1
|
Spiller L, Zhang L, Gerra S, Stoppe C, Scheiermann P, Calandra T, Lolis E, Panstruga R, Bernhagen J, Hoffmann A. In vivo synergistic enhancement of MIF-mediated inflammation in acute lung injury by the plant ortholog Arabidopsis MDL1. FASEB J 2025; 39:e70489. [PMID: 40134325 PMCID: PMC11937861 DOI: 10.1096/fj.202403301r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Recent research has uncovered Arabidopsis thaliana proteins that are similar to the human inflammatory cytokine MIF. Plant MIF/D-dopachrome tautomerase (D-DT)-like proteins (MDLs) can interact with human MIF, yet the significance of these findings in living organisms has not been investigated. Given MIF's key role in acute respiratory distress syndrome promoting pulmonary inflammation, pathology, and leukocyte infiltration, here we set out to investigate the interplay between MIF and MDL1, one of three A. thaliana MIF orthologs, in an in vivo mouse model of MIF-induced acute lung injury (ALI). Human MIF and MDL1 were administered to C57BL/6 mice via inhalation, individually or in combination. Inhalation of MIF promoted various parameters of lung injury as evaluated by flow cytometry, immunofluorescence microscopy, RT-qPCR, and ELISA, while MDL1 inhalation alone had no effect. Intriguingly, combined treatment with MIF and MDL1 synergistically enhanced pulmonary infiltration of neutrophils and monocytic cells, accompanied by an upregulation of pro-inflammatory cytokine genes. Thus, the plant-derived MIF ortholog MDL1 potentiates MIF-induced inflammation in ALI. These data support the growing evidence of interactions between plant-derived compounds and human inflammatory mediators and illustrate how they may impact human health.
Collapse
Affiliation(s)
- Lukas Spiller
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD)LMU University Hospital, Ludwig‐Maximilians‐Universität (LMU) MunichMunichGermany
- Department of Pharmacology, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
- Present address:
Boehringer Ingelheim Pharma GmbH & Co. KG, Global Clinical Development & OperationsIngelheim am RheinGermany
| | - Lin Zhang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD)LMU University Hospital, Ludwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Simona Gerra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD)LMU University Hospital, Ludwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Christian Stoppe
- Department of Cardiac Anaesthesiology and Intensive Care MedicineCharitéBerlinGermany
- Department of Anaesthesiology, Intensive Care, Emergency and Pain MedicineUniversity Hospital WürzburgWürzburgGermany
| | - Patrick Scheiermann
- Department of AnaesthesiologyLMU University Hospital, Ludwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Thierry Calandra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD)LMU University Hospital, Ludwig‐Maximilians‐Universität (LMU) MunichMunichGermany
- Service of Immunology and Allergy, Department of Medicine and Department of Laboratory Medicine and Pathology, Center for Human ImmunologyLausanne University Hospital, University of LausanneLausanneSwitzerland
- Center for Advanced StudiesLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Elias Lolis
- Department of Pharmacology, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology IRWTH Aachen UniversityAachenGermany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD)LMU University Hospital, Ludwig‐Maximilians‐Universität (LMU) MunichMunichGermany
- German Centre of Cardiovascular Research (DZHK), Partner Site Munich Heart AllianceMunichGermany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD)LMU University Hospital, Ludwig‐Maximilians‐Universität (LMU) MunichMunichGermany
- Department of AnaesthesiologyLMU University Hospital, Ludwig‐Maximilians‐Universität (LMU) MunichMunichGermany
- German Centre of Cardiovascular Research (DZHK), Partner Site Munich Heart AllianceMunichGermany
| |
Collapse
|
2
|
Gomes F, Wasserberg D, Edelbroek R, van Weerd J, Jonkheijm P, Leijten J. OPSALC: On-Particle Solvent-Assisted Lipid Coating to Create Erythrocyte Membrane-like Coatings with Improved Hemocompatibility. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18179-18193. [PMID: 40079786 PMCID: PMC11955951 DOI: 10.1021/acsami.5c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Particles are essential building blocks in nanomedicine and cell engineering. Their administration often involves blood contact, which demands a hemocompatible material profile. Coating particles with isolated cell membranes is a common strategy to improve hemocompatibility, but this solution is nonscalable and potentially immunogenic. Cell membrane-like lipid coatings are a promising alternative, as lipids can be synthesized on a large scale and used to create safe cell membrane-like supported bilayers. However, a method to controllably and scalably lipid-coat a wide range of particles has remained elusive. Here, an on-particle solvent-assisted lipid coating (OPSALC) method is introduced as an innovative technique to endow various types of particles with cell membrane-like coatings. Coating formation efficiency is shown to depend on lipid concentration, buffer addition rate, and solvent:buffer ratio, as these parameters determine lipid assembly and lipid-surface interactions. Four lipid formulations with various levels of erythrocyte membrane mimicry are explored in terms of hemocompatibility, demonstrating a reduced particle-induced hemolysis and plasma coagulation time. Interestingly, formulations with higher mimicry levels show the lowest levels of complement activation and highest colloidal stability. Overall, OPSALC represents a simple yet scalable strategy to endow particles with cell membrane-like lipid coatings to facilitate blood-contact applications.
Collapse
Affiliation(s)
- Francisca
L. Gomes
- Department
of Bioengineering Technologies, Leijten Laboratory, Faculty of Science
and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
- Department
of Molecules and Materials, Laboratory of Biointerface Chemistry,
Faculty of Science and Technology, Technical Medical Centre and MESA+
Institute, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
| | - Dorothee Wasserberg
- Department
of Molecules and Materials, Laboratory of Biointerface Chemistry,
Faculty of Science and Technology, Technical Medical Centre and MESA+
Institute, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
- LipoCoat
BV, Hengelosestraat 535, Enschede 7521AG, The Netherlands
| | - Rick Edelbroek
- Department
of Molecules and Materials, Laboratory of Biointerface Chemistry,
Faculty of Science and Technology, Technical Medical Centre and MESA+
Institute, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
| | - Jasper van Weerd
- LipoCoat
BV, Hengelosestraat 535, Enschede 7521AG, The Netherlands
| | - Pascal Jonkheijm
- Department
of Molecules and Materials, Laboratory of Biointerface Chemistry,
Faculty of Science and Technology, Technical Medical Centre and MESA+
Institute, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
| | - Jeroen Leijten
- Department
of Bioengineering Technologies, Leijten Laboratory, Faculty of Science
and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
| |
Collapse
|
3
|
Lai G, Zhao X, Chen Y, Xie T, Su Z, Lin J, Chen Y, Chen K. The origin and polarization of Macrophages and their role in the formation of the Pre-Metastatic niche in osteosarcoma. Int Immunopharmacol 2025; 150:114260. [PMID: 39938167 DOI: 10.1016/j.intimp.2025.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Osteosarcoma, a primary malignant bone tumor commonly found in adolescents, is highly aggressive, with a high rate of disability and mortality. It has a profound negative impact on both the physical and psychological well-being of patients. The standard treatment approach, comprising surgery and chemotherapy, has seen little improvement in patient outcomes over the past several decades. Once relapse or metastasis occurs, prognosis worsens significantly. Therefore, there is an urgent need to explore new therapeutic approaches. In recent years, the successful application of immunotherapy in certain cancers has demonstrated its potential in the field of cancer treatment. Macrophages are the predominant components of the immune microenvironment in osteosarcoma and represent critical targets for immunotherapy. Macrophages exhibit dual characteristics; while they play a key role in maintaining tumor-promoting properties within the microenvironment, such as inflammation, angiogenesis, and immune suppression, they also possess antitumor potential as part of the innate immune system. A deeper understanding of macrophages and their relationship with osteosarcoma is essential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guisen Lai
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Xinyi Zhao
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanquan Chen
- Department of Orthopaedic Sun Yat-sen Memorial Hospital Sun Yat-sen University PR China
| | - Tianwei Xie
- The People's Hospital of Hezhou, No.150 Xiyue Street, Hezhou 542800 PR China
| | - Zepeng Su
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Jiajie Lin
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanhai Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Keng Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China.
| |
Collapse
|
4
|
Kim A, Gorman H, Moreau F, McManus M, Dufour A, Chadee K. Human MUC2 mucin-producing colonic goblet-like cells secrete the chemokine CXCL8 by activating multiple pro-inflammatory pathways in response to Entamoeba histolytica. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00080-X. [PMID: 40122459 DOI: 10.1016/j.ajpath.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
The mucus layer produced by highly stressed goblet cells forms a protective shield in the gut to protect the underlying mucosal epithelial cells from external threats. Hypersecretion and depletion of MUC2 mucin from goblet cells is characteristic of symptomatic Entamoeba histolytica (Eh) infections. We hypothesized that MUC2 depleted goblet cells could mount a second line of innate host defence by producing pro-inflammatory cytokines. To investigate this, we determined whether Eh could stimulate pro-inflammatory responses in wild type (WT) high MUC2 mucin-producing goblet-like cells and in CRISPR-Cas9 gene-edited MUC2KO cells. In response to live Eh and soluble Eh proteins, WT and to a lesser extent, MUC2KO cells, produced high levels of CXCL8. Eh temporally induced greater levels of CXCL8 mRNA expression and protein secretion in WT vs MUC2KO cells which was abrogated with alleviation of ER stress with the NADPH-oxidase inhibitor diphenyleneiodonium chloride (DPI). WT cells produced elevated ROS that induced longer half-lives of CXCL8 transcripts which was abrogated with DPI. Western blotting and proteomic analyses revealed that WT, but not MUC2KO cells, were basally primed to respond to external stressors and responded to Eh through rapid activation of the MAPK/ERK, MAPK/p38, and PI3K/Akt pathways, to induce CXCL8. These results suggest that colonic goblet-like cells defend against Eh infections by hypersecreting mucus and to produce the chemokine, CXCL8, to recruit neutrophils.
Collapse
Affiliation(s)
- Ariel Kim
- Department of Microbiology, Immunology, and Infectious Diseases
| | - Hayley Gorman
- Department of Microbiology, Immunology, and Infectious Diseases
| | - France Moreau
- Department of Microbiology, Immunology, and Infectious Diseases
| | | | - Antoine Dufour
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology, and Infectious Diseases,.
| |
Collapse
|
5
|
Wowui PI, Mprah R, Ndzie Noah ML, Adu-Amankwaah J, Kanoseh AWL, Tao L, Chulu D, Yalley SK, Shaheen S, Sun H. Estrogen via GPER downregulated HIF-1a and MIF expression, attenuated cardiac arrhythmias, and myocardial inflammation during hypobaric hypoxia. Mol Med 2025; 31:107. [PMID: 40108505 PMCID: PMC11924608 DOI: 10.1186/s10020-025-01144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The human body is highly dependent on adequate oxygenation of the cellular space for physiologic homeostasis mediation. The insufficient oxygenation of the cellular space leads to hypoxia. Hypobaric hypoxia (HH) is the reduction in oxygen partial pressure and atmospheric pressure during ascent to high altitudes. This state induces a maladaptive response. Women and how hormones like estrogen influence hypoxia have not been explored with most research being conducted on males. In this study, we investigated the effects of estrogen and GPER on HIF-1a and MIF expression, cardiac arrhythmias, and inflammation during hypobaric hypoxia. METHODS Ovariectomy and SHAM operations were done on FVB wild-type (WT) female mice. 2 weeks after the operation, the mice were treated with estrogen (40 mg/kg) as a therapeutic intervention and placed in a hypoxic chamber at an altitude of 6000 m for 7 days. Cardiac electrical activity was assessed using electrocardiography. Alterations in protein expression, inflammatory, and GPER pathways were investigated using western blotting, ELISA, and immunofluorescence. Histological assessment was performed using Masson's trichrome staining. Peritoneal macrophages were isolated for in vitro study. RESULTS Under hypobaric hypoxia (HH), the ovariectomized (OVX) group showed increased macrophage migration inhibitory factor (MIF) and hypoxia-inducible factor-1 alpha (HIF-1α) expression. In contrast, these factors were downregulated in the estrogen-treated and control groups. HH also caused cardiac inflammation and fibrosis, especially in the OVX + HH group, which had elevated proinflammatory cytokines (IL-1β, IL-6, TNF-α) and decreased anti-inflammatory cytokines (TGF-β, IL-10). Inhibition with G15 (a GPER antagonist) increased MIF and HIF-1α, whereas activation with G1 (a GPER agonist) decreased their expression, highlighting GPER's crucial role in regulating MIF during HH. CONCLUSION Estrogen regulates HIF-1α and MIF expression through the GPER during hypobaric hypoxia, suggesting a potential therapeutic pathway to mitigate maladaptive responses during high-altitude ascent.
