1
|
Li Q, Park J, Kim JS, Le QV, Lee J, Oh YK. Anti-Inflammatory Macrophage-Derived Exosomes Modified With Self-Antigen Peptides for Treatment of Experimental Autoimmune Encephalomyelitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415265. [PMID: 39937659 DOI: 10.1002/advs.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/12/2025] [Indexed: 02/14/2025]
Abstract
Current treatments for autoimmune diseases often involve broad-acting immunosuppressants, which carry risks such as infections and malignancies. This study investigates whether exosomes derived from anti-inflammatory macrophages (AE) and decorated with myelin oligodendrocyte glycoprotein (MOG) peptide (AE/M) can induce immune tolerance in autoimmune diseases. Experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis, serves as the autoimmune disease model. Exosomes derived from myoblasts or fibroblasts are also modified with MOG peptides for comparison. Unlike their myoblast or fibroblast counterparts, exosomes from anti-inflammatory macrophages demonstrate a targeted capacity toward antigen-presenting cells. Moreover, AE/M uniquely promotes the differentiation of dendritic cells (DC) into a tolerogenic phenotype. When splenocytes are treated with AE/M, an increased population of tolerogenic DC (tolDC) is observed, even under proinflammatory stimuli. Subcutaneous administration of AE/M in the EAE mouse model results in MOG peptide-specific immune tolerance and preserves motor coordination. In contrast to treatments with fibroblast- or myoblast-derived exosomes modified with MOG peptides, AE/M treatment provides complete protection from EAE in mice. These findings highlight the potential of self-antigen modified AE as a versatile and adaptable nanoplatform for the treatment of various autoimmune diseases.
Collapse
Grants
- KEIT 20018560 Alchemist Project of the Korea Evaluation Institute of Industrial Technology (KEIT), Ministry of Trade, Industry and Energy, Republic of Korea
- NTIS 2410005252 Alchemist Project of the Korea Evaluation Institute of Industrial Technology (KEIT), Ministry of Trade, Industry and Energy, Republic of Korea
- NRF-2018R1A5A2024425 National Research Foundation (NRF), Ministry of Science and ICT, Republic of Korea
- RS-2024-00350161 National Research Foundation (NRF), Ministry of Science and ICT, Republic of Korea
Collapse
Affiliation(s)
- Qiaoyun Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Jaiwoo Lee
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Afzali AM, Ulianov O, Eckardt L, Stas I, Seeholzer L, Steiger K, Merkler D, Korn T. AQP4-specific T cells determine lesion localization in the CNS in a model of NMOSD. Acta Neuropathol Commun 2025; 13:27. [PMID: 39934927 DOI: 10.1186/s40478-025-01947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a paradigmatic autoimmune disease of the central nervous system (CNS), in which the water channel protein Aquaporin-4 (AQP4) is targeted by a self-reactive immune response. While the immunopathology of human NMOSD is largely dependent on antibodies to astrocytic AQP4, the role of AQP4-specific T cells for the localization and quality of NMOSD lesions in the CNS is not known. Only recently, we established that thymic B cells express and present AQP4 in the context of MHC class II molecules to purge the naive T cell receptor repertoire of AQP4-specific clones. Here, we exploited this finding to investigate the lesion localization in the CNS of B cell conditional AQP4-deficient (Aqp4ΔB) mice, which harbor AQP4-specific precursors in their naive T cell repertoire and can be sensitized to mount a strong AQP4(201-220)-specific CD4+ T cell response. Sensitization of Aqp4ΔB mice with AQP4(201-220) was sufficient to induce clinical disease. The spatiotemporal lesion distribution and the glial cell response in AQP4(201-220)-induced experimental autoimmune encephalomyelitis (EAE) was compared to classical MOG(35-55)-induced EAE in Aqp4ΔB mice. In contrast to MOG-EAE, AQP4(201-220)-induced EAE was characterized by midline lesions in the brain, retinal pathology, and lesions at the grey matter/white matter border zone in the spinal cord. Therefore, we conclude that antigen-specific T cells dictate the localization of NMOSD-lesions in the CNS.
Collapse
Affiliation(s)
- Ali Maisam Afzali
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Ismaninger Str. 22, 81675, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany
| | - Oleksii Ulianov
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Ismaninger Str. 22, 81675, Munich, Germany
| | - Luise Eckardt
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Ismaninger Str. 22, 81675, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany
| | - Ingrid Stas
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Ismaninger Str. 22, 81675, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany
| | - Lea Seeholzer
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Ismaninger Str. 22, 81675, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675, Munich, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, Centre Médical Universitaire, 1, Rue Michel Servet, 1211, Geneva, Switzerland
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Ismaninger Str. 22, 81675, Munich, Germany.
- Department of Neurology, Technical University of Munich School of Medicine, Ismaninger Str. 22, 81675, Munich, Germany.
- Munich Cluster for Systems Neurology, Feodor-Lynen-Str. 17, 81377, Munich, Germany.
| |
Collapse
|
3
|
KRISNANDA AGA, SASAKI NAOTO, ITO KEN, TANAKA TORU, SHINOHARA MASAKAZU, AMIN HILMANZULKIFLI, HORIBE SAYO, IWAYA MOTOAKI, HIRATA KENICHI, FUKUNAGA ATSUSHI, RIKITAKE YOSHIYUKI. 312 nm UVB Phototherapy Limits Atherosclerosis by Regulating Immunoinflammatory Responses in Mice. THE KOBE JOURNAL OF MEDICAL SCIENCES 2025; 70:E130-E142. [PMID: 39993786 PMCID: PMC11896096 DOI: 10.24546/0100492952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/12/2024] [Indexed: 02/26/2025]
Abstract
AIM Our previous studies identified ultraviolet B (UVB) irradiation as a possible approach for preventing atherosclerosis. The aim of this study was to clarify the effect of 312 nm UVB, a wavelength similar to that of clinically available narrow-band UVB for the treatment of psoriasis, on atherosclerosis and the underlying mechanisms. METHODS AND RESULTS Using a recently developed UVB-light-emitting diode device, we irradiated 6-week-old male atherosclerosis-prone apolipoprotein E-deficient mice with 312 nm UVB at 5 or 10 kJ/m² and examined its effect on the development of atherosclerosis and immunoinflammatory responses by performing histological analysis, flow cytometry, biochemical assays, and liquid chromatography/mass spectrometry-based lipidomics. UVB irradiation at 10 kJ/m² but not at 5 kJ/m² significantly attenuated the development of aortic root atherosclerotic plaques, while UVB irradiation at both doses induced a less inflammatory plaque phenotype. This atheroprotective effect was associated with a reduced effector T cell number, a shift toward anti-atherogenic helper T cell responses, and increased proportion of regulatory T cells in lymphoid tissues and increased levels of proresolving lipid mediators in the skin. CONCLUSIONS We demonstrated that 312 nm UVB irradiation limits atherosclerosis by favorably modulating the T cell balance and lipid mediator profile. Our findings indicate that 312 nm UVB phototherapy could be an attractive immunomodulatory approach for preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- AGA KRISNANDA
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - NAOTO SASAKI
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - KEN ITO
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - TORU TANAKA
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - MASAKAZU SHINOHARA
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - HILMAN ZULKIFLI AMIN
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - SAYO HORIBE
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - MOTOAKI IWAYA
- Department of Materials Science and Engineering, Meijo University, Nagoya, Japan
| | - KEN-ICHI HIRATA
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Cardiology, Kakogawa Central City Hospital, Kakogawa, Hyogo, Japan
| | - ATSUSHI FUKUNAGA
- Department of Dermatology, Division of Medicine for Function and Morphology of Sensory Organs, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - YOSHIYUKI RIKITAKE
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
4
|
Pfnür A, Mayer B, Dörfer L, Tumani H, Spitzer D, Huber-Lang M, Kapapa T. Regulatory T Cell- and Natural Killer Cell-Mediated Inflammation, Cerebral Vasospasm, and Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage-A Systematic Review and Meta-Analysis Approach. Int J Mol Sci 2025; 26:1276. [PMID: 39941044 PMCID: PMC11818301 DOI: 10.3390/ijms26031276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) involves a significant influx of blood into the cerebrospinal fluid, representing a severe form of stroke. Despite advancements in aneurysm closure and neuro-intensive care, outcomes remain impaired due to cerebral vasospasm and delayed cerebral ischemia (DCI). Previous pharmacological therapies have not successfully reduced DCI while improving overall outcomes. As a result, significant efforts are underway to better understand the cellular and molecular mechanisms involved. This review focuses on the activation and effects of immune cells after SAH and their interactions with neurotoxic and vasoactive substances as well as inflammatory mediators. Particular attention is given to clinical studies highlighting the roles of natural killer (NK) cells and regulatory T cells (Treg) cells. Alongside microglia, astrocytes, and oligodendrocytes, NK cells and Treg cells are key contributors to the inflammatory cascade following SAH. Their involvement in modulating the neuro-inflammatory response, vasospasm, and DCI underscores their potential as therapeutic targets and prognostic markers in the post-SAH recovery process. We conducted a systematic review on T cell- and natural killer cell-mediated inflammation and their roles in cerebral vasospasm and delayed cerebral ischemia. We conducted a meta-analysis to evaluate outcomes and mortality in studies focused on NK cell- and T cell-mediated mechanisms.
Collapse
Affiliation(s)
- Andreas Pfnür
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081 Ulm, Germany
| | - Lena Dörfer
- Institute for Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/, 89081 Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Daniel Spitzer
- Department of Neurology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/, 89081 Ulm, Germany
| | - Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
5
|
Shi S, Gong X. The Role of Microglia in Perioperative Pain and Pain Treatment: Recent Advances in Research. J Integr Neurosci 2025; 24:22675. [PMID: 40018770 DOI: 10.31083/jin22675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 03/01/2025] Open
Abstract
Microglia play a crucial role in monitoring the microenvironment of the central nervous system. Over the past decade, the role of microglia in the field of pain has gradually been unraveled. Microglia activation not only releases proinflammatory factors that enhance nociceptive signaling, but also participates in the resolving of pain. Opioids induce microglia activation, which enhances phagocytic activity and release of neurotoxic substances. Conversely, microglia activation reduces opioid efficacy and results in opioid tolerance. The application of microglia research to clinical pain management and drug development is a promising but challenging area. Microglia-targeted therapies may provide new avenues for pain management.
