | |
Collapse
|
39
|
Oliveira FA, Guatimosim S, Castro CH, Galan DT, Lauton-Santos S, Ribeiro AM, Almeida AP, Cruz JS. Abolition of reperfusion-induced arrhythmias in hearts from thiamine-deficient rats. Am J Physiol Heart Circ Physiol 2007; 293:H394-401. [PMID: 17369466 DOI: 10.1152/ajpheart.00833.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extensive work has been done regarding the impact of thiamine deprivation on the nervous system. In cardiac tissue, chronic thiamine deficiency is described to cause changes in the myocardium that can be associated with arrhythmias. However, compared with the brain, very little is known about the effects of thiamine deficiency on the heart. Thus this study was undertaken to explore whether thiamine deprivation has a role in cardiac arrhythmogenesis. We examined hearts isolated from thiamine-deprived and control rats. We measured heart rate, diastolic and systolic tension, and contraction and relaxation rates. Whole cell voltage clamp was performed in rat isolated cardiac myocytes to measure L-type Ca2+current. In addition, we investigated the global intracellular calcium transients by using confocal microscopy in the line-scan mode. The hearts from thiamine-deficient rats did not degenerate into ventricular fibrillation during 30 min of reperfusion after 15 min of coronary occlusion. The antiarrhythmogenic effects were characterized by the arrhythmia severity index. Our results suggest that hearts from thiamine-deficient rats did not experience irreversible arrhythmias. There was no change in L-type Ca2+current density. Inactivation kinetics of this current in Ca2+-buffered cells was retarded in thiamine-deficient cardiac myocytes. The global Ca2+release was significantly reduced in thiamine-deficient cardiac myocytes. The amplitude of caffeine-releasable Ca2+was lower in thiamine-deficient myocytes. In summary, we have found that thiamine deprivation attenuates the incidence and severity of postischemic arrhythmias, possibly through a mechanism involving a decrease in global Ca2+release.
Collapse
Affiliation(s)
- Fernando A Oliveira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP 31900-901, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Karabeyoğlu M, Unal B, Bozkurt B, Dolapçi I, Bilgihan A, Karabeyoğlu I, Cengiz O. The effect of ethyl pyruvate on oxidative stress in intestine and bacterial translocation after thermal injury. J Surg Res 2007; 144:59-63. [PMID: 17574580 DOI: 10.1016/j.jss.2007.02.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/20/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Thermal injury causes a breakdown in the intestinal mucosal barrier due to ischemia reperfusion injury, which can induce bacterial translocation (BT), sepsis, and multiple organ failure in burn patients. The aim of this study was to investigate the effect of ethyl pyruvate (EP) on intestinal oxidant damage and BT in burn injury. MATERIALS AND METHODS Thirty-two rats were randomly divided into four groups. The sham group was exposed to 21 degrees C water and injected intraperitoneal with saline (1 mL/100 g). The sham + EP group received EP (40 mg/kg) intraperitoneally 6 h after the sham procedure. The burn group was exposed to thermal injury and given intraperitoneal saline injection (1 mL/100 g). The burn + EP group received EP (40 mg/kg) intraperitoneally 6 h after thermal injury. Twenty-four hours later, tissue samples were obtained from mesenteric lymph nodes, spleen, and liver for microbiological analysis and ileum samples were harvested for biochemical analysis. RESULTS Thermal injury caused severe BT in burn group. EP supplementation decreased BT in mesenteric lymph nodes and spleen in the burn + EP group compared with the burn group (P < 0.05). Also, burn caused BT in liver, but this finding was not statistically significant among all groups. Thermal injury caused a statistically significant increase in malondialdehyde and myeloperoxidase levels, and EP prevented this effects in the burn + EP group compared with the burn group (P < 0.05). CONCLUSION Our data suggested that EP can inhibit the BT and myeloperoxidase and malondialdehyde production in intestine following thermal injury, suggesting anti-inflammatory and anti-oxidant properties of EP.