Collapse
MESH Headings
- Macrophage Migration-Inhibitory Factors/metabolism
- Macrophage Migration-Inhibitory Factors/genetics
- Animals
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Estrogens/metabolism
- Mice
- Hypoxia/metabolism
- Female
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Intramolecular Oxidoreductases/metabolism
- Intramolecular Oxidoreductases/genetics
- Myocarditis/metabolism
- Myocarditis/etiology
- Disease Models, Animal
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/drug effects
- Ovariectomy
- Down-Regulation
- Gene Expression Regulation/drug effects
- Altitude
Collapse
Affiliation(s)
- Prosperl Ivette Wowui
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Richard Mprah
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Marie Louise Ndzie Noah
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | | | - Li Tao
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Diana Chulu
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Simon Kumah Yalley
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Saffia Shaheen
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Hong Sun
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Xuzhou Key Laboratory of Physiological Function and Injury, Xuzhou Medical University, Xuzhou, China.
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
6
|
Hsieh HT, Zhang XY, Wang Y, Cheng XQ. Biomarkers for nasopharyngeal carcinoma. Clin Chim Acta 2025; 572:120257. [PMID: 40118267 DOI: 10.1016/j.cca.2025.120257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Nasopharyngeal Carcinoma (NPC) is a malignant tumor that is highly prevalent in Southeast Asia, particularly in China and Indonesia. According to the World Health Organization's global cancer statistics in 2022, there were 120,434 new cases and 73,485 deaths from NPC. Risk factors contribute to NPC development including genetic factors, dietary habits, and Epstein-Barr virus (EBV) infection. This paper reviews the comparison of different types of EBV test for NPC over the last few years and summarized the performance of novel diagnostic biomarker such as newly reported EBV antibody, anti-BNLF2b IgG (P85-Ab), microRNAs, DNA methylation and other markers for detection of NPC. Because approximately 40% of NPC patients show negative EBV DNA levels, additional markers are needed for NPC diagnosis, especially in cases without EBV infection, to make the result trustworthy. The potential biomarkers including circulating tumor cells, proteins, microRNAs and Rta-IgG for prognostic and therapeutic effect also be summarized. This review provides insights into potential biomarkers for early NPC detection and diagnosis, which could lead to improved prevention, treatment, and prognosis strategies.
Collapse
Affiliation(s)
- Hsun-Ting Hsieh
- Department of Laboratory Medicine, The Island Healthcare Complex-Macao Medical Center of Peking Union Medical College Hospital, 999078, Macao
| | - Xin-Yao Zhang
- Department of Laboratory Medicine, The Island Healthcare Complex-Macao Medical Center of Peking Union Medical College Hospital, 999078, Macao; Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Yi Wang
- Department of Otolaryngology, The Island Healthcare Complex-Macao Medical Center of Peking Union Medical College Hospital, 999078, Macao; Department of Otolaryngology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Xin-Qi Cheng
- Department of Laboratory Medicine, The Island Healthcare Complex-Macao Medical Center of Peking Union Medical College Hospital, 999078, Macao; Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China.
| |
Collapse
|
7
|
Zhang J, Pollard AE, Pearson EF, Carling D, Viollet B, Ellacott KLJ, Beall C. Hypoglycaemic stimulation of macrophage cytokine release is suppressed by AMP-activated protein kinase activation. Diabet Med 2025; 42:e15456. [PMID: 39717018 PMCID: PMC11823358 DOI: 10.1111/dme.15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
AIMS Acute hypoglycaemia promotes pro-inflammatory cytokine production, increasing the risk for cardiovascular events in diabetes. AMP-activated protein kinase (AMPK) is regulated by and influences the production of pro-inflammatory cytokines. We sought to examine the mechanistic role of AMPK in low glucose-induced changes in the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF), which is elevated in people with diabetes. METHODS Macrophage cell line Raw264.7 cells, primary macrophage bone marrow-derived macrophages obtained from wild-type mice or AMPK γ1 gain-of-function mice, were used, as were AMPKα1/α2 knockout mouse embryonic fibroblasts (MEFs). Allosteric AMPK activators PF-06409577 and BI-9774 were used in conjunction with inhibitor SBI-0206965. We examined changes in protein phosphorylation/expression using western blotting and protein localisation using immunofluorescence. Metabolic function was assessed using extracellular flux analyses and luciferase-based ATP assay. Cytokine release was quantified by enzyme-linked immunosorbent assay (ELISA). Oxidative stress was detected using a fluorescence-based reactive oxygen species (ROS) assay, and cell viability was examined using flow cytometry. RESULTS Macrophages exposed to low glucose showed a transient and modest activation of AMPK and a metabolic shift towards increased oxidative phosphorylation. Moreover, low glucose increased oxidative stress and augmented the release of macrophage MIF. However, pharmacological activation of AMPK by PF-06409577 and BI-9774 attenuated low glucose-induced MIF release, with a similar trend noted with genetic activation using AMPKγ1 gain-of-function (D316A) mice, which produced a mild effect on low glucose-induced MIF release. Inhibition of NFĸB signalling diminished MIF release and AMPK activation modestly but significantly reduced low glucose-induced nuclear translocation of NFĸB. CONCLUSIONS Taken together, these data indicate that pharmacological AMPK activation suppresses the release of MIF from macrophages caused by energy stress, suggesting that AMPK activation could be a useful strategy for mitigating hypoglycaemia-induced inflammation.
Collapse
Affiliation(s)
- Jiping Zhang
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Alice E. Pollard
- MRC London Institute of Medical Sciences, Imperial College LondonHammersmith HospitalLondonUK
| | - Eleanor F. Pearson
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of Exeter Medical SchoolExeterUK
| | - David Carling
- MRC London Institute of Medical Sciences, Imperial College LondonHammersmith HospitalLondonUK
| | - Benoit Viollet
- Institute CochinUniversité Paris Cité, CNRS, InsermParisFrance
| | - Kate L. J. Ellacott
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Craig Beall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life SciencesUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
8
|
Pressley KR, Naseem Y, Nalawade S, Forsthuber TG. The distinct functions of MIF in inflammatory cardiomyopathy. Front Immunol 2025; 16:1544484. [PMID: 40092999 PMCID: PMC11906721 DOI: 10.3389/fimmu.2025.1544484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
The immune system plays a crucial role in cardiac homeostasis and disease, and the innate and adaptive immune systems can be beneficial or detrimental in cardiac injury. The pleiotropic proinflammatory cytokine macrophage migration inhibitory factor (MIF) is involved in the pathogenesis of many human disease conditions, including heart diseases and inflammatory cardiomyopathies. Inflammatory cardiomyopathies are frequently observed after microbial infection but can also be caused by systemic immune-mediated diseases, drugs, and toxic substances. Immune cells and MIF are implicated in many of these conditions and may affect progression of inflammatory cardiomyopathy (ICM) to myocardial remodeling and dilated cardiomyopathy (DCM). The potential for targeting MIF therapeutically in patients with inflammatory diseases is an active area of investigation. Here we review the current literature supporting the role(s) of MIF in ICM and cardiac dysfunction. We posit that future research to further elucidate the underlying functions of MIF in cardiac pathologies is warranted.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Yashfa Naseem
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Saisha Nalawade
- Department of Pre-clinical Immunology, Corner Therapeutics, Watertown, MA, United States
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
9
|
Burns GW, Fu Z, Vegter EL, Madaj ZB, Greaves E, Flores I, Fazleabas AT. Spatial transcriptomic analysis identifies epithelium-macrophage crosstalk in endometriotic lesions. iScience 2025; 28:111790. [PMID: 39935459 PMCID: PMC11810701 DOI: 10.1016/j.isci.2025.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
The mechanisms underlying the pathophysiology of endometriosis, characterized by the presence of endometrium-like tissue outside the uterus, remain poorly understood. This study aimed to identify cell type-specific gene expression changes in superficial peritoneal endometriotic lesions and elucidate the crosstalk among the stroma, epithelium, and macrophages compared to patient-matched eutopic endometrium. Surprisingly, comparison between lesions and eutopic endometrium revealed transcriptional similarities, indicating minimal alterations in the sub-epithelial stroma and epithelium of lesions. Spatial transcriptomics highlighted increased signaling between the lesion epithelium and macrophages, emphasizing the role of the epithelium in driving lesion inflammation. We propose that the superficial endometriotic lesion epithelium orchestrates inflammatory signaling and promotes a pro-repair phenotype in macrophages, providing a new role for complement 3 in lesion pathobiology. This study underscores the significance of considering spatial context and cellular interactions in uncovering mechanisms governing disease in endometriotic lesions.
Collapse
Affiliation(s)
- Gregory W. Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Zhen Fu
- Bioinformatics and Biostatistics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Erin L. Vegter
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Zachary B. Madaj
- Bioinformatics and Biostatistics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Early Life, University of Warwick, Coventry CV4 7AL, UK
| | - Idhaliz Flores
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA
- Department of Obstetrics & Gynecology, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| |
Collapse
|
10
|
Cheng JY, Shan GY, Wan H, Zhang YX, Gao ZC, Shi YP, Liu F, Yan WQ, Li HJ. MIF/CD74 axis in hepatic stellate cells mediates HBV-related liver fibrosis. Int Immunopharmacol 2025; 147:113929. [PMID: 39752755 DOI: 10.1016/j.intimp.2024.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/29/2025]
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite advances in understanding HBV-related liver diseases, effective therapeutic strategies remain limited. Macrophage migration inhibitory factor (MIF) has been implicated in various inflammatory and fibrotic conditions, but its role in HBV-induced liver fibrosis has not been fully explored. This study investigates the involvement of MIF in liver fibrosis and evaluates its potential as a therapeutic target. We found that MIF expression was significantly elevated in hepatic stellate cells (HSCs) following stimulation with HBVcc (HBV cell culture) or HBV surface antigen (HBsAg). Through its receptor CD74, MIF enhanced the TGF-β/SMAD signaling pathway, promoting HSC activation and liver fibrosis progression. Histological analysis revealed higher MIF and CD74 expression in HBsAg-positive individuals compared to HBsAg-negative controls. Moreover, MIF expression correlated with the activation of fibrosis markers, including α-SMA and TGF-β-related proteins. Inhibition of MIF with the specific inhibitor ISO-1 attenuated fibrosis progression, suggesting that targeting MIF could offer a promising approach for treating HBV-related liver fibrosis. Our findings underscore the critical role of the MIF/CD74 axis in liver fibrosis and provide a basis for future therapeutic strategies targeting MIF in chronic liver diseases.
