1
|
Chen W, Wang P, Xie Y, Xie D, Wang H, Bu N, Lin J, Wu M, Xia H, Cheng C, Zhou Y, Liu Q. Histone lactylation-augmented IRF4 is implicated in arsenite-induced liver fibrosis via modulating Th17 cell differentiation. Chem Biol Interact 2025; 414:111507. [PMID: 40209842 DOI: 10.1016/j.cbi.2025.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/10/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Arsenic, a ubiquitous environmental toxicant, has been implicated in causing liver fibrosis through chronic exposure. Histone lactylation is involved in various inflammatory diseases, among which liver fibrosis is included, and is also closely related to the regulation of immune cells. This work focuses on the mechanisms of histone lactylation and Th17 cell differentiation in arsenite-induced liver fibrosis through animal and cellular experiments. Chronic arsenite exposure of mice led to liver fibrosis, elevated glycolysis in liver, and increased lactate levels in both serum and liver, which promoted Th17 cell differentiation of CD4+ T cells and increased IL-17A secretion. Treatment with oxamate, a lactate dehydrogenase inhibitor, suppressed Th17 cell differentiation and alleviated fibrosis in the liver. For HepG2 cells, arsenite exposure enhanced glycolysis and lactate levels, leading to increased global lactylation (Kla), H3K18la, interferon-regulatory factor 4 (IRF4), retinoic acid receptor-related orphan receptor gamma t (RORγt), and IL-17A expression and secretion in co-cultured Jurkat cells. Furthermore, in Jurkat cells, reducing lactate production and transport decreased these protein levels, suppressed Th17 cell differentiation, decreased IL-17A secretion, and ultimately inhibited the activation of hepatic stellate cells (HSCs). These results indicate that lactate derived from hepatocytes promotes Th17 cell differentiation by upregulating IRF4 through H3K18la, thereby enhancing IL-17A secretion and the activation of HSCs, contributing to arsenite-induced liver fibrosis. Our work reveals a new mechanism of histone lactylation in arsenite-induced liver fibrosis and offers a fresh perspective for the development of strategies for prevention and treatment of this condition.
Collapse
Affiliation(s)
- Weiyong Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Laboratory of Modern Environmental Toxicology, Environment and Health Research Division, Public Health School and Health Research Centre, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yan Xie
- School of Public Health, Zunyi Medical University; Key Laboratory of Maternal and Child Health and Exposure Science, Guizhou Provincial Department of Education, Zunyi, 563060, Guizhou, People's Republic of China
| | - Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Hailan Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Ning Bu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University; Key Laboratory of Maternal and Child Health and Exposure Science, Guizhou Provincial Department of Education, Zunyi, 563060, Guizhou, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Lou N, Dai L, Gao R, Yang J, Gui L, Yang S, Liu P, Shi Y, Han X. Single-cell sequencing and spatial transcriptomics reveal FAS+ T cell and autophagy-related signatures predicting chemoimmunotherapy response in diffuse large B-cell lymphoma patients. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2849-2. [PMID: 40374987 DOI: 10.1007/s11427-024-2849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/12/2025] [Indexed: 05/18/2025]
Abstract
Current subtyping methods of diffuse large B-cell lymphoma (DLBCL) could not satisfy the clinical demands for risk assessment and prognostic prediction. We aimed to investigate the prognostic effect of autophagy-related genes (ARGs) in DLBCL. Transcriptomic data of 1,409 DLBCL patients, 531 healthy controls (HCs), and single-cell sequencing data of 4 DLBCL were included. Validation involved spatial transcriptomics from 10 DLBCL patients and 110 DLBCL proteomic data from a local cohort. We identified 153 differentially expressed ARGs between DLBCL patients (n=48) and HCs (n=531), classifying 414 DLBCL patients into two subtypes based on autophagy heterogeneity. Subtype I, characterized by upregulated T regulatory (Treg) cells (P<0.0001) and T follicular helper (Tfh) cells (P=0.0012), showed a superior prognosis (P=0.035). Eight prognostic ARGs were selected to construct an autophagy-related model, dividing patients into low- and high-risk groups. Kaplan-Meier survival analysis revealed significantly better outcomes for the low-risk group in both the discovery (P<0.0001) and validation cohorts (P=0.0041). High-risk patients exhibited elevated IDO1 (P=0.042) and LAG3 (P<0.001) levels. Among the eight signature proteins, higher FAS was further verified to indicate a better prognosis in the local cohort (n=110) using antibody array (P=0.0083). FAS was primarily expressed in T cells such as Treg and Tfh cells and was elevated in non-progressive disease patients. FAS-positive T cells showed increased interferon-gamma (normalized enrichment score (NES)=2.196, FDR<0.0001) and alpha (NES=1.836, FDR<0.01) response activities. We constructed an autophagy-related model and identified FAS as a prognostic biomarker. FAS+ Treg and Tfh cell-enriched TME indicated a favorable prognosis.
Collapse
Affiliation(s)
- Ning Lou
- Clinical Pharmacology Research Center, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Liyuan Dai
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ruyun Gao
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jianliang Yang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lin Gui
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Sheng Yang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Peng Liu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Lan T, Wu G, Zuo B, Yang J, He P, Zhang Y. Regulation of the immune microenvironment and immunotherapy after liver transplantation. Front Immunol 2025; 16:1602877. [PMID: 40421010 PMCID: PMC12104065 DOI: 10.3389/fimmu.2025.1602877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Liver transplantation (LT) is a primary treatment option for patients with end-stage liver disease. However, post-transplantation immune regulation is critical to graft survival and long-term patient outcomes. Following liver transplantation, the recipient's immune system mounts a response against the graft, while the graft promotes anti-rejection immune reactions and the establishment of immune tolerance. In recent years, advances in the study of the immune microenvironment have provided new insights into post-transplantation immune regulation. Meanwhile, immunotherapy strategies have opened new possibilities for improving transplantation success rates and long-term survival. This review summarizes recent progress in understanding the immune microenvironment and immunotherapy following liver transplantation, focusing on key components of the transplant immune microenvironment, their regulatory networks and mechanisms, major immunosuppressive strategies, emerging immunotherapeutic approaches, and current challenges. The aim was to provide a theoretical foundation for optimizing clinical practice.
Collapse
Affiliation(s)
- Tianyi Lan
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Wu
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bangyou Zuo
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingming Yang
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Southwest Medical University, Luzhou, Sichuan, China
| | - Pan He
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Vicanolo T, Özcan A, Li JL, Huerta-López C, Ballesteros I, Rubio-Ponce A, Dumitru AC, Nicolás-Ávila JÁ, Molina-Moreno M, Reyes-Gutierrez P, Johnston AD, Martone C, Greto E, Quílez-Alvarez A, Calvo E, Bonzon-Kulichenko E, Álvarez-Velez R, Chooi MY, Kwok I, González-Bermúdez B, Malleret B, Espinosa FM, Zhang M, Wang YL, Sun D, Zhen Chong S, El-Armouche A, Kim KK, Udalova IA, Greco V, Garcia R, Vázquez J, Dopazo A, Plaza GR, Alegre-Cebollada J, Uderhardt S, Ng LG, Hidalgo A. Matrix-producing neutrophils populate and shield the skin. Nature 2025; 641:740-748. [PMID: 40108463 PMCID: PMC12074881 DOI: 10.1038/s41586-025-08741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/04/2025] [Indexed: 03/22/2025]
Abstract
Defence from environmental threats is provided by physical barriers that confer mechanical protection and prevent the entry of microorganisms1. If microorganisms overcome those barriers, however, innate immune cells use toxic chemicals to kill the invading cells2,3. Here we examine immune diversity across tissues and identify a population of neutrophils in the skin that expresses a broad repertoire of proteins and enzymes needed to build the extracellular matrix. In the naive skin, these matrix-producing neutrophils contribute to the composition and structure of the extracellular matrix, reinforce its mechanical properties and promote barrier function. After injury, these neutrophils build 'rings' of matrix around wounds, which shield against foreign molecules and bacteria. This structural program relies on TGFβ signalling; disabling the TGFβ receptor in neutrophils impaired ring formation around wounds and facilitated bacterial invasion. We infer that the innate immune system has evolved diverse strategies for defence, including one that physically shields the host from the outside world.
