1
|
Luo D, Kumfu S, Chattipakorn N, Chattipakorn SC. Targeting fibroblast growth factor receptor (FGFR) with inhibitors in head and neck cancers: Their roles, mechanisms and challenges. Biochem Pharmacol 2025; 235:116845. [PMID: 40044050 DOI: 10.1016/j.bcp.2025.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and aggressive type of cancer with significant rates of morbidity and mortality. Traditional treatment options, including radiotherapy, chemotherapy, and surgery, are widely used, but their effectiveness can be uncertain. As research in cancer therapies evolves, molecular-targeted therapies are increasingly recognized as promising alternatives for managing malignant tumors. Fibroblast growth factor receptors (FGFRs) have been shown to be one of the essential components in the pathways in the progression of HNSCC. This review aims to summarize and discuss the structure, functions, signaling pathways, abnormal alterations of FGFRs, and their roles in tumorigenesis and development. We have accumulated information from in vitro, in vivo, and clinical studies regarding FGFR inhibitors in HNSCC. However, the efficacy of FGFR inhibitors as a cancer therapy is limited, which may be due to the resistance to FGFR inhibitors. In this review we also discuss the potential mechanisms of FGFR inhibitor resistance in HNSCC. By enriching our understanding of the treatment with and resistance of FGFR inhibitors in HNSCC, researchers may unveil new therapeutic targets or strategies to enhance the efficacy of FGFR inhibitors in this context.
Collapse
Affiliation(s)
- Daowen Luo
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac, Electrophysiology Research Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Center of Excellence in Cardiac, Electrophysiology Research Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac, Electrophysiology Research Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac, Electrophysiology Research Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine Chiang, Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Bouhniz OE, Kenani A. Potential role of genetic polymorphisms in neoadjuvant chemotherapy response in breast cancer. J Chemother 2025; 37:97-111. [PMID: 38511398 DOI: 10.1080/1120009x.2024.2330241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chemoresistance leads to treatment failure, which can arise through different mechanisms including patients' characteristics. Searching for genetic profiles as a predictor for drug response and toxicity has been extensively studied in pharmacogenomics, thus contributing to personalized medicine and providing alternative treatments. Numerous studies have demonstrated significant evidence of association between genetic polymorphisms and response to neoadjuvant chemotherapy (NAC) in breast cancer. In this review, we explored the potential impact of genetic polymorphisms in NAC primary resistance through selecting a specific clinical profile. The genetic variability within pharmacokinetics, pharmacodynamics, DNA synthesis and repair, and oncogenic signaling pathways genes could be predictive or prognostic markers for NAC resistance. The clinical implication of these results can help provide individualized treatment plans in the early stages of breast cancer treatment. Further studies are needed to determine the genetic hosts of primary chemoresistance mechanisms in order to further emphasize the implementation of genotypic approaches in personalized medicine.
Collapse
Affiliation(s)
- Om Elez Bouhniz
- Research Laboratory "Environment, Inflammation, Signaling and Pathologies" (LR18ES40), Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | - Abderraouf Kenani
- Research Laboratory "Environment, Inflammation, Signaling and Pathologies" (LR18ES40), Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
3
|
Goyal L, DiToro D, Facchinetti F, Martin EE, Peng P, Baiev I, Iyer R, Maurer J, Reyes S, Zhang K, Majeed U, Berchuck JE, Chen CT, Walmsley C, Pinto C, Vasseur D, Gordan JD, Mody K, Borad M, Karasic T, Damjanov N, Danysh BP, Wehrenberg-Klee E, Kambadakone AR, Saha SK, Hoffman ID, Nelson KJ, Iyer S, Qiang X, Sun C, Wang H, Li L, Javle M, Lin B, Harris W, Zhu AX, Cleary JM, Flaherty KT, Harris T, Shroff RT, Leshchiner I, Parida L, Kelley RK, Fan J, Stone JR, Uboha NV, Hirai H, Sootome H, Wu F, Bensen DC, Hollebecque A, Friboulet L, Lennerz JK, Getz G, Juric D. A model for decoding resistance in precision oncology: acquired resistance to FGFR inhibitors in cholangiocarcinoma. Ann Oncol 2025; 36:426-443. [PMID: 39706336 DOI: 10.1016/j.annonc.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Fibroblast growth factor receptor (FGFR) inhibitors have significantly improved outcomes for patients with FGFR-altered cholangiocarcinoma, leading to their regulatory approval in multiple countries. As with many targeted therapies, however, acquired resistance limits their efficacy. A comprehensive, multimodal approach is crucial to characterizing resistance patterns to FGFR inhibitors. PATIENTS AND METHODS This study integrated data from six investigative strategies: cell-free DNA, tissue biopsy, rapid autopsy, statistical genomics, in vitro and in vivo studies, and pharmacology. We characterized the diversity, clonality, frequency, and mechanisms of acquired resistance to FGFR inhibitors in patients with FGFR-altered cholangiocarcinoma. Clinical samples were analyzed longitudinally as part of routine care across 10 institutions. RESULTS Among 138 patients evaluated, 77 met eligibility, yielding a total of 486 clinical samples. Patients with clinical benefit exhibited a significantly higher rate of FGFR2 kinase domain mutations compared with those without clinical benefit (65% versus 10%, P < 0.0001). We identified 26 distinct FGFR2 kinase domain mutations, with 63% of patients harboring multiple. While IC50 assessments indicated strong potency of pan-FGFR inhibitors against common resistance mutations, pharmacokinetic studies revealed that low clinically achievable drug concentrations may underly polyclonal resistance. Molecular brake and gatekeeper mutations predominated, with 94% of patients with FGFR2 mutations exhibiting one or both, whereas mutations at the cysteine residue targeted by covalent inhibitors were rare. Statistical genomics and functional studies demonstrated that mutation frequencies were driven by their combined effects on drug binding and kinase activity rather than intrinsic mutational processes. CONCLUSION Our multimodal analysis led to a model characterizing the biology of acquired resistance, informing the rational design of next-generation FGFR inhibitors. FGFR inhibitors should be small, high-affinity, and selective for specific FGFR family members. Tinengotinib, a novel small molecule inhibitor with these characteristics, exhibited preclinical and clinical activity against key resistance mutations. This integrated approach offers a blueprint for advancing drug resistance research across cancer types.
Collapse
Affiliation(s)
- L Goyal
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA; Department of Medicine, Stanford Cancer Center, Stanford University School of Medicine, Palo Alto, USA.
| | - D DiToro
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - F Facchinetti
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - E E Martin
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - P Peng
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | - I Baiev
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - R Iyer
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - J Maurer
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - S Reyes
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - K Zhang
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, USA
| | - U Majeed
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, USA
| | - J E Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - C T Chen
- Department of Medicine, Stanford Cancer Center, Stanford University School of Medicine, Palo Alto, USA
| | - C Walmsley
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - C Pinto
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - D Vasseur
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - J D Gordan
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, USA
| | - K Mody
- Division of Hematology/Oncology, Mayo Clinic, Jacksonville, USA
| | - M Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, USA
| | - T Karasic
- Department of Medicine, University of Pennsylvania Abramson Cancer Center, Philadelphia, USA
| | - N Damjanov
- Department of Medicine, University of Pennsylvania Abramson Cancer Center, Philadelphia, USA
| | - B P Danysh
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - E Wehrenberg-Klee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - A R Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - S K Saha
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, USA
| | | | | | - S Iyer
- Tyra Biosciences, San Diego, USA
| | - X Qiang
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | - C Sun
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | - H Wang
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | - L Li
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | - M Javle
- MD Anderson Cancer Center, Houston, USA
| | - B Lin
- Virginia Mason Medical Center, Seattle, USA
| | - W Harris
- Department of Medicine, University of Washington/Fred Hutchinson Cancer Center, Seattle, USA
| | - A X Zhu
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - J M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - K T Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - T Harris
- Tyra Biosciences, San Diego, USA
| | - R T Shroff
- Department of Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, USA
| | - I Leshchiner
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - L Parida
- IBM Research, Yorktown Heights, USA
| | - R K Kelley
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, USA
| | - J Fan
- TransThera Sciences (US), Inc., Gaithersburg, USA
| | - J R Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - N V Uboha
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - H Hirai
- Tsukuba Research Institute, Taiho Pharmaceutical Co., Ltd., Japan
| | - H Sootome
- Tsukuba Research Institute, Taiho Pharmaceutical Co., Ltd., Japan
| | - F Wu
- TransThera Sciences (Nanjing), Inc., Nanjing, China
| | | | - A Hollebecque
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - L Friboulet
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - J K Lennerz
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - G Getz
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Broad Institute of Harvard and MIT, Cambridge, USA
| | - D Juric
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| |
Collapse
|
4
|
Jameel ZI. Three FGFR4 gene polymorphisms contribute to the susceptibility of urethral cancer in the middle and south of Iraq population. Cancer Genet 2025; 292-293:77-84. [PMID: 39970854 DOI: 10.1016/j.cancergen.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Urothelial cell carcinoma is quite prevalent, making up close to 90 % of all cases. Men are more likely to suffer from it than women, and it mostly affects the elderly. Fibroblast growth factor receptor 4 (FGFR4) plays an important role in cell proliferation and cancer progression. AIM this study was conducted to assess the association between FGFR4 gene polymorphism and the risk of Urothelial Cell Carcinoma in Iraq. METHODS genomic DNA samples were extracted from a total 200 samples of blood. Three primers were designed to enhance three commonly observed genetic variation, rs2011077, rs351855, and rs1966265. The single strand conformation polymorphisms technique (SSCP) was genotyped and confirmed by further sequencing protocols. RESULTS The results of this study show that cases with the G/A variant of the rs351855 genotype have a marked increase in risk to Urothelial Cell Carcinoma (P = 0.001, OR 0.32, 95 % CI 0.20 to 0.94). Cases with genotype rs2011077: T\C has also associated with the increased the risk of UCC (P = 0.001, OR= 0.50, 95 % CI = 0.33 to 0.76). The Linkage Disequilibrium revealed a significant relationship between the T allele of the rs2011077 locus and the A allele of the rs351855 locus, leading to the formation of the T\A haplotype in cases diagnosed with the UCC. Our results show that FGFR4 gene polymorphisms (rs351855 and rs2011077) have significant associations with increased risk of Urothelial Cell Carcinoma. CONCLUSION current study indicates that the specific polymorphisms have proven to be promising as a major genetic marker for identifying cases who may be more susceptible to diagnosis and recurrence Urothelial Cell Carcinoma.
Collapse
Affiliation(s)
- Zahraa Isam Jameel
- Department of Biology, College of Science, Al-Qasim Green University, Al-Qasim, 51013, Babil, Iraq.
| |
Collapse
|
5
|
Goyal L, DiToro D, Hollebecque A, Bridgewater JA, Shimura M, Kano A, Okamura S, Silhavy JL, Wacheck V, Halim A, Meric-Bernstam F. Genomic correlates of response and resistance to the irreversible FGFR1-4 inhibitor futibatinib based on biopsy and circulating tumor DNA profiling. Ann Oncol 2025; 36:414-425. [PMID: 39672383 DOI: 10.1016/j.annonc.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Futibatinib is the only covalent inhibitor of FGFR1-4 to gain regulatory approval in oncology. In this article, we present genomic analyses of tissue biopsies and circulating tumor DNA (ctDNA) from patients with 1 of nearly 20 tumor types treated with futibatinib in the phase I/II FOENIX study. PATIENTS AND METHODS Eligible patients included those with ctDNA samples collected per protocol at baseline and/or progression on futibatinib in the phase Ib portion of the study for FGF/FGFR-altered advanced solid tumors or the phase II portion of the study for FGFR2 fusion/rearrangement-positive cholangiocarcinoma. Assessments included analytical concordance between tumor and ctDNA analyses for detection of FGFR alterations, association of ctDNA-detected co-occurring genomic alterations with response to futibatinib, and determination of patterns of acquired resistance following progression on futibatinib. RESULTS Among 300 patients treated with futibatinib, 226 were eligible for this analysis, including 139 (62%) with cholangiocarcinoma. Among patients with known FGFR2 fusions/rearrangements, FGFR1 fusions, FGFR3 fusions, or FGFR2 amplifications per tissue analysis, detection rates in ctDNA for these aberrations were 84%, 0%, 11%, and 59%, respectively. Objective response rates on futibatinib were not significantly different between patients with TP53-altered versus -unaltered solid tumors; progression-free survival was reduced in patients with CDKN2B-altered versus -unaltered cholangiocarcinoma (median 4.8 versus 11.0 months; P = 0.03). Acquired resistance to futibatinib was frequently polyclonal and driven by an array of mutations within the relevant FGFR kinase domain, predominantly V565L, V565F, and N550K variants. CONCLUSIONS In this largest and most systematic analysis of acquired resistance to an FGFR inhibitor from prospective clinical trials, emergence of secondary FGFR2 kinase domain mutations was observed in most patients receiving clinical benefit to futibatinib. ctDNA analysis shows clinically relevant potential as a noninvasive method for assessing genomic profiles, identifying patients who may benefit from FGFR inhibitor treatment, and exploring acquired resistance mechanisms.