Collapse
Affiliation(s)
- Jun-Ya Cheng
- Department of Bioengineering, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin Province 130021, China; Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Guan-Yue Shan
- Department of Bioengineering, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin Province 130021, China; Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Hui Wan
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Yu-Xin Zhang
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Zhi-Cheng Gao
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China
| | - Yun-Peng Shi
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fei Liu
- Department of Obstetrics, The First Hospital of Jilin University, Changchun 130061, China.
| | - Wei-Qun Yan
- Department of Bioengineering, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin Province 130021, China.
| | - Hai-Jun Li
- Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China.
| |
Collapse
|
11
|
Yu W, Zhao Y, Ilyas I, Wang L, Little PJ, Xu S. The natural polyphenol fisetin in atherosclerosis prevention: a mechanistic review. J Pharm Pharmacol 2025; 77:206-221. [PMID: 38733634 DOI: 10.1093/jpp/rgae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
The incidence and mortality rate of atherosclerotic cardiovascular disease (ASCVD) is increasing yearly worldwide. Recently, a growing body of evidence has unveiled the anti-atherosclerotic properties of fisetin, a natural polyphenol compound. In this article, we reviewed the pharmacologic actions of fisetin on experimental atherosclerosis and its protective effects on disease-relevant cell types such as endothelial cells, macrophages, vascular smooth muscle cells, and platelets. Based on its profound cardiovascular actions, fisetin holds potential for clinical translation and could be developed as a potential therapeutic option for atherosclerosis and its related complications. Large-scale randomized clinical trials are warranted to ascertain the safety and efficacy of fisetin in patients with or high risk for ASCVD.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
- Anhui Renovo Pharmaceutical Co., Ltd, Hefei, Anhui, 230001, China
- Anhui Guozheng Pharmaceutical Co., Ltd, Hefei, Anhui, 230041, China
| | - Yaping Zhao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Peter J Little
- Department of Pharmacy, Guangzhou Xinhua University, No. 721, Guangshan Road 1, Tianhe District, Guangzhou, 510520, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
12
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
13
|
Xin X, Ni Y, Wang J, Wu F, Liu M, Wu L, Dai J, Wu C, Song X, Zhang W, Yang G, Shen R, Zhu X. Single-Cell RNA Sequencing Reveals Macrophage Dynamics During MASH in Leptin-Deficient Rats. Cells 2025; 14:96. [PMID: 39851524 PMCID: PMC11763963 DOI: 10.3390/cells14020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Macrophages play important roles in metabolic dysfunction-associated steatohepatitis (MASH), an advanced and inflammatory stage of metabolic dysfunction-associated steatotic liver disease (MASLD). In humans and mice, the cellular heterogeneity and diverse function of hepatic macrophages in MASH have been investigated by single cell RNA sequencing (scRNA-seq). However, little is known about their roles in rats. Here, we collected liver tissues at the postnatal week 16, when our previously characterized Lep∆I14/∆I14 rats developed MASH phenotypes. By scRNA-seq, we found an increase in the number of macrophages and endothelial cells and a decrease in that of NK and B cells. Hepatic macrophages in rats underwent a unique M1 to M2 transition without expression of the classical markers such as Arg1 and Nos2, except for Cd163. Lipid-associated macrophages (LAMs) were increased, which could be detected by the antibody against Cd63. In the microenvironment, macrophages had an increased number of interactions with hepatocytes, myofibroblasts, T cells, neutrophils, and dendritic cells, while their interaction strengths remained unchanged. Finally, the macrophage migration inhibitory factor (MIF) pathway was identified as the top upregulated cell-communication pathway in MASH. In conclusion, we dissected hepatic macrophage dynamics during MASH at single cell resolution and provided fundamental tools for the investigation of MASH in rat models.
Collapse
Affiliation(s)
- Xiaoming Xin
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (X.X.); (Y.N.); (J.W.); (M.L.); (L.W.); (J.D.); (C.W.); (X.S.)
| | - Yaohua Ni
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (X.X.); (Y.N.); (J.W.); (M.L.); (L.W.); (J.D.); (C.W.); (X.S.)
| | - Jing Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (X.X.); (Y.N.); (J.W.); (M.L.); (L.W.); (J.D.); (C.W.); (X.S.)
| | - Fenglin Wu
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (F.W.); (G.Y.)
| | - Meichen Liu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (X.X.); (Y.N.); (J.W.); (M.L.); (L.W.); (J.D.); (C.W.); (X.S.)
| | - Lingjuan Wu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (X.X.); (Y.N.); (J.W.); (M.L.); (L.W.); (J.D.); (C.W.); (X.S.)
| | - Jiaxing Dai
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (X.X.); (Y.N.); (J.W.); (M.L.); (L.W.); (J.D.); (C.W.); (X.S.)
| | - Chenglin Wu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (X.X.); (Y.N.); (J.W.); (M.L.); (L.W.); (J.D.); (C.W.); (X.S.)
| | - Xiaolei Song
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (X.X.); (Y.N.); (J.W.); (M.L.); (L.W.); (J.D.); (C.W.); (X.S.)
| | - Wang Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China;
| | - Guangrui Yang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; (F.W.); (G.Y.)
| | - Ruling Shen
- Shanghai Academy of Sciences & Technology Institute of Model Animals Transformation, Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Xianmin Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China;
- Shanghai Academy of Sciences & Technology Institute of Model Animals Transformation, Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| |
Collapse
|
14
|
Liu S, Li X, Gu Z, Wu J, Jia S, Shi J, Dai Y, Wu Y, Yan H, Zhang J, You Y, Xue X, Liu L, Lang J, Wang X, Leng J. Single-cell and spatial transcriptomic profiling revealed niche interactions sustaining growth of endometriotic lesions. CELL GENOMICS 2025; 5:100737. [PMID: 39788102 PMCID: PMC11770218 DOI: 10.1016/j.xgen.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/25/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Endometriosis is a chronic condition with limited therapeutic options. The molecular aberrations promoting ectopic attachment and interactions with the local microenvironment sustaining lesion growth have been unclear, prohibiting development of targeted therapies. Here, we performed single-cell and spatial transcriptomic profiling of ectopic lesions and eutopic endometrium in endometriosis. We found that ectopic endometrial stromal (EnS) cells retained cyclical gene expression patterns of their eutopic counterparts while exhibiting unique gene expression that contributes to the pathogenesis of endometriosis. We identified two distinct ovarian stromal cells (OSCs) localized at different zones of the lesion, showing differential gene expression profiles associated with fibrosis and inflammation, respectively. We also identified WNT5A upregulation and aberrant activation of non-canonical WNT signaling in endometrial stromal cells that may contribute to the lesion establishment, offering novel targets for therapeutic intervention. These data will enhance our understanding of the molecular mechanisms underlying endometriosis and paves the way for developing non-hormonal treatments.
Collapse
Affiliation(s)
- Song Liu
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyan Li
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhiyue Gu
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jiayu Wu
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shuangzheng Jia
- Department of Gynecologic Oncology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jinghua Shi
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yi Dai
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yushi Wu
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Hailan Yan
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jing Zhang
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yan You
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaowei Xue
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lulu Liu
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinghe Lang
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoyue Wang
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China.
| | - Jinhua Leng
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
15
|
Hansen JL, Rumble ME, Coe CL, Juckett MB, Foster MA, Dickson D, Morris KE, Hematti P, Costanzo ES. Biobehavioral mechanisms underlying symptoms in cancer patients with chronic graft-versus-host disease. Brain Behav Immun 2025; 123:185-192. [PMID: 39288894 PMCID: PMC11624090 DOI: 10.1016/j.bbi.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a complication of allogeneic hematopoietic cell transplant (HCT) and is associated with morbidity and high symptom burden. This study evaluated two biobehavioral mechanisms, inflammation and circadian rest-activity rhythms, that may underly commonly reported psychological and physical symptoms in cGVHD patients. Adults with cGVHD (N=57) wore a wrist actigraph for 7 days, provided a blood sample, and completed patient-reported outcome (PRO) measures. 24-hour rest-activity indices were derived from actigraphy. Cytokines and chemokines relevant to cGVHD were measured in peripheral blood plasma using multi-analyte immunoassays. Multiple regression evaluated the extent to which rest-activity indices and inflammatory biomarkers predicted PROs. Higher levels of circulating IL-8 and MIP-1α were associated with worse depression (β = 0.35, p = 0.01; β = 0.33, p = 0.02) and sexual function (β = -0.41, p = 0.01; β = -0.32, p = 0.03). MIP-1α was associated with more severe insomnia (β = 0.36, p = 0.01). Higher circulating MIF was associated with more severe anxiety (β = 0.28, p = 0.048) and fatigue (β = 0.35, p = 0.02). Il-6, TNFα, and MCP-1 showed few associations with PROs. There were few associations between actigraphy indices and PROs; however, participants with a later daily activity peak (acrophase) reported poorer sexual function (β = -0.31, p = 0.04). Models covarying for age, cGVHD severity, and time since HCT yielded a similar pattern of results. Results suggest that pro-inflammatory cytokines and chemokines associated with cGVHD may contribute to PROs, identifying a biobehavioral mechanism that may be a useful target for future interventions.
Collapse
Affiliation(s)
- Jenna L Hansen
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Meredith E Rumble
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA; University of Wisconsin Center for Sleep Medicine and Research, Madison, WI, 53719, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin- Madison, Madison, WI, 53706, USA
| | - Mark B Juckett
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455,USA
| | - Mikayla A Foster
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Daniel Dickson
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA; University of Wisconsin Center for Sleep Medicine and Research, Madison, WI, 53719, USA
| | - Keayra E Morris
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Peiman Hematti
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Froedtert Cancer Center, Milwaukee, WI, 53226, USA
| | - Erin S Costanzo
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA; Carbone Cancer Center, University of Wisconsin- Madison, Madison, WI, 53792, USA.
| |
Collapse
|
16
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Wang X, Sun L. The Potential Role of Cardiokines in Heart and Kidney Diseases. Curr Med Chem 2025; 32:720-728. [PMID: 37855343 DOI: 10.2174/0109298673261760231011114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023]
Abstract
As the engine that maintains blood circulation, the heart is also an endocrine organ that regulates the function of distant target organs by secreting a series of cardiokines. As endocrine factors, cardiokines play an indispensable role in maintaining the homeostasis of the heart and other organs. Here, we summarize some of the cardiokines that have been defined thus far and explore their roles in heart and kidney diseases. Finally, we propose that cardiokines may be a potential therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Ming Yang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shilu Luo
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jinfei Yang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liyu He
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Wen X, Bai S, Xiong G, Xiu H, Li J, Yang J, Yu Q, Li B, Hu R, Cao L, Cai Z, Zhang S, Zhang G. Inhibition of the neddylation E2 enzyme UBE2M in macrophages protects against E. coli-induced sepsis. J Biol Chem 2025; 301:108085. [PMID: 39675717 PMCID: PMC11780929 DOI: 10.1016/j.jbc.2024.108085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
UBE2M, an essential neddylation E2 enzyme, has been implicated in the pathogenesis of various diseases, including cancers, viral infections, and obesity. However, whether UBE2M is involved in the pathogenesis of bacterial sepsis remains unclear. In an Escherichia coli (E. coli)-induced sepsis mouse model, increased UBE2M expression in macrophages in liver and lung tissues postinfection was observed. To further clarify the role of UBE2M in macrophages, mice with macrophage-specific deletion of UBE2M (Lysm+Ube2mf/f) were constructed. Compared with control mice, these mice presented decreased levels of proinflammatory cytokines, such as IL-1β, IL-6, and TNF-α; reduced sepsis-induced organ injury; and improved survival. Notably, macrophage-specific deletion of UBE2M did not impair E. coli clearance. In vitro experiments also revealed that UBE2M-deficient macrophages produced fewer proinflammatory cytokines after E. coli infection without hindering E. coli clearance. RNA-sequencing analysis revealed that UBE2M deletion in macrophages after lipopolysaccharide stimulation notably suppressed transcriptional activation within the JAK-STAT and Toll-like receptor signaling pathways, which was further confirmed by gene set enrichment analysis. Additionally, Western blotting results confirmed that UBE2M deletion inhibited the activation of the NF-κB, ERK, and JAK-STAT signaling pathways. In conclusion, our findings indicate that specific deletion of UBE2M in macrophages protects against E. coli-induced sepsis by downregulating the excessive inflammatory response, potentially providing a novel strategy against sepsis by targeting UBE2M.