Collapse
Affiliation(s)
- Shengnan Shi
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China
| | - Xingrui Gong
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China
| |
Collapse
|
6
|
Xiao X, Du Y, Sun S, Su X, Xing J, Wang G, Elzein SM, Zou D, Minze LJ, Mao Z, Ghobrial RM, Connor AA, Chen W, Zhang Z, Li XC. Apex1 safeguards genomic stability to ensure a cytopathic T cell fate in autoimmune disease models. J Clin Invest 2024; 135:e183671. [PMID: 39739423 PMCID: PMC11827838 DOI: 10.1172/jci183671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
T cells have a remarkable capacity to clonally expand, a process that is intricately linked to their effector activities. As vigorously proliferating T cell also incur substantial DNA lesions, how the dividing T cells safeguard their genomic integrity to allow the generation of T effector cells remains largely unknown. Here we report the identification of the apurinic/apyrimidinic endonuclease-1 (Apex1) as an indispensable molecule for the induction of cytopathic T effectors in mouse models. We demonstrate that conditional deletion of Apex1 in T cells resulted in a remarkable accumulation of baseless DNA sites in the genome of proliferating T cells, which further led to genomic instability and apoptotic cell death. Consequently, Apex1-deleted T cells failed to acquire any effector features after activation and failed to mediate autoimmune diseases and allergic tissue damages. Detailed mutational analyses pinpointed the importance of its endonuclease domain in the generation of T effector cells. We provide further evidence that inhibiting the base repair activities of Apex1 with chemical inhibitors similarly abrogated the induction of autoimmune diseases. Collectively, our study suggests that Apex1 serves as a gatekeeper for the generation of cytopathic T cells and that therapeutically targeting Apex1 may have important clinical implications in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xiang Xiao
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Yong Du
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Si Sun
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Xiaojun Su
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Junji Xing
- Immunobiology and Transplant Science Center and Department of Surgery
- Department of Cardiovascular Sciences, and
| | - Guangchuan Wang
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Steven M. Elzein
- Immunobiology and Transplant Science Center and Department of Surgery
- J.C. Walter Jr. Transplant Center and Conover Center for Liver Diseases and Transplantation, Houston Methodist Hospital, Houston, Texas, USA
| | - Dawei Zou
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Laurie J. Minze
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Zhuyun Mao
- Immunobiology and Transplant Science Center and Department of Surgery
| | - Rafik M. Ghobrial
- Immunobiology and Transplant Science Center and Department of Surgery
- J.C. Walter Jr. Transplant Center and Conover Center for Liver Diseases and Transplantation, Houston Methodist Hospital, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Ashton A. Connor
- Immunobiology and Transplant Science Center and Department of Surgery
- J.C. Walter Jr. Transplant Center and Conover Center for Liver Diseases and Transplantation, Houston Methodist Hospital, Houston, Texas, USA
| | - Wenhao Chen
- Immunobiology and Transplant Science Center and Department of Surgery
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center and Department of Surgery
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Xian C. Li
- Immunobiology and Transplant Science Center and Department of Surgery
- J.C. Walter Jr. Transplant Center and Conover Center for Liver Diseases and Transplantation, Houston Methodist Hospital, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
7
|
Frikeche J, David M, Mouska X, Treguer D, Cui Y, Rouquier S, Lecorgne E, Proics E, Fall PB, Lafon A, Lara G, Menardi A, Fenard D, Abel T, Gertner-Dardenne J, de la Rosa M, Dumont C. MOG-specific CAR Tregs: a novel approach to treat multiple sclerosis. J Neuroinflammation 2024; 21:268. [PMID: 39428507 PMCID: PMC11490997 DOI: 10.1186/s12974-024-03262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system (CNS) with the immune system attacking myelin sheaths leading to neuronal death. While several disease-modifying therapies are available to treat MS, these therapies are not universally effective and do not stop disease progression. More personalized long-term treatment options that target specific aspects of the disease, such as reducing relapse frequency, delaying disability accumulation, and addressing symptoms that impact daily functioning, as well as therapies that can promote neuroprotection and repair are needed. Chimeric Antigen Receptor (CAR) Tcell therapies have revolutionized cancer treatment by intravenously (IV) administering a defined dose of T cells with high specificity provided by the CAR. An autologous CAR T cell therapy using suppressive regulatory T cells (Tregs) inducing long-lasting tolerance would be the ideal treatment for patients. Hence, we expanded the application of CAR-T cells by introducing a CAR into Tregs to treat MS patients. We developed a myelin oligodendrocyte glycoprotein (MOG)-specific CAR Treg cell therapy for patients with MS. MOG is expressed on the outer membrane of the myelin sheath, the insulating layer the forms around nerves, making it an ideal target for CAR Treg therapy. Our lead candidate is a 2nd generation CAR, composed of an anti-MOG scFv screened from a large human library. In vitro, we demonstrated CAR-dependent functionality and showed efficacy in vivo using a passive EAE mouse model. Additionally, the MOG-CAR Tregs have very low tonic signaling with a desirable signal-to-noise ratio resulting in a highly potent CAR. In summary our data suggest that MOG-CAR Tregs are a promising MS treatment option with the potential to induce long-lasting tolerance in patients.
Collapse
Affiliation(s)
- Jihane Frikeche
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Marion David
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Xavier Mouska
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Damien Treguer
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Yue Cui
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Sandrine Rouquier
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Enora Lecorgne
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Emma Proics
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Papa Babacar Fall
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Audrey Lafon
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Gregory Lara
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Alexandra Menardi
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - David Fenard
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Tobias Abel
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | | | - Maurus de la Rosa
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France
| | - Celine Dumont
- Research, Sangamo Therapeutics, Allée de la Nertière, Valbonne, 06560, France.
| |
Collapse
|
8
|
Khan A, Roy P, Ley K. Breaking tolerance: the autoimmune aspect of atherosclerosis. Nat Rev Immunol 2024; 24:670-679. [PMID: 38472321 PMCID: PMC11682649 DOI: 10.1038/s41577-024-01010-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a chronic inflammatory disease of the arterial walls and is characterized by the accumulation of lipoproteins that are insufficiently cleared by phagocytes. Following the initiation of atherosclerosis, the pathological progression is accelerated by engagement of the adaptive immune system. Atherosclerosis triggers the breakdown of tolerance to self-components. This loss of tolerance is reflected in defective expression of immune checkpoint molecules, dysfunctional antigen presentation, and aberrations in T cell populations - most notably in regulatory T (Treg) cells - and in the production of autoantibodies. The breakdown of tolerance to self-proteins that is observed in ASCVD may be linked to the conversion of Treg cells to 'exTreg' cells because many Treg cells in ASCVD express T cell receptors that are specific for self-epitopes. Alternatively, or in addition, breakdown of tolerance may trigger the activation of naive T cells, resulting in the clonal expansion of T cell populations with pro-inflammatory and cytotoxic effector phenotypes. In this Perspective, we review the evidence that atherosclerosis is associated with a breakdown of tolerance to self-antigens, discuss possible immunological mechanisms and identify knowledge gaps to map out future research. Rational approaches aimed at re-establishing immune tolerance may become game changers in treating ASCVD and in preventing its downstream sequelae, which include heart attacks and strokes.
Collapse
Affiliation(s)
- Amir Khan
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Payel Roy
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Klaus Ley
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
9
|
Prins CA, de Oliveira FL, de Mello Coelho V, Dos Santos Ribeiro EB, de Almeida JS, Silva NMB, Almeida FM, Martinez AMB. Galectin-3 absence alters lymphocytes populations dynamics behavior and promotes functional recovery after spinal cord injury in mice. Exp Neurol 2024; 377:114785. [PMID: 38670250 DOI: 10.1016/j.expneurol.2024.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Spinal cord injury (SCI) results from various mechanisms that damage the nervous tissue and the blood-brain barrier, leading to sensory and motor function loss below the injury site. Unfortunately, current therapeutic approaches for SCI have limited efficacy in improving patients outcomes. Galectin-3, a protein whose expression increases after SCI, influences the neuroinflammatory response by favoring pro-inflammatory M1 macrophages and microglia, while inhibiting pro-regenerative M2 macrophages and microglia, which are crucial for inflammation resolution and tissue regeneration. Previous studies with Galectin-3 knock-out mice demonstrated enhanced motor recovery after SCI. The M1/M2 balance is strongly influenced by the predominant lymphocytic profiles (Th1, Th2, T Reg, Th17) and cytokines and chemokines released at the lesion site. The present study aimed to investigate how the absence of galectin-3 impacts the adaptive immune system cell population dynamics in various lymphoid spaces following a low thoracic spinal cord compression injury (T9-T10) using a 30 g vascular clip for one minute. It also aimed to assess its influence on the functional outcome in wild-type (WT)and Galectin-3 knock-out (GALNEG) mice. Histological analysis with hematoxylin-eosin and Luxol Fast Blue staining revealed that WT and GALNEG animals exhibit similar spinal cord morphology. The absence of galectin-3 does not affect the common neuroanatomy shared between the groups prompting us to analyze outcomes between both groups. Following our crush model, both groups lost motor and sensory functions below the lesion level. During a 42-day period, GALNEG mice demonstrated superior locomotor recovery in the Basso Mouse Scale (BMS) gait analysis and enhanced motor coordination performance in the ladder rung walk test (LRW) compared to WT mice. GALNEG mice also exhibited better sensory recovery, and their electrophysiological parameters suggested a higher number of functional axons with faster nerve conduction. Seven days after injury, flow cytometry of thymus, spleen, and blood revealed an increased number of T Reg and Th2 cells, accompanied by a decrease in Th1 and Th17 cells in GALNEG mice. Immunohistochemistry conducted on the same day exhibited an increased number of Th2 and T Reg cells around the GALNEG's spinal cord lesion site. At 42-day dpi immunohistochemistry analyses displayed reduced astrogliosis and greater axon preservation in GALNEG's spinal cord seem as a reduction of GFAP immunostaining and an increase in NFH immunostaining, respectively. In conclusion, GALNEG mice exhibited better functional recovery attributed to the milder pro-inflammatory influence, compensated by a higher quantity of T Reg and Th2 cells. These findings suggest that galectin-3 plays a crucial role in the immune response after spinal cord injury and could be a potential target for clinical therapeutic interventions.
Collapse
Affiliation(s)
- Caio Andrade Prins
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Leite de Oliveira
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Ciências Morfológicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valeria de Mello Coelho
- Laboratório de lmunofisiologia, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Ciências Morfológicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emanuela Bezerra Dos Santos Ribeiro
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Silva de Almeida
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Moraes Bechelli Silva
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Laboratório de Neurodegeneração e Reparo, Instituto de Ciências Biomédicas, Programa de Pós-graduação em Anatomia Patológica, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitário Clementina Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Arellano G, Acuña E, Loda E, Moore L, Tichauer JE, Castillo C, Vergara F, Burgos PI, Penaloza-MacMaster P, Miller SD, Naves R. Therapeutic role of interferon-γ in experimental autoimmune encephalomyelitis is mediated through a tolerogenic subset of splenic CD11b + myeloid cells. J Neuroinflammation 2024; 21:144. [PMID: 38822334 PMCID: PMC11143617 DOI: 10.1186/s12974-024-03126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/05/2024] [Indexed: 06/02/2024] Open
Abstract
Cumulative evidence has established that Interferon (IFN)-γ has both pathogenic and protective roles in Multiple Sclerosis and the animal model, Experimental Autoimmune Encephalomyelitis (EAE). However, the underlying mechanisms to the beneficial effects of IFN-γ are not well understood. In this study, we found that IFN-γ exerts therapeutic effects on chronic, relapsing-remitting, and chronic progressive EAE models. The frequency of regulatory T (Treg) cells in spinal cords from chronic EAE mice treated with IFN-γ was significantly increased with no effect on Th1 and Th17 cells. Consistently, depletion of FOXP3-expressing cells blocked the protective effects of IFN-γ, indicating that the therapeutic effect of IFN-γ depends on the presence of Treg cells. However, IFN-γ did not trigger direct in vitro differentiation of Treg cells. In vivo administration of blocking antibodies against either interleukin (IL)-10, transforming growth factor (TGF)-β or program death (PD)-1, revealed that the protective effects of IFN-γ in EAE were also dependent on TGF-β and PD-1, but not on IL-10, suggesting that IFN-γ might have an indirect role on Treg cells acting through antigen-presenting cells. Indeed, IFN-γ treatment increased the frequency of a subset of splenic CD11b+ myeloid cells expressing TGF-β-Latency Associated Peptide (LAP) and program death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)-1-dependent manner. Furthermore, splenic CD11b+ cells from EAE mice preconditioned in vitro with IFN-γ and myelin oligodendrocyte glycoprotein (MOG) peptide exhibited a tolerogenic phenotype with the capability to induce conversion of naïve CD4+ T cells mediated by secretion of TGF-β. Remarkably, adoptive transfer of splenic CD11b+ cells from IFN-γ-treated EAE mice into untreated recipient mice ameliorated clinical symptoms of EAE and limited central nervous system infiltration of mononuclear cells and effector helper T cells. These results reveal a novel cellular and molecular mechanism whereby IFN-γ promotes beneficial effects in EAE by endowing splenic CD11b+ myeloid cells with tolerogenic and therapeutic activities.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Interferon-gamma/metabolism
- Myeloid Cells/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Spleen/immunology
- Mice, Inbred C57BL
- CD11b Antigen/metabolism
- Female
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Myelin-Oligodendrocyte Glycoprotein/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Peptide Fragments/toxicity
- Peptide Fragments/pharmacology
- Transforming Growth Factor beta/metabolism
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/immunology
- Forkhead Transcription Factors/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Gabriel Arellano
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Eric Acuña
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Lindsay Moore
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Juan E Tichauer
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Castillo
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fabian Vergara
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula I Burgos
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US.