Collapse
MESH Headings
- Humans
- Circulating Tumor DNA/genetics
- Circulating Tumor DNA/blood
- Drug Resistance, Neoplasm/genetics
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Female
- Male
- Aged
- Middle Aged
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Cholangiocarcinoma/drug therapy
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/pathology
- Cholangiocarcinoma/blood
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/administration & dosage
- Biopsy
- Adult
- Bile Duct Neoplasms/drug therapy
- Bile Duct Neoplasms/genetics
- Bile Duct Neoplasms/pathology
- Bile Duct Neoplasms/blood
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/pathology
- Neoplasms/blood
- Aged, 80 and over
- Genomics/methods
- Mutation
- Biomarkers, Tumor/genetics
- Pyrazoles
- Pyrimidines
- Pyrroles
Collapse
Affiliation(s)
- L Goyal
- Department of Medicine, Stanford Cancer Center, Stanford University School of Medicine, Palo Alto, USA; Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA.
| | - D DiToro
- Brigham and Women's Hospital, Boston, USA
| | - A Hollebecque
- Département d'Innovation Thérapeutique et Essais Précoces (DITEP), Gustave Roussy, F-94805, VILLEJUIF, France
| | - J A Bridgewater
- University College London Cancer Institute, University College London, London, UK
| | - M Shimura
- Taiho Oncology, Inc., Princeton, USA
| | - A Kano
- Taiho Oncology, Inc., Princeton, USA
| | - S Okamura
- Taiho Oncology, Inc., Princeton, USA
| | | | - V Wacheck
- Taiho Oncology, Inc., Princeton, USA
| | - A Halim
- Taiho Oncology, Inc., Princeton, USA
| | | |
Collapse
|
6
|
Fatma M, Parveen S, Mir SS. Unraveling the kinase code: Role of protein kinase in lung cancer pathogenesis and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2025:189309. [PMID: 40169080 DOI: 10.1016/j.bbcan.2025.189309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/05/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Lung cancer is a prominent cause of cancer-related deaths globally, prompting exploration into the molecular pathways governing cancer cell signaling. Recent insights highlight the critical role of kinases in carcinogenesis and metastasis, particularly in non-small cell lung cancer (NSCLC), where protein kinases significantly contribute to drug resistance. These diverse enzymes catalyze protein phosphorylation and are implicated in cancer through misregulated expression, amplification, aberrant phosphorylation, mutations, and chromosomal translocations. Amplifications of kinases serve as important diagnostic, prognostic, and predictive biomarkers across various cancers. Notably, the Phosphatidylinositol 3-kinase (PI3K)/AKT pathway is crucial for the survival and proliferation of tumor cells. Novel therapeutic approaches are being explored to precisely target these pathways. Peptide-based therapies offer specificity and reduced toxicity compared to conventional treatments, while gene therapy targets abnormal genetic expressions. Advances in nanotechnology and CRISPR/Cas9 systems enhance gene delivery methods, holding promise for targeting specific molecular pathways in lung cancer treatment and minimizing systemic toxicity.
Collapse
Affiliation(s)
- Mariyam Fatma
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Centre of Excellence for Interdisciplinary Research-4 (ICEIR-4) Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.
| |
Collapse
|
7
|
Lai G, Zhao X, Chen Y, Xie T, Su Z, Lin J, Chen Y, Chen K. The origin and polarization of Macrophages and their role in the formation of the Pre-Metastatic niche in osteosarcoma. Int Immunopharmacol 2025; 150:114260. [PMID: 39938167 DOI: 10.1016/j.intimp.2025.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Osteosarcoma, a primary malignant bone tumor commonly found in adolescents, is highly aggressive, with a high rate of disability and mortality. It has a profound negative impact on both the physical and psychological well-being of patients. The standard treatment approach, comprising surgery and chemotherapy, has seen little improvement in patient outcomes over the past several decades. Once relapse or metastasis occurs, prognosis worsens significantly. Therefore, there is an urgent need to explore new therapeutic approaches. In recent years, the successful application of immunotherapy in certain cancers has demonstrated its potential in the field of cancer treatment. Macrophages are the predominant components of the immune microenvironment in osteosarcoma and represent critical targets for immunotherapy. Macrophages exhibit dual characteristics; while they play a key role in maintaining tumor-promoting properties within the microenvironment, such as inflammation, angiogenesis, and immune suppression, they also possess antitumor potential as part of the innate immune system. A deeper understanding of macrophages and their relationship with osteosarcoma is essential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guisen Lai
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Xinyi Zhao
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanquan Chen
- Department of Orthopaedic Sun Yat-sen Memorial Hospital Sun Yat-sen University PR China
| | - Tianwei Xie
- The People's Hospital of Hezhou, No.150 Xiyue Street, Hezhou 542800 PR China
| | - Zepeng Su
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Jiajie Lin
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanhai Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Keng Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China.
| |
Collapse
|
8
|
Morand S, Rager L, Craig D, Nemunaitis A, Choucair K, Rao D, Stanbery L, Phinney RC, Walter A, Ghisoli M, Nemunaitis J. Clinical characterization and therapeutic targeting of fusion genes in oncology. Future Oncol 2025:1-12. [PMID: 40128124 DOI: 10.1080/14796694.2025.2477974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Gene fusions represent important oncogenic driver mutations resulting in aberrant cellular signaling. In up to 17% of all solid tumors at least one gene fusion can be identified. Precision therapy targeting fusion gene signaling has demonstrated effective clinical benefit. Advancements in clinically relevant next-generation sequencing and bioinformatic techniques have enabled expansion of therapeutic opportunity to subpopulations of patients with fusion gene expression. Clinically, tyrosine inhibitors have shown efficacy in treating fusion gene expressing cancers. Fusion genes are also clonal mutations, meaning it is a personal cancer target involving all cancer cells of that patient, not just a subpopulation of cancer cells within the cancer mass. Thus, both fusion signal disruption and immune signal targeting are effective therapeutic directions. This review discusses fusion gene targeting, therapeutic resistance, and molecular biomarkers.
Collapse
Affiliation(s)
- Susan Morand
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauren Rager
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Daniel Craig
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | | | - Khalil Choucair
- Department of Hematology/Oncology, Barbara Karmanos Cancer Institute,Wayne State University, Detroit, MI, USA
| | - Donald Rao
- Medical Affairs, Gradalis Inc, Dallas, TX, USA
| | - Laura Stanbery
- Taylor Cancer Research Center, Maumee, OH, USA
- Medical Affairs, Gradalis Inc, Dallas, TX, USA
| | - Richard C Phinney
- Taylor Cancer Research Center, Maumee, OH, USA
- Department of Hematology/Oncology, Toledo Clinic Cancer Center, Maumee, OH, USA
| | - Adam Walter
- Medical Affairs, Gradalis Inc, Dallas, TX, USA
- Department of Gynecologic Oncology, Promedica Health System, Toledo, OH, USA
| | - Maurizio Ghisoli
- Department of Pediatric Hematology/Oncology, Texas Oncology, P.A, Dallas, TX, USA
| | - John Nemunaitis
- Taylor Cancer Research Center, Maumee, OH, USA
- Medical Affairs, Gradalis Inc, Dallas, TX, USA
- Department of Hematology/Oncology, Toledo Clinic Cancer Center, Maumee, OH, USA
| |
Collapse
|
9
|
Zeng CW. Stem Cell-Based Approaches for Spinal Cord Injury: The Promise of iPSCs. BIOLOGY 2025; 14:314. [PMID: 40136570 PMCID: PMC11940451 DOI: 10.3390/biology14030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Spinal cord injury (SCI) is a life-altering condition that leads to severe neurological deficits and significantly impacts patients' quality of life. Despite advancements in medical care, current treatment options remain largely palliative, with limited ability to promote meaningful functional recovery. Induced pluripotent stem cells (iPSCs) have emerged as a promising avenue for regenerative medicine, offering patient-specific, cell-based therapeutic potential for SCI repair. This review provides a comprehensive overview of recent advancements in iPSC-based approaches for SCI, detailing the strategies used to generate neural cell types, including neural progenitor cells, oligodendrocytes, astrocytes, and microglia, and their roles in promoting neuroprotection and regeneration. Additionally, we examine key preclinical and clinical studies, highlighting functional recovery assessments and discussing both standardized and debated evaluation metrics. Furthermore, we address critical challenges related to safety, tumorigenicity, immune response, survival, integration, and overcoming the inhibitory microenvironment of the injured spinal cord. We also explore emerging approaches in biomaterial scaffolds, gene editing, and rehabilitation strategies that may enhance the clinical applicability of iPSC-based therapies. By addressing these challenges and refining translational strategies, iPSC-based interventions hold significant potential to revolutionize SCI treatment and improve outcomes for affected individuals.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Raigawali R, Vishweshwara SS, Anand S, Kikkeri R. Synthesis of Sulfated Carbohydrates - Glycosaminoglycans. Handb Exp Pharmacol 2025. [PMID: 40102244 DOI: 10.1007/164_2025_742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Glycosaminoglycans (GAG) are polysaccharides that are ubiquitous on the surface of all mammalian cells, interacting with a multitude of proteins and orchestrating essential physiological and pathological processes. Among various GAG structures, heparan sulfate (HS) stands out for its intricate structure, positioning it as a significant cell-surface molecule capable of regulating wide range of cellular functions. Consequently, investigating the structure-activity relationships (SARs) with well-defined HS ligands emerges as an attractive avenue advancing drug discovery and biosensors. This chapter outlines a modular divergent strategy for synthesizing HS oligosaccharides to elucidate SARs. Here, we provide a literature overview on the synthesis of disaccharide building blocks, employing different orthogonal protecting groups, promoters, and optimization conditions to improve their suitability for subsequent oligosaccharide synthesis. Further, we highlight the synthesis of universal disaccharide building blocks derived from natural polysaccharides. We also provide insights of one-pot method and automated solid-phase synthesis of HS oligosaccharides. Finally, we review the status of SARs of popular heparan sulfate binding proteins (HSBPs).
Collapse
Affiliation(s)
| | | | - Saurabh Anand
- Indian Institute of Science Education and Research, Pune, India
| | | |
Collapse
|
11
|
Chu Y, Yang S, Chen X. Fibroblast growth factor receptor signaling in metabolic dysfunction-associated fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2025; 269:108844. [PMID: 40113178 DOI: 10.1016/j.pharmthera.2025.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as a significant hepatic manifestation of metabolic syndrome, with its prevalence increasing globally alongside the epidemics of obesity and diabetes. MAFLD represents a continuum of liver damage, spanning from uncomplicated steatosis to metabolic dysfunction-associated steatohepatitis (MASH). This condition can advance to more severe outcomes, including fibrosis and cirrhosis. Fibroblast growth factor receptors (FGFRs) are a family of four receptor tyrosine kinases (FGFR1-4) that interact with both paracrine and endocrine fibroblast growth factors (FGFs). This interaction activates the phosphorylation of tyrosine kinase residues, thereby triggering downstream signaling pathways, including RAS-MAPK, JAK-STAT, PI3K-AKT, and PLCγ. In the context of MAFLD, paracrine FGF-FGFR signaling is predominantly biased toward the development of liver fibrosis and carcinogenesis. In contrast, endocrine FGF-FGFR signaling is primarily biased toward regulating the metabolism of bile acids, carbohydrates, lipids, and phosphate, as well as maintaining the overall balance of energy metabolism in the body. The interplay between these biased signaling pathways significantly influences the progression of MAFLD. This review explores the critical functions of FGFR signaling in MAFLD from three perspectives: first, it examines the primary roles of FGFRs relative to their structure; second, it summarizes FGFR signaling in hepatic lipid metabolism, elucidating mechanisms underlying the occurrence and progression of MAFLD; finally, it highlights recent advancements in drug development aimed at targeting FGFR signaling for the treatment of MAFLD and its associated diseases.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Su Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Jhawar S, Jha A, Talvacchio S, Kamihara J, Del Rivero J, Pacak K. Case Series of Patients With FGFR1-Related Pheochromocytoma and Paraganglioma With a Focus on Biochemical, Imaging Signatures and Treatment Options. Clin Endocrinol (Oxf) 2025. [PMID: 40091522 DOI: 10.1111/cen.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 03/19/2025]
Abstract
Pheochromocytoma and paraganglioma (together PPGL) are tumours with a high degree of heritability. Genetic landscape is divided into three clusters, cluster 1 (Krebs/pseudohypoxia signalling pathway), cluster 2 (kinase signalling pathway) and cluster 3 (Wnt signalling pathway). With increasing knowledge in the field of genetics, cluster-specific tumour characteristics, biochemical phenotype and imaging signatures are established in commonly found genes. The association of FGFR1 pathogenic mutations with PPGL have been recently described although its features are not yet well established. Here, we present four patients with PPGL who were found to have somatic FGFR1 pathogenic mutations. We discuss their clinical presentations, biochemical phenotypes, imaging signatures and treatment options that will be relevant for practicing physicians in managing these patients effectively.