Collapse
Affiliation(s)
- Xuehuan Wen
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Oncology, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songjie Bai
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guirun Xiong
- Department of Emergency Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Huiqing Xiu
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiahui Li
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Intensive Care, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Jie Yang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Yu
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bingyu Li
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruomeng Hu
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanxin Cao
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhijian Cai
- Institute of Immunology, Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shufang Zhang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Dunbar H, Hawthorne IJ, Tunstead C, Dunlop M, Volkova E, Weiss DJ, dos Santos CC, Armstrong ME, Donnelly SC, English K. The VEGF-Mediated Cytoprotective Ability of MIF-Licensed Mesenchymal Stromal Cells in House Dust Mite-Induced Epithelial Damage. Eur J Immunol 2025; 55:e202451205. [PMID: 39502000 PMCID: PMC11739667 DOI: 10.1002/eji.202451205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 01/06/2025]
Abstract
Enhancing mesenchymal stromal cell (MSC) therapeutic efficacy through licensing with proinflammatory cytokines is now well established. We have previously shown that macrophage migration inhibitory factor (MIF)-licensed MSCs exerted significantly enhanced therapeutic efficacy in reducing inflammation in house dust mite (HDM)-driven allergic asthma. Soluble mediators released into the MSC secretome boast cytoprotective properties equal to those associated with the cell itself. In asthma, epithelial barrier damage caused by the inhalation of allergens like HDM drives goblet cell hyperplasia. Vascular endothelial growth factor (VEGF) plays a pivotal role in the repair and maintenance of airway epithelial integrity. Human bone marrow-derived MSCs expressed the MIF receptors CD74, CXCR2, and CXCR4. Endogenous MIF from high MIF expressing CATT7 bone marrow-derived macrophages increased MSC production of VEGF through the MIF CXCR4 chemokine receptor, where preincubation with CXCR4 inhibitor mitigated this effect. CATT7-MIF licensed MSC conditioned media containing increased levels of VEGF significantly enhanced bronchial epithelial wound healing via migration and proliferation in vitro. Blocking VEGFR2 or the use of mitomycin C abrogated this effect. Furthermore, CATT7-MIF MSC CM significantly decreased goblet cell hyperplasia after the HDM challenge in vivo. This was confirmed to be VEGF-dependent, as the use of anti-human VEGF neutralising antibody abrogated this effect. Overall, this study highlights that MIF-licenced MSCs show enhanced production of VEGF, which has the capacity to repair the lung epithelium.
Collapse
Affiliation(s)
- Hazel Dunbar
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Ian J. Hawthorne
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Courteney Tunstead
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Molly Dunlop
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Evelina Volkova
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| | - Daniel J. Weiss
- Department of Medicine, 226 Health Sciences Research Facility, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Claudia C. dos Santos
- The Keenan Research Centre for Biomedical Science of St. Michael's HospitalTorontoOntarioCanada
- Institute of Medical Sciences and Interdepartmental Division of Critical CareFaculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | | | - Seamas C. Donnelly
- Department of MedicineTrinity College Dublin and Tallaght HospitalDublinIreland
| | - Karen English
- Kathleen Lonsdale Institute for Human Health ResearchMaynooth UniversityMaynooth, Co. KildareIreland
- Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
| |
Collapse
|
19
|
Su F, Dolmatov IY, Cui W, Yang H, Sun L. Molecular dynamics and spatial response of proliferation and apoptosis in wound healing and early intestinal regeneration of sea cucumber Apostichopusjaponicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105297. [PMID: 39638271 DOI: 10.1016/j.dci.2024.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The sea cucumber, Apostichopus japonicus, exhibits significant regenerative capabilities. To ensure survival and reduce metabolic costs under adverse conditions, A. japonicus can expel intestine, respiratory trees and other internal organs. It takes only 14 days to regenerate a fully connected, lumen-containing intestine. Despite numerous reports characterizing the cellular events in intestinal regeneration, limited investigation has been conducted on the molecular events that occur during wound healing and the initial stages of regeneration after evisceration. Here, we identified differentially expressed genes (DEGs) during wound healing (6 h post-evisceration, Aj6hpe) and early intestinal regeneration (Aj1dpe, Aj3dpe, Aj7dpe). Cell proliferation and apoptosis were detected by EdU and TUNEL assays, respectively. Results demonstrated that calcium ion and neuroactive ligand-receptor interaction were involved in the transmission of injury signals from evisceration to Aj1dpe. The main events occurring in the wound healing and early regeneration process were autophagy, apoptosis, dedifferentiation, migration and shutdown of feeding. Cell proliferation was primarily observed during the lumen formation stage. Maximal number of apoptotic cells were found during wound healing stage (6 hpe - 1 dpe). Consequently, the immune response is mainly mobilized by neural regulation after evisceration. Our findings bridge the gap between evisceration and regeneration, illuminating the molecular events that mediate damage response and initiate regeneration. This study significantly advances our understanding of the mechanisms underlying intestinal regeneration.
Collapse
Affiliation(s)
- Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Igor Yu Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Wei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Lazo JS, Isbell KN, Vasa SA, Llaneza DC, Mingledorff GA, Sharlow ER. Deletion of PTP4A3 phosphatase in high-grade serous ovarian cancer cells decreases tumorigenicity and produces marked changes in intracellular signaling pathways and cytokine release. J Pharmacol Exp Ther 2025; 392:100010. [PMID: 39892999 DOI: 10.1124/jpet.124.002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
The oncogenic protein tyrosine phosphatase PTP4A3 is frequently overexpressed in human ovarian cancers and is associated with poor patient prognosis. PTP4A3 is thought to regulate multiple oncogenic signaling pathways, including STAT3, SRC, and extracellular signal-regulated kinase. The objective of this study was to generate ovarian cancer cells with genetically depleted PTP4A3, to assess their tumorigenicity, to examine their cellular phenotype, and to uncover changes in their intracellular signaling pathways and cytokine release profiles. Genetic deletion of PTP4A3 using CRISPR/CRISPR-associated protein 9 enabled the generation of individual clones derived from single cells isolated from the polyclonal knockout population. We observed a >90% depletion of PTP4A3 protein levels by western blotting in the clonal cell lines compared with the sham-transfected wild-type population. The wild-type and polyclonal knockout cell lines shared similar monolayer growth rates, whereas the isolated clonal populations 2B4, 3C9, and 3C12 exhibited significantly lower monolayer growth characteristics consistent with their lower PTP4A3 levels. The clonal Ptp4a3 knockout cell lines also had substantially lower in vitro colony formation efficiencies compared with the wild-type cells and were less tumorigenic in vivo. The clonal knockout cells were markedly less responsive to interleukin-6-stimulated migration in a scratch wound assay compared with the wild-type cells. Antibody microarray assays documented differences in cytokine release and intracellular phosphorylation patterns in the Ptp4a3-deleted clones. Bioinformatic network analyses indicated alterations in cellular signaling nodes. These biochemical changes could ultimately form the foundation for pharmacodynamic endpoints useful for emerging anti-PTP4A3 therapeutics. SIGNIFICANCE STATEMENT: Clones of high-grade serous ovarian cancer cells were isolated, in which the oncogenic phosphatase Ptp4a3 gene was deleted using CRISPR/CRISPR-associated protein 9 methodologies. The Ptp4a3-null cells exhibited loss of in vitro proliferation, colony formation, and migration and reduced in vivo tumorigenesis. Marked differences in intracellular protein phosphorylation and cytokine release were seen. The newly developed Ptp4a3 knockout cells should provide useful tools to probe the role of PTP4A3 phosphatase in ovarian cancer cell survival, tumorigenicity, and cell signaling.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia; KeViRx, Inc., Charlottesville, Virginia.
| | | | | | - Danielle C Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | | | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia; KeViRx, Inc., Charlottesville, Virginia
| |
Collapse
|
21
|
Chen T, Zhan X, Zhu J, Zhou C, Huang C, Wu S, Yao Y, Zhang B, Feng S, Chen J, Xue J, Yang Z, Liu C. Integrating multiomics and Single-Cell communication analysis to uncover Ankylosing spondylitis mechanisms. Int Immunopharmacol 2024; 143:113276. [PMID: 39357209 DOI: 10.1016/j.intimp.2024.113276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic inflammatory joint disorder, necessitating early diagnosis and effective treatment. The specific mechanism of action of Cassia twigs in the treatment of AS is not fully understood. METHODS Blood samples and clinical data from 28,458 individuals (6,101 with AS, 22,357 without AS) were collected. To construct a predictive model, we utilized logistic regressions and machine learning techniques to create a dynamic nomogram. Immune cell infiltration was evaluated using the GSE73754 dataset. Subsequently, we obtained vertebral bone marrow blood from AS patients for 10X single-cell sequencing. We also extracted and purified total RNA from hip joint ligament tissue samples from six AS patients and six non-AS patients. The genes related to the expression of AS and Cassia twigs were analyzed comprehensively, and the specific drug targets were identified by molecular docking. The interactions between immune cells through cell communication analysis were elucidated. RESULTS We developed a dynamic nomogram incorporating the neutrophil count (NEUT) and other variables. Neutrophil immune responses were confirmed through immune infiltration analysis utilizing GSE73754. We observed the early involvement of neutrophils in the pathology of AS. The CAT-expressing Cassia twigs gene could be used as a drug target for the treatment of AS. Moreover, comprehensive RNA analysis revealed notable CAT expression in neutrophils and various other immune cells. CONCLUSIONS Neutrophils play dual roles in AS, regulating inflammation and initiating differentiation signals to other cells. The CAT gene, which is expressed in Cassia twigs, has emerged as a potential therapeutic target for AS treatment.
Collapse
Affiliation(s)
- Tianyou Chen
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Xinli Zhan
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Jichong Zhu
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Chenxing Zhou
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Chengqian Huang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Shaofeng Wu
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Yuanlin Yao
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Bin Zhang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Sitan Feng
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Jiarui Chen
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Jiang Xue
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Zhenwei Yang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| | - Chong Liu
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, Guangxi, 530021, P.R. China.
| |
Collapse
|
22
|
Zhang X, Wu J, Wang M, Chen L, Wang P, Jiang Q, Yang C. The role of gene mutations and immune responses in sensorineural hearing loss. Int Immunopharmacol 2024; 143:113515. [PMID: 39486181 DOI: 10.1016/j.intimp.2024.113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Sensorineural hearing loss (SNHL) is a prevalent clinical condition primarily attributed to dysfunction within various components of the auditory pathway, spanning from the inner ear to the auditory cortex. Recent research has illuminated immune and inflammation-mediated disorders of the inner ear as critical contributors to SNHL. Disruptions in the equilibrium of inflammatory mediators, chemokines, the complement system, and inflammatory vesicles within the cochlea provoke aberrations in immune cell activity, fostering a chronic pro-inflammatory milieu that detrimentally affects the structural and functional integrity of the inner ear, culminating in hearing impairment. Specific genetic mutations, especially those affecting auditory structures, play an important role in SNHL. These mutations regulate inflammatory mediators and cellular responses, thereby altering the inflammatory dynamics within the cochlea. This review delves into the pathogenesis of sensorineural hearing loss, emphasizing the impact of genetic alterations, immune responses within the inner ear, and inflammatory mediators on auditory function. It highlights the significance of Transmembrane Serine Protease 3 (TMPRSS3) and connexin gene mutations as pivotal genetic elements in SNHL, underscoring the central role of inflammatory responses in cochlear damage. Furthermore, the paper discusses the promise of gene therapy and targeted molecular interventions, underscoring the necessity for continued exploration into the specific actions of various inflammatory agents to refine personalized therapeutic strategies.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Junyi Wu
- Department of Otolaryngology-Head and Neck Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Jiangsu Province, China
| | - Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Foshan, Hearing and Balance Medical Engineering Technology Center of Guangdong, Foshan, 528000, China
| | - Li Chen
- Department of Otolaryngology-Head and Neck Surgery, The Second People's Hospital of Yibin City, Sichuan Province, 644000, China
| | - Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Jiangdu People's Hospital Affiliated to Yangzhou University, Jiangsu Province, 225200, China
| | - Qiao Jiang
- Department of Neurology, Deyang Fifth Hospital, Sichuan Province, 618000, China.
| | - Chunping Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
23
|
Hellman U, Lejon K, Do L, Geijer M, Baraliakos X, Witte T, Forsblad-d'Elia H. Immunological biomarkers in patients with radiographic axial spondyloarthritis, an exploratory longitudinal Swedish study. Mod Rheumatol 2024; 35:134-143. [PMID: 38706167 DOI: 10.1093/mr/roae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVES There is a need for more specific biomarkers to diagnose and predict disease course in patients with axial spondyloarthritis (axSpA). This study aimed to study immunological plasma biomarkers at different time-points in radiographic (r)-axSpA patients overall and stratified by sex and compare these biomarker patterns in r-axSpA patients concerning disease phenotypes and disease activity. METHODS Plasma samples were analysed from r-axSpA patients at and prior (Pre-Backbone) inclusion in the Backbone study. Interferon gamma, interleukin-10, -17A, -17F, -22, -23, -6, MCP-1, TNF-α, VEGF-A, MIF, IgA anti-CD74, zonulin, ESR, hsCRP, white blood cell count, and blood lipids were measured. RESULTS Biomarker pattern discriminated significantly between r-axSpA patients in Backbone and Pre-Backbone compared with controls. When stratifying by sex, it was possible to discriminate between male and female r-axSpA patients in Backbone vs controls and between male r-axSpA patients in pre-Backbone and controls. In Backbone, markers with high discriminative capacity were MIF, IgA anti-CD74, and MCP-1. In Pre-Backbone, IL-6, TNF-α, MIF, triglycerides, cholesterol, IL-10, and zonulin displayed high discriminative capacity. CONCLUSION Based on their temporal pattern and mutual relationship, we suggest studying MIF, IgA anti-CD74, and MCP-1 in depth, at more time points, to further elucidate disease-driving mechanisms in this complex disease.