Collapse
Affiliation(s)
- Melih Karabeyoğlu
- Department of 2nd General Surgery, Numune Education and Research Hospital, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
41
|
Keweloh B, Janssen PML, Siegel U, Datz N, Zeitz O, Hermann HP. Influence of pyruvate on economy of contraction in isolated rabbit myocardium. Eur J Heart Fail 2007; 9:754-61. [PMID: 17532261 DOI: 10.1016/j.ejheart.2007.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 01/31/2007] [Accepted: 03/08/2007] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Treatment of acute heart failure frequently requires positive-inotropic stimulation. However, there is still no inotropic agent available, which combines a favourable haemodynamic profile with low expenditure for energy metabolism. Pyruvate exhibits positive inotropic effects in vitro and in patients with heart failure. The effect on myocardial energy metabolism however remains unclear, but is meaningful in light of a clinical application. AIMS AND METHODS We investigated the influence of pyruvate on contractility and oxygen consumption in isolated isometric contracting rabbit myocardium compared to beta-adrenergic stimulation with isoproterenol. RESULTS Pyruvate (30 mM) increased developed force from 18.7+/-4.1 to 50.8+/-12.1 mN/mm2 (n=10, p<0.01). Force-time integral (FTI) increased by 329%, oxygen consumption assessed by diffusion-microelectrode technique increased from 2.86+/-0.30 mlO2/min*100 g to 6.28+/-1.28 mlO2/min*100 g (n=7, p<0.05). Economy of myocardial contraction calculated as the ratio of total FTI to oxygen consumption remained unchanged. In contrast, while isoproterenol (10 microM) produced a comparable increase in developed force from 21.4+/-8.3 to 67.3+/-15 mN/mm2 (n=7, p<0.01), FTI increased only by 260% and MVO2 increased from 2.96+/-0.43 to 6.12+/-1.01 mlO2/min*100 g (n=7, p<0.01); thus, economy decreased by 23% (n=7, p<0.05). CONCLUSION Pyruvate does not impair economy of myocardial contraction while isoproterenol decreases economy. Regarding energy expenditure, pyruvate appears superior to isoproterenol for the purpose of positive inotropic stimulation.
Collapse
Affiliation(s)
- Boris Keweloh
- Franz-Volhard-Klinik, Universitätsklinikum Charité, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Schulze K, Duschek C, Lasley RD, Bünger R. Adenosine enhances cytosolic phosphorylation potential and ventricular contractility in stunned guinea pig heart: receptor-mediated and metabolic protection. J Appl Physiol (1985) 2007; 102:1202-13. [PMID: 17341737 DOI: 10.1152/japplphysiol.00245.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms of adenosine (ADO) protection of reperfused myocardium are not fully understood. We tested the hypothesis that ADO (0.1 mM) alleviates ventricular stunning by ADO A(1)-receptor stimulation combined with purine metabolic enhancements. Langendorff guinea pig hearts were stunned at constant left ventricular end-diastolic pressure by low-flow ischemia. Myocardial phosphate metabolites were measured by (31)P-NMR, with phosphorylation potential {[ATP]/([ADP].[P(i)]), where brackets indicate concentration} estimated from creatine kinase equilibrium. Creatine and IMP, glycolytic intermediates, were measured enzymatically and glycolytic flux and extracellular spaces were measured by radiotracers. All treatment interventions started after a 10-min normoxic stabilization period. At 30 min reperfusion, ventricular contractility (dP/dt, left ventricular pressure) was reduced 17-26%, ventricular power (rate-pressure product) by 37%, and [ATP]/([ADP].[P(i)]) by 53%. The selective A(1) agonist 2-chloro-N(6)-cyclo-pentyladenosine marginally preserved [ATP]/([ADP].[P(i)]) and ventricular contractility but not rate-pressure product. Purine salvage precursor inosine (0.1 mM) substantially raised [ATP]/([ADP].[P(i)]) but weakly affected contractility. The ATP-sensitive potassium channel blocker glibenclamide (50 microM) abolished ADO protection of [ATP]/([ADP].[P(i)]) and contractility. ADO raised myocardial IMP and glucose-6-phosphate, demonstrating increased purine salvage and pentose phosphate pathway flux potential. Coronary hyperemia alone (papaverine) was not cardioprotective. We found that ADO protected energy metabolism and contractility in stunned myocardium more effectively than both the A(1)-receptor agonist 2-chloro-N(6)-cyclo-pentyladenosine and the purine salvage precursor inosine. Because ADO failed to stimulate glycolytic flux, the enhancement of reperfusion, [ATP]/([ADP].[P(i)]), indicates protection of mitochondrial function. Reduced ventricular dysfunction at enhanced [ATP]/([ADP].[P(i)]) argues against opening of mitochondrial ATP-sensitive potassium channel. The results establish a multifactorial mechanism of ADO antistunning, which appears to combine ADO A(1)-receptor signaling with metabolic adenylate and antioxidant enhancements.