Collapse
Affiliation(s)
- Sakshi Jhawar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Abhishek Jha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Talvacchio
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Junne Kamihara
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jaydira Del Rivero
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Ding K, Chen L, Levine KM, Sikora MJ, Tasdemir N, Dabbs D, Jankowitz R, Hazan R, Shah O, Atkinson J, Lee AV, Oesterreich S. FGFR4 in endocrine resistance: overexpression and estrogen regulation without direct causative role. Breast Cancer Res Treat 2025:10.1007/s10549-025-07666-x. [PMID: 40097769 DOI: 10.1007/s10549-025-07666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE Endocrine therapy resistance is the major challenge of managing patients with estrogen receptor positive (ER+) breast cancer. We previously reported frequent overexpression of FGFR4 in endocrine-resistant cell lines and breast cancers that recurred and metastasized following endocrine therapy, suggesting FGFR4 as a potential driver of endocrine resistance. In this study, we investigated the role of FGFR4 in mediating endocrine resistance and explored the therapeutic potential of targeting FGFR4 in advanced breast cancer. METHODS A gene expression signature of FGFR4 activity was examined in ER+breast cancer pre- and post-neoadjuvant endocrine therapy and the association between FGFR4 expression and patient survival was examined. A correlation analysis was used to uncover potential regulators of FGFR4 overexpression. To investigate if FGFR4 is necessary to drive endocrine resistance, we tested response to FGFR4 inhibition in long-term estrogen-deprived (LTED) cells and their paired parental cells. Doxycycline inducible FGFR4 overexpression and knockdown cell models were generated to examine if FGFR4 was sufficient to confer endocrine resistance. Finally, we examined response to FGFR4 monotherapy or combination therapy with fulvestrant in breast cancer cell lines to explore the potential of FGFR4 targeted therapy for advanced breast cancer and assessed the importance of PAM50 subtype in response to FGFR4 inhibition. RESULTS A FGFR4 activity gene signature was significantly upregulated post-neoadjuvant aromatase inhibitor treatment, and high FGFR4 expression predicted poorer survival in patients with ER+breast cancer. Gene expression association analysis using TCGA, METABRIC, and SCAN-B datasets uncovered ER as the most significant gene negatively correlated with FGFR4 expression. ER negatively regulates FGFR4 expression at both the mRNA and protein level across multiple ER+breast cancer cell lines. Despite robust overexpression of FGFR4, LTED cells did not show enhanced responses to FGFR4 inhibition compared to parental cells. Similarly, FGFR4 overexpression and knockdown did not substantially alter response to endocrine treatment in ER+cell lines, nor did FGFR4 and fulvestrant combination treatment show synergistic effects. The HER2-like subtype of breast cancer showed elevated expression of FGFR4 and an increased response to FGFR4 inhibition relative to other breast cancer subtypes. CONCLUSIONS Despite ER-mediated upregulation of FGFR4 post-endocrine therapy, our study does not support a general role of FGFR4 in mediating endocrine resistance in ER+breast cancer. The significant upregulation of FGFR4 expression in treatment-resistant clinical samples and models following endocrine therapy does not necessarily establish a causal link between the gene and treatment response. Our data suggest that specific genomic backgrounds such as HER2 expression may be required for FGFR4 function in breast cancer and should be further explored.
Collapse
Affiliation(s)
- Kai Ding
- Womens Cancer Research Center at UPMC Hillman Cancer Center, Magee Women'S Research Institute, 5051 Center Ave, Pittsburgh, PA, 15213, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lyuqin Chen
- Womens Cancer Research Center at UPMC Hillman Cancer Center, Magee Women'S Research Institute, 5051 Center Ave, Pittsburgh, PA, 15213, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin M Levine
- Womens Cancer Research Center at UPMC Hillman Cancer Center, Magee Women'S Research Institute, 5051 Center Ave, Pittsburgh, PA, 15213, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew J Sikora
- Womens Cancer Research Center at UPMC Hillman Cancer Center, Magee Women'S Research Institute, 5051 Center Ave, Pittsburgh, PA, 15213, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nilgun Tasdemir
- Womens Cancer Research Center at UPMC Hillman Cancer Center, Magee Women'S Research Institute, 5051 Center Ave, Pittsburgh, PA, 15213, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Dabbs
- Womens Cancer Research Center at UPMC Hillman Cancer Center, Magee Women'S Research Institute, 5051 Center Ave, Pittsburgh, PA, 15213, USA
- Magee Womens Hospital, Pittsburgh, PA, USA
| | - Rachel Jankowitz
- Womens Cancer Research Center at UPMC Hillman Cancer Center, Magee Women'S Research Institute, 5051 Center Ave, Pittsburgh, PA, 15213, USA
- Magee Womens Hospital, Pittsburgh, PA, USA
| | - Rachel Hazan
- Albert Einstein College of Medicine, New York, NY, USA
| | - Osama Shah
- Womens Cancer Research Center at UPMC Hillman Cancer Center, Magee Women'S Research Institute, 5051 Center Ave, Pittsburgh, PA, 15213, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenny Atkinson
- Womens Cancer Research Center at UPMC Hillman Cancer Center, Magee Women'S Research Institute, 5051 Center Ave, Pittsburgh, PA, 15213, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Womens Cancer Research Center at UPMC Hillman Cancer Center, Magee Women'S Research Institute, 5051 Center Ave, Pittsburgh, PA, 15213, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Womens Cancer Research Center at UPMC Hillman Cancer Center, Magee Women'S Research Institute, 5051 Center Ave, Pittsburgh, PA, 15213, USA.
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Li Y, Yang C, Liu X, Shu J, Zhao N, Sun Z, Tabish MS, Hong Y, Liu E, Wei N, Sun M. Potential therapeutic targets for Alzheimer's disease: Fibroblast growth factors and their regulation of ferroptosis, pyroptosis and autophagy. Neuroscience 2025; 573:42-51. [PMID: 40096963 DOI: 10.1016/j.neuroscience.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Alzheimer's disease (AD) is a progressively worsening neurodegenerative disorder characterized primarily by the deposition of amyloid beta (Aβ) plaques in the brain and the abnormal aggregation of tau protein forming neurofibrillary tangles. These pathological changes lead to impaired neuronal function and cell death, subsequently affecting the structure and function of the brain. Fibroblast growth factors (FGFs) are a group of proteins that play crucial roles in various biological processes, including cell proliferation, differentiation, and survival. This article reviews the expression and regulation of FGFs in the central nervous system and how they affect neuronal survival, as well as the changes in FGF signaling pathways and its regulation of programmed cell death in AD. It particularly focuses on the impact of FGF1, FGF2, FGF21, other members of the FGF family, and FGFR on the pathophysiological mechanisms of AD. The potential of the PI3K/AKT/GSK-3β, Wnt/β-catenin, and NF-κB signaling pathways as targets for AD treatment is also discussed. Furthermore, the relationship between FGF-regulated ferroptosis, Pyroptosis and Autophagy and AD is explored, along with the role of these mechanisms in improving the progression of AD.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Xiaonan Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Zexin Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Muhammad Saud Tabish
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Yichen Hong
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
15
|
Wang X, Cao X, Zhou B, Mei J, Li Y, Zhao X, Zhu W, Huang F, Sun L, Wang M. FGFR3 signaling is essential for gastric cancer cell triggering the transition of BM-MSCs into tumor-associated MSCs. Differentiation 2025; 143:100859. [PMID: 40106855 DOI: 10.1016/j.diff.2025.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) tend to migrate towards tumor sites and interact with tumor cells, thus incorporating into tumor microenvironment by transition into various stromal cells, particularly tumor-associated MSCs. However, the mechanisms involved in this process is still not clarified. Herein, we focused on miR-99a-5p and confirmed its reduction in gastric cancer-associated MSCs (GC-MSCs) compared to BM-MSCs. Under-expression of miR-99a-5p stimulated BM-MSCs transition into GC-MSCs-like cells, while overexpression of this miRNA abrogated tumor-promoting roles of GC-MSCs. miR-99a-5p not only targeted modulation of fibroblast growth factor receptor (FGFR3) but also negatively affected its phosphorylated levels. Suppression of FGFR3 signaling by AZD4547 or siRNA against FGFR3 notably blocked the miR-99a-5p inhibitor-induced BM-MSCs transition and the oncogenic roles of GC-MSCs. However, miR-99a-5p overexpression did not diminish the ability of gastric cancer cells to educate BM-MSCs. The levels of phosphorylated FGFR3, but not total FGFR3, was increased in BM-MSCs educated by gastric cancer cells. AZD4547 significantly suppressed the education capacity of gastric cancer cells on BM-MSCs. Taken together, although manipulating miR-99a-5p to mimic its levels in GC-MSCs promotes the transition of BM-MSCs into GC-MSCs-like cells, FGFR3 signaling, rather than miR-99a-5p, is unexpectedly essential for the education of BM-MSCs by gastric cancer cells. This discovery provides a novel mechanism underlying the transition of BM-MSCs into tumor-associated MSCs and identifies potential therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wei Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Feng Huang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, Jiangsu Province, China; Department of Clinical Laboratory, Maternal and Child Health Care Hospital of Kunshan, Suzhou, Jiangsu Province, China.
| | - Li Sun
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, Jiangsu Province, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
16
|
Zhang L, Gao Y, Tian Y, Wei J, Xu Y, Zhang X, Nie M, Liu X. Identifcation of the FGF family as therapeutic targets and prognostic biomarkers in the microenvironment of head and neck squamous cell carcinoma. SLAS Technol 2025; 32:100271. [PMID: 40086631 DOI: 10.1016/j.slast.2025.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Almost 90 % of head and neck malignancies are malignant squamous cell cancers, making it the sixth most common malignancy in the developing countries, with an overall five-year overall survival rate about 40 %-50 %. Early diagnosis and treatment can bring a better prognosis. Fibroblast growth factor (FGF) is an important polypeptide in vivo. Studies have found that FGF signal has carcinogenic potential and participates in a variety of carcinogenic behaviors. Some experiments have proved that FGF signal has the function of tumor inhibition in some cases, and the role of FGF signalling in tissue repair and homeostasis suggest a role for FGF in targeted therapy and prognosis. However, its manifestation and predictive role in HNSC have not been clearly defined. METHODS Genome-wide expression analysis of Oncomine evaluated the evaluation of FGF family expression in HNSC. Expression analysis and HNSC data set were used to obtain FGF family expression data and T statistic was applied for analysis. The differential mRNA expression levels in tumor versus normal tissues, as well as the correlation with pathological staging and prognosis, were examined using the GEPIA single-gene analysis tool for the FGF family.FGF family altered CO expression and network modules were obtained from cBioportal and analyzed in 520 HNSC samples.Pro-protein interaction (PPI) flow network is performed on the differentially ordered FGF clusters using STRING, Gene Operating System (GO) domain domain enrichment as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis are performed on the FGF cluster and its neighbouring genes using DAVID6.8, key transcriptional factors (TF) of FGF family was analyzed by TRRUST, correlation between FGF family level and autoimmune cell migration was evaluated by TIMER, and biological analysis of FGF family kinase target enrichment was performed using LinkInterpreter. RESULTS Only the expression of FGF6 in HNSC was down-regulated in all FGF family(FC=2),Transcriptional level of FGF1, FGF2, FGF5, FGF7-14, FGF17-19, FGF21 and FGF22 was upregulated in HNSC .In terms of the relative level of FGF family in HNSC, the greatest amount of FGF11. In different pathological stages of HNSC, the expression of FGF was meaningless (P>0.05), and FGF3-6, FGF8-10, FGF14, FGF16, FGF17, FGF1921, FGF23 showed no significant difference in different HNSC stages. Low expression of FGF5 and high expression of FGF22 had low overall survival(OS) rate of HNSC(P =0.012, P =0.0015). In addition, enrichment analysis of FGF family in HNSC showed that it was highly abundant in PI3K-Akt signaling pathway, MAPK and rasper pathway. Our data showed that ATF4, STAT, RELA, NFKB1 are key transcription target of the FGF family, NLK, LOCK1, LYN, ZAP70, MAP2K3, RPS6KA4, AURKB, ATR, ROCK1, MYLK2, CAMK2A, EGFR, MAPK3, MAP3K8, SYK, LCK, HCK, PKN2, RPS6KA1, BUB1, CDK5, ITK, FYN, TBK1, ATM, CDK2, PTK2 are kinase targets of the FGF family. We identified a relationship between the modulation of FGF expression and cellular infiltration, such as B lymphocytes, CD4+ T cells and macrophages dendritic cells. CONCLUSIONS Our data may shed new light on the choice of immunotherapeutic targets and predictive biomarkers in HNSC.