Collapse
Affiliation(s)
- Urban Hellman
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Kristina Lejon
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Lan Do
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
| | - Mats Geijer
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Torsten Witte
- Department of Rheumatology and Clinical Immunology, Medical School Hannover, Hannover, Germany
| | - Helena Forsblad-d'Elia
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
24
|
Peng C, Ghanbari M, May A, Abeel T. Effects of antibiotic growth promoter and its natural alternative on poultry cecum ecosystem: an integrated analysis of gut microbiota and host expression. Front Microbiol 2024; 15:1492270. [PMID: 39687871 PMCID: PMC11646981 DOI: 10.3389/fmicb.2024.1492270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024] Open
Abstract
Background In-feed antibiotic growth promoters (AGPs) have been a cornerstone in the livestock industry due to their role in enhancing growth and feed efficiency. However, concerns over antibiotic resistance have driven a shift away from AGPs toward natural alternatives. Despite the widespread use, the exact mechanisms of AGPs and alternatives are not fully understood. This necessitates holistic studies that investigate microbiota dynamics, host responses, and the interactions between these elements in the context of AGPs and alternative feed additives. Methods In this study, we conducted a multifaceted investigation of how Bacitracin, a common AGP, and a natural alternative impact both cecum microbiota and host expression in chickens. In addition to univariate and static differential abundance and expression analyses, we employed multivariate and time-course analyses to study this problem. To reveal host-microbe interactions, we assessed their overall correspondence and identified treatment-specific pairs of species and host expressed genes that showed significant correlations over time. Results Our analysis revealed that factors such as developmental age substantially impacted the cecum ecosystem more than feed additives. While feed additives significantly altered microbial compositions in the later stages, they did not significantly affect overall host gene expression. The differential expression indicated that with AGP administration, host transmembrane transporters and metallopeptidase activities were upregulated around day 21. Together with the modulated kininogen binding and phenylpyruvate tautomerase activity over time, this likely contributes to the growth-promoting effects of AGPs. The difference in responses between AGP and PFA supplementation suggests that these additives operate through distinct mechanisms. Conclusion We investigated the impact of a common AGP and its natural alternative on poultry cecum ecosystem through an integrated analysis of both the microbiota and host responses. We found that AGP appears to enhance host nutrient utilization and modulate immune responses. The insights we gained are critical for identifying and developing effective AGP alternatives to advance sustainable livestock farming practices.
Collapse
Affiliation(s)
- Chengyao Peng
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | - Mahdi Ghanbari
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Ali May
- dsm-firmenich, Science and Research, Delft, Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
25
|
Hu Y, Hu Q, Ansari M, Riemondy K, Pineda R, Sembrat J, Leme AS, Ngo K, Morgenthaler O, Ha K, Gao B, Janssen WJ, Basil MC, Kliment CR, Morrisey E, Lehmann M, Evans CM, Schiller HB, Königshoff M. Airway-derived emphysema-specific alveolar type II cells exhibit impaired regenerative potential in COPD. Eur Respir J 2024; 64:2302071. [PMID: 39147413 PMCID: PMC11618816 DOI: 10.1183/13993003.02071-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Emphysema, the progressive destruction of gas exchange surfaces in the lungs, is a hallmark of COPD that is presently incurable. This therapeutic gap is largely due to a poor understanding of potential drivers of impaired tissue regeneration, such as abnormal lung epithelial progenitor cells, including alveolar type II (ATII) and airway club cells. We discovered an emphysema-specific subpopulation of ATII cells located in enlarged distal alveolar sacs, termed asATII cells. Single-cell RNA sequencing and in situ localisation revealed that asATII cells co-express the alveolar marker surfactant protein C and the club cell marker secretaglobin-3A2 (SCGB3A2). A similar ATII subpopulation derived from club cells was also identified in mouse COPD models using lineage labelling. Human and mouse ATII subpopulations formed 80-90% fewer alveolar organoids than healthy controls, indicating reduced progenitor function. Targeting asATII cells or their progenitor club cells could reveal novel COPD treatment strategies.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Qianjiang Hu
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ricardo Pineda
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Sembrat
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adriana S Leme
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenny Ngo
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Olivia Morgenthaler
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kellie Ha
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Bifeng Gao
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Corrine R Kliment
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mareike Lehmann
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute for Lung Research, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Christopher M Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Co-senior authors
| | - Herbert B Schiller
- Research Unit Precision Regenerative Medicine (PRM), Helmholtz Munich, Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Munich, Germany
- Co-senior authors
| | - Melanie Königshoff
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center (GRECC) at the VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Co-senior authors
| |
Collapse
|
26
|
Oh SI, Sheet S, Bui VN, Dao DT, Bui NA, Kim TH, Cha J, Park MR, Hur TY, Jung YH, Kim B, Lee HS, Cho A, Lim D. Transcriptome profiles of organ tissues from pigs experimentally infected with African swine fever virus in early phase of infection. Emerg Microbes Infect 2024; 13:2366406. [PMID: 38847223 PMCID: PMC11210422 DOI: 10.1080/22221751.2024.2366406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
African swine fever, caused by African swine fever virus (ASFV), is a highly contagious and fatal disease that poses a significant threat to the global pig industry. The limited information on ASFV pathogenesis and ASFV-host interactions has recently prompted numerous transcriptomic studies. However, most of these studies have focused on elucidating the transcriptome profiles of ASFV-infected porcine alveolar macrophages in vitro. Here, we analyzed dynamic transcriptional patterns in vivo in nine organ tissues (spleen, submandibular lymph node, mesenteric lymph node, inguinal lymph node, tonsils, lungs, liver, kidneys, and heart) obtained from pigs in the early stages of ASFV infection (1 and 3 d after viremia). We observed rapid spread of ASFV to the spleen after viremia, followed by broad transmission to the liver and lungs and subsequently, the submandibular and inguinal lymph nodes. Profound variations in gene expression patterns were observed across all organs and at all time-points, providing an understanding of the distinct defence strategies employed by each organ against ASFV infection. All ASFV-infected organs exhibited a collaborative response, activating immune-associated genes such as S100A8, thereby triggering a pro-inflammatory cytokine storm and interferon activation. Functional analysis suggested that ASFV exploits the PI3K-Akt signalling pathway to evade the host immune system. Overall, our findings provide leads into the mechanisms underlying pathogenesis and host immune responses in different organs during the early stages of infection, which can guide further explorations, aid the development of efficacious antiviral strategies against ASFV, and identify valuable candidate gene targets for vaccine development.
Collapse
Affiliation(s)
- Sang-Ik Oh
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
- Laboratory of Veterinary Pathology and Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Sunirmal Sheet
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Vuong Nghia Bui
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Duy Tung Dao
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Ngoc Anh Bui
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Tae-Hun Kim
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
- TNT Research. Co., Ltd., R&D center, Sejong-si, Republic of Korea
| | - Jihye Cha
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Mi-Rim Park
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Tai-Young Hur
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Young-Hun Jung
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Bumseok Kim
- Laboratory of Veterinary Pathology and Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Hu Suk Lee
- International Livestock Research Institute, Hanoi, Vietnam
- College of Veterinary Medicine, Chungnam National University, Daejoen, Republic of Korea
| | - Ara Cho
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Dajeong Lim
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
- Department of Animal Resources Science, College of Agriculture and Life Sciences, Chungnam National University, Daejoen, Republic of Korea
| |
Collapse
|
27
|
Rubio S, Somers V, Fraussen J. The macrophage migration inhibitory factor/CD74 axis in traumatic spinal cord injury: lessons learned from animal and human studies. Eur J Immunol 2024; 54:e2451333. [PMID: 39491805 DOI: 10.1002/eji.202451333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Traumatic spinal cord injury (SCI) is a severe condition leading to long-term impairment of motor, sensory, and autonomic functions. Following the initial injury, a series of additional events is initiated further damaging the spinal cord. During this secondary injury phase, both an inflammatory and immune modulatory response are triggered that have damaging and anti-inflammatory properties, respectively. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) and its receptor CD74 have been extensively studied in traumatic SCI. MIF expression is increased in spinal cord tissue after experimental SCI, mainly in astrocytes and microglia, as well as in the plasma of SCI patients. Functionally, MIF and CD74 were shown to regulate astrocyte viability, proliferation and cholesterol metabolism, microglia migration, and neuronal viability. Moreover, inhibition of the MIF/CD74 axis improved the functional recovery of SCI animals. We provide a detailed overview of studies analyzing the role of MIF and CD74 in traumatic SCI. We describe results from animal studies, using rat and mouse models for SCI, and human studies. Furthermore, we propose a new path for investigation, focused on B cells, that might lead to a better understanding of how MIF and CD74 contribute to the secondary injury cascade following traumatic SCI.
Collapse
Affiliation(s)
- Serina Rubio
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, 3500, Belgium
| | - Veerle Somers
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, 3500, Belgium
| | - Judith Fraussen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, 3500, Belgium
| |
Collapse
|
28
|
Qian L, Zhang S, Lin C, Lin J, Li Z. Depression exacerbates myocardial ischemia-reperfusion injury in mice via CNR2 gene and MIF-AMPK signaling pathway. Int J Cardiol 2024; 416:132505. [PMID: 39222886 DOI: 10.1016/j.ijcard.2024.132505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Myocardial ischemia-reperfusion(I/R)injury constitute the fundamental pathophysiology of acute myocardial infarction (AMI). Ischemic heart releases macrophage migration inhibitory factor (MIF), which activates MIF- AMPK signaling pathway. Depression is a significant risk factor for AMI. In a state of depression, peripheral expression of cannabinoid receptor 2 (CNR2) genes was downregulated. AIMS We investigated the mechanism by which depression exacerbates myocardial I/R injury through the CNR2 and MIF-AMPK signaling pathways. METHODS We established mouse models of depression and myocardial I/R. Left ventricular function was assessed using cardiac ultrasound and TTC staining. The protein levels of myocardial CNR2, MIF, AMPK, and ACC were determined by Western blot, while the expression level of CNR2 was measured using RT-qPCR. Additionally, MIF content in peripheral blood was quantified using ELISA. RESULTS After I/R, the expression level of CNR2 was found to be lower in the depression group, leading to a deterioration in left heart function. Depressed mice exhibited lower secretion of MIF, accompanied by a decrease in the activation of the MIF-AMPK signaling pathway. However, injection of CNR2 agonist JWH133 prior to ischemia increased the activation of the MIF-AMPK signaling pathway, while CNR2 inhibitor AM630 decreased the activation. LIMITATIONS Further research is needed to investigate the specific neuroendocrine mechanism affecting myocardial CNR2 expression in depression. And these experimental conclusions require further verification at the cellular level. CONCLUSIONS The activation of CNR2 in myocardium following I/R is impeded by depression, thereby exacerbating myocardial I/R injury through attenuation of the MIF-AMPK signaling pathway activation.