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US.
| | - Rodrigo Naves
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Duan Y, Chen X, Shao H, Li Y, Zhang Z, Li H, Zhao C, Xiao H, Wang J, Zhang X. Enhanced immunosuppressive capability of mesenchymal stem cell-derived small extracellular vesicles with high expression of CD73 in experimental autoimmune uveitis. Stem Cell Res Ther 2024; 15:149. [PMID: 38783393 PMCID: PMC11118760 DOI: 10.1186/s13287-024-03764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Autoimmune uveitis is an inflammatory disease triggered by an aberrant immune response. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) are emerging as potential therapeutic agents for this condition. CD73, an ectoenzyme present on MSC-sEVs, is involved in mitigating inflammation by converting extracellular adenosine monophosphate into adenosine. We hypothesize that the inhibitory effect of MSC-sEVs on experimental autoimmune uveitis (EAU) could be partially attributed to the surface expression of CD73. METHODS To investigate novel therapeutic approaches for autoimmune uveitis, we performed lentiviral transduction to overexpress CD73 on the surface of MSC-sEVs, yielding CD73-enriched MSC-sEVs (sEVs-CD73). Mice with interphotoreceptor retinoid-binding protein (IRBP)-induced EAU were grouped randomly and treated with 50 µg MSC-sEVs, vector infected MSC-sEVs, sEVs-CD73 or PBS via single tail vein injection. We evaluated the clinical and histological features of the induced mice and analyzed the proportion and functional capabilities of T helper cells. Furthermore, T-cells were co-cultured with various MSC-sEVs in vitro, and we quantified the resulting inflammatory response to assess the potential therapeutic benefits of sEVs-CD73. RESULTS Compared to MSC-sEVs, sEVs-CD73 significantly alleviates EAU, leading to reduced inflammation and diminished tissue damage. Treatment with sEVs-CD73 results in a decreased proportion of Th1 cells in the spleen, draining lymph nodes, and eyes, accompanied by an increased proportion of regulatory T-cells (Treg cells). In vitro assays further reveal that sEVs-CD73 inhibits T-cell proliferation, suppresses Th1 cells differentiation, and enhances Treg cells proportion. CONCLUSION Over-expression of CD73 on MSC-sEVs enhances their immunosuppressive effects in EAU, indicating that sEVs-CD73 has the potential as an efficient immunotherapeutic agent for autoimmune uveitis.
Collapse
Affiliation(s)
- Yanan Duan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiteng Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Yongtao Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Huan Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chuan Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Xiao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jiawei Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
12
|
Liston A, Pasciuto E, Fitzgerald DC, Yshii L. Brain regulatory T cells. Nat Rev Immunol 2024; 24:326-337. [PMID: 38040953 DOI: 10.1038/s41577-023-00960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/03/2023]
Abstract
The brain, long thought to be isolated from the peripheral immune system, is increasingly recognized to be integrated into a systemic immunological network. These conduits of immune-brain interaction and immunosurveillance processes necessitate the presence of complementary immunoregulatory mechanisms, of which brain regulatory T cells (Treg cells) are likely a key facet. Treg cells represent a dynamic population in the brain, with continual influx, specialization to a brain-residency phenotype and relatively rapid displacement by newly incoming cells. In addition to their functions in suppressing adaptive immunity, an emerging view is that Treg cells in the brain dampen down glial reactivity in response to a range of neurological insults, and directly assist in multiple regenerative and reparative processes during tissue pathology. The utility and malleability of the brain Treg cell population make it an attractive therapeutic target across the full spectrum of neurological conditions, ranging from neuroinflammatory to neurodegenerative and even psychiatric diseases. Therapeutic modalities currently under intense development include Treg cell therapy, IL-2 therapy to boost Treg cell numbers and multiple innovative approaches to couple these therapeutics to brain delivery mechanisms for enhanced potency. Here we review the state of the art of brain Treg cell knowledge together with the potential avenues for future integration into medical practice.
Collapse
Affiliation(s)
- Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Emanuela Pasciuto
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Center for Molecular Neurology, VIB, Antwerp, Belgium.
| | - Denise C Fitzgerald
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | - Lidia Yshii
- Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Peeters JGC, Silveria S, Ozdemir M, Ramachandran S, DuPage M. Increased EZH2 function in regulatory T cells promotes their capacity to suppress autoimmunity by driving effector differentiation prior to activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588284. [PMID: 38645261 PMCID: PMC11030251 DOI: 10.1101/2024.04.05.588284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here we assessed whether increased EZH2 activity in Treg cells would improve Treg cell function. Using an Ezh2 gain-of-function mutation, Ezh2 Y641F , we found that Treg cells expressing Ezh2 Y641F displayed an increased effector Treg phenotype and were poised for improved homing to organ tissues. Expression of Ezh2 Y641F in Treg cells led to more rapid remission from autoimmunity. H3K27me3 profiling and transcriptomic analysis revealed a redistribution of H3K27me3, which prompted a gene expression profile in naïve Ezh2 Y641F Treg cells that recapitulated aspects of CD28-activated Ezh2 WT Treg cells. Altogether, increased EZH2 activity promotes the differentiation of effector Treg cells that can better suppress autoimmunity. Highlights EZH2 function promotes effector differentiation of Treg cells.EZH2 function promotes Treg cell migration to organ tissues.EZH2 function in Treg cells improves remission from autoimmunity.EZH2 function poises naïve Treg cells to adopt a CD28-activated phenotype.
Collapse
|
14
|
Baeten P, Hamad I, Hoeks C, Hiltensperger M, Van Wijmeersch B, Popescu V, Aly L, Somers V, Korn T, Kleinewietfeld M, Hellings N, Broux B. Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs. JCI Insight 2024; 9:e167457. [PMID: 38386413 PMCID: PMC11128200 DOI: 10.1172/jci.insight.167457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.
Collapse
Affiliation(s)
- Paulien Baeten
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ibrahim Hamad
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Cindy Hoeks
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Michael Hiltensperger
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
| | - Bart Van Wijmeersch
- Universitair MS Centrum, Campus Pelt, Belgium
- Noorderhart, Revalidatie & MS Centrum, Pelt, Belgium
| | - Veronica Popescu
- Universitair MS Centrum, Campus Pelt, Belgium
- Noorderhart, Revalidatie & MS Centrum, Pelt, Belgium
| | - Lilian Aly
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
| | - Veerle Somers
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Thomas Korn
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Kleinewietfeld
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bieke Broux
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
15
|
Afzali AM, Nirschl L, Sie C, Pfaller M, Ulianov O, Hassler T, Federle C, Petrozziello E, Kalluri SR, Chen HH, Tyystjärvi S, Muschaweckh A, Lammens K, Delbridge C, Büttner A, Steiger K, Seyhan G, Ottersen OP, Öllinger R, Rad R, Jarosch S, Straub A, Mühlbauer A, Grassmann S, Hemmer B, Böttcher JP, Wagner I, Kreutzfeldt M, Merkler D, Pardàs IB, Schmidt Supprian M, Buchholz VR, Heink S, Busch DH, Klein L, Korn T. B cells orchestrate tolerance to the neuromyelitis optica autoantigen AQP4. Nature 2024; 627:407-415. [PMID: 38383779 PMCID: PMC10937377 DOI: 10.1038/s41586-024-07079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.
Collapse
Affiliation(s)
- Ali Maisam Afzali
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Lucy Nirschl
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Christopher Sie
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Monika Pfaller
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Oleksii Ulianov
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Tobias Hassler
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Christine Federle
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Elisabetta Petrozziello
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sudhakar Reddy Kalluri
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Hsin Hsiang Chen
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sofia Tyystjärvi
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Katja Lammens
- Department of Biochemistry at the Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Claire Delbridge
- Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Department of Neuropathology, Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Gönül Seyhan
- Institute for Experimental Hematology, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Ole Petter Ottersen
- Division of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Anton Mühlbauer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernhard Hemmer
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | | | - Marc Schmidt Supprian
- Institute for Experimental Hematology, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sylvia Heink
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ludger Klein
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany.
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
16
|
Sarkar R, Shaaz M, Sehrawat S. Myeloid derived suppressor cells potentiate virus-specific memory CD8 + T cell response. Microbes Infect 2024; 26:105277. [PMID: 38103861 DOI: 10.1016/j.micinf.2023.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/03/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
How therapeutically administered myeloid derived suppressor cells (MDSCs) modulate differentiation of virus-specific CD8+ T cell was investigated. In vitro generated MDSCs from bone marrow precursors inhibited the expansion of stimulated CD8+ T cells but the effector cells in the recipients of MDSCs showed preferential memory transition during Influenza A virus (IAV) or an α- (Herpes Simplex Virus) as well as a γ- (murine herpesvirus 68) herpesvirus infection. Memory CD8+ T cells thus generated constituted a heterogenous population with a large fraction showing effector memory (CD62LloCCR7-) phenotype. Such cells could be efficiently recalled in the rechallenged animals and controlled the secondary infection better. Memory potentiating effects of MDSCs occurred irrespective of the clonality of the responding CD8+ T cells as well as the nature of infecting viruses. Compared to the MDSCs recipients, effector cells of MDSCs recipients showed higher expression of molecules known to drive cellular survival (IL-7R, Bcl2) and memory formation (Tcf7, Id3, eomesodermin). Therapeutically administered MDSCs not only mitigated the tissue damaging response during a resolving IAV infection but also promoted the differentiation of functional memory CD8+ T cells. Therefore, MDSCs therapy could be useful in managing virus-induced immunopathological reactions without compromising immunological memory.
Collapse
Affiliation(s)
- Roman Sarkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali 140306, Punjab, India
| | - Mohammad Shaaz
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali 140306, Punjab, India
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar Knowledge City PO Manauli, Mohali 140306, Punjab, India.
| |
Collapse
|
17
|
Hoeks C, Puijfelik FV, Koetzier SC, Rip J, Corsten CEA, Wierenga-Wolf AF, Melief MJ, Stinissen P, Smolders J, Hellings N, Broux B, van Luijn MM. Differential Runx3, Eomes, and T-bet expression subdivides MS-associated CD4 + T cells with brain-homing capacity. Eur J Immunol 2024; 54:e2350544. [PMID: 38009648 DOI: 10.1002/eji.202350544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Multiple sclerosis (MS) is a common and devastating chronic inflammatory disease of the CNS. CD4+ T cells are assumed to be the first to cross the blood-central nervous system (CNS) barrier and trigger local inflammation. Here, we explored how pathogenicity-associated effector programs define CD4+ T cell subsets with brain-homing ability in MS. Runx3- and Eomes-, but not T-bet-expressing CD4+ memory cells were diminished in the blood of MS patients. This decline reversed following natalizumab treatment and was supported by a Runx3+ Eomes+ T-bet- enrichment in cerebrospinal fluid samples of treatment-naïve MS patients. This transcription factor profile was associated with high granzyme K (GZMK) and CCR5 levels and was most prominent in Th17.1 cells (CCR6+ CXCR3+ CCR4-/dim ). Previously published CD28- CD4 T cells were characterized by a Runx3+ Eomes- T-bet+ phenotype that coincided with intermediate CCR5 and a higher granzyme B (GZMB) and perforin expression, indicating the presence of two separate subsets. Under steady-state conditions, granzyme Khigh Th17.1 cells spontaneously passed the blood-brain barrier in vitro. This was only found for other subsets including CD28- cells when using inflamed barriers. Altogether, CD4+ T cells contain small fractions with separate pathogenic features, of which Th17.1 seems to breach the blood-brain barrier as a possible early event in MS.