Collapse
Affiliation(s)
- Li Zhang
- Department of Oncology, Pengzhou People's Hospital, Pengzhou 611930, Sichuan, PR China.
| | - Yingchun Gao
- Department of Oncology, Pengzhou People's Hospital, Pengzhou 611930, Sichuan, PR China.
| | - Yumei Tian
- Department of Oncology, Pengzhou People's Hospital, Pengzhou 611930, Sichuan, PR China.
| | - Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou 646000, Sichuan, PR China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, Sichuan, PR China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| | - Yingjiao Xu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou 646000, Sichuan, PR China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, Sichuan, PR China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| | - Xuan Zhang
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou 646000, Sichuan, PR China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, Sichuan, PR China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou 646000, Sichuan, PR China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, Sichuan, PR China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou 646000, Sichuan, PR China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, Sichuan, PR China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
17
|
Satoh T, Barthélémy P, Nogova L, Honda K, Hirano H, Lee KW, Rha SY, Ryu MH, Park JO, Doi T, Ajani J, Hangai N, Kremer J, Mina M, Liu M, Shitara K. Phase 2 study of futibatinib in patients with gastric or gastroesophageal junction cancer harboring FGFR2 amplifications. Eur J Cancer 2025; 218:115262. [PMID: 39919334 DOI: 10.1016/j.ejca.2025.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND AND AIMS Aberrant fibroblast growth factor receptor (FGFR)-driven signaling, predominantly arising from FGFR2 amplification, plays a key role in gastric cancer pathogenesis. This open-label, phase 2 study evaluated the efficacy and safety of futibatinib, an irreversible FGFR1-4 inhibitor, in patients with gastric or gastroesophageal junction (GEJ) cancer harboring FGFR2 amplifications. METHODS Patients were treated with futibatinib 20 mg orally once daily in a 28-day cycle. The primary endpoint was objective response rate (ORR) per independent central review. Secondary endpoints included progression-free survival (PFS), overall survival (OS), and safety. RESULTS Among 28 treated patients, the ORR per independent central review was 17.9 %, comprising five patients with a partial response (median duration of response, 3.9 months), and an additional nine patients with stable disease for a disease control rate of 50.0 %. Median PFS per independent central review and median OS were 2.9 and 5.9 months, respectively. The most common treatment-related adverse events (any grade) were hyperphosphatemia (89.3 %), decreased appetite (32.1 %), and increased aspartate aminotransferase (21.4 %). Only one (3.6 %) patient discontinued study treatment due to an adverse event. Futibatinib demonstrated modest antitumor activity with a safety profile consistent with previous reports in patients with gastric or GEJ cancer harboring FGFR2 amplifications, potentially warranting further investigation.
Collapse
Affiliation(s)
| | | | - Lucia Nogova
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - Keun-Wook Lee
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun Young Rha
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Hee Ryu
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Oh Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Toshihiko Doi
- National Cancer Center Hospital East, Kashiwa, Japan
| | - Jaffer Ajani
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nanae Hangai
- Taiho Oncology, Inc., Princeton, NJ, United States
| | - Jill Kremer
- Taiho Oncology, Inc., Princeton, NJ, United States
| | - Mark Mina
- Taiho Oncology, Inc., Princeton, NJ, United States
| | - Mei Liu
- Taiho Oncology, Inc., Princeton, NJ, United States
| | - Kohei Shitara
- National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
18
|
Dedousis D, Gadra E, Van Galen J, von Mehren M. Recent Advances in Succinate Dehydrogenase Deficient Gastrointestinal Stromal Tumor Systemic Therapies. Curr Treat Options Oncol 2025:10.1007/s11864-025-01304-w. [PMID: 40045030 DOI: 10.1007/s11864-025-01304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2025] [Indexed: 04/02/2025]
Abstract
OPINION STATEMENT Gastrointestinal stromal tumors (GIST) are the most common gastrointestinal soft tissue sarcomas, with an incidence of about 15 cases per million person-years. Approximately 15% of GIST develop due to succinate dehydrogenase deficiency (SDH-Def), and such tumors do not respond well to the tyrosine kinase inhibitors (TKIs) used to treat other GIST. Due to its indolent nature SDH-Def GIST can often be surveilled if asymptomatic. In our current practice we typically treat advanced symptomatic SDH-Def GIST with the anti-angiogenic TKIs, sequentially treating with sunitinib, regorafenib and pazopanib. This practice is based on limited data. This systematic review provides an update on new data (12/21/2021 to 9/26/2024) for systemic treatment of SDH-Def GIST, both with agents generally used to treat other GIST subtypes and with agents approved in other malignancies. Olverembatinib and rogaratinib have shown promising activity in pre-clinical models and small SDH-Def GIST cohorts. Other agents whose benefits are explored here include the immune checkpoint inhibitors (ICI) ipilimumab and nivolumab and temozolomide, whether as monotherapy or in combination with INBRX-109 (a pro-apoptotic antibody) or olaparib. Additional research into TKI agents with anti-vascular endothelial growth factor receptor (VEGFR) and anti-fibroblast growth factor receptor (FGFR) activity in this clinical setting is needed. Patients with SDH-Def will benefit more broadly from ongoing explorations of treatments with alternative mechanisms of action, especially those that exploit cellular pathways involved in SDH-Def GIST tumorigenesis.
Collapse
Affiliation(s)
- Demitrios Dedousis
- Department of Hematology/Oncology, Fox Chase Cancer Center, 333 Cottman Avenue , Philadelphia, PA, 19111, USA
| | - Elyse Gadra
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Joseph Van Galen
- Department of Hematology/Oncology, Fox Chase Cancer Center, 333 Cottman Avenue , Philadelphia, PA, 19111, USA
| | - Margaret von Mehren
- Department of Hematology/Oncology, Fox Chase Cancer Center, 333 Cottman Avenue , Philadelphia, PA, 19111, USA.
| |
Collapse
|
19
|
Liu D, Liu L, Zhang X, Zhao X, Li X, Che X, Wu G. Decoding driver and phenotypic genes in cancer: Unveiling the essence behind the phenomenon. Mol Aspects Med 2025; 103:101358. [PMID: 40037122 DOI: 10.1016/j.mam.2025.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Gray hair, widely regarded as a hallmark of aging. While gray hair is associated with aging, reversing this trait through gene targeting does not alter the fundamental biological processes of aging. Similarly, certain oncogenes (such as CXCR4, MMP-related genes, etc.) can serve as markers of tumor behavior, such as malignancy or prognosis, but targeting these genes alone may not lead to tumor regression. We pioneered the name of this class of genes as "phenotypic genes". Historically, cancer genetics research has focused on tumor driver genes, while genes influencing cancer phenotypes have been relatively overlooked. This review explores the critical distinction between driver genes and phenotypic genes in cancer, using the MAPK and PI3K/AKT/mTOR pathways as key examples. We also discuss current research techniques for identifying driver and phenotypic genes, such as whole-genome sequencing (WGS), RNA sequencing (RNA-seq), RNA interference (RNAi), CRISPR-Cas9, and other genomic screening methods, alongside the concept of synthetic lethality in driver genes. The development of these technologies will help develop personalized treatment strategies and precision medicine based on the characteristics of relevant genes. By addressing the gap in discussions on phenotypic genes, this review significantly contributes to clarifying the roles of driver and phenotypic genes, aiming at advancing the field of targeted cancer therapy.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
20
|
Wan Q, Zhao C, Zhao R. Progress of Pyruvate Kinase M2 in Hepatocellular Carcinoma-Associated Signaling Pathway. Tissue Eng Part C Methods 2025; 31:101-107. [PMID: 40105913 DOI: 10.1089/ten.tec.2024.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive liver tumor with a unique metabolic profile and a shift to glycolytic metabolism. This review discusses the contribution of pyruvate kinase M2 (PKM2) to HCC development and its potential as a target for therapy. We carried out a broad literature review on PKM2, focusing on its role in the glycolytic pathway and special interactions with key signaling pathways like Phosphoinositide 3-kinase/Protein kinase B/Mammalian target of rapamycin (PI3K/AKT/mTOR) and Mitogen-activated protein kinase (MAPK). PKM2 also performs a dual role in energy metabolism and signal transduction in HCC. PKM2 is paramount in the induction of HCC by regulating cellular metabolism and oncogenic signaling pathways. It promotes tumor growth, survival, and metastasis through interaction with the PI3K/AKT/mTOR and MAPK pathways. PKM2 is a key factor in HCC pathogenesis, with a dual impact on metabolism and signaling. Its properties may open the way for developing novel therapeutic interventions against HCC. Thus, PKM2 inhibition may offer further opportunities for tumor growth blockade, which could meaningfully improve patients' clinical outcomes.
Collapse
Affiliation(s)
- Qi Wan
- Second Hospital of Lanzhou University, Lanzhou, China
| | - Chunlian Zhao
- Second Hospital of Lanzhou University, Lanzhou, China
| | - Rui Zhao
- Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Teng H, Huang S, Sun X, Wang H, Wang X, Zhang W, Wang H, Qu S, Yu Z, Zhao Y, Liu S. Ginsenoside Rh2(S) maintains cytoskeleton homeostasis and inhibits pyroptosis to resist cisplatin-induced cardiotoxicity through FGFR1/HRAS axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156425. [PMID: 39879704 DOI: 10.1016/j.phymed.2025.156425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/29/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Patients with cancer undergoing cisplatin chemotherapy frequently experience cardiotoxic side effects that significantly affect their prognosis and survival rates. Our study found that Panax ginseng root extract exerted a significant protective effect against cisplatin-induced myocardial cell injury. PURPOSE The present study aims to elucidate the underlying mechanisms by which the bioactive components of Panax ginseng mitigate cisplatin-induced cardiotoxicity (CIC). METHODS In vitro, the candidate active components were screened by network pharmacological prediction and in neonatal rat ventricular myocytes (NRVMs), and their mechanisms of action were verified by transcriptome sequencing, western blotting, gene overexpression, immunoprecipitation, immunofluorescence, and cellular thermal shift assays. A C57BL/6 CIC mouse model was established to verify the protective effects of the candidate components and the in vivo mechanism of the candidate components. RESULTS Through network pharmacology prediction and cellular activity screening of ginseng root compounds, ginsenoside Rh2(S) (Rh2) was identified as a significant active component. Transcriptomic, in vitro, and in vivo experiments demonstrated that Rh2 can activate the Pak1/Limk1/cofilin phosphorylation pathway, thereby inactivating the actin-severing protein cofilin and protecting cardiomyocytes from cisplatin-induced actin depolymerization. Additionally, Rh2 suppressed the ROS/caspase-3/GSDME pathway to inhibit cisplatin-induced pyroptosis. Furthermore, co-immunoprecipitation and overexpression experiments confirmed that Rh2 activated the FGFR1/HRAS axis, thereby simultaneously regulating the two aforementioned pathways to combat CIC. CONCLUSIONS This study demonstrated for the first time that Rh2 is the main active component in Panax ginseng that maintains cytoskeletal homeostasis and inhibits pyroptosis by regulating the FGFR1/HRAS pathway to resist CIC. This study aimed to provide a theoretical basis for expanding the targets and pathways of CIC treatment, and for the development of related drugs.
Collapse
Affiliation(s)
- Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Shuai Huang
- Department of Cardio-Thoracic Surgery, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xialin Sun
- College of Pharmacy, Jilin Medical University, Jilin, Jilin Province, China
| | - Haohao Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Anhui Province, China
| | - Xv Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Wenxin Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Haijing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Shurong Qu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Zhengxuan Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, China.
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province, China.
| |
Collapse
|
22
|
Baretti M, Shekhar S, Sahai V, Shu D, Howe K, Gunchick V, Assarzadegan N, Kartalia E, Zhu Q, Hallab E, Sheth-Shah A, Kondo A, Azad NS, Yarchoan M. Deep immune profiling of intrahepatic cholangiocarcinoma with CODEX multiplexed imaging. Hepatol Commun 2025; 9:e0632. [PMID: 39969434 PMCID: PMC11841852 DOI: 10.1097/hc9.0000000000000632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) may be genomically subclassified by the presence of potentially actionable molecular aberrations, of which pathogenic alterations in isocitrate dehydrogenase (IDH)1 and fibroblast growth factor receptor (FGFR)2 are the most frequently observed. The impact of these molecular alterations on the tumor immune microenvironment remains incompletely understood. METHODS We performed a high-parameter spatial immune phenotyping of iCCA samples with pathogenic FGFR2 or IDH1 alterations and FGFR2/IDH1 wild-type controls at the single-cell level using CO-Detection by indEXing. RESULTS A total of 24 tumors were examined. Tumors with FGFR2 alterations were characterized by fewer CD8+ T cells and "M2-like" macrophages but higher levels of polymorphonuclear myeloid-derived suppressor cells as compared to FGFR2 wild-type tumors. Spatial relationships between polymorphonuclear myeloid-derived suppressor cells and multiple other cell types in the tumor microenvironment (including tumor cells, CD4+, and CD8+ T cells) were enriched in tumors with FGFR2 alterations. Tumors with IDH1 mutations had a trend toward more fibroblasts and were characterized by a closer proximity of tumor cells to CD4+ T cells, and between macrophages and multiple structural tumor microenvironment components as compared to other subtypes. CONCLUSIONS iCCAs with pathogenic FGFR2 fusions/rearrangements and IDH1 mutations have distinct immunophenotypes. Tailoring immunotherapeutic approaches to specific molecular subsets could improve treatment outcomes across the divergent molecularly defined iCCA subtypes.