Collapse
Affiliation(s)
- Lu Qian
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Suqin Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Cong Lin
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiafeng Lin
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Zhuoyuan Li
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
29
|
Jang Y, Kang S, Han H, Kang CM, Cho NH, Kim BG. Fibrosis-Encapsulated Tumoroid, A Solid Cancer Assembloid Model for Cancer Research and Drug Screening. Adv Healthc Mater 2024; 13:e2402391. [PMID: 39233539 PMCID: PMC11650424 DOI: 10.1002/adhm.202402391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Peritumoral fibrosis is known to promote cancer progression and confer treatment resistance in various solid tumors. Consequently, developing accurate cancer research and drug screening models that replicate the structure and function of a fibrosis-surrounded tumor mass is imperative. Previous studies have shown that self-assembly three-dimensional (3D) co-cultures primarily produce cancer-encapsulated fibrosis or maintain a fibrosis-encapsulated tumor mass for a short period, which is inadequate to replicate the function of fibrosis, particularly as a physical barrier. To address this limitation, a multi-layer spheroid formation method is developed to create a fibrosis-encapsulated tumoroid (FET) structure that maintains structural stability for up to 14 days. FETs exhibited faster tumor growth, higher expression of immunosuppressive cytokines, and equal or greater resistance to anticancer drugs compared to their parental tumoroids. Additionally, FETs serve as a versatile model for traditional cancer research, enabling the study of exosomal miRNA and gene functions, as well as for mechanobiology research when combined with alginate hydrogel. Our findings suggest that the FET represents an advanced model that more accurately mimics solid cancer tissue with peritumoral fibrosis. It may show potential superiority over self-assembly-based 3D co-cultures for cancer research and drug screening, and holds promise for personalized drug selection in cancer treatment.
Collapse
Affiliation(s)
- Yeonsue Jang
- Department of Urological Science InstituteYonsei University College of MedicineSeoul03722Republic of Korea
| | - Suki Kang
- Department of PathologyYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hyunho Han
- Department of Urological Science InstituteYonsei University College of MedicineSeoul03722Republic of Korea
- Division of Hepatobiliary and Pancreatic Surgery, Department of SurgeryYonsei University College of MedicineSeoul03722Republic of Korea
| | - Chang Moo Kang
- Division of Hepatobiliary and Pancreatic Surgery, Department of SurgeryYonsei University College of MedicineSeoul03722Republic of Korea
| | - Nam Hoon Cho
- Department of PathologyYonsei University College of MedicineSeoul03722Republic of Korea
- Brain Korea 21 Plus Project for Medical ScienceYonsei University College of MedicineSeoul03722South Korea
| | - Baek Gil Kim
- Department of PathologyYonsei University College of MedicineSeoul03722Republic of Korea
- Brain Korea 21 Plus Project for Medical ScienceYonsei University College of MedicineSeoul03722South Korea
| |
Collapse
|
30
|
Shen H, Liu M, Zhou H, Li Y, Guo Y, Yin Y, Zhang F, Wang J. Differential expression and significance of cytokines in cerebrospinal fluid of patients with viral encephalitis. Neuroscience 2024; 561:11-19. [PMID: 39389253 DOI: 10.1016/j.neuroscience.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
To extensively identify cerebrospinal fluid (CSF) cytokine profiles related to the occurrence, development and prognosis of viral encephalitis (VE) patients by using a high-throughput proteomic approach. We measured 80 cytokines in the CSF of acute-phase VE patients (n = 11) using high-throughput protein chip technology, comparing them to controls (n = 6). ELISA validated these findings and assessed additional cytokines from prior literature in a larger cohort (15 VE patients, 15 controls). Correlations between biomarkers and clinical characteristics were also examined. In the initial stage, we identified two differentially expressed cytokines: cathepsin-L (CTSL), which was up-regulated, and Fractalkine, which was down-regulated. Functional enrichment analysis revealed that these proteins are linked to inflammation, apoptosis, autophagy, and blood-brain barrier disruption. In stage2, the elevations of cathepsin-L (CTSL), fractalkine, interleukin-6 (IL-6), IL-1β, macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNF-α), insulin-like growth factor Ⅱ (IGF-2) and CXC chemokine ligand 10 (CXCL10) in VE were validated by ELISA. The results of linear regression indicated that these cytokines was positively correlated with CSF reactive lesions (p < 0.05). In this study, some biomarkers related with CSF level changes and prognosis were obtained. Although these cytokines are not specific, they may be related to the occurrence and development of VE. CTSL, MIF, IL-1β, TNF-α and CXCL10 can be used as VE potential biomarkers. These cytokines may participate in the pathogenesis of VE through inflammatory response, cell apoptosis, autophagy, blood-brain barrier disruption and cytokine-cytokine receptor interaction pathway.
Collapse
Affiliation(s)
- Huijun Shen
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China; School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Miaomiao Liu
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong Zhou
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuchen Li
- Tianjin Medical University, Tianjin, China
| | - Yingshi Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujie Yin
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Fang Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
31
|
Zhang F, Meng T, Feng R, Jin C, Zhang S, Meng J, Zhang M, Liang C. MIF aggravates experimental autoimmune prostatitis through activation of the NLRP3 inflammasome via the PI3K/AKT pathway. Int Immunopharmacol 2024; 141:112891. [PMID: 39153310 DOI: 10.1016/j.intimp.2024.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
In our investigation, we investigated the role of macrophage migration inhibitory factor (MIF), a key cytokine, in chronic nonbacterial prostatitis (CNP), an underexplored pathology. Elevated MIF expression was observed in the serum of individuals with chronic prostatitis-like symptoms (CP-LS) as well as in serum and tissue samples from experimental autoimmune prostatitis (EAP) mouse model. Treatment with ISO-1, a specific MIF antagonist, effectively mitigated prostatic inflammation and macrophage infiltration, thereby emphasizing the critical role of MIF in orchestrating immune responses within the prostate microenvironment. Further analyses revealed that MIF stimulates the PI3K/AKT and NLRP3 inflammasome pathways, which are integral to inflammation and cellular immunity. Pharmacological inhibition of the PI3K/AKT pathway by LY294002 substantially reduced prostatic inflammation and macrophage infiltration, potentially by inhibiting NLRP3 inflammasome activation. These findings collectively suggest that MIF is a potential diagnostic marker for CNP and suggest that targeting MIF or its downstream signalling pathways, PI3K/AKT and NLRP3, might represent a novel therapeutic strategy for this condition.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Rui Feng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China; Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Chen Jin
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Song Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Jialin Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Meng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China.
| |
Collapse
|
32
|
Putha L, Kok LK, Fellner M, Rutledge MT, Gamble AB, Wilbanks SM, Vernall AJ, Tyndall JDA. Covalent Isothiocyanate Inhibitors of Macrophage Migration Inhibitory Factor as Potential Colorectal Cancer Treatments. ChemMedChem 2024; 19:e202400394. [PMID: 38977403 DOI: 10.1002/cmdc.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that has roles in innate and adaptive human immune responses, as well as inflammation. MIF exerts its biological activity by binding to the cell surface receptor CD74 as well as intracellular signalling proteins. MIF also possesses keto-enol tautomerase activity. Inhibition of the tautomerase activity has been associated with loss of biological activity of MIF and a potential anticancer target. Isothiocyanates (ITCs) are a class of compounds present in cruciferous vegetables that inhibit the MIF tautomerase activity via covalent modification of the N-terminal proline. A range of substituted ITCs featuring benzyl, phenethyl and phenyl propyl isothiocyanates were designed, synthesised and tested to determine any structure activity relationship for inhibiting MIF. Crystal structures of covalent compounds 8 and 9 in complex with rhMIF revealed key hydrogen bonding and edge-to-face π stacking interactions. Compound 9 and 11 with sub micromolar activity were tested in the NCI60 cancer cell lines panel. Both compounds showed tissue-specific reduced growth in colon and renal cancer cell lines, while one of these showed potent, dose-dependent inhibition of growth against all seven colon cancer cell lines (GI50<2.5 μM) and all eight renal cancer cell lines (GI50<2.2 μM).
Collapse
Affiliation(s)
- Lohitha Putha
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Liang K Kok
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Matthias Fellner
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Malcolm T Rutledge
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Allan B Gamble
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Sigurd M Wilbanks
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Andrea J Vernall
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
33
|
Bai Y, Song Y, Li M, Ou J, Hu H, Xu N, Cao M, Wang S, Chen L, Cheng G, Li Z, Liu G, Wang J, Zhang W, Yang C. Dissection of molecular mechanisms of liver injury induced by microcystin-leucine arginine via single-cell RNA-sequencing. J Environ Sci (China) 2024; 145:164-179. [PMID: 38844317 DOI: 10.1016/j.jes.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 07/28/2024]
Abstract
The occurrence of poisoning incidents caused by cyanobacterial blooms has aroused wide public concern. Microcystin-leucine arginine (MC-LR) is a well-established toxin produced by cyanobacterial blooms, which is widely distributed in eutrophic waters. MC-LR is not only hazardous to the water environment but also exerts multiple toxic effects including liver toxicity in both humans and animals. However, the underlying mechanisms of MC-LR-induced liver toxicity are unclear. Herein, we used advanced single-cell RNA sequencing technology to characterize MC-LR-induced liver injury in mice. We established the first single-cell atlas of mouse livers in response to MC-LR. Our results showed that the differentially expressed genes and pathways in diverse cell types of liver tissues of mice treated with MC-LR are highly heterogeneous. Deep analysis showed that MC-LR induced an increase in a subpopulation of hepatocytes that highly express Gstm3, which potentially contributed to hepatocyte apoptosis in response to MC-LR. Moreover, MC-LR increased the proportion and multiple subtypes of Kupffer cells with M1 phenotypes and highly expressed proinflammatory genes. Furthermore, the MC-LR increased several subtypes of CD8+ T cells with highly expressed multiple cytokines and chemokines. Overall, apart from directly inducing hepatocytes apoptosis, MC-LR activated proinflammatory Kupffer cell and CD8+ T cells, and their interaction may constitute a hostile microenvironment that contributes to liver injury. Our findings not only present novel insight into underlying molecular mechanisms but also provide a valuable resource and foundation for additional discovery of MC-LR-induced liver toxicity.
Collapse
Affiliation(s)
- Yunmeng Bai
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China; Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China
| | - Miaoran Li
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinhuan Ou
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Hong Hu
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Nan Xu
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Min Cao
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Siyu Wang
- Faculty of Brain Sciences, University College London, WC1E 6BT, UK
| | - Lin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhijie Li
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jigang Wang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, China; Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Zhang
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Chuanbin Yang
- Division of Thyroid and Breast Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| |
Collapse
|
34
|
Naik A, Stratton RJ, Leask A. Digital ulcers associated with scleroderma: A major unmet medical need. Wound Repair Regen 2024; 32:949-959. [PMID: 39323322 DOI: 10.1111/wrr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Scleroderma or systemic sclerosis (SSc)-associated digital ischaemic complications, such as digital ulcers (SSc-DUs), appear relatively early during the disease course and are a major burden with substantial deterioration of quality of life. Expert rheumatologist and wound specialists have defined a DU; however, international application of the definition is still disorganised. Appearance of SSc-DUs is secondary to the onset of Raynaud's phenomenon and as a consequence, recommended first-line of treatment mainly includes vasodilators; however, many DUs are refractory to this treatment. Despite important practical issues, such as a lack of well-characterised SSc-wound healing animal model, significant efforts are needed to mechanistically understand the pathogenesis of SSc-DUs for developing clinically targetable disease modifying therapies.
Collapse
Affiliation(s)
- Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard J Stratton
- Centre for Rheumatology and Connective Tissue Disease, University College London (Royal Free Campus), London, UK
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
35
|
Essien SA, Ahuja I, Eisenhoffer GT. Apoptotic extracellular vesicles carrying Mif regulate macrophage recruitment and compensatory proliferation in neighboring epithelial stem cells during tissue maintenance. PLoS Biol 2024; 22:e3002194. [PMID: 39495793 DOI: 10.1371/journal.pbio.3002194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2024] [Accepted: 08/27/2024] [Indexed: 11/06/2024] Open
Abstract
Apoptotic cells can signal to neighboring cells to stimulate proliferation and compensate for cell loss to maintain tissue homeostasis. While apoptotic cell-derived extracellular vesicles (AEVs) can transmit instructional cues to mediate communication with neighboring cells, the molecular mechanisms that induce cell division are not well understood. Here, we show that macrophage migration inhibitory factor (Mif)-containing AEVs regulate compensatory proliferation via ERK signaling in epithelial stem cells of larval zebrafish. Time-lapse imaging showed efferocytosis of AEVs from dying epithelial stem cells by healthy neighboring stem cells. Proteomic and ultrastructure analysis of purified AEVs identified Mif localization on the AEV surface. Pharmacological inhibition or genetic mutation of Mif, or its cognate receptor CD74, decreased levels of phosphorylated ERK and compensatory proliferation in the neighboring epithelial stem cells. Disruption of Mif activity also caused decreased numbers of macrophages patrolling near AEVs, while depletion of the macrophage lineage resulted in a reduced proliferative response by the epithelial stem cells. We propose that AEVs carrying Mif directly stimulate epithelial stem cell repopulation and guide macrophages to cell non-autonomously induce localized proliferation to sustain overall cell numbers during tissue maintenance.