Collapse
Affiliation(s)
- Tommaso Vicanolo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Alaz Özcan
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jackson LiangYao Li
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Iván Ballesteros
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Department of Neuroscience and Biomedical Sciences, Universidad Carlos III de Madrid, Madrid, Spain
| | - Andrea Rubio-Ponce
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Andra C Dumitru
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Miguel Molina-Moreno
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Pablo Reyes-Gutierrez
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew D Johnston
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Catherine Martone
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Greto
- Department of Internal Medicine 3-Rheumatology and Immunology, Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Elena Bonzon-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain
| | | | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Blanca González-Bermúdez
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Dasheng Sun
- OPO and Organ Transplantation Leading Group, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Gustavo R Plaza
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain
| | | | - Stefan Uderhardt
- Department of Internal Medicine 3-Rheumatology and Immunology, Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Accogli T, Hibos C, Milian L, Geindreau M, Richard C, Humblin E, Mary R, Chevrier S, Jacquin E, Bernard A, Chalmin F, Paul C, Ryffel B, Apetoh L, Boidot R, Bruchard M, Ghiringhelli F, Vegran F. The intrinsic expression of NLRP3 in Th17 cells promotes their protumor activity and conversion into Tregs. Cell Mol Immunol 2025; 22:541-556. [PMID: 40195474 PMCID: PMC12041534 DOI: 10.1038/s41423-025-01281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Th17 cells can perform either regulatory or inflammatory functions depending on the cytokine microenvironment. These plastic cells can transdifferentiate into Tregs during inflammation resolution, in allogenic heart transplantation models, or in cancer through mechanisms that remain poorly understood. Here, we demonstrated that NLRP3 expression in Th17 cells is essential for maintaining their immunosuppressive functions through an inflammasome-independent mechanism. In the absence of NLRP3, Th17 cells produce more inflammatory cytokines (IFNγ, Granzyme B, TNFα) and exhibit reduced immunosuppressive activity toward CD8+ cells. Moreover, the capacity of NLRP3-deficient Th17 cells to transdifferentiate into Treg-like cells is lost. Mechanistically, NLRP3 in Th17 cells interacts with the TGF-β receptor, enabling SMAD3 phosphorylation and thereby facilitating the acquisition of immunosuppressive functions. Consequently, the absence of NLRP3 expression in Th17 cells from tumor-bearing mice enhances CD8 + T-cell effectiveness, ultimately inhibiting tumor growth.
Collapse
Affiliation(s)
- Théo Accogli
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
| | | | - Lylou Milian
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | | | - Corentin Richard
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | | | | | - Sandy Chevrier
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Elise Jacquin
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
| | | | - Fanny Chalmin
- Cancer Biology Transfer Platform, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Catherine Paul
- LIIC, EA7269, Université de Bourgogne Franche Comté, Dijon, France
- Immunology and Immunotherapy of Cancer Laboratory, EPHE, PSL Research University, Paris, France
| | - Berhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Romain Boidot
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | | | - François Ghiringhelli
- INSERM, Dijon, France
- University of Burgundy, Dijon, France
- Cancer Biology Transfer Platform, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Frédérique Vegran
- INSERM, Dijon, France.
- University of Burgundy, Dijon, France.
- Unité de Biologie Moléculaire-Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France.
- Cancer Biology Transfer Platform, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France.
| |
Collapse
|
6
|
Golob JL, Hou G, Swanson BJ, Berinstein JA, Bishu S, Grasberger H, Zataari ME, Lee A, Kao JY, Kamada N, Bishu S. Inflammation-Induced Th17 Cells Synergize with the Inflammation-Trained Microbiota to Mediate Host Resiliency Against Intestinal Injury. Inflamm Bowel Dis 2025; 31:1082-1094. [PMID: 39851236 DOI: 10.1093/ibd/izae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND AND AIMS Inflammation can generate pathogenic Th17 cells and cause an inflammatory dysbiosis. In the context of inflammatory bowel disease (IBD), these inflammatory Th17 cells and dysbiotic microbiota may perpetuate injury to intestinal epithelial cells. However, many models of IBD like T-cell transfer colitis and IL-10-/- mice rely on the absence of regulatory pathways, so it is difficult to tell if inflammation can also induce protective Th17 cells. METHODS We subjected C57BL6, RAG1-/-, or JH-/- mice to systemic or gastrointestinal (GI) Citrobacter rodentium (Cr). Mice were then subjected to 2.5% dextran sodium sulfate (DSS) to cause epithelial injury. Fecal microbiota transfer was performed by bedding transfer and co-housing. Flow cytometry, qPCR, and histology were used to assess mucosal and systemic immune responses, cytokines, and tissue inflammation. 16s sequencing was used to assess gut bacterial taxonomy. RESULTS Transient inflammation with GI but not systemic Cr was protective against subsequent intestinal injury. This was replicated with sequential DSS collectively indicating that transient inflammation provides tissue-specific protection. Inflammatory Th17 cells that have a tissue-resident memory (TRM) signature expanded in the intestine. Experiments with reconstituted RAG1-/-, JH-/- mice, and cell trafficking inhibitors showed that inflammation-induced Th17 cells were required for protection. Fecal microbiota transfer showed that the inflammation-trained microbiota was necessary for protection, likely by maintaining protective Th17 cells in situ. CONCLUSION Inflammation can generate protective Th17 cells that synergize with the inflammation-trained microbiota to provide host resiliency against subsequent injury, indicating that inflammation-induced Th17 TRM T cells are heterogenous and contain protective subsets.
Collapse
Affiliation(s)
- Jonathan L Golob
- Division of Infectious Diseases, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Guoqing Hou
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Benjamin J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 42 and Emile, Omaha, NE 68198, USA
| | - Jeffrey A Berinstein
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Shreenath Bishu
- Laboratory and Pathology Diagnostics LLC, 1220 Hobson Road, Suite 244, Naperville, IL 60540, USA
| | - Helmut Grasberger
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Mohamed El Zataari
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Allen Lee
- Division of Infectious Diseases, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - John Y Kao
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Shrinivas Bishu
- Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Wang Q, Huang T, Zheng Z, Su Y, Wu Z, Zeng C, Yu G, Liu Y, Wang X, Li H, Chen X, Jiang Z, Zhang J, Zhuang Y, Tian Y, Yang Q, Verkhratsky A, Wan Y, Yi C, Niu J. Oligodendroglial precursor cells modulate immune response and early demyelination in a murine model of multiple sclerosis. Sci Transl Med 2025; 17:eadn9980. [PMID: 40173259 DOI: 10.1126/scitranslmed.adn9980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/23/2024] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Abstract
Reproducing the pathophysiology of human multiple sclerosis (MS) in animal models is critical to identifying mechanisms triggering demyelination and to developing early intervention strategies. Here, we aimed to model overactivated Wnt (wingless-related integration site) signaling previously shown in postmortem brain tissues of patients with MS by inducing experimental autoimmune encephalomyelitis (EAE) in PdgfraCreER;Apcfl/fl and Olig2Cre;Apcfl/fl mice. These mice have overactivated Wnt signaling in oligodendrocyte precursor cells (OPCs) because of a conditional knockout of the pathway repressor adenomatous polyposis coli (APC). PdgfraCreER;Apcfl/fl EAE mice exhibited increased expression of markers for Wnt activation such as Axis inhibition protein 2 (AXIN2) and Wnt inhibitory factor 1 (WIF1) in OPCs and showed exacerbated EAE progression in both the spinal cord and the brain. Genetic or antibody-mediated ablation of CC-chemokine ligand 4 (CCL4) prevented infiltration of CD4+ T cells and arrested disease progression in these mice. A characterization of CNS (central nervous system) immune cell clusters identified an augmented subpopulation of NK1.1+CD11b+Gr-1+ cytotoxic macrophages in PdgfraCreER;Apcfl/fl EAE mice. Microinjection of this subpopulation of macrophages into the brains of wild-type C57/B6J mice was sufficient to induce demyelination. Ablation of CD4+ T cells prevented the effects of Wnt overactivation on demyelination and immune cell infiltration. Antagonizing chemokine receptor 5 (CCR5) using a European Medicines Agency-approved drug, maraviroc, reduced immune cell infiltration, alleviated demyelination, and attenuated EAE progression. We found an OPC-orchestrated immune cellular network that instigates early demyelination, provides insight into MS pathophysiology, and suggests avenues for early interventions.