Collapse
Affiliation(s)
- Cindy Hoeks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Fabiënne van Puijfelik
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Steven C Koetzier
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jasper Rip
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Cato E A Corsten
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Piet Stinissen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Bieke Broux
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Center (UMSC), Hasselt, Belgium
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
19
|
Thiolat A, Pilon C, Caudana P, Moatti A, To NH, Sedlik C, Leclerc M, Maury S, Piaggio E, Cohen JL. Treg-targeted IL-2/anti-IL-2 complex controls graft- versus-host disease and supports anti-tumor effect in allogeneic hematopoietic stem cell transplantation. Haematologica 2024; 109:129-142. [PMID: 37706355 PMCID: PMC10772500 DOI: 10.3324/haematol.2022.282653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Modulating an immune response in opposite directions represents the holy grail in allogeneic hematopoietic stem cell transplantation (allo-HSCT) to avoid insufficient reactivity of donor T cells and hematologic malignancy relapse while controlling the potential development of graft-versus-host disease (GVHD), in which donor T cells attack the recipient's tissues. IL-2/anti-IL-2 complexes (IL-2Cx) represent a therapeutic option to selectively accentuate or dampen the immune response. In dedicated experimental models of allo-HSCT, including also human cells injected in immunodeficient NSG mice, we evaluated side-by-side the therapeutic effect of two IL-2Cx designed either to boost regulatory T cells (Treg) or alternatively to activate effector T cells (Teff), on GVHD occurrence and tumor relapse. We also evaluated the effect of the complexes on the phenotype and function of immune cells in vivo. Unexpectedly, both pro-Treg and pro-Teff IL-2Cx prevented GVHD development. They both induced Treg expansion and reduced CD8+ T-cell numbers, compared to untreated mice. However, only mice treated with the pro-Treg IL-2Cx, showed a dramatic reduction of exhausted CD8+ T cells, consistent with a potent anti-tumor effect. When evaluated on human cells, pro-Treg IL-2Cx also preferentially induced Treg expansion in vitro and in vivo, while allowing the development of a potent anti-tumor effect in NSG mice. Our results demonstrate the clinical relevance of using a pro-Treg, but not a pro-Teff IL2Cx to modulate alloreactivity after HSCT, while promoting a graft-versus-leukemia effect.
Collapse
Affiliation(s)
- Allan Thiolat
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil
| | - Caroline Pilon
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération hospitalo-Universitaire TRUE, F-94010 Créteil
| | - Pamela Caudana
- INSERM U932, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris
| | - Audrey Moatti
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil
| | - Nhu Hanh To
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil
| | - Christine Sedlik
- INSERM U932, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris
| | - Mathieu Leclerc
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hématologie Clinique, F-94010 Créteil
| | - Sébastien Maury
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération hospitalo-Universitaire TRUE, F-94010 Créteil, France; AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Hématologie Clinique, F-94010 Créteil
| | - Eliane Piaggio
- INSERM U932, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris
| | - José L Cohen
- Univ Paris Est Créteil, INSERM U955, IMRB, F-94010 Créteil, France; AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération hospitalo-Universitaire TRUE, F-94010 Créteil.
| |
Collapse
|
20
|
Liu Y, Dong J, Zhang Z, Liu Y, Wang Y. Regulatory T cells: A suppressor arm in post-stroke immune homeostasis. Neurobiol Dis 2023; 189:106350. [PMID: 37952680 DOI: 10.1016/j.nbd.2023.106350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
The activation of the immune system and the onset of pro- and anti-inflammatory responses play crucial roles in the pathophysiological processes of ischaemic stroke (IS). CD4+ regulatory T (Treg) cells is the main immunosuppressive cell population that is studied in the context of peripheral tolerance, autoimmunity, and the development of chronic inflammatory diseases. In recent years, more studies have focused on immune modulation after IS, and Treg cells have been demonstrated to be essential in the remission of inflammation, nerve regeneration, and behavioural recovery. However, the exact effects of Treg cells in the context of IS remain controversial, with some studies suggesting a negative correlation with stroke outcomes. In this review, we aim to provide a comprehensive overview of the current understanding of Treg cell involvement in post-stroke homeostasis. We summarized the literature focusing on the temporal changes in Treg cell populations after IS, the mechanisms of Treg cell-mediated immunomodulation in the brain, and the potential of Treg cell-based therapies for treatment. The purposes of the current article are to address the importance of Treg cells and inspire more studies to help physicians, as well as scientists, understand the whole map of immune responses during IS.
Collapse
Affiliation(s)
- Yiqi Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Dong
- Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing 100049, China
| | - Ziqing Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunpeng Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
21
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alasmari AF, Shahid M, Al-Mazroua HA, Alomar HA, AsSobeai HM, Alshamrani AA, Attia SM. MAP kinase inhibitor PD98059 regulates Th1, Th9, Th17, and natural T regulatory cells in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Eur J Pharmacol 2023; 959:176086. [PMID: 37832863 DOI: 10.1016/j.ejphar.2023.176086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/09/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS), provides significant insights into the mechanisms that initiate and drive autoimmunity. MS is a chronic autoimmune disease of the central nervous system, characterized by inflammatory infiltration associated with demyelination. T lymphocyte cells play a crucial role in MS, whereas natural T regulatory (nTreg) cells prevent autoimmune inflammation by suppressing lymphocyte activity. This study sought to investigate the role of PD98059, a selective MAP kinase inhibitor, in Th1, Th9, Th17, and nTreg cells using the SJL/J mouse model of EAE. Following EAE development, the mice were intraperitoneally administered PD98059 (5 mg/kg for two weeks) daily. We evaluated the effects of PD98059 on Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγT), and nTreg (FoxP3 and Helios) cells in the spleen using flow cytometry. Moreover, we explored the effects of PD98059 on the IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγT, FoxP3, and Helios mRNA and protein levels in brain tissues using qRT-PCR and Western blot analyses. PD98059 treatment significantly decreased the proportion of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, CD4+RORγT+, CD4+IL-17A+, and CD4+RORγT+ cells while increasing that of CD4+FoxP3+ and CD4+Helios+ cells. In addition, PD98059 administration decreased the mRNA and protein levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, and RORγT but increased those of FoxP3 and Helios in the brain tissue of EAE mice. Our findings suggest that PD98059 corrects immune dysfunction in EAE mice, which is concurrent with the modulation of multiple signaling pathways.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Homood M AsSobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Mehmood A, Shah S, Guo RY, Haider A, Shi M, Ali H, Ali I, Ullah R, Li B. Methyl-CpG-Binding Protein 2 Emerges as a Central Player in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Cell Mol Neurobiol 2023; 43:4071-4101. [PMID: 37955798 PMCID: PMC11407427 DOI: 10.1007/s10571-023-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
MECP2 and its product methyl-CpG binding protein 2 (MeCP2) are associated with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), which are inflammatory, autoimmune, and demyelinating disorders of the central nervous system (CNS). However, the mechanisms and pathways regulated by MeCP2 in immune activation in favor of MS and NMOSD are not fully understood. We summarize findings that use the binding properties of MeCP2 to identify its targets, particularly the genes recognized by MeCP2 and associated with several neurological disorders. MeCP2 regulates gene expression in neurons, immune cells and during development by modulating various mechanisms and pathways. Dysregulation of the MeCP2 signaling pathway has been associated with several disorders, including neurological and autoimmune diseases. A thorough understanding of the molecular mechanisms underlying MeCP2 function can provide new therapeutic strategies for these conditions. The nervous system is the primary system affected in MeCP2-associated disorders, and other systems may also contribute to MeCP2 action through its target genes. MeCP2 signaling pathways provide promise as potential therapeutic targets in progressive MS and NMOSD. MeCP2 not only increases susceptibility and induces anti-inflammatory responses in immune sites but also leads to a chronic increase in pro-inflammatory cytokines gene expression (IFN-γ, TNF-α, and IL-1β) and downregulates the genes involved in immune regulation (IL-10, FoxP3, and CX3CR1). MeCP2 may modulate similar mechanisms in different pathologies and suggest that treatments for MS and NMOSD disorders may be effective in treating related disorders. MeCP2 regulates gene expression in MS and NMOSD. However, dysregulation of the MeCP2 signaling pathway is implicated in these disorders. MeCP2 plays a role as a therapeutic target for MS and NMOSD and provides pathways and mechanisms that are modulated by MeCP2 in the regulation of gene expression.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Arsalan Haider
- Key Lab of Health Psychology, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
23
|
Lin Y, Sakuraba S, Massilamany C, Reddy J, Tanaka Y, Miyake S, Yamamura T. Harnessing autoimmunity with dominant self-peptide: Modulating the sustainability of tissue-preferential antigen-specific Tregs by governing the binding stability via peptide flanking residues. J Autoimmun 2023; 140:103094. [PMID: 37716077 DOI: 10.1016/j.jaut.2023.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/18/2023]
Abstract
Sensitization to self-peptides induces various immunological responses, from autoimmunity to tumor immunity, depending on the peptide sequence; however, the underlying mechanisms remain unclear, and thus, curative therapeutic options considering immunity balance are limited. Herein, two overlapping dominant peptides of myelin proteolipid protein, PLP136-150 and PLP139-151, which induce different forms of experimental autoimmune encephalomyelitis (EAE), monophasic and relapsing EAE, respectively, were investigated. Mice with monophasic EAE exhibited highly resistant to EAE re-induction with any encephalitogenic peptides, whereas mice with relapsing EAE were susceptible, and progressed, to EAE re-induction. This resistance to relapse and re-induction in monophasic EAE mice was associated with the maintenance of potent CD69+CD103+CD4+CD25high regulatory T-cells (Tregs) enriched with antigen specificity, which expanded preferentially in the central nervous system with sustained suppressive activity. This tissue-preferential sustainability of potent antigen-specific Tregs was correlated with the antigenicity of PLP136-150, depending on its flanking residues. That is, the flanking residues of PLP136-150 enable to form pivotally arranged strong hydrogen bonds that secured its binding stability to MHC-class II. These potent Tregs acting tissue-preferentially were induced only by sensitization of PLP136-150, not by its tolerance induction, independent of EAE development. These findings suggest that, for optimal therapy, "benign autoimmunity" can be critically achieved through inverse vaccination with self-peptides by manipulating their flanking residues.
Collapse
Affiliation(s)
- Youwei Lin
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan; Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan.
| | - Shun Sakuraba
- National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Chiba, 263-0024, Japan.
| | | | - Jayagopala Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, 852-8588, Japan.
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
24
|
Aldossari AA, Assiri MA, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Albekairi TH, Alomar HA, Al-Mazroua HA, Almanaa TN, Al-Hamamah MA, Alwetaid MY, Ahmad SF. Histamine H4 Receptor Antagonist Ameliorates the Progression of Experimental Autoimmune Encephalomyelitis via Regulation of T-Cell Imbalance. Int J Mol Sci 2023; 24:15273. [PMID: 37894952 PMCID: PMC10607370 DOI: 10.3390/ijms242015273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Multiple sclerosis (MS) is a degenerative condition characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. The histamine H4 receptor (H4R) is mainly expressed in cellular populations and plays a vital role in inflammation and immunological responses. The role of H4R in neurons of the CNS has recently been revealed. However, the precise role of H4R in neuronal function remains inadequately understood. The objective of this work was to investigate the impact of JNJ 10191584 (JNJ), a highly effective and specific H4R antagonist, on the development of experimental autoimmune encephalomyelitis (EAE) and to gain insight into the underlying mechanism involved. In this study, we examined the potential impact of JNJ therapy on the course of EAE in SJL/J mice. EAE mice were administered an oral dose of JNJ at a concentration of 6 mg/kg once a day, starting from day 10 and continuing until day 42. Afterward, the mice's clinical scores were assessed. In this study, we conducted additional research to examine the impact of JNJ on several types of immune cells, specifically Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγt), and regulatory T (Tregs; Foxp3 and TGF-β1) cells in the spleen. In this study, we further investigated the impact of JNJ on the mRNA expression levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγt, Foxp3, and TGF-β1 in the brain. Daily treatment of JNJ effectively reduced the development of EAE in mice. The percentages of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, and CD4+RORγt+ cells were shown to decrease, whereas the percentages of CD4+TGF-β1+ and CD4+Foxp3+ cells were observed to increase in EAE mice treated with JNJ. Therefore, the HR4 antagonist positively affected the course of EAE by modulating the signaling of transcription factors. The identified results include possible ramifications in the context of MS treatment.