Collapse
Affiliation(s)
- Safia A Essien
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ivanshi Ahuja
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - George T Eisenhoffer
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
36
|
Chang X, Du M, Wei J, Zhang Y, Feng X, Deng B, Liu P, Wang Y. Serum tsncRNAs reveals novel potential therapeutic targets of Salvianolic Acid B on atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155994. [PMID: 39243751 DOI: 10.1016/j.phymed.2024.155994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Salvianolic Acid B (SalB) has been proven to delay the progression of atherosclerosis. The therapeutic mechanisms of this compound are unclear. A novel class of short non-coding RNAs, pre-transfer RNA and mature transfer RNA (tsncRNAs) may regulate gene expression. TsncRNAs-sequencing revealed novel therapeutic targets for SalB. This is the first study focusing on tsncRNAs to treat atherosclerosis using SalB. PURPOSE To explore the potential mechanism of SalB treating atherosclerosis through tsncRNAs. METHODS Five groups of mice were created at random: control group (CON), atherosclerosis model group (MOD), SalB with high dose-treated group (SABH), SalB with low dose-treated group (SABL), and Simvastatin-treated group (ST). Aortic sinus plaque, body weight and inflammatory cytokines were evaluated. The Illumina NextSeq equipment was used to do expression profiling of tsncRNAs from serum. The targets of tsncRNAs were then predicted using tRNAscan and TargetScan. The KEGG pathway and GO analysis were utilized to forecast the bioinformatics analysis. Potential tsncRNAs and associated mRNAs were validated using quantitative real-time PCR. RESULTS tRF-Glu-CTC-014 and tRF-Gly-GCC-074 were markedly increased by SalB with high dose treatment and validated with quantitative real-time PCR. Two mRNAs SRF and Arrb related to tRF-Glu-CTC-014 changed consistently. GO analysis revealed that the altered target genes of the selected tsncRNAs were most enriched in protein binding and cellular process. Moreover, KEGG pathway analysis demonstrated that altered target genes of tsncRNAs were most enriched in MAPK signaling pathway. CONCLUSION SalB can promote the expression of tRF-Glu-CTC-014 to treat atherosclerosis.
Collapse
Affiliation(s)
- Xindi Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Min Du
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Jing Wei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Xiaoteng Feng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Bing Deng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wan-Ping Road, Shanghai, China.
| |
Collapse
|
37
|
Yoon C, Kim HK, Ham YS, Gil WJ, Mun SJ, Cho E, Yuk JM, Yang CS. Toxoplasma gondii macrophage migration inhibitory factor shows anti- Mycobacterium tuberculosis potential via AZIN1/STAT1 interaction. SCIENCE ADVANCES 2024; 10:eadq0101. [PMID: 39453997 PMCID: PMC11506136 DOI: 10.1126/sciadv.adq0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Mycobacterium tuberculosis (MTB) is a pathogenic bacterium, belonging to the family Mycobacteriaceae, that causes tuberculosis (TB). Toxoplasma gondii macrophage migration inhibitory factor (TgMIF), a protein homolog of macrophage migration inhibitory factor, has been explored for its potential to modulate immune responses during MTB infections. We observed that TgMIF that interacts with CD74, antizyme inhibitor 1 (AZIN1), and signal transducer and activator of transcription 1 (STAT1) modulates endocytosis, restoration of mitochondrial function, and macrophage polarization, respectively. These interactions promote therapeutic efficacy in mice infected with MTB, thereby presenting a potential route to host-directed therapy development. Furthermore, TgMIF, in combination with first-line TB drugs, significantly inhibited drug-resistant MTB strains, including multidrug-resistant TB. These results demonstrate that TgMIF is potentially a multifaceted therapeutic agent against TB, acting through immune modulation, enhancement of mitochondrial function, and dependent on STAT1 and AZIN1 pathways.
Collapse
Affiliation(s)
- Chanjin Yoon
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
- Institute of Natural Science & Technology, Hanyang University, Ansan 15588, South Korea
| | - Hyo Keun Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Yu Seong Ham
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Woo Jin Gil
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
| | - Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul 04673, South Korea
| | - Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul 04673, South Korea
| | - Jae-Min Yuk
- Department of Infection Biology and Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, South Korea
- Department of Medicinal and Life Science, Hanyang University, Ansan 15588, South Korea
| |
Collapse
|
38
|
Havel SL, Griswold MD. Temporal maturation of Sertoli cells during the establishment of the cycle of the seminiferous epithelium†. Biol Reprod 2024; 111:959-974. [PMID: 39077996 PMCID: PMC11473899 DOI: 10.1093/biolre/ioae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024] Open
Abstract
Sertoli cells, omnipresent, somatic cells within the seminiferous tubules of the mammalian testis are essential to male fertility. Sertoli cells maintain the integrity of the testicular microenvironment, regulate hormone synthesis, and of particular importance, synthesize the active derivative of vitamin A, all trans retinoic acid (atRA), which is required for germ cell differentiation and the commitment of male germ cells to meiosis. Stages VIII-IX, when atRA synthesis occurs in the testis, coincide with multiple germ cell development and testicular restructuring events that rely on Sertoli cell gene products to proceed normally. In this study, we have synchronized and captured the mouse testis at four recurrent points of atRA synthesis to observe transcriptomic changes within Sertoli cells as mice age and the Sertoli cells are exposed to increasingly developed germ cell subtypes. This work provides comprehensive, high-resolution characterization of the timing of induction of functional Sertoli cell genes across the first wave of spermatogenesis, and outlines in silico predictions of germ cell derived signaling mechanisms targeting Sertoli cells. We have found that Sertoli cells adapt to their environment, especially to the needs of the germ cell populations present and establish germ-Sertoli cell and Sertoli-Sertoli cell junctions early but gain many of their known immune-regulatory and protein secretory functions in preparation for spermiogenesis and spermiation. Additionally, we have found unique patterns of germ-Sertoli signaling present at each endogenous pulse of atRA, suggesting individual functions of the various germ cells in germ-Sertoli communication.
Collapse
Affiliation(s)
- Shelby L Havel
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Michael D Griswold
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
39
|
Ferhat M, Mayer J, Costa LH, Prendecki M, Tarazona AAP, Schinagl A, Kerschbaumer RJ, Tam FWK, Landlinger C, Thiele M. Targeting of oxidized Macrophage Migration Inhibitory Factor (oxMIF) with antibody ON104 attenuates the severity of glomerulonephritis. PLoS One 2024; 19:e0311837. [PMID: 39374239 PMCID: PMC11458038 DOI: 10.1371/journal.pone.0311837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
The oxidized form of Macrophage Migration Inhibitory Factor (oxMIF) has been identified as the disease-related isoform of MIF, exerting pathological functions in inflamed tissue. In this study, we aimed to explore the in vivo effects of the neutralizing anti-oxMIF antibody ON104 in a rat model of crescentic glomerulonephritis (CGN), to better understand its disease modifying activities. WKY rats received a single intravenous injection of a rabbit nephrotoxic serum (NTS), targeting rat glomerular basement membrane to induce CGN. On day 4 and day 6, ON104 was given intraperitoneally (i.p.) and on day 8 urine, blood and kidney tissue were collected. ON104 substantially attenuated the severity of CGN demonstrated by reduced proteinuria, hematuria, as well as lower levels of kidney injury molecule (KIM)-1. ON104 treatment preserved the glomerular morphology and suppressed crescent formation, a hallmark of the disease. On the cellular level, oxMIF neutralization by ON104 strongly reduced the number of macrophages and neutrophils within the inflamed kidneys. In vitro, we identified human neutrophils, but not monocytes, as main producers of oxMIF among total peripheral cells. The present study demonstrates that oxMIF is a pertinent therapeutic target in a model of CGN which mechanistically resembles human immune mediated CGN. In this model, neutralization of oxMIF by ON104 leads to an improvement in both urinary abnormalities and histological pathological characteristics of the disease. ON104, thus has the potential to become a novel disease-modifying drug for the treatment of glomerulonephritis and other inflammatory kidney diseases.
Collapse
Affiliation(s)
- Maroua Ferhat
- OncoOne Research & Development GmbH, Vienna, Austria
| | - Julia Mayer
- OncoOne Research & Development GmbH, Vienna, Austria
| | - Lyndon H. Costa
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Hammersmith Hospital, Imperial College London (ICL), London, United Kingdom
| | - Maria Prendecki
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Hammersmith Hospital, Imperial College London (ICL), London, United Kingdom
| | | | | | | | - Frederick W. K. Tam
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Hammersmith Hospital, Imperial College London (ICL), London, United Kingdom
| | | | | |
Collapse
|
40
|
Lin S. A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell. BMC Genomics 2024; 25:932. [PMID: 39367346 PMCID: PMC11453091 DOI: 10.1186/s12864-024-10847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
41
|
Donahue KL, Watkoske HR, Kadiyala P, Du W, Brown K, Scales MK, Elhossiny AM, Espinoza CE, Lasse Opsahl EL, Griffith BD, Wen Y, Sun L, Velez-Delgado A, Renollet NM, Morales J, Nedzesky NM, Baliira RK, Menjivar RE, Medina-Cabrera PI, Rao A, Allen B, Shi J, Frankel TL, Carpenter ES, Bednar F, Zhang Y, Pasca di Magliano M. Oncogenic KRAS-Dependent Stromal Interleukin-33 Directs the Pancreatic Microenvironment to Promote Tumor Growth. Cancer Discov 2024; 14:1964-1989. [PMID: 38958646 PMCID: PMC11450371 DOI: 10.1158/2159-8290.cd-24-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer-associated fibroblasts (CAF). The mechanisms underlying this conversion, including the regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to therapeutically target CAFs have so far failed. Herein, we show that signals from epithelial cells expressing oncogenic KRAS-a hallmark pancreatic cancer mutation-activate fibroblast autocrine signaling, which drives the expression of the cytokine IL33. Stromal IL33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces interleukin-33 (IL33) secretion. Using compartment-specific IL33 knockout mice, we observed that lack of stromal IL33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells, and lymphocytes. Notably, loss of stromal IL33 leads to an increase in CD8+ T-cell infiltration and activation and, ultimately, reduced tumor growth. Significance: This study provides new insights into the mechanisms underlying the programming of CAFs and shows that during this process, expression of the cytokine IL33 is induced. CAF-derived IL33 has pleiotropic effects on the tumor microenvironment, supporting its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Hannah R. Watkoske
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan.
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| | | | | | | | - Yukang Wen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nur M. Renollet
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Jacqueline Morales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nicholas M. Nedzesky
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | | | - Rosa E. Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Cancer Data Science Resource, University of Michigan, Ann Arbor, Michigan.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, Michigan.