Collapse
Affiliation(s)
- Qi Wang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Taida Huang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zihan Zheng
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zhonghao Wu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Cong Zeng
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Guangdan Yu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yang Liu
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Hui Li
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zhuoxu Jiang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Jinyu Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Yi Tian
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Qingwu Yang
- Department of Neurology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400038, China
- Chongqing Institute for Brain and Intelligence, Chongqing 400037, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M139PL, UK
- Department of Neurosciences, University of the Basque Country, Leioa 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Celica Biomedical, Technology Park 24, 1000 Ljubljana, Slovenia
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
- Institute for Translational Immunology, Chongqing 400038, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Neurobiology, Chongqing 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400042, China
| |
Collapse
|
8
|
Meesilpavikkai K, Kaikaew K, Zhou Z, Dalm VA, Kaiser FM, Schliehe C, Swagemakers SM, van der Spek PJ, Schrijver B, Vasic P, de Bie M, Bakker M, Milanese C, Mastroberardino PG, Hirankarn N, Suratannon N, IJspeert H, Dik WA, Martin van Hagen P. Novel STAT3 Y360C Gain-of-function Variant Underlies Immune Dysregulation and Aberrancy in Mitochondrial Dynamics. Immune Netw 2025; 25:e18. [PMID: 40342844 PMCID: PMC12056293 DOI: 10.4110/in.2025.25.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 05/11/2025] Open
Abstract
The STAT3 is an important regulator in a wide range of different cell types. Human STAT3 variants are associated with several immune dysregulation diseases. The current study investigated the clinical, genetic, and immunobiological data obtained from a family with novel heterozygous STAT3 variants located at p.Y360C of the DNA binding domain. The clinical manifestations of these patients include autoimmunity, immunodeficiency, and postnatal growth defects. Broad STAT3 regulated cells including patient primary immune cells and HEK293 cells harboring the variant were assessed. Remarkably high levels of STAT3-regulated cytokines were detected in the sera of the patients. STAT3 nuclear binding and STAT3 activity were higher in STAT3-transduced HEK293 cells containing the p.Y360C variant when compared to HEK cells expressing wild type (WT) STAT3. Upon cytokine activation, STAT3 variants inhibited nuclear translocation of the WT STAT3 molecule. We also demonstrated that PBMCs from these patients exhibit significantly higher mitochondrial activity compared to that of healthy controls. The exploration of the effects of STAT3 Y360C variants described in our study provides novel insights into the molecular effects of the STAT3 variant and its role in the pathophysiology of STAT3 gain-of-function syndromes.
Collapse
Affiliation(s)
- Kornvalee Meesilpavikkai
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Kasiphak Kaikaew
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Zijun Zhou
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Virgil A.S.H. Dalm
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Fabian M.P. Kaiser
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Neonatal and Pediatric Intensive Care, Erasmus University Medical Center - Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
| | - Christopher Schliehe
- Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sigrid M.A. Swagemakers
- Department of Pathology and Bioinformatics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Peter J. van der Spek
- Department of Pathology and Bioinformatics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Pamela Vasic
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Maaike de Bie
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Marleen Bakker
- Department of Pulmonary Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Chiara Milanese
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Pier G. Mastroberardino
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Narissara Suratannon
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Hanna IJspeert
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - P. Martin van Hagen
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
9
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
10
|
Yoshida T, Takashima K, Mtali YS, Miyashita Y, Iwamoto A, Fukushima Y, Nakamura K, Oshiumi H. Regulation of IL-17A-mediated hypersensitivity by extracellular vesicles and lipid nanoparticles carrying miR-451a. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:651-665. [PMID: 40073105 DOI: 10.1093/jimmun/vkae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/04/2024] [Indexed: 03/14/2025]
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by transporting functional molecules between donor cells and recipient cells, thereby regulating biological processes, such as immune responses. miR-451a, an immune regulatory microRNA, is highly abundant in circulating EVs; however, its precise physiological significance remains to be fully elucidated. Here, we demonstrate that miR-451a deficiency exacerbates delayed-type hypersensitivity (DTH) in mice. Notably, miR-451a knockout resulted in a significant increase in the number of interleukin (IL)-17A-expressing T helper 17 and γδ T cells infiltrating DTH-induced ear lesions. miR-451a deficiency also increased the number of γδ T cells in the secondary lymphoid tissues. Comprehensive analyses revealed that miR-451 deficiency promoted the expression of Rorc and γδ T cell-related genes following sensitization with allergens. Moreover, intravenous administration of wild-type EVs to miR-451a knockout mice increased cellular miR-451a levels in tissues and significantly attenuated the severity of DTH. Furthermore, synthetic lipid nanoparticles encapsulating miR-451a effectively mitigated DTH. Our findings indicate the importance of circulating miR-451a in the proliferation of γδ T cells and highlight the therapeutic potential of lipid nanoparticle-based microRNA delivery platforms for interventions in immune-related diseases.
Collapse
Affiliation(s)
- Takanobu Yoshida
- Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ken Takashima
- Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yohana S Mtali
- Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Miyashita
- Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Asuka Iwamoto
- Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshimi Fukushima
- Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
11
|
Wang R, Wu D, Wang C, Livingston A, Wu X, Liu M, Yang XO. Platelet-Sourced TGF-β Promotes Th17 Responses and Enhances Airway Neutrophilia. Biomolecules 2025; 15:482. [PMID: 40305199 PMCID: PMC12024734 DOI: 10.3390/biom15040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Microbial, especially fungal, sensitization has been associated with the development and exacerbation of treatment-refractory neutrophilic asthma. Among the airway-inhabiting fungi, Aspergillus fumigatus and Candida albicans are the dominant species that elicit protective T helper (Th) 17 and other T cell responses, contributing to airway neutrophilia and steroid resistance. However, it is not fully understood how fungal airway colonization impacts the immunopathogenesis of asthma. Here, we used a neutrophilic asthma model induced by C. albicans to study the immune regulation of this disease. We found that intranasal administration of C. albicans induced platelet infiltration into the lung. Platelet-expressed latent TGF-β could be activated specifically by Th17 cells and drive the commitment, maintenance, and expansion of Th17 cells. In Candida-induced asthma, an adoptive transfer of platelets enhanced Th17 responses, increasing airway neutrophil influx. Thus, managing airway mycobiota and reducing platelet intrapulmonary infiltration may serve as a promising interventional approach.
Collapse
Affiliation(s)
- Ruoning Wang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.W.); (D.W.); (A.L.); (X.W.)
| | - Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.W.); (D.W.); (A.L.); (X.W.)
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (C.W.); (M.L.)
| | - Amanda Livingston
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.W.); (D.W.); (A.L.); (X.W.)
| | - Xiang Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.W.); (D.W.); (A.L.); (X.W.)
- Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (C.W.); (M.L.)
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.W.); (D.W.); (A.L.); (X.W.)
| |
Collapse
|
12
|
Zheng MY, Luo LZ. The Role of IL-17A in Mediating Inflammatory Responses and Progression of Neurodegenerative Diseases. Int J Mol Sci 2025; 26:2505. [PMID: 40141149 PMCID: PMC11941770 DOI: 10.3390/ijms26062505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
IL-17A has been implicated as a critical pro-inflammatory cytokine in the pathogenesis of autoimmune and neurodegenerative disorders. Emerging evidence indicates its capacity to activate microglial cells and astrocytes, subsequently inducing the production of inflammatory mediators that exacerbate neuronal injury and functional impairment. Clinical observations have revealed a demonstrated association between IL-17A concentrations and blood-brain barrier (BBB) dysfunction, creating a pathological feedback loop that amplifies neuro-inflammatory responses. Recent advances highlight the cytokine's critical involvement in neurodegenerative disorders through multiple molecular pathways. Therapeutic interventions utilizing monoclonal antibodies (mAbs) against IL-17A or its cognate receptor (IL-17R) have shown promising clinical potential. This review systematically examines the IL-17A-mediated neuro-inflammatory cascades; the mechanistic contributions to neurodegenerative pathology in the established disease models including multiple sclerosis, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis; and current therapeutic strategies targeting the IL-17A signaling pathways. The analysis provides novel perspectives on optimizing cytokine-directed therapies while identifying the key challenges and research priorities for translational applications in neurodegeneration.
Collapse
Affiliation(s)
- Miao-Yan Zheng
- School of Pharmacy, Fujian Medical University, Xuefu North Road 1, University Town, Fuzhou 350122, China;
| | - Lian-Zhong Luo
- School of Pharmacy, Fujian Medical University, Xuefu North Road 1, University Town, Fuzhou 350122, China;
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 1999 Guankouzhong Road, Xiamen 361023, China
| |
Collapse
|
13
|
Elzubeir A, High J, Hammond M, Shepstone L, Pond M, Walmsley M, Trivedi P, Culver E, Aithal G, Dyson J, Thorburn D, Alexandre L, Rushbrook S. Assessing brodalumab in the treatment of primary sclerosing cholangitis (SABR-PSC pilot study): protocol for a single-arm, multicentre, pilot study. BMJ Open Gastroenterol 2025; 12:e001596. [PMID: 40032516 PMCID: PMC11877274 DOI: 10.1136/bmjgast-2024-001596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a rare immune-mediated hepatobiliary disease, characterised by progressive biliary fibrosis, cirrhosis, and end-stage liver disease. As yet, no licensed pharmacological therapy exists. While significant advancements have been made in our understanding of the pathophysiology, the exact aetiology remains poorly defined. Compelling evidence from basic science and translational studies implicates the role of T helper 17 cells (Th17) and the interleukin 17 (IL-17) pro-inflammatory signalling pathway in the pathogenesis of PSC. However, exploration of the safety and efficacy of inhibiting the IL-17 pathway in PSC is lacking. METHODS AND ANALYSIS This is a phase 2a, open-label, multicentre pilot study, testing the safety of brodalumab, a recombinant human monoclonal antibody that binds with high affinity to interleukin-17RA, in adults with PSC. This study will enrol 20 PSC patients across five large National Health Service tertiary centres in the UK. The primary outcome of the study relates to determining the safety and feasibility of administering brodalumab in early, non-cirrhotic PSC patients. Secondary efficacy outcomes include non-invasive assessment of liver fibrosis, changes in alkaline phosphatase values and other liver biochemical readouts, assessment of biliary metrics through quantitative MR cholangiography+, and quality of life evaluation on completion of follow-up (using the 5D-itch tool, the PSC-patient-reported outcome and PSC-specific Chronic Liver Disease Questionnaire). ETHICS AND DISSEMINATION Ethical approval for this study has been obtained from the London Bridge Research Ethics Committee (REC23/LO/0718). Written informed consent will be obtained from all trial participants prior to undertaking any trial-specific examinations or investigations. On completion of the study, results will be submitted for publication in peer-reviewed journals and presented at national and international hepatology meetings. A summary of the findings will also be shared with participants and PSC communities. TRIAL REGISTRATION NUMBER ISRCTN15271834.