Collapse
Affiliation(s)
- Marina Baretti
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Soumya Shekhar
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vaibhav Sahai
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Daniel Shu
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathryn Howe
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Valerie Gunchick
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Naziheh Assarzadegan
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Emma Kartalia
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elsa Hallab
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Aya Kondo
- Enable Medicine, Menlo Park, California, USA
| | - Nilofer S. Azad
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark Yarchoan
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Chen L, Hao Y, Zhai T, Yang F, Chen S, Lin X, Li J. Single-cell Analysis Highlights Anti-apoptotic Subpopulation Promoting Malignant Progression and Predicting Prognosis in Bladder Cancer. Cancer Inform 2025; 24:11769351251323569. [PMID: 40018511 PMCID: PMC11866393 DOI: 10.1177/11769351251323569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Backgrounds Bladder cancer (BLCA) has a high degree of intratumor heterogeneity, which significantly affects patient prognosis. We performed single-cell analysis of BLCA tumors and organoids to elucidate the underlying mechanisms. Methods Single-cell RNA sequencing (scRNA-seq) data of BLCA samples were analyzed using Seurat, harmony, and infercnv for quality control, batch correction, and identification of malignant epithelial cells. Gene set enrichment analysis (GSEA), cell trajectory analysis, cell cycle analysis, and single-cell regulatory network inference and clustering (SCENIC) analysis explored the functional heterogeneity between malignant epithelial cell subpopulations. Cellchat was used to infer intercellular communication patterns. Co-expression analysis identified co-expression modules of the anti-apoptotic subpopulation. A prognostic model was constructed using hub genes and Cox regression, and nomogram analysis was performed. The tumor immune dysfunction and exclusion (TIDE) algorithm was applied to predict immunotherapy response. Results Organoids recapitulated the cellular and mutational landscape of the parent tumor. BLCA progression was characterized by mesenchymal features, epithelial-mesenchymal transition (EMT), immune microenvironment remodeling, and metabolic reprograming. An anti-apoptotic tumor subpopulation was identified, characterized by aberrant gene expression, transcriptional instability, and a high mutational burden. Key regulators of this subpopulation included CEBPB, EGR1, ELF3, and EZH2. This subpopulation interacted with immune and stromal cells through signaling pathways such as FGF, CXCL, and VEGF to promote tumor progression. Myofibroblast cancer-associated fibroblasts (mCAFs) and inflammatory cancer-associated fibroblasts (iCAFs) differentially contributed to metastasis. Protein-protein interaction (PPI) network analysis identified functional modules related to apoptosis, proliferation, and metabolism in the anti-apoptotic subpopulation. A 5-gene risk model was developed to predict patient prognosis, which was significantly associated with immune checkpoint gene expression, suggesting potential implications for immunotherapy. Conclusions We identified a distinct anti-apoptotic tumor subpopulation as a key driver of tumor progression with prognostic significance, laying the foundation for the development of new therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Linhuan Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Tianzhang Zhai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Fan Yang
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Bou Antoun N, Afshan Mahmood HTN, Walker AJ, Modjtahedi H, Grose RP, Chioni AM. Development and Characterization of Three Novel FGFR Inhibitor Resistant Cervical Cancer Cell Lines to Help Drive Cervical Cancer Research. Int J Mol Sci 2025; 26:1799. [PMID: 40076427 PMCID: PMC11898767 DOI: 10.3390/ijms26051799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Primary or acquired resistance to therapeutic agents is a major obstacle in the treatment of cancer patients. Cervical cancer is the fourth leading cause of cancer deaths among women worldwide and, despite major advances in cancer screening and treatments, many patients with advanced stage cervical cancer have a high recurrence rate within two years of standard treatment, with drug resistance being a major contributing factor. The development of cancer cell lines with acquired resistance to therapeutic agents can facilitate the comprehensive investigation of resistance mechanisms, which cannot be easily performed in clinical trials. This study aimed to create three novel and robust cervical cancer cell lines (HeLa, CaSki, and SiHa) with acquired resistance to a fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor (PD173074). All three drug-resistant (DR) cell lines overexpressed FGFR1, FGFR2, FGF2, FGF4, and FGF7 proteins that were also localized to the nucleus. In addition, the DR cells had a significantly more aggressive phenotype (more migratory and proliferative, less apoptotic) compared to the parental cell lines. These novel DR cervical cancer cells are a critical tool for understanding the molecular mechanisms underpinning drug resistance and for the identification of potential cervical cancer biomarkers. Moreover, the availability of such DR cell lines may facilitate the development of more effective therapeutic strategies using FGFR inhibitors in combination with other agents that target pathways responsible for acquired resistance to FGFR inhibitors.
Collapse
Affiliation(s)
- Nauf Bou Antoun
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Hiba-Tun-Noor Afshan Mahmood
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Anthony J. Walker
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Helmout Modjtahedi
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| |
Collapse
|
25
|
Lawrence SS, Yamashita H, Shuman L, Raman JD, Joshi M, Yochum GS, Wu XR, Al-Ahmadie HA, Warrick JI, Walter V, DeGraff DJ. Interferon-γ/Janus kinase 1/STAT1 Signaling Represses Forkhead Box A1 and Drives a Basal Transcriptional State in Muscle-Invasive Bladder Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00068-9. [PMID: 39986350 DOI: 10.1016/j.ajpath.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
During progression, luminal muscle-invasive bladder cancer (MIBC) can transition to the aggressive basal-squamous (Ba/Sq) subtype. Reduced expression of forkhead box A1 (FOXA1) in the urothelium is a hallmark and driver of the Ba/Sq transcriptional state and squamous differentiation. Ba/Sq tumors are highly inflamed; however, the specific inflammatory pathways contributing to the Ba/Sq state are unknown. In this study, transcriptomic analyses of The Cancer Genome Atlas MIBC cohort were performed to determine whether immune response gene signatures were associated with MIBC molecular states. Results showed that Ba/Sq MIBCs were enriched for the interferon-γ (IFN-γ)-dominant signature. Ba/Sq MIBCs exhibited increased IFN-γ/Janus kinase (JAK)/STAT pathway activity, corresponding to reduced FOXA1 regulon activity. Immunohistochemistry of MIBC specimens demonstrated that JAK1 expression was significantly increased in tumor areas with squamous differentiation. IFN-γ treatment of luminal MIBC cell lines significantly decreased the expression of luminal transcriptional drivers, including FOXA1, and increased the expression of Ba/Sq markers in a STAT1-dependent manner. RNA-sequencing analyses identified IFN-γ as a driver of the Ba/Sq state. The ability of IFN-γ to repress FOXA1 in luminal cells was abrogated by ruxolitinib inhibition of JAK1/2 activity. Additionally, pharmacologic inhibition or genetic ablation of JAK1 restored FOXA1 expression in Ba/Sq MIBC cells. These findings are the first to identify IFN-γ as an epithelial cell-extrinsic mechanism to repress FOXA1 and drive the Ba/Sq state in MIBC.
Collapse
Affiliation(s)
- Shamara S Lawrence
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Hironobu Yamashita
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lauren Shuman
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Urology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jay D Raman
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Monika Joshi
- Division of Hematology-Oncology, Department of Medicine, Penn State Cancer Institute, Hershey, Pennsylvania
| | - Gregory S Yochum
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University Grossman School of Medicine, New York, New York; Veterans Affairs New York Harbor Healthcare System, New York, New York
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua I Warrick
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Urology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Vonn Walter
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| | - David J DeGraff
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Urology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
26
|
Han L, Yu Y, Deng P, Wang S, Hu J, Wang S, Zheng J, Jiang J, Dang Y, Long R, Gan Z. Design, synthesis, and biological evaluation of Ponatinib-based N-Phenylpyrimidine-2-amine derivatives as novel fibroblast growth factor receptor 4 (FGFR4) selective inhibitors. Eur J Med Chem 2025; 284:117206. [PMID: 39733483 DOI: 10.1016/j.ejmech.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) has been proven to be a promising target for FGFR-driven HCC therapy. Great efforts have been devoted to the discovery of FGFR4 inhibitors. In this article, a new class of Ponatinib-based N-phenylpyridine-2-amine derivatives was designed and synthesized as covalent and irreversible FGFR4 selective inhibitors through a rational drug design strategy. The representative compound 10f displayed significant FGFR4 inhibition and reasonable selectivity. Meanwhile, compound 10f strongly suppressed the proliferation of FGFR4 dependent HCC cells both in vitro and in vivo by inhibiting the FGFR4 signaling pathway. Moreover, the irreversible binding to Cys552 in FGFR4 of compound 10f was also characterized by LC-MS/MS. These results provide evidence of 10f as a potential lead compound targeting FGFR4 for anti-HCC agent development.
Collapse
Affiliation(s)
- Lei Han
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Yu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ping Deng
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Quality Control and Safety Evaluation of APIs, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuai Wang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuang Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Quality Control and Safety Evaluation of APIs, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiecheng Zheng
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junhao Jiang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yongjun Dang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Rui Long
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| | - Zongjie Gan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Quality Control and Safety Evaluation of APIs, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
27
|
Kumbham S, Md Mahabubur Rahman K, Foster BA, You Y. A Comprehensive Review of Current Approaches in Bladder Cancer Treatment. ACS Pharmacol Transl Sci 2025; 8:286-307. [PMID: 39974639 PMCID: PMC11833730 DOI: 10.1021/acsptsci.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
Bladder cancer is one of the most common malignant tumors of the urinary system globally. It is also one of the most expensive cancers to manage, due to the need for extensive treatment and follow-ups that often involve invasive and costly procedures. Although there have been some improvements in treatment options, the quality of life they offer has not improved at the same rate as other cancers. Therefore, there is an urgent need to find new alternatives to ease the burden of bladder cancer on patients. Recent discoveries have opened new avenues for the diagnosis and management of bladder cancer even though the clinical approach has largely remained the same for years. The decline in bladder cancer-specific mortality in regions that promote social awareness of risk factors and reduction of carcinogenic exposure demonstrates the effectiveness of such measures. New agents have been approved for patients who have undergone radical cystectomy after Bacillus Calmette-Guérin failure. Current best practices for diagnosing and treating bladder cancer are presented in this review. The review discusses radiation therapy, photodynamic therapy, gene therapy, chemotherapy, and nanomedicine in relation to non muscle-invasive cancers and muscle-invasive bladder cancers, as well as systemic treatments.
Collapse
Affiliation(s)
- Soniya Kumbham
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Barbara A. Foster
- Department
of Pharmacology & Therapeutics, Roswell
Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Youngjae You
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
28
|
Wang Y, Zhang Y, Liu J, Zhao J, Wang C, Meng F, Cai X, Zhang M, Aliper A, Liang T, Yan F, Ren F, Lan J, Lu Q, Zhou F, Zhavoronkov A, Ding X. Discovery of Pyrrolopyrazine Carboxamide Derivatives as Potent and Selective FGFR2/3 Inhibitors that Overcome Mutant Resistance. J Med Chem 2025; 68:3886-3899. [PMID: 39885813 DOI: 10.1021/acs.jmedchem.4c03205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Fibroblast growth factor receptors (FGFRs) are established oncogenic drivers in various solid tumors. However, the approved FGFR inhibitors face challenges with acquired resistance and dose-limiting adverse effects associated with FGFR1/4 inhibition, limiting therapeutic efficacy. Herein, we systematically explored linker and electrophile moieties based on the pyrrolopyrazine carboxamide core and identified aniline α-fluoroacrylamide as an effective covalent warhead. Compound 10 potently inhibited FGFR2 and FGFR3, even in the context of common inhibitor-resistance mutations, including in the gatekeeper, molecular brake, and activation loop regions. Compound 10 spared FGFR1/4 and other kinases without causing diarrhea and serum phosphate elevation in vivo. Oral administration of compound 10 induced tumor stasis or regression in the SNU-16 gastric cancer model with favorable pharmacokinetics and robust pharmacodynamic suppression.
Collapse
MESH Headings
- Humans
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Animals
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/chemical synthesis
- Structure-Activity Relationship
- Drug Resistance, Neoplasm/drug effects
- Mice
- Mutation
- Pyrazines/pharmacology
- Pyrazines/chemistry
- Pyrazines/chemical synthesis
- Pyrazines/pharmacokinetics
- Pyrroles/pharmacology
- Pyrroles/chemistry
- Pyrroles/chemical synthesis
- Pyrroles/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/chemical synthesis
- Cell Line, Tumor
- Drug Discovery
- Rats
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Mice, Nude
Collapse
Affiliation(s)
- Yazhou Wang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Yihong Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Jinxin Liu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Jichen Zhao
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, China
| | - Chao Wang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Fanye Meng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xin Cai
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Tao Liang
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, China
| | - Feng Yan
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, China
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Jiong Lan
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, China
| | - Qiang Lu
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, China
| | - Fusheng Zhou
- GenFleet Therapeutics (Shanghai) Inc., Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| |
Collapse
|
29
|
Faugere M, Cermolacce M, Richieri R, Lançon C. Treatment resistant depression: A case of Muenke syndrome. L'ENCEPHALE 2025:S0013-7006(25)00002-8. [PMID: 39922722 DOI: 10.1016/j.encep.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 02/10/2025]
Abstract
Major depressive disorder is a complex neuropsychiatric disorder and one of the leading causes of disability in developed countries. Treatment-resistant depression is defined as the failure of at least two adequate treatment trials. The Muenke Syndrome is an autosomal dominant disorder caused by a mutation of the fibroblast growth factor receptor 3 (FGFR3). The fibroblast growth factor (FGF) family has often been implicated in mood disorders in the literature. We present here the case of a patient with a treatment-resistant depression and a concomitant Muenke Syndrome. We propose a relationship between the two pathologies as the expression of the FGF family has been shown to be dysregulated in depressed humans, post-mortem depressed human's brains and rodent's models of depression and anxiety. In particular, FGFR3 and its major ligand, FGF9, had been shown to be down-regulated and up-regulated, respectively, in cortical areas implicated in mood disorders. Since the FGF family plays a key role in neurodevelopment and neuroplasticity, among others things, a genetic mutation in a member of the family, such as FGFR3, could lead to depressive symptoms, as in our reported case. The implication is that the FGF family may be an important target for the treatment of neuropsychiatric disorders. We also conclude that depressive symptoms should be investigated in cases of Muenke Syndrome, as FGF dysregulation in depressed patients.