Collapse
Affiliation(s)
- Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A. Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A. Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Sur M, Rasquinha MT, Arumugam R, Massilamany C, Gangaplara A, Mone K, Lasrado N, Yalaka B, Doiphode A, Gurumurthy C, Steffen D, Reddy J. Transgenic Mice Expressing Functional TCRs Specific to Cardiac Myhc-α 334-352 on Both CD4 and CD8 T Cells Are Resistant to the Development of Myocarditis on C57BL/6 Genetic Background. Cells 2023; 12:2346. [PMID: 37830560 PMCID: PMC10571761 DOI: 10.3390/cells12192346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Myocarditis is a predominant cause of congestive heart failure and sudden death in children and young adolescents that can lead to dilated cardiomyopathy. Lymphocytic myocarditis mediated by T cells can result from the recognition of cardiac antigens that may involve CD4 or CD8 T cells or both. In this report, we describe the generation of T cell receptor (TCR) transgenic mice on a C57BL/6 genetic background specific to cardiac myosin heavy chain (Myhc)-α 334-352 and make the following observations: First, we verified that Myhc-α 334-352 was immunogenic in wild-type C57BL/6 mice and induced antigen-specific CD4 T cell responses despite being a poor binder of IAb; however, the immunized animals developed only mild myocarditis. Second, TCRs specific to Myhc-α 334-352 in transgenic mice were expressed in both CD4 and CD8 T cells, suggesting that the expression of epitope-specific TCR is common to both cell types. Third, although T cells from naïve transgenic mice did not respond to Myhc-α 334-352, both CD4 and CD8 T cells from animals immunized with Myhc-α 334-352 responded to the peptide, indicating that antigen priming is necessary to break tolerance. Fourth, although the transgenic T cells could produce significant amounts of interferon-γ and interleukin-17, the immunized animals developed only mild disease, indicating that other soluble factors might be necessary for developing severe myocarditis. Alternatively, the C57BL/6 genetic background might be a major contributing factor for resistance to the development of myocarditis. Taken together, our model permits the determination of the roles of both CD4 and CD8 T cells to understand the disease-resistance mechanisms of myocarditis in a single transgenic system antigen-specifically.
Collapse
Affiliation(s)
- Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Rajkumar Arumugam
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- CRISPR Therapeutics, Boston, MA 02127, USA
| | - Arunkumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Miltenyi Biotec, Gaithersburg, MD 20878, USA
| | - Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA 02115, USA
| | - Bharathi Yalaka
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Aakash Doiphode
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Department of Animal Genetics and Breeding, Krantisinh Nana Patil College of Veterinary Science, Shirwal 412801, Maharashtra, India
| | - Channabasavaiah Gurumurthy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| |
Collapse
|
26
|
Nagata S, Yamasaki R, Takase EO, Iida K, Watanabe M, Masaki K, Wijering MHC, Yamaguchi H, Kira JI, Isobe N. Iguratimod Ameliorates the Severity of Secondary Progressive Multiple Sclerosis in Model Mice by Directly Inhibiting IL-6 Production and Th17 Cell Migration via Mitigation of Glial Inflammation. BIOLOGY 2023; 12:1217. [PMID: 37759616 PMCID: PMC10525689 DOI: 10.3390/biology12091217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
We previously reported a novel secondary progressive multiple sclerosis (SPMS) model, progressive experimental autoimmune encephalomyelitis (pEAE), in oligodendroglia-specific Cx47-inducible conditional knockout (Cx47 icKO) mice. Based on our prior study showing the efficacy of iguratimod (IGU), an antirheumatic drug, for acute EAE treatment, we aimed to elucidate the effect of IGU on the SPMS animal model. We induced pEAE by immunizing Cx47 icKO mice with myelin oligodendrocyte glycoprotein peptide 35-55. IGU was orally administered from 17 to 50 days post-immunization. We also prepared a primary mixed glial cell culture and measured cytokine levels in the culture supernatant after stimulation with designated cytokines (IL-1α, C1q, TNF-α) and lipopolysaccharide. A migration assay was performed to evaluate the effect of IGU on the migration ability of T cells toward mixed glial cell cultures. IGU treatment ameliorated the clinical signs of pEAE, decreased the demyelinated area, and attenuated glial inflammation on immunohistochemical analysis. Additionally, IGU decreased the intrathecal IL-6 level and infiltrating Th17 cells. The migration assay revealed reduced Th17 cell migration and IL-6 levels in the culture supernatant after IGU treatment. Collectively, IGU successfully mitigated the clinical signs of pEAE by suppressing Th17 migration through inhibition of IL-6 production by proinflammatory-activated glial cells.
Collapse
Affiliation(s)
- Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ezgi Ozdemir Takase
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kotaro Iida
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsuru Watanabe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Marion Heleen Cathérine Wijering
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen (UMCG), MS Center Noord Nederland, 9713 AV Groningen, The Netherlands
| | - Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- School of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka 811-0213, Japan
| | - Jun-ichi Kira
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka 831-8501, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, Fukuoka 810-0022, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
27
|
Hansson C, Lebrero-Fernández C, Schön K, Angeletti D, Lycke N. Tr1 cell-mediated protection against autoimmune disease by intranasal administration of a fusion protein targeting cDC1 cells. Mucosal Immunol 2023; 16:486-498. [PMID: 37192682 DOI: 10.1016/j.mucimm.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Curative therapies against autoimmune diseases are lacking. Indeed, most of the currently available treatments are only targeting symptoms. We have developed a novel strategy for a therapeutic vaccine against autoimmune diseases based on intranasal administration of a fusion protein tolerogen, which consists of a mutant, enzymatically inactive, cholera toxin A1 (CTA1)-subunit genetically fused to disease-relevant high-affinity peptides and a dimer of D-fragments from protein A (DD). The CTA1 R7K mutant - myelin oligodendrocyte glycoprotein (MOG), or proteolipid protein (PLP) - DD (CTA1R7K-MOG/PLP-DD) fusion proteins effectively reduced clinical symptoms in the experimental autoimmune encephalitis model of multiple sclerosis. The treatment induced Tr1 cells, in the draining lymph node, which produced interleukin (IL)-10 and suppressed effector clusters of differentiation 4+ T-cell responses. This effect was dependent on IL-27 signaling because treatment was ineffective in bone marrow chimeras lacking IL-27Ra within their hematopoietic compartment. Single-cell RNA sequencing of dendritic cells in draining lymph nodes demonstrated distinct gene transcriptional changes of classic dendritic cells 1, including enhanced lipid metabolic pathways, induced by the tolerogenic fusion protein. Thus, our results with the tolerogenic fusion protein demonstrate the possibility to vaccinate and protect against disease progression by reinstating tolerance in multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Charlotta Hansson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernández
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Korn T. Foxp3 + regulatory T cells in the central nervous system and other nonlymphoid tissues. Eur J Immunol 2023; 53:e2250227. [PMID: 37143298 DOI: 10.1002/eji.202250227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Foxp3+ regulatory T (Treg) cells are indispensable for the maintenance of immunologic self-tolerance as well as for the confinement of autoimmune inflammation after the breach of self-tolerance. In order to fulfill these tasks, Treg cells operate in secondary lymphoid tissues and nonlymphoid tissues. The conditions for Treg cell stability and for their modes of action are different according to their compartment of residence. In addition, Treg cells initiate residency programs to inhabit niches in nonlympoid tissues (NLT) in steady state and after re-establishment of previously deflected homeostasis for extended periods of time. These NLT Treg cells are different from lymphoid tissue residing Treg cells and are functionally specialized to subserve not only immune functions but support intrinsic functions of their tissue of residence. This review will highlight current ideas about the functional specialization of NLT Treg cells in particular in the central nervous system (CNS) and discuss challenges that we are facing in an effort to exploit the power of NLT Treg cells for maintenance of tissue homeostasis and perhaps also tissue regeneration.
Collapse
Affiliation(s)
- Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
29
|
Wei P, Kou W, Fu J, Chen Z, Pan F. Pparα knockout in mice increases the Th17 development by facilitating the IKKα/RORγt and IKKα/Foxp3 complexes. Commun Biol 2023; 6:721. [PMID: 37452099 PMCID: PMC10349144 DOI: 10.1038/s42003-023-05104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
The helper CD4+ T cell-type 17 (Th17) cells and regulatory CD4+ T cells (Tregs) are balanced through numerous molecular regulators, particularly metabolic factors, and their alteration causes immune dysregulation. Herein, we report that peroxisome proliferator of activated receptor-alpha (Pparα), a lipid metabolism regulator, suppresses Th17 differentiation. We demonstrated that Pparα ablation improves Th17 and pro-Th17 factor HIF-1α by enhancing the expression and nuclear localization of NFκB-activator IκB kinase-alpha (IKKα). Unexpectedly, we found that IKKα directly interacts with RORγt and enhances the expression of Il17a gene. Meanwhile, IKKα also interacts with Foxp3, leading to the post-translational regulation of Foxp3 by elevating its proteasomal degradation, and influencing Th17 development. Pparα deficiency leads to enhanced Th17 development in vivo and is associated with enhanced pathology in a murine experimental autoimmune encephalomyelitis (EAE) model. Overall, our data indicate that Pparα may serve as a potential therapeutic target for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Kou
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen, 518055, PR China
| | - Juan Fu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen, 518055, PR China.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Cossu D, Tomizawa Y, Yokoyama K, Sakanishi T, Momotani E, Sechi LA, Hattori N. Mycobacterium avium subsp. paratuberculosis Antigens Elicit a Strong IgG4 Response in Patients with Multiple Sclerosis and Exacerbate Experimental Autoimmune Encephalomyelitis. Life (Basel) 2023; 13:1437. [PMID: 37511812 PMCID: PMC10381415 DOI: 10.3390/life13071437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation can be triggered by microbial products disrupting immune regulation. In this study, we investigated the levels of IgG1, IgG2, IgG3, and IgG4 subclasses against the heat shock protein (HSP)70533-545 peptide and lipopentapeptide (MAP_Lp5) derived from Mycobacterium avium subsp. paratuberculosis (MAP) in the blood samples of Japanese and Italian individuals with relapsing remitting multiple sclerosis (MS). Additionally, we examined the impact of this peptide on MOG-induced experimental autoimmune encephalomyelitis (EAE). A total of 130 Japanese and 130 Italian subjects were retrospectively analyzed using the indirect ELISA method. Furthermore, a group of C57BL/6J mice received immunization with the MAP_HSP70533-545 peptide two weeks prior to the active induction of MOG35-55 EAE. The results revealed a significantly robust antibody response against MAP_HSP70533-545 in serum of both Japanese and Italian MS patients compared to their respective control groups. Moreover, heightened levels of serum IgG4 antibodies specific to MAP antigens were correlated with the severity of the disease. Additionally, EAE mice that were immunized with MAP_HSP70533-545 peptide exhibited more severe disease symptoms and increased reactivity of MOG35-55-specific T-cell compared to untreated mice. These findings provide evidence suggesting a potential link between MAP and the development or exacerbation of MS, particularly in a subgroup of MS patients with elevated serum IgG4 levels.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Biomedical Research Core Facilities, Juntendo University, Tokyo 1138431, Japan
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy
| | - Yuji Tomizawa
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
| | - Kazumasa Yokoyama
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Tosei Center for Neurological Diseases, Shizuoka 4180026, Japan
| | - Tamami Sakanishi
- Division of Cell Biology, Juntendo University, Tokyo 1138431, Japan
| | - Eiichi Momotani
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Comparative Medical Research Institute, Tsukuba 3050856, Japan
| | - Leonardo A Sechi
- Department of Biomedical Sciences, Sassari University, 07100 Sassari, Italy
- SC Microbiology, AOU Sassari, 07100 Sassari, Italy
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Tokyo 1138431, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama 3510918, Japan
| |
Collapse
|
31
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 266] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
32
|
Tichauer JE, Arellano G, Acuña E, González LF, Kannaiyan NR, Murgas P, Panadero-Medianero C, Ibañez-Vega J, Burgos PI, Loda E, Miller SD, Rossner MJ, Gebicke-Haerter PJ, Naves R. Interferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia. Front Immunol 2023; 14:1191838. [PMID: 37334380 PMCID: PMC10272814 DOI: 10.3389/fimmu.2023.1191838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Compelling evidence has shown that interferon (IFN)-γ has dual effects in multiple sclerosis and in its animal model of experimental autoimmune encephalomyelitis (EAE), with results supporting both a pathogenic and beneficial function. However, the mechanisms whereby IFN-γ may promote neuroprotection in EAE and its effects on central nervous system (CNS)-resident cells have remained an enigma for more than 30 years. In this study, the impact of IFN-γ at the peak of EAE, its effects on CNS infiltrating myeloid cells (MC) and microglia (MG), and the underlying cellular and molecular mechanisms were investigated. IFN-γ administration resulted in disease amelioration and attenuation of neuroinflammation associated with significantly lower frequencies of CNS CD11b+ myeloid cells and less infiltration of inflammatory cells and demyelination. A significant reduction in activated MG and enhanced resting MG was determined by flow cytometry and immunohistrochemistry. Primary MC/MG cultures obtained from the spinal cord of IFN-γ-treated EAE mice that were ex vivo re-stimulated with a low dose (1 ng/ml) of IFN-γ and neuroantigen, promoted a significantly higher induction of CD4+ regulatory T (Treg) cells associated with increased transforming growth factor (TGF)-β secretion. Additionally, IFN-γ-treated primary MC/MG cultures produced significantly lower nitrite in response to LPS challenge than control MC/MG. IFN-γ-treated EAE mice had a significantly higher frequency of CX3CR1high MC/MG and expressed lower levels of program death ligand 1 (PD-L1) than PBS-treated mice. Most CX3CR1highPD-L1lowCD11b+Ly6G- cells expressed MG markers (Tmem119, Sall2, and P2ry12), indicating that they represented an enriched MG subset (CX3CR1highPD-L1low MG). Amelioration of clinical symptoms and induction of CX3CR1highPD-L1low MG by IFN-γ were dependent on STAT-1. RNA-seq analyses revealed that in vivo treatment with IFN-γ promoted the induction of homeostatic CX3CR1highPD-L1low MG, upregulating the expression of genes associated with tolerogenic and anti-inflammatory roles and down-regulating pro-inflammatory genes. These analyses highlight the master role that IFN-γ plays in regulating microglial activity and provide new insights into the cellular and molecular mechanisms involved in the therapeutic activity of IFN-γ in EAE.