Collapse
MESH Headings
- Humans
- Cholangitis, Sclerosing/drug therapy
- Cholangitis, Sclerosing/immunology
- Pilot Projects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/immunology
- Multicenter Studies as Topic
- Treatment Outcome
- Adult
- Clinical Trials, Phase II as Topic
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/administration & dosage
- Quality of Life
- United Kingdom
- Male
- Female
- Th17 Cells/immunology
- Th17 Cells/drug effects
- Receptors, Interleukin-17/antagonists & inhibitors
Collapse
Affiliation(s)
- Amera Elzubeir
- University of East Anglia Norwich Medical School, Norwich, UK
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Juliet High
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | - Matthew Hammond
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | - Lee Shepstone
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | - Martin Pond
- Norwich Clinical Trials Unit, University of East Anglia, Norwich, UK
| | | | - Palak Trivedi
- NIHR Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Emma Culver
- Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Guruprasad Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jessica Dyson
- Liver Unit, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Douglas Thorburn
- University College London institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Leo Alexandre
- University of East Anglia Norwich Medical School, Norwich, UK
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Simon Rushbrook
- University of East Anglia Norwich Medical School, Norwich, UK
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| |
Collapse
|
14
|
Cui X, Song Y, Han J, Yuan Z. The multifaceted role of SMAD4 in immune cell function. Biochem Biophys Rep 2025; 41:101902. [PMID: 39802394 PMCID: PMC11721226 DOI: 10.1016/j.bbrep.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) signaling pathway, with SMAD4 as its central mediator, plays a pivotal role in regulating cellular functions, including growth, differentiation, apoptosis, and immune responses. While extensive research has elucidated SMAD4's role in tumorigenesis, its functions within immune cells remain underexplored. This review synthesizes current knowledge on SMAD4's diverse roles in various immune cells such as T cells, B cells, dendritic cells, and macrophages, highlighting its impact on immune homeostasis and pathogen response. Understanding SMAD4's role in immune cells is crucial, as its dysregulation can lead to autoimmune disorders, chronic inflammation, and immune deficiencies. The review emphasizes the significance of SMAD4 in immune regulation, proposing that deeper investigation could reveal novel therapeutic targets for immune-mediated conditions. Insights into SMAD4's involvement in processes like T cell differentiation, B cell class switch recombination, and macrophage polarization underscore its potential as a therapeutic target for a range of diseases, including autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Xinmu Cui
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Yu Song
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Jianfeng Han
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
- Cellular Biomedicine Group Inc, Shanghai, 201203, China
| | - Zhaoxin Yuan
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| |
Collapse
|
15
|
Tan Z, Qin G, Jia J, Mao Z, Du L, Song R, Xue H, Jia Z. Exploring Si-Ni-San's therapeutic mechanism in autoimmune thyroid diseases: A network pharmacology approach and experimental evidence. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119004. [PMID: 39490709 DOI: 10.1016/j.jep.2024.119004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Autoimmune thyroid diseases (AITD), a group of prevalent and persistent immune-mediated disorders affecting the endocrine system, can progressively result in total thyroid failure, thereby drastically impacting metabolic processes. Given the inadequacies of current clinical approaches to managing AITD, The exigency to investigate novel therapeutic strategies demands immediate attention, given the limitations and potential resistances associated with conventional approaches. Si-Ni-San (SNS), first chronicled in the esteemed Eastern Han Dynasty medical text " Treatise on Cold Damage and Miscellaneous Diseases" circa 200-210 AD, is a time-honored remedy known for its harmonizing effects on the liver and invigorating properties for the spleen. Research indicates that saikosaponins and peony glycosides, two primary constituents of SNS, possess anti-inflammatory properties and can ameliorate immune dysfunction in the treatment of AITD. Despite initial insights, a comprehensive exploration of the underlying mechanisms by which SNS alleviates AITD symptoms requires further in-depth investigation to decipher their intricate interplay. AIM OF THE STUDY This study aimed to identify the key therapeutic components of SNS for the treatment of AITD and to elucidate the underlying molecular mechanisms, revealing potential targets. MATERIALS AND METHODS We initially screened prospective components of SNS for AITD therapy through comprehensive database exploration, followed by an evaluation of the results via PPI networks. To illuminate the therapeutic mechanisms of SNS in AITD, we employed GO enrichment analysis and surveyed the KEGG pathways. Employing UHPLC-QE-MS, we conducted an in-depth analysis of SNS's principal elements, complemented by molecular docking studies to unravel their interaction dynamics. Finally, we substantiated the central therapeutic pathway of SNS in the treatment of AITD using an experimental autoimmune thyroiditis (EAT) mouse model, validated meticulously through in vivo experimentation. RESULTS Network pharmacology analysis revealed 32 common targets from the overlap between SNS and AITD-related targets. Based on subsequent PPI network and KEGG analysis, we focused on the IL-6/JAK2/STAT3/IL-17 pathway, which drives the differentiation of Th17 cells, as a central therapeutic target of SNS in AITD. Crucially, our in vivo findings, substantiated through immunohistochemical, Western blot, RT-qPCR analyses and Flow cytometry analysis, reveal SNS's therapeutic potential in AITD. It effectively dampens IL-6 production, inhibits IL-6/JAK2/STAT3/IL-17 pathway activation, and rebalances the Th17/Treg cell ratio, thus elucidating its anti-inflammatory mechanism. CONCLUSIONS The protective effect of SNS against AITD is likely mediated through the modulation of the IL-6/JAK2/STAT3/IL-17 pathway and the restoration of balance within the Th17/Treg ratio. This suggests that SNS may exert its therapeutic effects on AITD by targeting these key molecular mechanisms, thereby providing a novel perspective for the treatment of AITD.
Collapse
Affiliation(s)
- Zhiying Tan
- Binzhou Medical University, Binzhou, Shandong, China; Binzhou Hospital of Traditional Chinese Medicine, Binzhou, Shandong, China
| | - Gaofeng Qin
- Binzhou Medical University, Binzhou, Shandong, China; Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jianying Jia
- Binzhou Hospital of Traditional Chinese Medicine, Binzhou, Shandong, China
| | - Zhenzhen Mao
- Binzhou Hospital of Traditional Chinese Medicine, Binzhou, Shandong, China
| | - Lijuan Du
- Binzhou Hospital of Traditional Chinese Medicine, Binzhou, Shandong, China
| | - Rongqiang Song
- Binzhou Medical University, Binzhou, Shandong, China; Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Haibo Xue
- Binzhou Medical University, Binzhou, Shandong, China; Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Zaijin Jia
- Binzhou Medical University, Binzhou, Shandong, China; Binzhou Hospital of Traditional Chinese Medicine, Binzhou, Shandong, China.
| |
Collapse
|
16
|
Nie W, Fu H, Zhang Y, Yang H, Liu B. Chinese Herbal Medicine and Their Active Ingredients Involved in the Treatment of Atopic Dermatitis Related Signaling Pathways. Phytother Res 2025; 39:1190-1237. [PMID: 39764710 DOI: 10.1002/ptr.8409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/19/2025]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatitis of the skin and poses therapeutic challenges due to the adverse reactions and high costs associated with available treatments. In Eastern Asian countries, a plethora of herbal remedies is extensively employed for the alleviation of AD. Many of these botanicals are renowned for their formidable anti-inflammatory properties, contributing to AD management. Chinese herbal medicine (CHM) and its active ingredients exhibit both prophylactic and therapeutic promise against AD by modulating inflammatory response, orchestrating immune system functions, and enhancing antioxidant activities. A comprehensive exploration of the underlying mechanisms involved in CHM treatment can enhance the comprehension of AD pathogenesis and facilitate the development of innovative drugs for AD. This study aims to elucidate the signaling pathways and potential targets implicated in CHM-based treatment of AD, providing a systematic theoretical framework for its application in therapy while serving as a valuable reference for developing more effective and safer AD therapeutic agents.