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Eileen S. Carpenter
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Filip Bednar
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
42
|
Ryan N, Lamenza F, Shrestha S, Upadhaya P, Springer A, Jordanides P, Pracha H, Roth P, Kumar R, Wang Y, Vilgelm AE, Satoskar A, Oghumu S. Host derived macrophage migration inhibitory factor expression attenuates anti-tumoral immune cell accumulation and promotes immunosuppression in the tumor microenvironment of head and neck squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167345. [PMID: 38992847 PMCID: PMC11954649 DOI: 10.1016/j.bbadis.2024.167345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a significant public health concern worldwide. Immunomodulatory targets in the HNSCC tumor microenvironment are crucial to enhance the efficacy of HNSCC immunotherapy. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that has been linked to poor prognosis in many cancers, but the mechanistic role of MIF in HNSCC remains unclear. Using a murine orthotopic oral cancer model in Mif+/+ or Mif-/- mice, we determined the function of host derived MIF in HNSCC tumor development, metastasis as well as localized and systemic tumor immune responses. We observed that Mif-/- mice have decreased tumor growth and tumor burden compared to their wild-type counterparts. Flow cytometric analysis of immune populations within the primary tumor site revealed increased Th1 and cytotoxic T cell recruitment to the HNSCC tumor microenvironment. Within the tumors of Mif-/- mice, MIF deletion also enhanced the effector function of anti-tumoral effector CD8+ T cells as well as Th1 cells and decreased the accumulation of granulocytic myeloid derived suppressor cells (g-MDSCs) in the tumor microenvironment. Furthermore, MDSCs isolated from tumor bearing mice chemotactically respond to MIF in a dose dependent manner. Taken together, our results demonstrate a chemotactic and immunomodulatory role for host derived MIF in promoting HNSCC and suggest that MIF targeted immunomodulation is a promising approach for HNSCC treatment.
Collapse
Affiliation(s)
- Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Felipe Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Anna Springer
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Pete Jordanides
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Rathan Kumar
- Department of Hematology, The Ohio State University Wexner Medial Center, Columbus, OH 43210, USA
| | - Yinchong Wang
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Abhay Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Yang L, Guttman L, Dawson VL, Dawson TM. Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 2024; 228:116174. [PMID: 38552851 PMCID: PMC11410548 DOI: 10.1016/j.bcp.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parthanatos is a cell death signaling pathway that has emerged as a compelling target for pharmaceutical intervention. It plays a pivotal role in the neuron loss and neuroinflammation that occurs in Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and stroke. There are currently no treatments available to humans to prevent cell death in any of these diseases. This review provides an in-depth examination of the current understanding of the Parthanatos mechanism, with a particular focus on its implications in neuroinflammation and various diseases discussed herein. Furthermore, we thoroughly review potential intervention targets within the Parthanatos pathway. We dissect recent progress in inhibitory strategies, complimented by a detailed structural analysis of key Parthanatos executioners, PARP-1, AIF, and MIF, along with an assessment of their established inhibitors. We hope to introduce a new perspective on the feasibility of targeting components within the Parthanatos pathway, emphasizing its potential to bring about transformative outcomes in therapeutic interventions. By delineating therapeutic opportunities and known targets, we seek to emphasize the imperative of blocking Parthanatos as a precursor to developing disease-modifying treatments. This comprehensive exploration aims to catalyze a paradigm shift in our understanding of potential neurodegenerative disease therapeutics, advocating for the pursuit of effective interventions centered around Parthanatos inhibition.
Collapse
Affiliation(s)
- Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
44
|
Zhou Y, Na C, Li Z. Novel insights into immune cells modulation of tumor resistance. Crit Rev Oncol Hematol 2024; 202:104457. [PMID: 39038527 DOI: 10.1016/j.critrevonc.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor resistance poses a significant challenge to effective cancer treatment, making it imperative to explore new therapeutic strategies. Recent studies have highlighted the profound involvement of immune cells in the development of tumor resistance. Within the tumor microenvironment, macrophages undergo polarization into the M2 phenotype, thus promoting the emergence of drug-resistant tumors. Neutrophils contribute to tumor resistance by forming extracellular traps. While T cells and natural killer (NK) cells exert their impact through direct cytotoxicity against tumor cells. Additionally, dendritic cells (DCs) have been implicated in preventing tumor drug resistance by stimulating T cell activation. In this review, we provide a comprehensive summary of the current knowledge regarding immune cell-mediated modulation of tumor resistance at the molecular level, with a particular focus on macrophages, neutrophils, DCs, T cells, and NK cells. The targeting of immune cell modulation exhibits considerable potential for addressing drug resistance, and an in-depth understanding of the molecular interactions between immune cells and tumor cells holds promise for the development of innovative therapies. Furthermore, we explore the clinical implications of these immune cells in the treatment of drug-resistant tumors. This review emphasizes the exploration of novel approaches that harness the functional capabilities of immune cells to effectively overcome drug-resistant tumors.
Collapse
Affiliation(s)
- Yi Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Chuhan Na
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| |
Collapse
|
45
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
46
|
Khezrian A, Shojaeian A, Khaghani Boroujeni A, Amini R. Therapeutic Opportunities in Breast Cancer by Targeting Macrophage Migration Inhibitory Factor as a Pleiotropic Cytokine. Breast Cancer (Auckl) 2024; 18:11782234241276310. [PMID: 39246383 PMCID: PMC11380135 DOI: 10.1177/11782234241276310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
As a heterogeneous disease, breast cancer (BC) has been characterized by the uncontrolled proliferation of mammary epithelial cells. The tumor microenvironment (TME) also contains inflammatory cells, fibroblasts, the extracellular matrix (ECM), and soluble factors that all promote BC progression. In this sense, the macrophage migration inhibitory factor (MIF), a pleiotropic pro-inflammatory cytokine and an upstream regulator of the immune response, enhances breast tumorigenesis through escalating cancer cell proliferation, survival, angiogenesis, invasion, metastasis, and stemness, which then brings tumorigenic effects by activating key oncogenic signaling pathways and inducing immunosuppression. Against this background, this review was to summarize the current understanding of the MIF pathogenic mechanisms in cancer, particularly BC, and address the central role of this immunoregulatory cytokine in signaling pathways and breast tumorigenesis. Furthermore, different inhibitors, such as small molecules as well as antibodies (Abs) or small interfering RNA (siRNA) and their anti-tumor effects in BC studies were examined. Small molecules and other therapy target MIF. Considering MIF as a promising therapeutic target, further clinical evaluation of MIF-targeted agents in patients with BC was warranted.
Collapse
Affiliation(s)
- Ali Khezrian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute (AHRI), Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
47
|
Karabowicz J, Długosz E, Bąska P, Pękacz M, Wysmołek ME, Klockiewicz M, Wiśniewski M. Analysis of the role of Dirofilaria repens macrophage migration inhibitory factors in host-parasite interactions. J Vet Res 2024; 68:381-388. [PMID: 39318519 PMCID: PMC11418385 DOI: 10.2478/jvetres-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Dirofilaria repens is a zoonotic parasitic filarial nematode that infects carnivores and occasionally humans. Knowledge of the host-parasite molecular interactions enabling the parasite's avoidance of the host immune response in subcutaneous dirofilariasis remains limited. Parasitic orthologues of host macrophage migration inhibitory factor (MIF) are molecules potentially involved in this process. Material and Methods Complementary DNA encoding two D. repens MIF orthologues (rDre-MIF-1 and rDre-MIF-2) was cloned into a pET-28a expression vector. The recombinant proteins were produced in Escherichia coli and purified using affinity nickel chromatography. The reactivity of both recombinant proteins was analysed with infected dog and immunised mouse sera. Results Stronger antibody production was induced by rDre-MIF-1 in mice, as evidenced by significantly higher levels of anti-rDre-MIF-1 total IgG, IgG2 and IgE antibodies than of anti-rDre-MIF-2 immunoglobulins. Additionally, a significantly different level of antibodies specific to both proteins was noted between the sera of infected dogs and those of uninfected dogs. Conclusion This study is the first attempt to characterise MIF orthologues from the filarial parasite D. repens, which may affect the immune response during infection.
Collapse
Affiliation(s)
- Justyna Karabowicz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Ewa Długosz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Piotr Bąska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Mateusz Pękacz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Magdalena Elżbieta Wysmołek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Maciej Klockiewicz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| | - Marcin Wiśniewski
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warszawa, Poland
| |
Collapse
|
48
|
Sajko S, Skeens E, Schinagl A, Ferhat M, Mirkina I, Mayer J, Rossmueller G, Thiele M, Lisi GP. Redox-dependent plasticity of oxMIF facilitates its interaction with CD74 and therapeutic antibodies. Redox Biol 2024; 75:103264. [PMID: 38972295 PMCID: PMC11263951 DOI: 10.1016/j.redox.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024] Open
Abstract
MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.
Collapse
Affiliation(s)
- Sara Sajko
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| | | | - Maroua Ferhat
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Irina Mirkina
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Julia Mayer
- OncoOne Research and Development GmbH, Vienna, Austria
| | | | | | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| |
Collapse
|
49
|
Hao W, Luo D, Jiang Y, Wan S, Li X. An overview of sphingosine-1-phosphate receptor 2: Structure, biological function, and small-molecule modulators. Med Res Rev 2024; 44:2331-2362. [PMID: 38665010 DOI: 10.1002/med.22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, there has been a notable increase in research on sphingosine-1-phosphate receptor 2 (S1PR2), which is a type of G-protein-coupled receptor. Upon activation by S1P or other ligands, S1PR2 initiates downstream signaling pathways such as phosphoinositide 3-kinase (PI3K), Mitogen-activated protein kinase (MAPK), Rho/Rho-associated coiled-coil containing kinases (ROCK), and others, contributing to the diverse biological functions of S1PR2 and playing a pivotal role in various physiological processes and disease progressions, such as multiple sclerosis, fibrosis, inflammation, and tumors. Due to the extensive biological functions of S1PR2, many S1PR2 modulators, including agonists and antagonists, have been developed and discovered by pharmaceutical companies (e.g., Novartis and Galapagos NV) and academic medicinal chemists for disease diagnosis and treatment. However, few reviews have been published that comprehensively overview the functions and regulators of S1PR2. Herein, we provide an in-depth review of the advances in the function of S1PR2 and its modulators. We first summarize the structure and biological function of S1PR2 and its pathological role in human diseases. We then focus on the discovery approach, design strategy, development process, and biomedical application of S1PR2 modulators. Additionally, we outline the major challenges and future directions in this field. Our comprehensive review will aid in the discovery and development of more effective and clinically applicable S1PR2 modulators.
Collapse
Affiliation(s)
- Wanting Hao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Dongdong Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shengbiao Wan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Marine Biomedical Research, Institute of Qingdao, Qingdao, China
| |
Collapse
|
50
|
Qiu W, Guo R, Yu H, Chen X, Chen Z, Ding D, Zhong J, Yang Y, Fang F. Single-cell atlas of human gingiva unveils a NETs-related neutrophil subpopulation regulating periodontal immunity. J Adv Res 2024:S2090-1232(24)00312-6. [PMID: 39084404 DOI: 10.1016/j.jare.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Exaggerated neutrophil recruitment and activation are the major features of pathological alterations in periodontitis, in which neutrophil extracellular traps (NETs) are considered to be responsible for inflammatory periodontal lesions. Despite the critical role of NETs in the development and progression of periodontitis, their specific functions and mechanisms remain unclear. OBJECTIVES To demonstrate the important functions and specific mechanisms of NETs involved in periodontal immunopathology. METHODS We performed single-cell RNA sequencing on gingival tissues from both healthy individuals and patients diagnosed with periodontitis. High-dimensional weighted gene co-expression network analysis and pseudotime analysis were then applied to characterize the heterogeneity of neutrophils. Animal models of periodontitis were treated with NETs inhibitors to investigate the effects of NETs in severe periodontitis. Additionally, we established a periodontitis prediction model based on NETs-related genes using six types of machine learning methods. Cell-cell communication analysis was used to identify ligand-receptor pairs among the major cell groups within the immune microenvironment. RESULTS We constructed a single-cell atlas of the periodontal microenvironment and obtained nine major cell populations. We further identified a NETs-related subgroup (NrNeu) in neutrophils. An in vivo inhibition experiment confirmed the involvement of NETs in gingival inflammatory infiltration and alveolar bone absorption in severe periodontitis. We further screened three key NETs-related genes (PTGS2, MME and SLC2A3) and verified that they have the potential to predict periodontitis. Moreover, our findings revealed that gingival fibroblasts had the most interactions with NrNeu and that they might facilitate the production of NETs through the MIF-CD74/CXCR4 axis in periodontitis. CONCLUSION This study highlights the pathogenic role of NETs in periodontal immunity and elucidates the specific regulatory relationship by which gingival fibroblasts activate NETs, which provides new insights into the clinical diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruiming Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxin Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dian Ding
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jindou Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yumeng Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|