Collapse
Affiliation(s)
- Juan E. Tichauer
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gabriel Arellano
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eric Acuña
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Luis F. González
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Nirmal R. Kannaiyan
- Molecular Neurobiology, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Paola Murgas
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | | | - Jorge Ibañez-Vega
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula I. Burgos
- Department of Clinical Immunology and Rheumatology , School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Moritz J. Rossner
- Molecular Neurobiology, Department of Psychiatry & Psychotherapy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter J. Gebicke-Haerter
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| | - Rodrigo Naves
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Al-Mazroua HA, Alomar HA, Al-Hamamah MA, Attia SM. S3I-201, a selective stat3 inhibitor, ameliorates clinical symptoms in a mouse model of experimental autoimmune encephalomyelitis through the regulation of multiple intracellular signalling in Th1, Th17, and treg cells. Mult Scler Relat Disord 2023; 73:104658. [PMID: 36989705 DOI: 10.1016/j.msard.2023.104658] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
CD4+ T cells, specifically Th cells (Th1 and Th17) and regulatory T cells (Tregs), play a pivotal role in the pathogenesis of multiple sclerosis (MS), a demyelinating autoimmune disease of the CNS. STAT3 inhibitors are potential therapeutic targets for several immune disorders. In this study, we investigated the role of a well-known STAT3 inhibitor, S3I-201, in experimental autoimmune encephalomyelitis (EAE), a model of MS. Following induction of EAE, mice were intraperitoneally administered S3I-201 (10 mg/kg) each day, beginning on day 14 and continuing till day 35 and were evaluated for clinical signs. Flow cytometry was used to investigate further the effect of S3I-201 on Th1 (IFN-γ, STAT1, pSTAT1, and T-bet), Th17 (IL-17A, STAT3, pSTAT3, and RORγt), and regulatory T cells (Treg, IL-10, TGF-β1, and FoxP3) expressed in splenic CD4+ T cells. Moreover, we analyzed the effects of S3I-201 on mRNA and protein expression of IFN-γ, T-bet, IL-17A, STAT1, STAT3, pSTAT1, pSTAT3, RORγ, IL-10, TGF-β1, and FoxP3 in the brains of EAE mice. The severity of clinical scores decreased in S3I-201-treated EAE mice compared to vehicle-treated EAE mice. S3I-201 treatment significantly decreased CD4+IFN-γ+, CD4+STAT1+, CD4+pSTAT1+, CD4+T-bet+, CD4+IL-17A+, CD4+STAT3+, CD4+pSTAT3+, and CD4+RORγt+ and increased CD4+IL-10+, CD4+TGF-β1+, and CD4+FoxP3+ in the spleens of EAE mice. Additionally, S3I-201 administration in EAE mice significantly decreased the mRNA and protein expression of Th1 and Th17 and increased those of Treg. These results suggest that S3I-201 may have novel therapeutic potential against MS.
Collapse
|
34
|
Gharibi T, Barpour N, Hosseini A, Mohammadzadeh A, Marofi F, Ebrahimi-Kalan A, Nejati-Koshki K, Abdollahpour-Alitappeh M, Safaei S, Baghbani E, Baradaran B. STA-21, a small molecule STAT3 inhibitor, ameliorates experimental autoimmune encephalomyelitis by altering Th-17/Treg balance. Int Immunopharmacol 2023; 119:110160. [PMID: 37080068 DOI: 10.1016/j.intimp.2023.110160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Numerous studies have demonstrated the role of T helper (Th) 17 and T regulatory (reg) cells and pro-inflammatory and anti-inflammatory cytokines related to these cells in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). STAT3 is one of the downstream signaling proteins of IL-23, IL-6, and IL-21 that are required for Th17 cells differentiation. STA-21 is a STAT3 inhibitor that functions by inhibiting STAT3 dimerization and binding to DNA impairing the expression of STAT3 target genes including, RORγt, IL-21 and IL-23R that are also required for Th17 cell differentiation. AIM In this study, we evaluated the effect of STA-21 on EAE Model and investigated how this small molecule can change Th17/Treg balance leading to amelioration of disease. METHODS After EAE induction and treatment with STA-21, its effects were assessed. Major assays were H&E and LFB staining, Flow cytometric analysis, Reverse transcription-PCR (RT-PCR), and ELISA. RESULTS STA-21 ameliorated the EAE severity and decreased the EAE inflammation and demyelination. It also decreased STAT3 phosphorylation, the proportion of Th17 cells and the protein level of IL-17. In contrast, the balance of Tregs and the level of anti-inflammatory cytokine, IL-10 increased in STA-21-treated mice. Moreover, STA-21 significantly decreased the expression of Th17 related transcription factors, RORɣt and IL-23R while FOXP3 expression associated with Treg differentiation was increased. CONCLUSION This study showed that STA-21 has therapeutic effects in EAE by reducing inflammation and shifting inflammatory immune responses to anti-inflammatory and can be used as a suitable treatment strategy for the treatment of EAE. The effectiveness of inhibiting or strengthening the functional cells of the immune system by these small molecules in terms of easy to access, simple construction and inexpensive expansion make them as a suitable tool for the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nesa Barpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mohammadzadeh
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Nejati-Koshki
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Meghdad Abdollahpour-Alitappeh
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Corbali O, Chitnis T. Pathophysiology of myelin oligodendrocyte glycoprotein antibody disease. Front Neurol 2023; 14:1137998. [PMID: 36925938 PMCID: PMC10011114 DOI: 10.3389/fneur.2023.1137998] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Myelin Oligodendrocyte Glycoprotein Antibody Disease (MOGAD) is a spectrum of diseases, including optic neuritis, transverse myelitis, acute disseminated encephalomyelitis, and cerebral cortical encephalitis. In addition to distinct clinical, radiological, and immunological features, the infectious prodrome is more commonly reported in MOGAD (37-70%) than NMOSD (15-35%). Interestingly, pediatric MOGAD is not more aggressive than adult-onset MOGAD, unlike in multiple sclerosis (MS), where annualized relapse rates are three times higher in pediatric-onset MS. MOGAD pathophysiology is driven by acute attacks during which T cells and MOG antibodies cross blood brain barrier (BBB). MOGAD lesions show a perivenous confluent pattern around the small veins, lacking the radiological central vein sign. Initial activation of T cells in the periphery is followed by reactivation in the subarachnoid/perivascular spaces by MOG-laden antigen-presenting cells and inflammatory CSF milieu, which enables T cells to infiltrate CNS parenchyma. CD4+ T cells, unlike CD8+ T cells in MS, are the dominant T cell type found in lesion histology. Granulocytes, macrophages/microglia, and activated complement are also found in the lesions, which could contribute to demyelination during acute relapses. MOG antibodies potentially contribute to pathology by opsonizing MOG, complement activation, and antibody-dependent cellular cytotoxicity. Stimulation of peripheral MOG-specific B cells through TLR stimulation or T follicular helper cells might help differentiate MOG antibody-producing plasma cells in the peripheral blood. Neuroinflammatory biomarkers (such as MBP, sNFL, GFAP, Tau) in MOGAD support that most axonal damage happens in the initial attack, whereas relapses are associated with increased myelin damage.
Collapse
Affiliation(s)
- Osman Corbali
- Harvard Medical School, Boston, MA, United States
- Department of Neurology, Brigham and Women's Hospital, Ann Romney Center for Neurologic Diseases, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States
- Department of Neurology, Brigham and Women's Hospital, Ann Romney Center for Neurologic Diseases, Boston, MA, United States
| |
Collapse
|
36
|
Kim D, Kim S, Kang MS, Yin Z, Min B. Cell type specific IL-27p28 (IL-30) deletion in mice uncovers an unexpected regulatory function of IL-30 in autoimmune inflammation. Sci Rep 2023; 13:1812. [PMID: 36725904 PMCID: PMC9892501 DOI: 10.1038/s41598-023-27413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/02/2023] [Indexed: 02/03/2023] Open
Abstract
IL-27 is an IL-12 family cytokine with immune regulatory properties, capable of modulating inflammatory responses, including autoimmunity. While extensive studies investigated the major target cells of IL-27 mediating its functions, the source of IL-27 especially during tissue specific autoimmune inflammation has not formally been examined. IL-27p28 subunit, also known as IL-30, was initially discovered as an IL-27-specific subunit, and it has thus been deemed as a surrogate marker to denote IL-27 expression. However, IL-30 can be secreted independently of Ebi3, a subunit that forms bioactive IL-27 with IL-30. Moreover, IL-30 itself may act as a negative regulator antagonizing IL-27. In this study, we exploited various cell type specific IL-30-deficient mouse models and examined the source of IL-30 in a T cell mediated autoimmune neuroinflammation. We found that IL-30 expressed by infiltrating and CNS resident APC subsets, infiltrating myeloid cells and microglia, is central in limiting the inflammation. However, dendritic cell-derived IL-30 was dispensable for the disease development. Unexpectedly, in cell type specific IL-30 deficient mice that develop severe EAE, IL-30 expression in the remaining wild-type APC subsets is disproportionately increased, suggesting that increased endogenous IL-30 production may be involved in the severe pathogenesis. In support, systemic recombinant IL-30 administration exacerbates EAE severity. Our results demonstrate that dysregulated endogenous IL-30 expression may interfere with immune regulatory functions of IL-27, promoting encephalitogenic inflammation in vivo.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Myung-Su Kang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
37
|
Verreycken J, Baeten P, Broux B. Regulatory T cell therapy for multiple sclerosis: Breaching (blood-brain) barriers. Hum Vaccin Immunother 2022; 18:2153534. [PMID: 36576251 PMCID: PMC9891682 DOI: 10.1080/21645515.2022.2153534] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder causing demyelination and neurodegeneration in the central nervous system. MS is characterized by disturbed motor performance and cognitive impairment. Current MS treatments delay disease progression and reduce relapse rates with general immunomodulation, yet curative therapies are still lacking. Regulatory T cells (Tregs) are able to suppress autoreactive immune cells, which drive MS pathology. However, Tregs are functionally impaired in people with MS. Interestingly, Tregs were recently reported to also have regenerative capacity. Therefore, experts agree that Treg cell therapy has the potential to ameliorate the disease. However, to perform their local anti-inflammatory and regenerative functions in the brain, they must first migrate across the blood-brain barrier (BBB). This review summarizes the reported results concerning the migration of Tregs across the BBB and the influence of Tregs on migration of other immune subsets. Finally, their therapeutic potential is discussed in the context of MS.