Collapse
Affiliation(s)
- Wenkai Nie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hao Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiwen Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Krupka S, Aldehoff AS, Goerdeler C, Engelmann B, Rolle-Kampczyk U, Schubert K, Klöting N, von Bergen M, Blüher M. Metabolic and molecular Characterization, following dietary exposure to DINCH, Reveals new Implications for its role as a Metabolism-Disrupting chemical. ENVIRONMENT INTERNATIONAL 2025; 196:109306. [PMID: 39884247 DOI: 10.1016/j.envint.2025.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Plastic materials are ubiquitous, leading to constant human exposure to plastic additives such as plasticizers. There is growing evidence that plasticizers may contribute to obesity due to their disruptive effects on metabolism. Alternatives like diisononylcyclohexane-1,2-dicarboxylate (DINCH) are replacing traditional phthalates such as di-(2-ethylhexyl) phthalate (DEHP), which are now banned due to their proven harmful health effects. While DINCH is considered a safer alternative to DEHP and no adipogenic effects have been demonstrated in in vivo studies, recent research suggests that the primary metabolite, monoisononylcyclohexane-1,2-dicarboxylic acid ester (MINCH), promotes adipocyte differentiation and dysfunction in vitro. However, metabolic and molecular effects are not fully understood in vivo. Here, we performed a comprehensive in vivo analysis using C57BL/6N mice to investigate the effects of DINCH on adipose tissue physiology and function. Mice were exposed to two doses of DINCH for 16 weeks, followed by a 10-week recovery period. Tissue analysis confirmed the presence of DINCH and MINCH in liver and adipose tissue after treatment and recovery. After the recovery period, elevated DINCH concentrations in adipose tissue depots indicated possible bioaccumulation. Although no changes were observed in body composition and energy expenditure, sex-specific metabolic effects were identified. Female mice exhibited impaired whole-body insulin sensitivity and higher triglyceride levels, while male mice showed an altered insulin/C-peptide ratio and elevated cholesterol, HDL, and LDL levels. Proteomic profiling of serum, adipose and liver tissues revealed changes in pathways related to central energy metabolism and immune response, highlighting the systemic impact of DINCH, potentially on inflammatory processes. Most effects of DINCH, such as changes in insulin response and serum lipid levels, were diminished after the recovery period. Despite many findings consistent with the existing literature suggesting DINCH as a safer DEHP substitute, the observed sex-specific effects on insulin sensitivity, lipid metabolism and inflammatory processes, as well as potential bioaccumulation and long-term metabolic effects of DINCH exposure warrant careful consideration in further risk assessment.
Collapse
Affiliation(s)
- Sontje Krupka
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Centre München at the University of Leipzig Germany; Department of Endocrinology Nephrology Rheumatology University Hospital Leipzig Medical Research Center Leipzig Germany
| | - Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany
| | - Cornelius Goerdeler
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany
| | - Beatrice Engelmann
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany.
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Centre München at the University of Leipzig Germany.
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ) Leipzig Germany; Institute of Biochemistry Faculty of Biosciences, Pharmacy and Psychology Leipzig University Leipzig Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Centre München at the University of Leipzig Germany; Department of Endocrinology Nephrology Rheumatology University Hospital Leipzig Medical Research Center Leipzig Germany
| |
Collapse
|
18
|
Plichta J, Panek M. Role of the TGF-β cytokine and its gene polymorphisms in asthma etiopathogenesis. FRONTIERS IN ALLERGY 2025; 6:1529071. [PMID: 39949968 PMCID: PMC11821632 DOI: 10.3389/falgy.2025.1529071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Transforming growth factor beta (TGF-β) is a pluripotent cytokine expressed by all cells of the human body which plays important roles in maintaining homeostasis and allowing for proper individual development. Disturbances in TGF-β signaling contribute to the development of many diseases and disorders, including cancer and organ fibrosis. One of the diseases with the best-characterized correlation between TGF-β action and etiopathogenesis is asthma. Asthma is the most common chronic inflammatory disease of the lower and upper respiratory tract, characterized by bronchial hyperresponsiveness to a number of environmental factors, leading to bronchospasm and reversible limitation of expiratory flow. TGF-β, in particular TGF-β1, is a key factor in the etiopathogenesis of asthma. TGF-β1 concentration in bronchoalveolar lavage fluid samples is elevated in atopic asthma, and TGF-β expression is increased in asthmatic bronchial samples. The expression of all TGF-β isoforms is affected by a number of single nucleotide polymorphisms found in the genes encoding these cytokines. Some of the SNPs that alter the level of TGF-β expression may be associated with the occurrence and severity of symptoms of asthma and other diseases. The TGF-β gene polymorphisms, which are the subject of this paper, are potential diagnostic factors. If properly used, these polymorphisms can facilitate the early and precise diagnosis of asthma, allowing for the introduction of appropriate therapy and reduction of asthma exacerbation frequency.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
19
|
Wei Y, Zhang S, Shao F, Sun Y. Ankylosing spondylitis: From pathogenesis to therapy. Int Immunopharmacol 2025; 145:113709. [PMID: 39644789 DOI: 10.1016/j.intimp.2024.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that primarily affects the axial joints, with its etiology complex and still not fully understood. The unknown pathogenesis of AS limits the development of treatment strategies, so keeping up-to-date with the current research on AS can help in searching for potential therapeutic targets. In addition to the classic HLA-B27 genetic susceptibility and Th17-related inflammatory signals, increasing research is focusing on the influence of autoantigen-centered autoimmune responses and bone stromal cells on the onset of AS. Autoantigens derived from gut microbiota and preferential TCR both exacerbate the autoimmune response in patients with AS. Furthermore, dysregulated bone metabolism also promotes pathological new bone formation in AS. Current treatments approved for AS almost focus on the management of inflammation with inconsistent treatment results due to the heterogeneity of patients. In this review, we systematically summarized various pathogenesis and management of AS, meanwhile discussed the underlying risk factors and potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxiao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Shuqiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Fenli Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
20
|
Sang Q, Kang C, Liu D, Wang L, Liu X, Li J. Polyphyllin VII ameliorates neuroinflammation and brain injury via modulating Treg/Th17 balance in a mouse model of cerebral ischemia-reperfusion injury. Int Immunopharmacol 2024; 143:113423. [PMID: 39447415 DOI: 10.1016/j.intimp.2024.113423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Dysregulation of Th17 and Treg cells contributes to the pathophysiology of cerebral ischemia. Metabolic changes of peripheral CD4+ T cells lead to the imbalance of Treg/Th17 polarization, which represents a promising strategy for post-stroke therapy. Polyphyllin VII (PVII), a steroidal saponin extracted from traditional Chinese herb Rhizoma Paridis, has multiple bioactivities, but the potential function of PVII in cerebral ischemia-reperfusion injury is not elucidated yet. In our study, a mouse transient middle cerebral artery occlusion (MCAO) model was constructed. TTC staining, H&E staining, TUNEL staining, ELISA assay, flow cytometry, western blot, RT-qPCR, Open-field test, Morris water maze test, hanging wire test, rotarod test and foot-fault test were performed to evaluate the potential function of PVII in MCAO mice. We found that PVII showed protective effects on cerebral ischemia-reperfusion injury by reducing infarct volume, ameliorating brain injury and neuroinflammation, and improving long-term functional recovery of MCAO mice. PVII promoted Treg infiltration and suppressed infiltration of Th1/Th17 cells in ischemic brain in vivo. Moreover, PVII impaired peripheral CD4+ T cell activation and modulated Treg/Th17 differentiation in vitro. Mechanistically, PVII suppressed mTORC1 activation to influence glycolytic metabolism and ROS generation of T cells, thus leads to the imbalance of Treg/Th17 polarization towards Treg skewed. Furthermore, reactivation of mTORC1 by MHY1485 abolished the influence of PVII on brain injury and neuroinflammation in MCAO mice. Our data provided a novel role of PVII in cerebral ischemia-reperfusion injury via manipulating Treg/Th17 imbalance.