Collapse
Affiliation(s)
- Mélanie Faugere
- EA 3279: CEReSS, Health Service Research and Quality of Life Center, Aix Marseille University, 27, boulevard Jean-Moulin, 13005 Marseille, France; Department of University Psychiatry « Solaris », AP-HM, Sainte Marguerite University Hospital, 270, boulevard de Sainte-Marguerite, 13009 Marseille, France.
| | - Michel Cermolacce
- Department of University Psychiatry « Solaris », AP-HM, Sainte Marguerite University Hospital, 270, boulevard de Sainte-Marguerite, 13009 Marseille, France
| | - Raphaëlle Richieri
- EA 3279: CEReSS, Health Service Research and Quality of Life Center, Aix Marseille University, 27, boulevard Jean-Moulin, 13005 Marseille, France; Department of University Psychiatry « Solaris », AP-HM, Sainte Marguerite University Hospital, 270, boulevard de Sainte-Marguerite, 13009 Marseille, France
| | - Christophe Lançon
- EA 3279: CEReSS, Health Service Research and Quality of Life Center, Aix Marseille University, 27, boulevard Jean-Moulin, 13005 Marseille, France; Department of University Psychiatry « Solaris », AP-HM, Sainte Marguerite University Hospital, 270, boulevard de Sainte-Marguerite, 13009 Marseille, France
| |
Collapse
|
30
|
Kim Y, Song J, Kim N, Sim T. Recent progress in emerging molecular targeted therapies for intrahepatic cholangiocarcinoma. RSC Med Chem 2025:d4md00881b. [PMID: 39925737 PMCID: PMC11800140 DOI: 10.1039/d4md00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/11/2025] [Indexed: 02/11/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a diverse group of epithelial malignant tumors arising from the biliary tract, characterized by high molecular heterogeneity. It is classified into intrahepatic (iCCA) and extrahepatic CCA (eCCA) based on the location of the primary tumor. CCA accounts for approximately 15% of all primary liver cancers, with iCCA comprising 10-20% of all CCAs. iCCA is especially known for its characteristic aggressiveness and refractoriness, leading to poor prognosis. Despite the increasing global incidence and mortality rates, surgery remains the only available standard treatment approach for a subset (25%) of patients with early-stage, resectable iCCA. The paucity of effective systemic medical therapies restricts therapeutic options for patients with advanced or metastatic iCCA. In the past decade, advances in the understanding of the molecular complexity of these tumors have provided fruitful insights for the identification of promising new druggable targets and the development of feasible therapeutic strategies that may improve treatment outcomes for patients with iCCA. In this review, we aim to highlight critical up-to-date studies and medicinal chemistry aspects, focusing on novel targeted approaches utilizing promising candidates for molecular targeted therapy in iCCA. These candidates include aberrations in isocitrate dehydrogenase (IDH) 1/2, fibroblast growth factor receptor (FGFR), B-Raf proto-oncogene (BRAF), neurotrophic tyrosine receptor kinase (NTRK), human epidermal growth factor receptor 2 (HER2), and programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1). Furthermore, this review provides an overview of potential inhibitors aimed at overcoming acquired drug resistance in these actionable targets for iCCA.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
| | - Jaewon Song
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|
31
|
Sochacka-Ćwikła A, Mączyński M. Oxazolo[5,4- d]pyrimidines as Anticancer Agents: A Comprehensive Review of the Literature Focusing on SAR Analysis. Molecules 2025; 30:666. [PMID: 39942770 PMCID: PMC11820477 DOI: 10.3390/molecules30030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Oxazolo[5,4-d]pyrimidines have been found to exhibit a wide range of biological activities, including the inhibition of various enzymes and signaling pathways associated with carcinogenesis. The objective of this review is to demonstrate that the oxazolo[5,4-d]pyrimidine scaffold represents a valuable structure for the design of novel anticancer therapies. The article provides a comprehensive overview of the chemical structure and pharmacological properties of oxazolo[5,4-d]pyrimidine derivatives, drawing upon the literature and international patents from 1974 until the present. Notably, the review explores structure-activity relationships (SAR) with a view to enhancing the therapeutic efficacy of oxazolo[5,4-d]pyrimidines.
Collapse
Affiliation(s)
- Aleksandra Sochacka-Ćwikła
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland
| | | |
Collapse
|
32
|
Ahmad S, Almanaa TN, Khan S, Aljahdali SM, Waheed Y, Aljasir MA, Al-Megrin WAI, Aziz A, Ateeq M, Amin F, Khattak SU, Sanami S. Identification of potential drug molecules against fibroblast growth factor receptor 3 (FGFR3) by multi-stage computational-biophysics correlate. J Biomol Struct Dyn 2025; 43:1240-1248. [PMID: 38064307 DOI: 10.1080/07391102.2023.2291541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2024]
Abstract
The fibroblast growth factor receptor 3 (FGFR3) is warranted as a promising therapeutic target in bladder cancer as it is described in 75% of papillary bladder tumors. Considering this, the present study was conducted to use different approaches of computer-aided drug discovery (CADD) to identify the best binding compounds against the active pocket of FGFR3. Compared to control pyrimidine derivative, the study identified three promising lead structures; BDC_24037121, BDC_21200852, and BDC_21206757 with binding energy value of -14.80 kcal/mol, -12.22 kcal/mol, and -11.67 kcal/mol, respectively. The control molecule binding energy score was -9.85 kcal/mol. The compounds achieved deep pocket binding and produced balanced interactions of hydrogen bonds and van der Waals. The FGFR3 enzyme residues such as Leu478, Lys508, Glu556, Asn562, Asn622, and Asp635. The molecular dynamic (MD) simulation studies additionally validated the docked conformation stability with respect to FGFR3 with a mean root mean square deviation (RMSD) value of < 3 Å. The root mean square fluctuation (RMSF) complements the complexes structural stability and the residues showed less fluctuation in the presence of compounds. The Poisson-Boltzmann or generalized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) methods revalidated compounds better binding and highlighted van der Waals energy to dominate the overall net energy. The docked stability was additionally confirmed by WaterSwap and AMBER normal mode entropy energy analyses. In a nutshell, the compounds shortlisted in this study are promising in term of theoretical binding affinity for FGFR3 but experimental validation is needed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | | | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wafa Abdullah I Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aamir Aziz
- Sarhad Institute of Allied health Sciences, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Muhammad Ateeq
- Sarhad Institute of Allied health Sciences, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Fazli Amin
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Saeed Ullah Khattak
- Center of Biotechnology and Microbiology, University of Peshawar, KPK, Peshawar, Pakistan
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
33
|
Chen H, Xue DK, Wang YX, Jiang TF. aYAP1-2 contributes to bFGF-induced proliferation In gastric cancer. Anticancer Drugs 2025; 36:97-103. [PMID: 39625344 DOI: 10.1097/cad.0000000000001668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths in humans worldwide. Fibroblast growth factor family (FGFs) and the Hippo signaling pathway play an important role in the epithelial-mesenchymal transition (EMT) process of GC. YAP1, a key mediator of the Hippo pathway, plays an important role in tumor genesis. Alternative splicing of human YAP1 mRNA results in two major isoforms: YAP1-1, which contains a single WW domain, and YAP1-2, which contains two WW domains, respectively. There are significant differences in post-transcriptional regulation and function. Basic FGF (bFGF) treatment promoted the EMT process of most GC cell lines, and the proliferation ability was enhanced. This process may be related to the upregulation of YAP1, the proliferation ability of GC was significantly alleviated upon YAP1 knockdown. bFGF treatment can induce EMT of GC through YAP1-2 and enhance their proliferative ability. In this process, bFGF may enhance the nuclear localization of YAP1-2.In the mouse model of intraperitoneal implantation tumorigenesis, it was shown that under the action of bFGF, the expressing YAP1-2 cell lines could form larger tumors than the expressing YAP1-1, but both of them were larger than the YAP1 knockdown. Our results show that YAP1-2 is the main subtype of bFGF-induced EMT and proliferation of GC cells.
Collapse
Affiliation(s)
- Hui Chen
- Anesthesiology Department, Eye Hospital, Wenzhou Medical University
| | - Di-Kai Xue
- Anesthesiology Department, Eye Hospital, Wenzhou Medical University
| | - Yi-Xuan Wang
- Second Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tian-Fang Jiang
- Anesthesiology Department, Eye Hospital, Wenzhou Medical University
| |
Collapse
|
34
|
Wang YW, Gao YH, Wang C, Zhang PF, Wang M, Lan L, Liu JY, Shi L, Sun LP. Design, synthesis, and biological evaluation of novel FGFR1 PROTACs. Bioorg Chem 2025; 155:108109. [PMID: 39756204 DOI: 10.1016/j.bioorg.2024.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Dysregulation of the fibroblast growth factor receptor 1 (FGFR1) signaling has prompted efforts to develop therapeutic agents, which is a carcinogenic driver of many cancers, including breast, prostate, bladder, and chronic myeloid leukemia. Despite significant progress in the development of potent and selective FGFR inhibitors, the long-term efficacy of these drugs in cancer therapy has been hampered by the rapid onset of acquired resistance. Therefore, more drug discovery strategies are needed to promote the development of FGFR-targeted drugs. Here, we discovered compound S2h, a compound that selectively and effectively degrades FGFR1 at nanomolar concentrations in KG1a cells (IC50 = 26.81 nM; DC50 = 39.78 nM), which incorporates an essential, nine atom-long linkers. The importance of linker length, composition, and tethering site proteolysis-targeting chimeras (PROTACs) design is emphasized, and slight modifications can significantly affect degradation potency. Meanwhile, it was verified that the degradation of FGFR1 protein at compound S2h was concentration- and time-dependent and that the protein degradation occurred through the ubiquitin-proteasome system (UPS). In summary, the newly designed heterobifunctional FGFR1 degrader, compound S2h, provides new ideas and references for the research of FGFR small-molecule degraders.
Collapse
Affiliation(s)
- Yu-Wei Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yu-Hui Gao
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China
| | - Cheng Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China
| | - Ping-Fan Zhang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China
| | - Min Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China
| | - Li Lan
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jing-Ying Liu
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China
| | - Lei Shi
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Li-Ping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
35
|
Wang Z, Zhen W, Wang Q, Sun Y, Jin S, Yu S, Wu X, Zhang W, Zhang Y, Xu F, Wang R, Xie Y, Sun W, Xu J, Zhang H. NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport. Stem Cell Res Ther 2025; 16:30. [PMID: 39876006 PMCID: PMC11776329 DOI: 10.1186/s13287-025-04156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging. METHODS BMSCs were isolated from alveolar bone of human volunteers aged 26-33 (young) and 66-78 (aged). NEAT1 expression and distribution changes during aging process were observed using fluorescence in situ hybridization (FISH) in young (3 months) and aged (18 months) mice or human BMSCs. Subsequent RNA pulldown and proteomic analyses, along with single-cell analysis, immunofluorescence, RNA immunoprecipitation (RIP), and co-immunoprecipitation (Co-IP), were conducted to investigate that NEAT1 impairs the nuclear transport of mitotic FGF2 and contributes to BMSCs aging. RESULTS We reveal that NEAT1 undergoes significant upregulated and shifts from nucleus to cytoplasm in bone marrow and BMSCs during aging process. In which, the expression correlates with nuclear DNA content during karyokinesis, suggesting a link to mitogenic factor. Within NEAT1 knockdown, hallmarks of cellular aging, including senescence-associated secretory phenotype (SASP), p16, and p21, were significantly downregulated. RNA pulldown and proteomic analyses further identify NEAT1 involved in osteoblast differentiation, mitotic cell cycle, and ribosome biogenesis, highlighting its role in maintaining BMSCs differentiation and proliferation. Notably, as an essential growth factor of BMSCs, Fibroblast Growth Factor 2 (FGF2) directly abundant binds to NEAT1 and the sites enriched with nuclear localization motifs. Importantly, NEAT1 decreased the interaction between FGF2 and Karyopherin Subunit Beta 1 (KPNB1), influencing the nuclear transport of mitogenic FGF2. CONCLUSIONS Our findings position NEAT1 as a critical regulator of mitogenic protein networks that govern BMSC aging. Targeting NEAT1 might offer novel therapeutic strategies to rejuvenate aged BMSCs.