Collapse
Affiliation(s)
- Karsten Schulze
- Abteilung für Kardiologie und Pneumologie, Campus Benjamin Franklin, Charité Berlin, 12200 Berlin, Germany.
| | | | | | | |
Collapse
|
43
|
Abstract
Ethyl pyruvate (EP) is a simple derivative of the endogenous metabolite, pyruvic acid. Treatment with EP has been shown to improve survival and/or ameliorate organ dysfunction in a wide variety of preclinical models of critical illnesses, such as severe sepsis, acute respiratory distress syndrome, acute pancreatitis and stroke. EP was originally regarded as simply a way to administer pyruvate anion, whilst avoiding some of the problems associated with the instability of pyruvate in aqueous solutions. Increasingly, however, it is becoming apparent that certain pyruvate esters, including EP, have pharmacological effects, such as suppression of inflammation, that are quite distinct from those exerted by pyruvate anion. EP has been tested in human volunteers and shown to be safe at clinically relevant doses. It remains to be determined whether EP can be used successfully to treat human diseases.
Collapse
Affiliation(s)
- M P Fink
- Departments of Critical Care Medicine, Pharmacology and Surgery, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA.
| |
Collapse
|
44
|
Kasumov T, Cendrowski AV, David F, Jobbins KA, Anderson VE, Brunengraber H. Mass isotopomer study of anaplerosis from propionate in the perfused rat heart. Arch Biochem Biophys 2007; 463:110-7. [PMID: 17418801 PMCID: PMC2047339 DOI: 10.1016/j.abb.2007.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 02/13/2007] [Indexed: 11/29/2022]
Abstract
Anaplerosis from propionate was investigated in rat hearts perfused with 0-2mM [(13)C(3)]propionate and physiological concentrations of glucose, lactate, and pyruvate. The data show that when the concentration of [(13)C(3)]propionate was raised from 0 to 2mM, total anaplerosis increased from 5% to 16% of the turnover of citric acid cycle intermediates. Then, [(13)C(3)]propionate abolished anaplerosis from endogenous substrates, glucose, lactate, and pyruvate. Also, while the contents of propionyl-CoA and methylmalonyl-CoA increased with [(13)C(3)]propionate concentration, the content of succinyl-CoA decreased, presumably via activation of succinyl-CoA hydrolysis by a decrease in free CoA. Under our conditions, [(13)C(3)]propionate was a purely anaplerotic substrate since there was no labeling of mitochondrial acetyl-CoA, reflected by the labeling of the acetyl moiety of citrate.
Collapse
Affiliation(s)
- Takhar Kasumov
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | | | - France David
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | - Kathryn A. Jobbins
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | - Vernon E. Anderson
- Department of Biochemistry, Case Western Reserve University, Cleveland OH 44106
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
- * To whom correspondence should be addressed: Department of Nutrition, Case Western Reserve University, School of Medicine - WG 48, 10900 Euclid Avenue, Cleveland OH 44106-4954. Tel: (216)368-6429; E-mail:
| |
Collapse
|
45
|
Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH. Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res 2006; 1132:1-9. [PMID: 17174285 PMCID: PMC1853247 DOI: 10.1016/j.brainres.2006.11.032] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 11/06/2006] [Accepted: 11/12/2006] [Indexed: 10/23/2022]
Abstract
Oxidative stress is implicated in neurodegenerative diseases including stroke, Alzheimer's disease and Parkinson's disease, and has been extensively studied as a potential target for therapeutic intervention. Pyruvate, a natural metabolic intermediate and energy substrate, exerts antioxidant effects in brain and other tissues susceptible to oxidative stress. We tested the protective effects of pyruvate on hydrogen peroxide (H(2)O(2)) toxicity in human neuroblastoma SK-N-SH cells and the mechanisms underlying its protection. Hydrogen peroxide insult resulted in 85% cell death, but co-treatment with pyruvate dose-dependently attenuated cell death. At concentrations of >or=1 mM, pyruvate totally blocked the cytotoxic effects of H(2)O(2). Pyruvate exerted its protective effects even when its administration was delayed up to 2 h after H(2)O(2) insult. As a scavenger of reactive oxygen species (ROS), pyruvate dose-dependently attenuated H(2)O(2)-induced ROS formation, assessed from 2,7-dichlorofluorescein diacetate fluorescence. Furthermore, pyruvate suppressed superoxide production by submitochondrial particles, and attenuated oxidative stress-induced collapse of the mitochondrial membrane potential. Collectively, these results suggest that pyruvate protects neuronal cells through its antioxidant actions on mitochondria.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699