Collapse
Affiliation(s)
- Janne Verreycken
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium,CONTACT Bieke Broux Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Martelarenlaan 42, Hasselt 3500, Belgium
| |
Collapse
|
38
|
Haunhorst S, Bloch W, Javelle F, Krüger K, Baumgart S, Drube S, Lemhöfer C, Reuken P, Stallmach A, Müller M, Zielinski CE, Pletz MW, Gabriel HHW, Puta C. A scoping review of regulatory T cell dynamics in convalescent COVID-19 patients - indications for their potential involvement in the development of Long COVID? Front Immunol 2022; 13:1070994. [PMID: 36582234 PMCID: PMC9792979 DOI: 10.3389/fimmu.2022.1070994] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Recovery from coronavirus disease 2019 (COVID-19) can be impaired by the persistence of symptoms or new-onset health complications, commonly referred to as Long COVID. In a subset of patients, Long COVID is associated with immune system perturbations of unknown etiology, which could be related to compromised immunoregulatory mechanisms. Objective The objective of this scoping review was to summarize the existing literature regarding the frequency and functionality of Tregs in convalescent COVID-19 patients and to explore indications for their potential involvement in the development of Long COVID. Design A systematic search of studies investigating Tregs during COVID-19 convalescence was conducted on MEDLINE (via Pubmed) and Web of Science. Results The literature search yielded 17 relevant studies, of which three included a distinct cohort of patients with Long COVID. The reviewed studies suggest that the Treg population of COVID-19 patients can reconstitute quantitatively and functionally during recovery. However, the comparison between recovered and seronegative controls revealed that an infection-induced dysregulation of the Treg compartment can be sustained for at least several months. The small number of studies investigating Tregs in Long COVID allowed no firm conclusions to be drawn about their involvement in the syndrome's etiology. Yet, even almost one year post-infection Long COVID patients exhibit significantly altered proportions of Tregs within the CD4+ T cell population. Conclusions Persistent alterations in cell frequency in Long COVID patients indicate that Treg dysregulation might be linked to immune system-associated sequelae. Future studies should aim to address the association of Treg adaptations with different symptom clusters and blood parameters beyond the sole quantification of cell frequencies while adhering to consensualized phenotyping strategies.
Collapse
Affiliation(s)
- Simon Haunhorst
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Baumgart
- Institute for Immunology, Jena University Hospital, Jena, Germany
| | - Sebastian Drube
- Institute for Immunology, Jena University Hospital, Jena, Germany
| | | | - Philipp Reuken
- Clinic for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Clinic for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Müller
- Department of Infection Immunology, Leibniz Institue for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Christina E. Zielinski
- Department of Infection Immunology, Leibniz Institue for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Mathias W. Pletz
- Institute for Immunology, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Holger H. W. Gabriel
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Jena, Germany
| |
Collapse
|
39
|
Braband KL, Kaufmann T, Floess S, Zou M, Huehn J, Delacher M. Stepwise acquisition of unique epigenetic signatures during differentiation of tissue Treg cells. Front Immunol 2022; 13:1082055. [PMID: 36569861 PMCID: PMC9772052 DOI: 10.3389/fimmu.2022.1082055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells in non-lymphoid tissues are not only critical for maintaining self-tolerance, but are also important for promoting organ homeostasis and tissue repair. It is proposed that the generation of tissue Treg cells is a stepwise, multi-site process, accompanied by extensive epigenome remodeling, finally leading to the acquisition of unique tissue-specific epigenetic signatures. This process is initiated in the thymus, where Treg cells acquire core phenotypic and functional properties, followed by a priming step in secondary lymphoid organs that permits Treg cells to exit the lymphoid organs and seed into non-lymphoid tissues. There, a final specialization process takes place in response to unique microenvironmental cues in the respective tissue. In this review, we will summarize recent findings on this multi-site tissue Treg cell differentiation and highlight the importance of epigenetic remodeling during these stepwise events.
Collapse
Affiliation(s)
- Kathrin L. Braband
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany,Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Tamara Kaufmann
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany,Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Stefan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mangge Zou
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany,Hannover Medical School, Hannover, Germany
| | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany,Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany,*Correspondence: Michael Delacher,
| |
Collapse
|
40
|
Cognate microglia-T cell interactions shape the functional regulatory T cell pool in experimental autoimmune encephalomyelitis pathology. Nat Immunol 2022; 23:1749-1762. [PMID: 36456736 DOI: 10.1038/s41590-022-01360-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
Microglia, the parenchymal brain macrophages of the central nervous system, have emerged as critical players in brain development and homeostasis. The immune functions of these cells, however, remain less well defined. We investigated contributions of microglia in a relapsing-remitting multiple sclerosis paradigm, experimental autoimmune encephalitis in C57BL/6 x SJL F1 mice. Fate mapping-assisted translatome profiling during the relapsing-remitting disease course revealed the potential of microglia to interact with T cells through antigen presentation, costimulation and coinhibition. Abundant microglia-T cell aggregates, as observed by histology and flow cytometry, supported the idea of functional interactions of microglia and T cells during remission, with a bias towards regulatory T cells. Finally, microglia-restricted interferon-γ receptor and major histocompatibility complex mutagenesis significantly affected the functionality of the regulatory T cell compartment in the diseased central nervous system and remission. Collectively, our data establish critical non-redundant cognate and cytokine-mediated interactions of microglia with CD4+ T cells during autoimmune neuroinflammation.
Collapse
|
41
|
Matter AL, Liggitt D, Goverman JM. B Cells Drive MHC Class I-Restricted CD4 T Cells to Induce Spontaneous Central Nervous System Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1880-1891. [PMID: 36426938 PMCID: PMC9665903 DOI: 10.4049/jimmunol.2200494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/15/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating CNS disease believed to be mediated by CD4 T cells specific for CNS self-antigens. CD8 T cells are also implicated in MS but their function is not well understood. MS lesions are heterogeneous and may reflect variation in the contribution of different types of lymphocytes. Understanding how lymphocytes with different effector functions contribute to MS is essential to develop effective therapies. We investigated how T cells expressing an MHC class I-restricted transgenic TCR specific for myelin basic protein (MBP) contribute to CNS autoimmunity using the mouse model of MS, experimental autoimmune encephalomyelitis. Virus infection triggered cytotoxic TCR-transgenic CD8 T cells to initiate acute experimental autoimmune encephalomyelitis in an IFN-γ- and perforin-dependent manner. Unexpectedly, spontaneous CNS autoimmunity developed in the TCR-transgenic mice that was accelerated by IFN-γ-deficiency. Spontaneous disease was associated with CD4 T cells that develop via endogenous TCR rearrangements but retain specificity for the MHC class I-restricted MBP epitope. The CD4 T cells produced TNF-α without other inflammatory cytokines and caused lesions with striking similarity to active MS lesions. Surprisingly, B cells were the predominant cell type that cross-presented MBP, and their depletion halted disease progression. This work provides a new model of spontaneous CNS autoimmunity with unique similarities to MS that is mediated by T cells with a distinct effector phenotype.
Collapse
Affiliation(s)
- Aubry L. Matter
- Department of Immunology, University of Washington, Seattle, WA; and
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Joan M. Goverman
- Department of Immunology, University of Washington, Seattle, WA; and
| |
Collapse
|
42
|
Guo C, Liu Q, Zong D, Zhang W, Zuo Z, Yu Q, Sha Q, Zhu L, Gao X, Fang J, Tao J, Wu Q, Li X, Qu K. Single-cell transcriptome profiling and chromatin accessibility reveal an exhausted regulatory CD4+ T cell subset in systemic lupus erythematosus. Cell Rep 2022; 41:111606. [DOI: 10.1016/j.celrep.2022.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
|
43
|
Benallegue N, Nicol B, Lasselin J, Bézie S, Flippe L, Regue H, Vimond N, Remy S, Garcia A, Le Frère F, Anegon I, Laplaud D, Guillonneau C. Patients With Severe Multiple Sclerosis Exhibit Functionally Altered CD8 + Regulatory T Cells. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200016. [PMID: 36266052 PMCID: PMC9621606 DOI: 10.1212/nxi.0000000000200016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Studies of immune dysfunction in MS have mostly focused on CD4+ Tregs, but the role of CD8+ Tregs remains largely unexplored. We previously evidenced the suppressive properties of rat and human CD8+CD45RClow/neg Tregs from healthy individuals, expressing Forkhead box P3 (FOXP3) and acting through interferon-gamma (IFN-γ), transforming growth factor beta (TGFβ), and interleukin-34 (IL-34). secretions to regulate immune responses and control diseases such as transplant rejection. To better understand CD8+CD45RClow/neg Tregs contribution to MS pathology, we further investigated their phenotype, function, and transcriptome in patients with MS. METHODS We enrolled adults with relapsing-remitting MS and age-matched and sex-matched healthy volunteers (HVs). CD8+ T cells were segregated based on low or lack of expression of CD45RC. First, the frequency in CSF and blood, phenotype, transcriptome, and function of CD8+CD45RClow and neg were investigated according to exacerbation status and secondarily, according to clinical severity based on the MS severity score (MSSS) in patients with nonexacerbating MS. We then induced active MOG35-55 EAE in C57Bl/6 mice and performed adoptive transfer of fresh and expanded CD8+CD45RCneg Tregs to assess their ability to mitigate neuroinflammation in vivo. RESULTS Thirty-one untreated patients with relapsing-remitting MS were compared with 40 age-matched and sex-matched HVs. We demonstrated no difference of CSF CD8+CD45RClow and CD8+CD45RCneg proportions, but blood CD8+CD45RClow frequency was lower in patients with MS exacerbation when compared with that in HVs. CD8+CD45RCneg Tregs but not CD8+CD45RClow showed higher suppressive capacities in vitro in MS patients with exacerbation than in patients without acute inflammatory attack. In vitro functional assays showed a compromised suppression capacity of CD8+CD45RClow Tregs in patients with nonexacerbating severe MS, defined by the MSSS. We then characterized murine CD8+CD45RCneg Tregs and demonstrated the potential of CD45RCneg cells to migrate to the CNS and mitigate experimental autoimmune encephalomyelitis in vivo. DISCUSSION Altogether, these results suggest a defect in the number and function of CD8+CD45RClow Tregs during MS relapse and an association of CD8+CD45RClow Tregs dysfunction with MS severity. Thus, CD8+CD45RClow/neg T cells might bring new insights into the pathophysiology and new therapeutic approaches of MS.