Collapse
Affiliation(s)
- Zifei Wang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Wenyu Zhen
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Qing Wang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yuqiang Sun
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Siyu Jin
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Sensen Yu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xing Wu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Wenhao Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yulong Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Fei Xu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Rui Wang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yuxuan Xie
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Jianguang Xu
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Hengguo Zhang
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
36
|
Dong DL, Jin GZ. Targeting Chondrocyte Hypertrophy as Strategies for the Treatment of Osteoarthritis. Bioengineering (Basel) 2025; 12:77. [PMID: 39851351 PMCID: PMC11760869 DOI: 10.3390/bioengineering12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by pain and functional impairment, which severely impacts the quality of life of middle-aged and elderly individuals. During normal bone development, chondrocyte hypertrophy is a natural physiological process. However, in the progression of OA, chondrocyte hypertrophy becomes one of its key pathological features. Although there is no definitive evidence to date confirming that chondrocyte hypertrophy is the direct cause of OA, substantial experimental data indicate that it plays an important role in the disease's pathogenesis. In this review, we first explore the mechanisms underlying chondrocyte hypertrophy in OA and offer new insights. We then propose strategies for inhibiting chondrocyte hypertrophy from the perspectives of targeting signaling pathways and tissue engineering, ultimately envisioning the future prospects of OA treatment.
Collapse
Affiliation(s)
- Da-Long Dong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
37
|
Pikul J, Machnicki MM, Rzepakowska A, Winiarska N, Chudy A, Moskowicz A, Król K, Fus Ł, Kostrzewa G, Stokłosa T. Potentially actionable molecular alterations in particular related to poor oncologic outcomes in salivary gland carcinomas. BMC Cancer 2025; 25:42. [PMID: 39780157 PMCID: PMC11708168 DOI: 10.1186/s12885-024-13421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
AIM The study was designed to evaluate molecular alterations, relevant to the prognosis and personalized therapy of salivary gland cancers (SGCs). MATERIALS AND METHODS DNA was extracted from archival tissue of 40 patients with various SGCs subtypes. A targeted next-generation sequencing (NGS) panel was used for the identification of small-scale mutations, focal and chromosomal arm-level copy number changes. The final analysis included selected genes with potential actionable aberrations for targeted therapies and outcome predictions in 37 tumours' samples. RESULTS The follow-up of the SGCs study cohort revealed disease recurrence or metastasis in 19 patients and indicated poor individual outcomes. The mean disease-free survival (DFS) within the poor outcome group was 2.4 years, and the overall survival (OS) was 5.4 years. The DFS and OS of the remaining 18 patients with favourable outcomes were 8.3 years. The genes most frequently affected with aberrations were NF1 (n = 9, 24%) and TP53 (n = 8, 22%), with increased occurrence observed in the poor outcome group: NF1 (n = 6, 32%) and TP53 (n = 6, 32%). CDKN2A biallelic deletion was the most common copy number variation (n = 5), and was detected in 4 cases with identified disease relapse. TERT promoter mutation and amplification were found in myoepithelial carcinoma. A p.Ile35Thr mutation was discovered in CTNNB1 in two cases of adenoid cystic carcinoma. ERBB2 alterations were remarkable for SDC ex PA. Furthermore, TP53 mutation was established as a relevant negative prognostic factor for overall survival (p = 0,04). The analysis revealed potentially actionable genes in detected alterations in: MECA 100% (1/1), SDC 100% (7/7), AD 92% (11/12), Ca ex PA 82% (18/22), MECA 65% (20/31), AdCC 64% (9/14) and AcCC 0% (0/1). CONCLUSIONS SGCs are a heterogeneous group of malignancies with distinct molecular landscape that characterized by poor prognosis and inadequate treatment options. Nonstandard strategies might be beneficial for patients who suffer from salivary gland cancers. Wider utilization of NGS analysis may increase the opportunity for patients with those rare cancers to receive more precise, personalized therapy.
Collapse
Affiliation(s)
- Julia Pikul
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marcin M Machnicki
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Anna Rzepakowska
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland.
| | - Natalia Winiarska
- Student Scientific Research Group at Otorhinolaryngology Department, Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Chudy
- Laboratory of Genetics, University Clinical Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Albert Moskowicz
- Laboratory of Genetics, University Clinical Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Kacper Król
- Student Scientific Research Group at Otorhinolaryngology Department, Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Fus
- Department of Pathology Department, Medical University of Warsaw, Warsaw, Poland
| | - Grażyna Kostrzewa
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Stokłosa
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
38
|
Canichella M, de Fabritiis P. CAR-T Therapy Beyond B-Cell Hematological Malignancies. Cells 2025; 14:41. [PMID: 39791742 PMCID: PMC11719893 DOI: 10.3390/cells14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Despite the advances of CAR-T cells in certain hematological malignancies, mostly from B-cell derivations such as non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, a significant portion of other hematological and non-hematological pathologies can benefit from this innovative treatment, as the results of clinical studies are demonstrating. The clinical application of CAR-T in the setting of acute T-lymphoid leukemia, acute myeloid leukemia, solid tumors, autoimmune diseases and infections has encountered limitations that are different from those of hematological B-cell diseases. To overcome these restrictions, strategies based on different molecular engineering platforms have been devised and will be illustrated below. The aim of this manuscript is to provide an overview of the CAR-T application in pathologies other than those currently treated, highlighting both the limits and results obtained with these settings.
Collapse
Affiliation(s)
| | - Paolo de Fabritiis
- Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy;
- Department of Biomedicina e Prevenzione, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
39
|
Guo Y, Yang P, Wu Z, Zhang S, You F. Mechanisms of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (huang qi) and Angelica sinensis (Oliv.) Diels (dang gui) in Ameliorating Hypoxia and Angiogenesis to Delay Pulmonary Nodule Malignant Transformation. Integr Cancer Ther 2025; 24:15347354241311917. [PMID: 39882753 PMCID: PMC11780663 DOI: 10.1177/15347354241311917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Screening for pulmonary nodules (PN) using low-dose CT has proven effective in reducing lung cancer (LC) mortality. However, current treatments relying on follow-up and surgical excision fail to fully address clinical needs. Pathological angiogenesis plays a pivotal role in supplying oxygen necessary for the progression of PN to LC. The interplay between hypoxia and angiogenesis establishes a vicious cycle, rendering anti-angiogenesis therapy alone insufficient to prevent PN to LC transformation. In traditional Chinese medicine (TCM), PN is referred to as "Feiji," which is mainly attributed to Qi and blood deficiency, correspondingly, the most commonly prescribed medicines are Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (huang qi) (AR) and Angelica sinensis (Oliv.) Diels (dang gui) (ARS). Modern pharmacological studies have demonstrated that AR and ARS possess immune-enhancing, anti-tumor, anti-inflammatory, and anti-angiogenic properties. However, the precise mechanisms through which AR and ARS exert anti-angiogenic effects to delay PN progression to LC remain inadequately understood. This review explores the critical roles of hypoxia and angiogenesis in the transition from PN to LC. It emphasizes that, compared to therapies targeting angiogenic growth factors alone, AR, ARS, and their compound-based prescriptions offer additional benefits. These include ameliorating hypoxia by restoring blood composition, enhancing vascular structure, accelerating circulation, promoting vascular normalization, and blocking or inhibiting various pro-angiogenic expressions and receptor interactions. Collectively, these actions inhibit angiogenesis and delay the PN-to-LC transformation. Finally, this review summarizes recent advancements in related research, identifies existing limitations and gaps in knowledge, and proposes potential strategies and recommendations to address these challenges.
Collapse
Affiliation(s)
- Ying Guo
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People’s Hospital, Chengdu, China
| | - Zihong Wu
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Fengming You
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
40
|
Rivoira MA, Peralta López ME, Areco V, Díaz de Barboza G, Dionisi MP, Tolosa de Talamoni N. Emerging concepts on the FGF23 regulation and activity. Mol Cell Biochem 2025; 480:75-89. [PMID: 38581553 DOI: 10.1007/s11010-024-04982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 04/08/2024]
Abstract
Fibroblast growth factor 23 (FGF23) discovery has provided new insights into the regulation of Pi and Ca homeostasis. It is secreted by osteoblasts and osteocytes, and acts mainly in the kidney, parathyroid, heart, and bone. The aim of this review is to highlight the current knowledge on the factors modulating the synthesis of FGF23, the canonical and non-canonical signaling pathways of the hormone, the role of FGF23 in different pathophysiological conditions, and the anti-FGF23 therapy. This is a narrative review based on the search of PubMed database in the range of years 2000-2023 using the keywords local and systemic regulators of FGF23 synthesis, FGF23 receptors, canonical and non-canonical pathways, pathophysiological conditions and FGF23, and anti-FGF23 therapy, focusing the data on the molecular mechanisms. The regulation of FGF23 synthesis is complex and multifactorial. It is regulated by local factors and systemic regulators mainly involved in bone mineralization. The excessive FGF23 production is associated with different congenital diseases and with diseases occurring with a secondary high FGF23 production such as in chronic disease kidney and tumor-induced osteomalacia (TIO). The anti-FGF23 therapy appears to be useful to treat chromosome X-linked hypophosphatemia and TIO, but there are doubts about the handle of excessive FGF23 production in CKD. FGF23 biochemistry and pathophysiology are generating a plethora of knowledge to reduce FGF23 bioactivity at many levels that might be useful for future therapeutics of diseases associated with high-serum FGF23 levels.
Collapse
Affiliation(s)
- María Angélica Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María Elena Peralta López
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Vanessa Areco
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, CONICET-UNVM), Córdoba, Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María Paula Dionisi
- Cátedra de Clínica Médica II - UHMI Nº 2, Hospital San Roque, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
41
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
42
|
Yamamura A, Hamanishi J, Yamanoi K, Sunada M, Taki M, Mizuno R, Okada Y, Murakami R, Aisu Y, Maekawa H, Yamaguchi K, Mandai M. Colorectal anastomotic leakage after conversion surgery for advanced endometrial cancer treated with lenvatinib plus pembrolizumab: a case report. Int Cancer Conf J 2025; 14:64-71. [PMID: 39758791 PMCID: PMC11695505 DOI: 10.1007/s13691-024-00739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025] Open
Abstract
The combination therapy of lenvatinib plus pembrolizumab (LP) is increasingly recognized as an important second-line regimen for advanced or recurrent endometrial cancer (EC). However, the safety and efficacy of conversion surgery with low anterior rectal resection for unresectable EC following LP therapy is unknown. A 37-year-old woman was referred with unresectable EC with pleural fluid, peritoneal dissemination, and ascites. After the failure of first-line platinum-based chemotherapy, she was administered LP as second-line treatment. After 10 treatment cycles, uterine and peritoneal tumors significantly reduced in size, except the left ovarian metastatic tumor which became slightly larger. Cytoreductive surgery, including low anterior resection of the rectum and colorectal anastomosis, achieved complete resection. However, on postoperative day 11, the patient experienced an anastomotic leakage around the colorectal anastomosis site, necessitating a double-barreled colostomy and percutaneous drainage. She was discharged 15 days after the second surgery and resumed LP therapy after 44 days following the second surgery. We report a case in which conversion surgery after LP therapy was conducted for unresectable advanced endometrial cancer. Our findings indicate that if bowel resection is required, a longer preoperative withdrawal period may be necessary to prevent postoperative anastomotic leakage.