| | - Evelyn Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699
| | - Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699
| | - Robert T. Mallet
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699
- *Address for correspondence: Shao-Hua Yang, MD. Ph.D. Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107-2699, Tel: 817-735-2250, Fax: 817-735-0485, E-mail:
| |
Collapse
|
46
|
Sharma AB, Sun J, Howard LL, Williams AG, Mallet RT. Oxidative stress reversibly inactivates myocardial enzymes during cardiac arrest. Am J Physiol Heart Circ Physiol 2006; 292:H198-206. [PMID: 16920803 DOI: 10.1152/ajpheart.00698.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress during cardiac arrest may inactivate myocardial enzymes and thereby exacerbate ischemic derangements of myocardial metabolism. This study examined the impact of cardiac arrest on left ventricular enzymes. Beagles were subjected to 5 min of cardiac arrest and 5 min of open-chest cardiac compressions (OCCC) before epicardial direct current countershocks were applied to restore sinus rhythm. Glutathione/glutathione disulfide redox state (GSH/GSSG) and a panel of enzyme activities were measured in snap-frozen left ventricle. To test whether oxidative stress during arrest inactivated the enzymes, metabolic (pyruvate) or pharmacological (N-acetyl-l-cysteine) antioxidants were infused intravenously for 30 min before arrest. During cardiac arrest, activities of phosphofructokinase, citrate synthase, aconitase, malate dehydrogenase, creatine kinase, glucose-6-phosphate dehydrogenase, and glutathione reductase fell by 56, 81, 55, 34, 42, 55, and 45%, respectively, coincident with 50% decline in GSH/GSSG. OCCC effected full recovery of glutathione reductase and partial recovery of citrate synthase and aconitase, in parallel with GSH/GSSG. Phosphofructokinase, malate dehydrogenase, creatine kinase, and glucose-6-phosphate dehydrogenase recovered only after cardioversion. Antioxidant pretreatments augmented phosphofructokinase, aconitase, and malate dehydrogenase activities before arrest and enhanced these activities, as well as those of citrate synthase and glucose-6-phosphate dehydrogenase, during arrest. In conclusion, cardiac arrest reversibly inactivates several important myocardial metabolic enzymes. Antioxidant protection of these enzymes implicates oxidative stress as a principal mechanism of enzyme inactivation during arrest.
Collapse
Affiliation(s)
- Arti B Sharma
- Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA
| | | | | | | | | |
Collapse
|
47
|
Solaini G, Harris D. Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem J 2006; 390:377-94. [PMID: 16108756 PMCID: PMC1198918 DOI: 10.1042/bj20042006] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heart tissue is remarkably sensitive to oxygen deprivation. Although heart cells, like those of most tissues, rapidly adapt to anoxic conditions, relatively short periods of ischaemia and subsequent reperfusion lead to extensive tissue death during cardiac infarction. Heart tissue is not readily regenerated, and permanent heart damage is the result. Although mitochondria maintain normal heart function by providing virtually all of the heart's ATP, they are also implicated in the development of ischaemic damage. While mitochondria do provide some mechanisms that protect against ischaemic damage (such as an endogenous inhibitor of the F1Fo-ATPase and antioxidant enzymes), they also possess a range of elements that exacerbate it, including ROS (reactive oxygen species) generators, the mitochondrial permeability transition pore, and their ability to release apoptotic factors. This review considers the process of ischaemic damage from a mitochondrial viewpoint. It considers ischaemic changes in the inner membrane complexes I-V, and how this might affect formation of ROS and high-energy phosphate production/degradation. We discuss the contribution of various mitochondrial cation channels to ionic imbalances which seem to be a major cause of reperfusion injury. The different roles of the H+, Ca2+ and the various K+ channel transporters are considered, particularly the K+(ATP) (ATP-dependent K+) channels. A possible role for the mitochondrial permeability transition pore in ischaemic damage is assessed. Finally, we summarize the metabolic and pharmacological interventions that have been used to alleviate the effects of ischaemic injury, highlighting the value of these or related interventions in possible therapeutics.