Collapse
Affiliation(s)
- Qiuling Sang
- Department of Neuroelectrophysiology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Chunyang Kang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Dingxi Liu
- Department of Clinical Medicine, Zunyi Medical University, Zhuhai 519041, China
| | - Libo Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Xiaoyang Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
21
|
Brescia C, Audia S, Pugliano A, Scaglione F, Iuliano R, Trapasso F, Perrotti N, Chiarella E, Amato R. Metabolic drives affecting Th17/Treg gene expression changes and differentiation: impact on immune-microenvironment regulation. APMIS 2024; 132:1026-1045. [PMID: 38239016 DOI: 10.1111/apm.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 11/26/2024]
Abstract
The CD4+ T-cell population plays a vital role in the adaptive immune system by coordinating the immune response against different pathogens. A significant transformation occurs in CD4+ cells during an immune response, as they shift from a dormant state to an active state. This transformation leads to extensive proliferation, differentiation, and cytokine production, which contribute to regulating and coordinating the immune response. Th17 and Treg cells are among the most intriguing CD4+ T-cell subpopulations in terms of genetics and metabolism. Gene expression modulation processes rely on and are linked to metabolic changes in cells. Lactylation is a new model that combines metabolism and gene modulation to drive Th17/Treg differentiation and functional processes. The focus of this review is on the metabolic pathways that impact lymphocyte gene modulation in a functionally relevant manner.
Collapse
Affiliation(s)
- Carolina Brescia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Salvatore Audia
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Alessia Pugliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Federica Scaglione
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", Catanzaro, Italy
| | - Rosario Amato
- Department of Health Science, Medical School, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University "Magna Graecia"of Catanzaro, Catanzaro, Italy
| |
Collapse
|
22
|
Li Q, Marcoux G, Hu Y, Rebetz J, Guo L, Semple E, Provan D, Xu S, Hou M, Peng J, Semple JW. Autoimmune effector mechanisms associated with a defective immunosuppressive axis in immune thrombocytopenia (ITP). Autoimmun Rev 2024; 23:103677. [PMID: 39515406 DOI: 10.1016/j.autrev.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated thrombocytopenia and variable phenotype as some patients suffer no bleeding whilst others have bleeding from mild to severe, which may be fatal. This variability probably reflects the disease's complex pathophysiology; a dysregulated hyperreactive immune effector cell response involving the entire adaptive immune system (e.g. B and T cell subsets) that leads to platelet and megakaryocyte (MK) destruction. It appears that these effector responses are due to a breakdown in immune tolerance, and this is characterized by defects in several immunosuppressive cell types. These include defective T regulatory cells (Tregs), B regulatory cells (Bregs) and Myeloid-derived suppressor cells (MDSC), all of which are all intimately associated with antigen presenting cells (APC) such as dendritic cells (DC). The loss of this immunosuppressive axis allows for the activation of unchecked autoreactive T cells and B cells, leading to the development of autoantibodies and cytotoxic T cells (CTL), which can directly destroy platelets in the periphery and inhibit MK platelet production in the bone marrow (BM). This review will focus on the effector cell mechanisms in ITP and highlight the defective immunosuppressive axis that appears responsible for this platelet-specific immune hyperreactivity.
Collapse
Affiliation(s)
- Qizhao Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Geneviève Marcoux
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Yuefen Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Li Guo
- Bloodworks Northwest Research Institute, Seattle, USA; Division of Hematology and Oncology, University of Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | | | - Drew Provan
- Department of Haematology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
23
|
Tao Y, Jiang Z, Wang H, Li J, Li X, Ni J, Liu J, Xiang H, Guan C, Cao W, Li D, He K, Wang L, Hu J, Jin Y, Liao B, Zhang T, Wu X. Pseudokinase STK40 promotes T H1 and T H17 cell differentiation by targeting FOXO transcription factors. SCIENCE ADVANCES 2024; 10:eadp2919. [PMID: 39565845 PMCID: PMC11578171 DOI: 10.1126/sciadv.adp2919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Inappropriate CD4+ T helper (TH) cell differentiation leads to progression of inflammatory and autoimmune diseases, yet the regulatory mechanisms governing stability and activity of transcription factors controlling TH cell differentiation remain elusive. Here, we describe how pseudokinase serine threonine kinase 40 (STK40) facilitates TH1/TH17 differentiation under pathological conditions. STK40 in T cells is dispensable for immune homeostasis in resting mice. However, mice with T cell-specific deletion of STK40 exhibit attenuated symptoms of experimental autoimmune encephalomyelitis and colitis, accompanied by diminished TH1 and TH17 cell differentiation. Mechanistically, STK40 facilitates K48-linked polyubiquitination and proteasomal degradation of FOXO1/4 through promoting their interaction with E3 ligase COP1. Inhibition of FOXO4 or FOXO1, respectively, restores differentiation potential of STK40-deficient TH1/TH17 cells. Together, our data suggest a crucial role of STK40 in TH1 and TH17 cell differentiation, thereby enabling better understanding of the molecular regulatory network of CD4+ T cell differentiation and providing effective targets for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yuexiao Tao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyan Jiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huizi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongrui Xiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Guan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongyang Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke He
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Hu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Liao
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Ohara D, Takeuchi Y, Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell Mol Immunol 2024; 21:1183-1200. [PMID: 39379604 PMCID: PMC11528014 DOI: 10.1038/s41423-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- ImmunoSensation Cluster of Excellence, University of Bonn, Bonn, Germany.
| |
Collapse
|
25
|
Dos Santos Dias L, Lionakis MS. IL-17: A Critical Cytokine for Defense against Oral Candidiasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1049-1051. [PMID: 39374468 DOI: 10.4049/jimmunol.2400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
This Pillars of Immunology article is a commentary on "Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis," a pivotal article written by H. R. Conti, F. Shen, N. Nayyar, E. Stocum, J. N. Sun, M. J. Lindemann, A. W. Ho, J. H. Hai, J. J . Yu, J. W. Jung, S. G. Filler, P. Masso-Welch, M. Edgerton, and S. L. Gaffen, and published in The Journal of Experimental Medicine in 2009. https://doi.org/10.1084/jem.20081463.
Collapse
Affiliation(s)
- Lucas Dos Santos Dias
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
26
|
Złotkowska D, Markiewicz LH, Ogrodowczyk AM, Wróblewska B, Wasilewska E. Enhanced Effect of β-Lactoglobulin Immunization in Mice with Mild Intestinal Deterioration Caused by Low-Dose Dextran Sulphate Sodium: A New Experimental Approach to Allergy Studies. Nutrients 2024; 16:3430. [PMID: 39458426 PMCID: PMC11510979 DOI: 10.3390/nu16203430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cow's milk allergy is one of the most common food allergies in children, and its pathomechanism is still under investigation. Recently, an increasing number of studies have linked food allergy to intestinal barrier dysfunction. The present study aimed to investigate changes in the intestinal microenvironment during the development of β-lactoglobulin (β-lg) allergy under conditions of early intestinal dysfunction. METHODS BALB/c mice received intraperitoneal β-lg with Freund's adjuvant, followed by oral β-lg while receiving dextran sulphate sodium salt (DSS) in their drinking water (0.2% w/v). The immunized group without DSS and the groups receiving saline, oral β-lg, or DSS served as controls. RESULTS The study showed that the immunization effect was greater in mice with mild intestinal barrier dysfunction. Although DSS did not affect the mice's humoral response to β-lg, in combination with β-lg, it significantly altered their cellular response, affecting the induction and distribution of T cells in the inductive and peripheral tissues and the activation of immune mediators. Administration of β-lg to sensitized mice receiving DSS increased disease activity index (DAI) scores and pro-inflammatory cytokine activity, altered the distribution of claudins and zonulin 1 (ZO-1) in the colonic tissue, and negatively affected the balance and activity of the gut microbiota. CONCLUSIONS The research model used appears attractive for studying food allergen sensitization, particularly in relation to the initial events leading to mucosal inflammation and the development of food hypersensitivity.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| |
Collapse
|
27
|
Su QY, Gao HY, Duan YR, Luo J, Wang WZ, Qiao XC, Zhang SX. The immunologic role of IL-23 in psoriatic arthritis: a potential therapeutic target. Expert Opin Biol Ther 2024; 24:1119-1132. [PMID: 39230202 DOI: 10.1080/14712598.2024.2401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a debilitating chronic condition characterized by inflammation of the joints, bones, enthesis, and skin. The pivotal role of interleukin-23 (IL-23) in the pathogenesis of PsA has become increasingly evident. This proinflammatory cytokine is markedly elevated in patients with PsA, suggesting its potential as a therapeutic target. Consequently, IL-23 inhibitors have emerged as promising first-line biologic treatments for PsA. AREAS COVERED This review delves into the immunopathogenic mechanisms of IL-23 at the cellular and molecular levels in PsA. Furthermore, it provides the recent efficacy and safety profiles of IL-23 inhibitors. We conducted a literature search in PubMed for the following terms: 'IL-23 and psoriatic arthritis,' 'Ustekinumab,' 'Guselkumab,' 'Risankizumab,' and 'Tildrakizumab.' In addition, we retrieved clinical trials involving IL-23 inhibitors registered in ClinicalTrials.gov, EudraCT, and ICTRP. EXPERT OPINION Despite the promising outcomes observed with IL-23 inhibitors, several challenges persist. The long-term effects of these agents require further investigation through prospective studies, and their limited accessibility worldwide necessitates urgent attention. Additionally, ongoing research is warranted to explore other potential drug targets within the IL-23/IL-23 R axis. The development of reliable biomarkers could greatly enhance early detection, tailored management strategies, and personalized treatment approaches for patients with PsA.