Collapse
Affiliation(s)
- Akitoshi Yamamura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Masumi Sunada
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Rin Mizuno
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Yukiko Okada
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Yuki Aisu
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisatsugu Maekawa
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
43
|
Mehra A, Sangwan R. A Promising Paradigm Shift in Cancer Treatment with FGFR Inhibitors. Anticancer Agents Med Chem 2025; 25:2-23. [PMID: 39192641 DOI: 10.2174/0118715206318833240819031953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
FGFR have been demonstrated to perform a crucial role in biological processes but their overexpression has been perceived as the operator component in the occurrence and progression of different types of carcinoma. Out of all the interest around cancer, FGFR inhibitors have assembled pace over the past few years. Therefore, FGFR inhibitors are one of the main fundamental tools to reverse drug resistance, tumor growth, and angiogenesis. Currently, many FGFR inhibitors are under the development stage or have been developed. Due to great demand and hotspots, different pharmacophores were approached to access structurally diverse FGFR inhibitors. Here, we have selected to present several representative examples such as Naphthyl, Pyrimidine, Pyridazine, Indole, and Quinoline derivatives that illustrate the diversity and advances of FGFR inhibitors in medicinal chemistry. This review focuses on the SAR study of FGFR inhibitors last five years which will be a great future scope that influences the medicinal chemist to work towards more achievements in this area.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| | - Rekha Sangwan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| |
Collapse
|
44
|
Lei ZY, Wu J, Zhang BH, Xiang W, Wang M, Li BB, Dai MC. High FGF18 expression levels predict poor prognosis in endometrial carcinoma patients and promote tumor growth and metastasis. J Int Med Res 2025; 53:3000605241311402. [PMID: 39852234 PMCID: PMC11760137 DOI: 10.1177/03000605241311402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/16/2024] [Indexed: 01/26/2025] Open
Abstract
OBJECTIVE To investigate if fibroblast growth factor 18 (FGF18) expression plays an important role in endometrial carcinoma (EC). METHODS The clinicopathological associations and prognostic value of FGF18 expression were retrospectively analyzed in 190 patients with EC. FGF18 expression was stably knocked down in EC cell lines. Changes in cell proliferation, migration, and invasion rates were examined via cell behavior experiments. Tumor growth was investigated using a xenograft mouse model. RNA sequencing (RNA-seq) was performed to identify differentially expressed genes (DEGs) in HEC-1-B cells after FGF18 knockdown, followed by pathway enrichment analysis of the DEGs. RESULTS High FGF18 expression levels were closely correlated with EC clinicopathological features, such as histological subtype, FIGO stage, depth of myometrial invasion, and tumor size. Moreover, EC patients with high FGF18 expression levels had poorer overall survival. FGF18 knockdown in EC cells revealed its role in promoting tumor cell proliferation, migration, and invasion in vitro, as well as tumor growth in vivo. RNA-seq of HEC-1-B cells revealed that the DEGs were enriched in signaling pathways related to cell proliferation and migration. CONCLUSIONS Overexpression of FGF18 may serve as a prognostic biomarker for EC patients and is a potential therapeutic target for treating this disease.
Collapse
Affiliation(s)
- Zheng-Yao Lei
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Wu
- Department of Pathology, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bao-Hua Zhang
- Department of Obstetrics and Gynecology, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Xiang
- Department of Pathology, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Wang
- Department of Pathology, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin-bin Li
- Department of Pathology, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming-Cheng Dai
- School of Clinical Medicine, Harbin Medical University, Harbin City, Heilongjiang, Province, China
| |
Collapse
|
45
|
Morizane C, Ueno M, Ioka T, Tajika M, Ikeda M, Yamaguchi K, Hara H, Yabusaki H, Miyamoto A, Iwasa S, Muto M, Takashima T, Minashi K, Komatsu Y, Nishina T, Nakajima TE, Takeno A, Moriwaki T, Furukawa M, Sahara T, Ikezawa H, Nomoto M, Takashima S, Uehara T, Funasaka S, Yashiro M, Furuse J. Tasurgratinib in patients with cholangiocarcinoma or gastric cancer: Expansion part of the first-in-human phase I study. Cancer Sci 2025; 116:192-203. [PMID: 39462221 PMCID: PMC11711049 DOI: 10.1111/cas.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/29/2024] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are a highly conserved family of transmembrane receptor tyrosine kinases with multiple roles in the regulation of key cellular processes. Specific FGFR mutations have been observed in several types of cancers, including gastric carcinoma and cholangiocarcinoma. Dose escalation data of 24 Japanese patients with solid tumors treated with Tasurgratinib (previously known as E7090), a potent, selective FGFR1-3 inhibitor, was reported in a phase I, first-in-human, single-center study. Based on the safety, pharmacokinetic, and pharmacodynamic profiles observed in this study, the recommended dose of 140 mg once daily was selected for the expansion part (Part 2), a multicenter expansion of the dose-finding study restricted to patients with tumors harboring FGFR gene alterations. Safety and preliminary efficacy were assessed in Part 2. Pharmacodynamic pharmacogenomic markers (serum phosphate, FGF23, and 1,25-(OH)2-vitamin D, circulating tumor DNA) and pharmacokinetic profiles were also evaluated. A total of 16 patients were enrolled in Part 2, six with cholangiocarcinoma and 10 with gastric cancer. The most common treatment-emergent adverse events were hyperphosphatemia, palmar-plantar erythrodysesthesia syndrome, and paronychia. Five partial responses (83.3%) in cholangiocarcinoma patients and one partial response (11.1%) in gastric cancer patients were observed; median progression-free survival was 8.26 months (95% confidence interval [CI] 3.84, not evaluable [NE]) and 3.25 months (95% CI 0.95, 4.86), and overall survival was 22.49 months (95% CI 6.37, NE) and 4.27 months (95% CI 2.23, 7.95), respectively, in the two groups. In conclusion, Tasurgratinib 140 mg has a tolerable safety profile with good clinical efficacy in patients with cholangiocarcinoma harboring FGFR2 gene rearrangements.
Collapse
Affiliation(s)
| | | | - Tatsuya Ioka
- Oncology CenterYamaguchi University HospitalUbeJapan
| | | | | | - Kensei Yamaguchi
- The Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | | | | | - Atsushi Miyamoto
- National Hospital Organization Osaka National HospitalOsakaJapan
| | | | | | | | | | | | - Tomohiro Nishina
- National Hospital Organization Shikoku Cancer CenterMatsuyamaJapan
| | - Takako Eguchi Nakajima
- St. Marianna University School of MedicineKawasakiJapan
- Department of Early Clinical DevelopmentKyoto University Graduate School of MedicineKyotoJapan
| | | | | | | | | | | | | | | | | | | | - Masakazu Yashiro
- Graduate School of MedicineOsaka Metropolitan UniversityOsakaJapan
| | | |
Collapse
|
46
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
47
|
Dunker C, Schlegel K, Junker A. Phenol (bio)isosteres in drug design and development. Arch Pharm (Weinheim) 2025; 358:e2400700. [PMID: 39580699 PMCID: PMC11726161 DOI: 10.1002/ardp.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
Due to their versatile properties, phenolic compounds are integral to various biologically active molecules, including many pharmaceuticals. However, their application in drug design is often hindered by issues such as poor oral bioavailability, rapid metabolism, and potential toxicity. This review explores the use of phenol bioisosteres-structurally similar compounds that can mimic the biological activity of phenols while potentially offering improved drug-like properties. We provide an extensive analysis of various phenol bioisosteres, including benzimidazolones, benzoxazolones, indoles, quinolinones, and pyridones, highlighting their impact on the pharmacokinetic and pharmacodynamic profiles of drugs. Case studies illustrate the successful application of these bioisosteres in enhancing metabolic stability, receptor selectivity, and overall therapeutic efficacy. Additionally, the review addresses the challenges associated with phenol bioisosterism, such as maintaining potency and avoiding undesirable side effects. By offering a detailed examination of current strategies and potential future directions, this review serves as a valuable resource for medicinal chemists seeking to optimize phenolic scaffolds in drug development. The insights provided herein aim to facilitate the design of more effective and safer therapeutic agents through strategic bioisosteric modifications.
Collapse
Affiliation(s)
- Calvin Dunker
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyUniversity of TübingenTübingenGermany
| | - Katja Schlegel
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyUniversity of TübingenTübingenGermany
| |
Collapse
|
48
|
Nguyen AL, Facey COB, Boman BM. The Complexity and Significance of Fibroblast Growth Factor (FGF) Signaling for FGF-Targeted Cancer Therapies. Cancers (Basel) 2024; 17:82. [PMID: 39796710 PMCID: PMC11720651 DOI: 10.3390/cancers17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers. Among the FGF members, the FGF 15/19 subfamily is particularly interesting because of its unique protein structure and role in endocrine function. The abnormal expression of FGFs in different cancer types (breast, colorectal, hepatobiliary, bronchogenic, and others) is examined and correlated with patient prognosis. The classification of FGF ligands based on their mode of action, whether autocrine, paracrine, endocrine, or intracrine, is illustrated, and an analysis of the binding specificity of FGFs to FGFRs is also provided. Moreover, the latest advances in cancer therapeutic strategies involving small molecules, ligand traps, and monoclonal antibody-based FGF inhibitors are presented. Lastly, we discuss how the dysregulation of FGF and FGFR expression affects FGF signaling and its role in cancer development.
Collapse
Affiliation(s)
- Anh L. Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Caroline O. B. Facey
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Bruce M. Boman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
49
|
Seubert AC, Krafft M, Bopp S, Helal M, Bhandare P, Wolf E, Alemany A, Riedel A, Kretzschmar K. Spatial transcriptomics reveals molecular cues underlying the site specificity of the adult mouse oral mucosa and its stem cell niches. Stem Cell Reports 2024; 19:1706-1719. [PMID: 39547226 PMCID: PMC11751799 DOI: 10.1016/j.stemcr.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
The oral cavity is a multifunctional organ composed of structurally heterogeneous mucosal tissues that remain poorly characterized. Oral mucosal tissues are highly stratified and segmented along an epithelial-lamina propria axis. Here, we performed spatial transcriptomics (tomo-seq) on the tongue, cheeks, and palate of the adult mouse to understand the cues that maintain the oral mucosal sites. We define molecular markers of unique and shared cellular niches and differentiation programs across oral sites. Using a comparative approach, we identify fibroblast growth factor (FGF) pathway components as potential stem cell niche factors for oral epithelial stem cells. Using organoid-forming efficiency assays, we validated three FGF ligands (FGF1, FGF7, and FGF10) as site-specific niche factors in the dorsal and ventral tongue. Our dataset of the spatially resolved genes across major oral sites represents a comprehensive resource for unraveling the molecular mechanisms underlying the adult homeostasis of the oral mucosa and its stem cell niches.
Collapse
Affiliation(s)
- Anna C Seubert
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Marion Krafft
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Bopp
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany
| | - Moutaz Helal
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | | | - Elmar Wolf
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, the Netherlands
| | - Angela Riedel
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
50
|
Alqabandi JA, David R, Abdel-Motal UM, ElAbd RO, Youcef-Toumi K. An innovative cellular medicine approach via the utilization of novel nanotechnology-based biomechatronic platforms as a label-free biomarker for early melanoma diagnosis. Sci Rep 2024; 14:30107. [PMID: 39627312 PMCID: PMC11615046 DOI: 10.1038/s41598-024-79154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Innovative cellular medicine (ICM) is an exponentially emerging field with a promising approach to combating complex and ubiquitous life-threatening diseases such as multiple sclerosis (MS), arthritis, Parkinson's disease, Alzheimer's, heart disease, and cancer. Together with the advancement of nanotechnology and bio-mechatronics, ICM revolutionizes cellular therapy in understanding the essence and nature of the disease initiated at a single-cell level. This paper focuses on the intricate nature of cancer that requires multi-disciplinary efforts to characterize it well in order to achieve the objectives of modern world contemporary medicine in the early detection of the disease at a cellular level and potentially arrest its proliferation mechanism. This justifies the multidisciplinary research backgrounds of the authors of this paper in advancing cellular medicine by bridging the gap between experimental biology and the engineering field. Thus, in pursuing this approach, two novel miniaturized and highly versatile biomechatronic platforms with dedicated operating software and microelectronics are designed, modeled, nanofabricated, and tested in numerous in vitro experiments to investigate a hypothesis and arrive at a proven theorem in carcinogenesis by interrelating cellular contractile force, membrane potential, and cellular morphology for early detection and characterization of melanoma cancer cells. The novelties that flourished within this work are manifested in sixfold: (1) developing a mathematical model that utilizes a Heaviside step function, as well as a pin-force model to compute the contractile force of a living cell, (2) deriving an expression of cell-membrane potential based on Laplace and Fourier Transform and their Inverse Transform functions by encountering Warburg diffusion impedance factor, (3) nano-fabricating novel biomechatronic platforms with associated microelectronics and customized software that extract cellular physics and mechanics, (4) developing a label-free biomarker, (5) arrive at a proved theorem in developing a mathematical expression in relating cancer cell mechanobiology to its biophysics in connection to the stage of the disease, and (6) to the first time in literature, and to the best of the authors' knowledge, discriminating different stages and morphology of cancer cell melanoma based on their cell-membrane potentials, and associated contractile forces that could introduce a new venue of cellular therapeutic modalities, preclinical early cancer diagnosis, and a novel approach in immunotherapy drug development. The proposed innovative technology-based versatile bio-mechatronic platforms shall be extended for future studies, investigating the role of electrochemical signaling of the nervous system in cancer formation that will significantly impact modern oncology by pursuing a targeted immunotherapy approach. This work also provides a robust platform for immunotherapy practitioners in extending the study of cellular biophysics in stalling neural-cancer interactions, of which the FDA-approved chimeric antigen receptor (CAR)-T cell therapies can be enhanced (genetically engineered) in a lab by improving its receptors to capture cancer antigens. This work amplifies the importance of studying neurotransmitters and electrochemical signaling molecules in shaping the immune T-cell function and its effectiveness in arresting cancer proliferation rate (mechanobiology mechanism).
Collapse
Affiliation(s)
- Jassim A Alqabandi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Mechatronics in Medicine Laboratory, Imperial College London, London, UK.
- Department of Manufacturing Engineering Technology (Bio-Mechatronics) Department, PAAET, Kuwait, State of Kuwait.
| | - Rhiannon David
- Division of Computational and Systems Medicine (CSM), Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Ussama M Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rawan O ElAbd
- McGill University Health Center, Montreal, QC, Canada
| | - Kamal Youcef-Toumi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| |
Collapse
|