Collapse
Affiliation(s)
- Giancarlo Solaini
- *Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna, Classe Accademica di Scienze Sperimentali, Piazza dei Martiri della Libertà 33, 56127 Pisa, Italy
| | - David A. Harris
- †Department of Biochemistry, University of Oxford, South Parks Rd., Oxford OX1 3QU, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
Lee SH, Yoon DW, Jung JY, Lee KJ, Kim SJ, Lee EJ, Kang EH, Jung KH, Lee SY, Lee SY, Kim JH, Shin C, Shim JJ, In KH, Yoo SH, Kang KH. The Effects of Ethyl Pyruvate on Lipopolysaccharide-induced Acute Lung Injury. Tuberc Respir Dis (Seoul) 2006. [DOI: 10.4046/trd.2006.61.4.374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Seung Hyeun Lee
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Dae Wui Yoon
- Institute of Human Genomic Study, Ansan Hospital, Korea University Medical Center, Ansan, Korea
| | - Jin Yong Jung
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Kyung Joo Lee
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Se Joong Kim
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Eun Joo Lee
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Eun Hae Kang
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Ki Hwan Jung
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Sung Yong Lee
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Sang Yeub Lee
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Je Hyeong Kim
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Chol Shin
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Jae Jeong Shim
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Kwang Ho In
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Se Hwa Yoo
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Kyung Ho Kang
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
49
|
Sharma AB, Knott EM, Bi J, Martinez RR, Sun J, Mallet RT. Pyruvate improves cardiac electromechanical and metabolic recovery from cardiopulmonary arrest and resuscitation. Resuscitation 2005; 66:71-81. [PMID: 15993732 DOI: 10.1016/j.resuscitation.2004.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/05/2004] [Accepted: 12/05/2004] [Indexed: 12/20/2022]
Abstract
Severe depletion of myocardial energy and antioxidant resources during cardiac arrest culminates in electromechanical dysfunction following recovery of spontaneous circulation (ROSC). A metabolic fuel and natural antioxidant, pyruvate augments myocardial energy and antioxidant redox states in parallel with its enhancement of contractile performance of stunned and oxidant-challenged hearts. This study tested whether pyruvate improves post-arrest cardiac function and metabolism. Beagles were subjected to 5 min cardiac arrest and 5 min open-chest cardiac compression (OCCC: 80 compressions min(-1); aortic pressure 60-70 mmHg), then epicardial dc countershocks (5-10 J) were applied to restore sinus rhythm. Pyruvate was infused i.v. throughout OCCC and the first 25 min ROSC to a steady-state arterial concentration of 3.6+/-0.2 mM. Control experiments received NaCl infusions. Phosphocreatine phosphorylation potential (approximately PCr) and glutathione/glutathione disulfide ratio (GSH/GSSG), measured in snap-frozen left ventricle, indexed energy and antioxidant redox states, respectively. In control experiments, left ventricular pressure development, dP/dt and carotid flow initially recovered upon defibrillation, but then fell 40-50% by 3 h ROSC. ST segment displacement in lead II ECG persisted throughout ROSC. Approximately PCr collapsed and GSH/GSSG fell 61% during arrest. Both variables recovered partially during OCCC and completely during ROSC. Pyruvate temporarily increased approximately PCr and GSH/GSSG during OCCC and the first 25 min ROSC and enhanced pressure development, dP/dt and carotid flow at 15-25 min ROSC. Contractile function stabilized and ECG normalized at 2-3 h ROSC, despite post-infusion pyruvate clearance and waning of its metabolic benefits. In conclusion, intravenous pyruvate therapy increases energy reserves and antioxidant defenses of resuscitated myocardium. These temporary metabolic improvements support post-arrest recovery of cardiac electromechanical performance.
Collapse
Affiliation(s)
- Arti B Sharma
- Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA
| | | | | | | | | | | |
Collapse
|
50
|
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85:1093-129. [PMID: 15987803 DOI: 10.1152/physrev.00006.2004] [Citation(s) in RCA: 1460] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The alterations in myocardial energy substrate metabolism that occur in heart failure, and the causes and consequences of these abnormalities, are poorly understood. There is evidence to suggest that impaired substrate metabolism contributes to contractile dysfunction and to the progressive left ventricular remodeling that are characteristic of the heart failure state. The general concept that has recently emerged is that myocardial substrate selection is relatively normal during the early stages of heart failure; however, in the advanced stages there is a downregulation in fatty acid oxidation, increased glycolysis and glucose oxidation, reduced respiratory chain activity, and an impaired reserve for mitochondrial oxidative flux. This review discusses 1) the metabolic changes that occur in chronic heart failure, with emphasis on the mechanisms that regulate the changes in the expression of metabolic genes and the function of metabolic pathways; 2) the consequences of these metabolic changes on cardiac function; 3) the role of changes in myocardial substrate metabolism on ventricular remodeling and disease progression; and 4) the therapeutic potential of acute and long-term manipulation of cardiac substrate metabolism in heart failure.
Collapse
Affiliation(s)
- William C Stanley
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106-4970, USA.
| | | | | |
Collapse
|