Collapse
Affiliation(s)
- Qin-Yi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Heng-Yan Gao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Yue-Ru Duan
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Jing Luo
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Wei-Ze Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Xi-Chao Qiao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi medical university, Taiyuan, China
| |
Collapse
|
28
|
Meesilpavikkai K, Zhou Z, Kaikaew K, Phakham S, van der Spek PJ, Swagemakers S, Venter DJ, de Bie M, Schrijver B, Schliehe C, Kaiser F, Dalm VASH, van Hagen PM, Hirankarn N, IJspeert H, Dik WA. A patient-based murine model recapitulates human STAT3 gain-of-function syndrome. Clin Immunol 2024; 266:110312. [PMID: 39019339 DOI: 10.1016/j.clim.2024.110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
STAT3 gain-of-function (GOF) variants results in a heterogeneous clinical syndrome characterized by early onset immunodeficiency, multi-organ autoimmunity, and lymphoproliferation. While 191 documented cases with STAT3 GOF variants have been reported, the impact of individual variants on immune regulation and the broad clinical spectrum remains unclear. We developed a Stat3p.L387R mouse model, mirroring a variant identified in a family exhibiting common STAT3 GOF symptoms, and rare phenotypes including pulmonary hypertension and retinal vasculitis. In vitro experiments revealed increased STAT3 phosphorylation, nuclear migration, and DNA binding of the variant. Our Stat3p.L387R model displayed similar traits from previous Stat3GOF strains, such as splenomegaly and lymphadenopathy. Notably, Stat3p.L387R/+ mice exhibited heightened embryonic lethality compared to prior Stat3GOF/+ models and ocular abnormalities were observed. This research underscores the variant-specific pathology in Stat3p.L387R/+ mice, highlighting the ability to recapitulate human STAT3 GOF syndrome in patient-specific transgenic murine models. Additionally, such models could facilitate tailored treatment development.
Collapse
Affiliation(s)
- Kornvalee Meesilpavikkai
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Zijun Zhou
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kasiphak Kaikaew
- Center of Excellence in Alternative and Complementary Medicine of Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suphattra Phakham
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Deon J Venter
- Department of Pathology, Mater Health Services, Brisbane, Queensland, Australia
| | - Maaike de Bie
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christopher Schliehe
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fabian Kaiser
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - P Martin van Hagen
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Hanna IJspeert
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
29
|
Fesneau O, Thevin V, Pinet V, Goldsmith C, Vieille B, M'Homa Soudja S, Lattanzio R, Hahne M, Dardalhon V, Hernandez-Vargas H, Benech N, Marie JC. An intestinal T H17 cell-derived subset can initiate cancer. Nat Immunol 2024; 25:1637-1649. [PMID: 39060651 PMCID: PMC11362008 DOI: 10.1038/s41590-024-01909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Approximately 25% of cancers are preceded by chronic inflammation that occurs at the site of tumor development. However, whether this multifactorial oncogenic process, which commonly occurs in the intestines, can be initiated by a specific immune cell population is unclear. Here, we show that an intestinal T cell subset, derived from interleukin-17 (IL-17)-producing helper T (TH17) cells, induces the spontaneous transformation of the intestinal epithelium. This subset produces inflammatory cytokines, and its tumorigenic potential is not dependent on IL-17 production but on the transcription factors KLF6 and T-BET and interferon-γ. The development of this cell type is inhibited by transforming growth factor-β1 (TGFβ1) produced by intestinal epithelial cells. TGFβ signaling acts on the pretumorigenic TH17 cell subset, preventing its progression to the tumorigenic stage by inhibiting KLF6-dependent T-BET expression. This study therefore identifies an intestinal T cell subset initiating cancer.
Collapse
Affiliation(s)
- Olivier Fesneau
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Valentin Thevin
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Valérie Pinet
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Chloe Goldsmith
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Baptiste Vieille
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Saïdi M'Homa Soudja
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Nicolas Benech
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
- Hospices Civils de Lyon, Service d'Hépato-Gastroentérologie, Croix Rousse Hospital, Lyon, France
| | - Julien C Marie
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer, Lyon, France.
| |
Collapse
|
30
|
Hong SM, Moon W. [Old and New Biologics and Small Molecules in Inflammatory Bowel Disease: Anti-interleukins]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 84:65-81. [PMID: 39176462 DOI: 10.4166/kjg.2024.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disease of the gastrointestinal tract. The introduction of biologics, particularly anti-interleukin (IL) agents, has revolutionized IBD treatment. This review summarizes the role of ILs in IBD pathophysiology and describes the efficacy and positioning of anti-IL therapies. We discuss the functions of key ILs in IBD and their potential as therapeutic targets. The review then discusses anti-IL therapies, focusing primarily on ustekinumab (anti-IL-12/23), risankizumab (anti-IL-23), and mirikizumab (anti-IL-23). Clinical trial data demonstrate their efficacy in inducing and maintaining remission in Crohn's disease and ulcerative colitis. The safety profiles of these agents are generally favorable. However, long-term safety data for newer agents are still limited. The review also briefly discusses emerging therapies such as guselkumab and brazikumab. Network meta-analyses suggest that anti-IL therapies perform well compared to other biological agents. These agents may be considered first- or second-line therapies for many patients, especially those with comorbidities or safety concerns. Anti-IL therapies represent a significant advancement in IBD treatment, offering effective and relatively safe options for patients with moderate to severe disease.
Collapse
Affiliation(s)
- Seung Min Hong
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Won Moon
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
31
|
Zaigham SB, Paeng DG. Effects of Mucuna pruriens (L.) DC. and Levodopa in Improving Parkinson's Disease in Rotenone Intoxicated Mice. Curr Issues Mol Biol 2024; 46:9234-9244. [PMID: 39194762 DOI: 10.3390/cimb46080545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Parkinson's disease (PD) is the second leading neurodegenerative disease after Alzheimer's disease. Mucuna pruriens (L.) DC. (MP) is a plant that contains Levodopa (L-DOPA) and has been known to improve the symptoms of PD. In this preliminary study, we investigated the anti-parkinsonian potential of MP to compare the effects of L-DOPA. We first developed an in vivo model of the PD in C57BL/6 male mice using rotenone. A total of twelve mice were used for this experiment. Nine mice were injected with rotenone (28 mg/kg) daily for 28 days. The mice experiments were performed to validate the effectiveness of MP to treat PD. Synthetic L-DOPA in a ratio of 1:20 with MP was used as MP contains 5% L-DOPA by weight in it. MP and L-DOPA were injected for 19 days on a daily basis. Cognitive function was evaluated using beam balance and olfactory tests. Serum analysis was performed using serum enzyme-linked immunosorbent assay (ELISA) analysis test. IL-12, IL-6, and TGF-β 1 were evaluated to validate the PD inducement and treatment. The levels of IL-12, IL-6, and TGF-β1 (p < 0.0001) in the PD mice group were significantly higher than those in the control group. The PD mice also showed higher latencies in beam balance and olfactory tests (p < 0.0001) compared to the control group. Both MP and L-DOPA-treated groups showed alleviation in latencies in beam balance and olfactory tests and decreased neuroinflammation in ELISA analysis (p < 0.001). The results treated by MP and L-DOPA showed insignificant differences in their values (p > 0.05). This proved that the MP and L-DOPA had similar effects in improving the symptoms of PD when used in the ratio of 1:20. Furthermore, both MP and L-DOPA reduced the level of IL-6 and TGF-β1 in this study. It may be inferred that a reduction in the level of IL-6 and TGF-β1 eventually leads to a reduction in the Th17 cells. The pathogenic Th17 is thought to be present in virtually all chronic inflammatory disorders. This can be an interesting area of research in further understanding the immunological effect of MP in ameliorating PD symptoms.