Collapse
Affiliation(s)
- Nail Benallegue
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Bryan Nicol
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Juliette Lasselin
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Severine Bézie
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Lea Flippe
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Hadrien Regue
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Nadege Vimond
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Severine Remy
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Alexandra Garcia
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Fabienne Le Frère
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Ignacio Anegon
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - David Laplaud
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France
| | - Carole Guillonneau
- From the Nantes Université (N.B., B.N., J.L., S.B., L.F., H.R., N.V., S.R., A.G., I.A., D.L., C.G.), INSERM, CNRS, Center for Research in Transplantation et Translational Immunology, UMR 1064; and CHU Nantes (F.L.F.), Nantes Université, Service de Neurologie, Centre de Ressources et de Compétences Sclérose en Plaques, Nantes, France.
| |
Collapse
|
44
|
Gupta PK, Allocco JB, Fraipont JM, McKeague ML, Wang P, Andrade MS, McIntosh C, Chen L, Wang Y, Li Y, Andrade J, Conejo-Garcia JR, Chong AS, Alegre ML. Reduced Satb1 expression predisposes CD4 + T conventional cells to Treg suppression and promotes transplant survival. Proc Natl Acad Sci U S A 2022; 119:e2205062119. [PMID: 36161903 PMCID: PMC9546564 DOI: 10.1073/pnas.2205062119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Limiting CD4+ T cell responses is important to prevent solid organ transplant rejection. In a mouse model of costimulation blockade-dependent cardiac allograft tolerance, we previously reported that alloreactive CD4+ conventional T cells (Tconvs) develop dysfunction, losing proliferative capacity. In parallel, induction of transplantation tolerance is dependent on the presence of regulatory T cells (Tregs). Whether susceptibility of CD4+ Tconvs to Treg suppression is modulated during tolerance induction is unknown. We found that alloreactive Tconvs from transplant tolerant mice had augmented sensitivity to Treg suppression when compared with memory T cells from rejector mice and expressed a transcriptional profile distinct from these memory T cells, including down-regulated expression of the transcription factor Special AT-rich sequence-binding protein 1 (Satb1). Mechanistically, Satb1 deficiency in CD4+ T cells limited their expression of CD25 and IL-2, and addition of Tregs, which express higher levels of CD25 than Satb1-deficient Tconvs and successfully competed for IL-2, resulted in greater suppression of Satb1-deficient than wild-type Tconvs in vitro. In vivo, Satb1-deficient Tconvs were more susceptible to Treg suppression, resulting in significantly prolonged skin allograft survival. Overall, our study reveals that transplantation tolerance is associated with Tconvs' susceptibility to Treg suppression, via modulated expression of Tconv-intrinsic Satb1. Targeting Satb1 in the context of Treg-sparing immunosuppressive therapies might be exploited to improve transplant outcomes.
Collapse
Affiliation(s)
- Pawan K. Gupta
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jennifer B. Allocco
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jane M. Fraipont
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Michelle L. McKeague
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Peter Wang
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Michael S. Andrade
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637
| | - Christine McIntosh
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Luqiu Chen
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Ying Wang
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago, IL 60637
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL 60637
| | - José R. Conejo-Garcia
- Department of Immunology, Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, FL 33612
| | - Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637
| |
Collapse
|
45
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
46
|
Metabolic regulation and function of T helper cells in neuroinflammation. Semin Immunopathol 2022; 44:581-598. [PMID: 36068310 DOI: 10.1007/s00281-022-00959-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022]
Abstract
Neuroinflammatory conditions such as multiple sclerosis (MS) are initiated by pathogenic immune cells invading the central nervous system (CNS). Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in MS and in other neuroinflammatory autoimmune diseases including animal models that have been developed for MS. T helper cells are classically categorized into different subsets, but heterogeneity exists within these subsets. Untangling the more complex regulation of these subsets will clarify their functional roles in neuroinflammation. Here, we will discuss how differentiation, immune checkpoint pathways, transcriptional regulation and metabolic factors determine the function of CD4+ T cell subsets in CNS autoimmunity. T cells rely on metabolic reprogramming for their activation and proliferation to meet bioenergetic demands. This includes changes in glycolysis, glutamine metabolism and polyamine metabolism. Importantly, these pathways were recently also implicated in the fine tuning of T cell fate decisions during neuroinflammation. A particular focus of this review will be on the Th17/Treg balance and intra-subset functional states that can either promote or dampen autoimmune responses in the CNS and thus affect disease outcome. An increased understanding of factors that could tip CD4+ T cell subsets and populations towards an anti-inflammatory phenotype will be critical to better understand neuroinflammatory diseases and pave the way for novel treatment paradigms.
Collapse
|
47
|
Erlandsson MC, Erdogan S, Wasén C, Andersson KME, Silfverswärd ST, Pullerits R, Bemark M, Bokarewa MI. IGF1R signalling is a guardian of self-tolerance restricting autoantibody production. Front Immunol 2022; 13:958206. [PMID: 36105797 PMCID: PMC9464816 DOI: 10.3389/fimmu.2022.958206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Insulin-like growth factor 1 receptor (IGF1R) acts at the crossroad between immunity and cancer, being an attractive therapeutic target in these areas. IGF1R is broadly expressed by antigen-presenting cells (APC). Using mice immunised with the methylated albumin from bovine serum (BSA-immunised mice) and human CD14+ APCs, we investigated the role that IGF1R plays during adaptive immune responses. Methods The mBSA-immunised mice were treated with synthetic inhibitor NT157 or short hairpin RNA to inhibit IGF1R signalling, and spleens were analysed by immunohistology and flow cytometry. The levels of autoantibody and cytokine production were measured by microarray or conventional ELISA. The transcriptional profile of CD14+ cells from blood of 55 patients with rheumatoid arthritis (RA) was analysed with RNA-sequencing. Results Inhibition of IGF1R resulted in perifollicular infiltration of functionally compromised S256-phosphorylated FoxO1+ APCs, and an increased frequency of IgM+CD21+ B cells, which enlarged the marginal zone (MZ). Enlargement of MHCII+CD11b+ APCs ensured favourable conditions for their communication with IgM+ B cells in the MZ. The reduced expression of ICOSL and CXCR5 by APCs after IGF1R inhibition led to impaired T cell control, which resulted in autoreactivity of extra-follicular B cells and autoantibody production. In the clinical setting, the low expression of IGF1R on CD14+ APCs was associated with an involuted FOXO pathway, non-inflammatory cell metabolism and a high IL10 production characteristic for tolerogenic macrophages. Furthermore, autoantibody positivity was associated with low IGF1R signalling in CD14+ APCs. Conclusions In experimental model and in patient material, this study demonstrates that IGF1R plays an important role in preventing autoimmunity. The study raises awareness of that immune tolerance may be broken during therapeutic IGF1R targeting.
Collapse
Affiliation(s)
- Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Seval Erdogan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Karin M. E. Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sofia T. Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Bemark
- Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Maria I. Bokarewa,
| |
Collapse
|
48
|
Sie C, Kant R, Peter C, Muschaweckh A, Pfaller M, Nirschl L, Moreno HD, Chadimová T, Lepennetier G, Kuhlmann T, Öllinger R, Engleitner T, Rad R, Korn T. IL-24 intrinsically regulates Th17 cell pathogenicity in mice. J Exp Med 2022; 219:213347. [PMID: 35819408 PMCID: PMC9280194 DOI: 10.1084/jem.20212443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
In certain instances, Th17 responses are associated with severe immunopathology. T cell–intrinsic mechanisms that restrict pathogenic effector functions have been described for type 1 and 2 responses but are less well studied for Th17 cells. Here, we report a cell-intrinsic feedback mechanism that controls the pathogenicity of Th17 cells. Th17 cells produce IL-24, which prompts them to secrete IL-10. The IL-10–inducing function of IL-24 is independent of the cell surface receptor of IL-24 on Th17 cells. Rather, IL-24 is recruited to the inner mitochondrial membrane, where it interacts with the NADH dehydrogenase (ubiquinone) 1 α subcomplex subunit 13 (also known as Grim19), a constituent of complex I of the respiratory chain. Together, Grim19 and IL-24 promote the accumulation of STAT3 in the mitochondrial compartment. We propose that IL-24–guided mitochondrial STAT3 constitutes a rheostat to blunt extensive STAT3 deflections in the nucleus, which might then contribute to a robust IL-10 response in Th17 cells and a restriction of immunopathology in experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Christopher Sie
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Ravi Kant
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Christian Peter
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Monika Pfaller
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Lucy Nirschl
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Helena Domínguez Moreno
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Tereza Chadimová
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Gildas Lepennetier
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine, Munich, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany.,Department of Neurology, Technical University of Munich School of Medicine, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
49
|
Kölliker Frers RA, Otero-Losada M, Kobiec T, Udovin LD, Aon Bertolino ML, Herrera MI, Capani F. Multidimensional overview of neurofilament light chain contribution to comprehensively understanding multiple sclerosis. Front Immunol 2022; 13:912005. [PMID: 35967312 PMCID: PMC9368191 DOI: 10.3389/fimmu.2022.912005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease characterized by demyelination, progressive axonal loss, and varying clinical presentations. Axonal damage associated with the inflammatory process causes neurofilaments, the major neuron structural proteins, to be released into the extracellular space, reaching the cerebrospinal fluid (CSF) and the peripheral blood. Methodological advances in neurofilaments’ serological detection and imaging technology, along with many clinical and therapeutic studies in the last years, have deepened our understanding of MS immunopathogenesis. This review examines the use of light chain neurofilaments (NFLs) as peripheral MS biomarkers in light of the current clinical and therapeutic evidence, MS immunopathology, and technological advances in diagnostic tools. It aims to highlight NFL multidimensional value as a reliable MS biomarker with a diagnostic-prognostic profile while improving our comprehension of inflammatory neurodegenerative processes, mainly RRMS, the most frequent clinical presentation of MS.
Collapse
Affiliation(s)
- Rodolfo A. Kölliker Frers
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Unidad de Parasitología, Hospital J. M. Ramos Mejía, Buenos Aires, Argentina
| | - Matilde Otero-Losada
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- *Correspondence: Matilde Otero-Losada,
| | - Tamara Kobiec
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Lucas D. Udovin
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
| | - María Laura Aon Bertolino
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
| | - María I. Herrera
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Francisco Capani
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Departamento de Biología, Universidad Argentina John Kennedy (UAJK), Buenos Aires, Argentina
| |
Collapse
|
50
|
Liston A, Dooley J, Yshii L. Brain-resident regulatory T cells and their role in health and disease. Immunol Lett 2022; 248:26-30. [PMID: 35697195 DOI: 10.1016/j.imlet.2022.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023]
Abstract
Regulatory T cells (Tregs) control inflammation and maintain immune homeostasis. The well-characterised circulatory population of CD4+Foxp3+ Tregs is effective at preventing autoimmunity and constraining the immune response, through direct and indirect restraint of conventional T cell activation. Recent advances in Treg cell biology have identified tissue-resident Tregs, with tissue-specific functions that contribute to the maintenance of tissue homeostasis and repair. A population of brain-resident Tregs, characterised as CD69+, has recently been identified in the healthy brain of mice and humans, with rapid population expansion observed under a number of neuroinflammatory conditions. During neuroinflammation, brain-resident Tregs have been proposed to control astrogliosis through the production of amphiregulin, polarize microglia into neuroprotective states, and restrain inflammatory responses by releasing IL-10. While protective effects for Tregs have been demonstrated in a number of neuroinflammatory pathologies, a clear demarcation between the role of circulatory and brain-resident Tregs has been difficult to achieve. Here we review the state-of-the-art for brain-resident Treg population, and describe their potential utilization as a therapeutic target across different neuroinflammatory conditions.
Collapse
Affiliation(s)
- Adrian Liston
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT United Kingdom.
| | - James Dooley
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT United Kingdom
| | - Lidia Yshii
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium; KU Leuven, Department of Neurosciences, Leuven 3000, Belgium.
| |
Collapse
|