Collapse
Affiliation(s)
- Sheher Bano Zaigham
- Department of Ocean System Engineering, Jeju National University, Jeju 63243, Republic of Korea
| | - Dong-Guk Paeng
- Department of Ocean System Engineering, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
32
|
Ashbaugh AM, Lyons DO, Keyser CM, Pullen NA. Unexpected Expression and Function of FcεRI in Immortalized Breast Cancer Cells: A Cautionary Null Study. Cells 2024; 13:1399. [PMID: 39195287 PMCID: PMC11352550 DOI: 10.3390/cells13161399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
The high-affinity IgE receptor, FcεRI, is typically associated with type 2 effectors such as mast cells (MC). The relatively unique expression profile of FcεRI and accumulating evidence from pre-clinical and clinical settings, such as MC interactions with tumors, have led us to study MCs as a potential therapeutic target in breast cancer. Our work identified MCs interacting with tumor cells at primary sites using the 4T1 (BALB/c) adenocarcinoma model in vivo. However, this analysis was complicated by a surprising finding that the tumor cells intrinsically and strongly expressed FcεRI. We further studied the expression and function of FcεRI in breast cancer cells in vitro. The 4T1 cells expressed FcεRI to a level similar to mouse bone marrow-derived MC (BMMC). Additionally, two established breast cancer cultures derived from human T-47D cells, one estrogen-dependent (E3) and the other estrogen-withdrawn (EWD8), also expressed FcεRI with EWD8 cells showing the greatest abundance. Functional analyses indicated that IgE-mediated antigen stimulation did not elicit classic Ca2+ flux in breast cancer cells as seen in the respective species' MCs; however, FcεRI crosslinking could stimulate IL-6 production from the T-47D derivatives. Preliminary analysis of primary breast cancer biopsy datasets using R2: Genomics Analysis and Visualization Platform was discordant with our in vivo model and in vitro observations. Indeed, FcεRI mRNA abundance declined in metastatic breast cancers compared to non-cancerous breast tissue. Altogether, we report a previously unidentified and immunologically substantive difference between breast cancer models and human primary tumors. Investigators pursuing FcεRI-relevant therapeutics in this context should be aware of this translational barrier.
Collapse
Affiliation(s)
- Alexandria M. Ashbaugh
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, USA;
| | - David O. Lyons
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA; (D.O.L.); (C.M.K.)
| | - Carianna M. Keyser
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA; (D.O.L.); (C.M.K.)
| | - Nicholas A. Pullen
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA; (D.O.L.); (C.M.K.)
| |
Collapse
|
33
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
34
|
Bonetti L, Horkova V, Grusdat M, Longworth J, Guerra L, Kurniawan H, Franchina DG, Soriano-Baguet L, Binsfeld C, Verschueren C, Spath S, Ewen A, Koncina E, Gérardy JJ, Kobayashi T, Dostert C, Farinelle S, Härm J, Fan YT, Chen Y, Harris IS, Lang PA, Vasiliou V, Waisman A, Letellier E, Becher B, Mittelbronn M, Brenner D. A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation. Cell Metab 2024; 36:1726-1744.e10. [PMID: 38986617 DOI: 10.1016/j.cmet.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.
Collapse
Affiliation(s)
- Lynn Bonetti
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Veronika Horkova
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Davide G Franchina
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carole Binsfeld
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sabine Spath
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland; Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Anouk Ewen
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
| | - Takumi Kobayashi
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Janika Härm
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Yu-Tong Fan
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Isaac S Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
35
|
Kalim UU, Biradar R, Junttila S, Khan MM, Tripathi S, Khan MH, Smolander J, Kanduri K, Envall T, Laiho A, Marson A, Rasool O, Elo LL, Lahesmaa R. A proximal enhancer regulates RORA expression during early human Th17 cell differentiation. Clin Immunol 2024; 264:110261. [PMID: 38788884 DOI: 10.1016/j.clim.2024.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Gene regulatory elements, such as enhancers, greatly influence cell identity by tuning the transcriptional activity of specific cell types. Dynamics of enhancer landscape during early human Th17 cell differentiation remains incompletely understood. Leveraging ATAC-seq-based profiling of chromatin accessibility and comprehensive analysis of key histone marks, we identified a repertoire of enhancers that potentially exert control over the fate specification of Th17 cells. We found 23 SNPs associated with autoimmune diseases within Th17-enhancers that precisely overlapped with the binding sites of transcription factors actively engaged in T-cell functions. Among the Th17-specific enhancers, we identified an enhancer in the intron of RORA and demonstrated that this enhancer positively regulates RORA transcription. Moreover, CRISPR-Cas9-mediated deletion of a transcription factor binding site-rich region within the identified RORA enhancer confirmed its role in regulating RORA transcription. These findings provide insights into the potential mechanism by which the RORA enhancer orchestrates Th17 differentiation.
Collapse
Affiliation(s)
- Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Rahul Biradar
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Subhash Tripathi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Meraj Hasan Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johannes Smolander
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Kartiek Kanduri
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tapio Envall
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
36
|
Friedmann J, Schuster A, Reichelt-Wurm S, Banas B, Bergler T, Steines L. Serum IL-6 predicts risk of kidney transplant failure independently of immunological risk. Transpl Immunol 2024; 84:102043. [PMID: 38548029 DOI: 10.1016/j.trim.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Interleukin-6 (IL-6) is an important immune mediator and a target for novel antibody therapies. In this study, we aimed to determine whether serum IL-6 levels are associated with immunological risk, allograft rejection and outcomes in kidney transplant (Ktx) patients. We retrospectively analyzed the data of 104 patients who underwent Ktx at our center between 2011 and 2015. The patients were divided into high- and low-risk groups (n = 52 per group) based on panel reactive antibody (PRA) percentage ≥ 35%, the existence of pre-Ktx donor-specific antibodies (DSA), or a previous transplant. IL-6 concentrations were measured before and at 3 months, 12 months, and 3 years after Ktx. Serum IL-6 levels tended to be higher in high-risk patients than in low-risk patients prior to Ktx and at 12 months after Ktx; however, the difference did not reach statistical significance (pre-Ktx, high-risk: 1.995 ± 2.79 pg/ml vs. low-risk: 1.43 ± 1.76 pg/ml, p = 0.051; 12 mo. high-risk: 1.16 ± 1.87 pg/ml vs. low-risk: 0.78 ± 1.13 pg/ml, p = 0.067). IL-6 levels were correlated with the types (no rejection, T cell mediated rejection (TCMR), antibody-mediated rejection (ABMR), or both) and time (<1 year vs. >1 year after Ktx) of rejection, as well as patient and graft survival. Patients with both TCMR and ABMR had significantly higher IL-6 levels at 3 months (14.1 ± 25.2 pg/ml) than patients with ABMR (3.4 ± 4.8 pg/ml, p = 0.017), with TCMR (1.7 ± 1.3 pg/ml, p < 0.001), and without rejection (1.7 ± 1.4 pg/ml, p < 0.001). Three years after Ktx, patients with AMBR had significantly higher IL-6 levels (5.30 ± 7.66 pg/ml) than patients with TCMR (1.81 ± 1.61 pg/ml, p = 0.009) and patients without rejection (1.19 ± 0.95 pg/ml; p = 0.001). Moreover, three years after Ktx IL-6 levels were significantly higher in patients with late rejections (3.5 ± 5.4 pg/ml) than those without rejections (1.2 ± 1.0 pg/ml) (p = 0.006). The risk of death-censored graft failure was significantly increased in patients with elevated IL-6 levels at 12 months (IL-6 level > 1.396 pg/ml, HR 4.61, p = 0.007) and 3 years (IL-6 level > 1.976 pg/ml, HR 6.75, p = 0.003), but elevated IL-6 levels were not associated with a higher risk of death. Overall, our study highlights IL-6 as a risk factor for allograft failure and confirms that IL-6 levels are higher in patients developing ABMR compared to TCMR alone or no rejection.
Collapse
Affiliation(s)
- Julius Friedmann
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | | | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany; Department of Nephrology, Hospital Ingolstadt, Ingolstadt, Germany
| | - Louisa Steines
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
37
|
Ahmed A, Joseph AM, Zhou J, Horn V, Uddin J, Lyu M, Goc J, Sockolow RE, Wing JB, Vivier E, Sakaguchi S, Sonnenberg GF. CTLA-4-expressing ILC3s restrain interleukin-23-mediated inflammation. Nature 2024; 630:976-983. [PMID: 38867048 PMCID: PMC11298788 DOI: 10.1038/s41586-024-07537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Interleukin (IL-)23 is a major mediator and therapeutic target in chronic inflammatory diseases that also elicits tissue protection in the intestine at homeostasis or following acute infection1-4. However, the mechanisms that shape these beneficial versus pathological outcomes remain poorly understood. To address this gap in knowledge, we performed single-cell RNA sequencing on all IL-23 receptor-expressing cells in the intestine and their acute response to IL-23, revealing a dominance of T cells and group 3 innate lymphoid cells (ILC3s). Unexpectedly, we identified potent upregulation of the immunoregulatory checkpoint molecule cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) on ILC3s. This pathway was activated by gut microbes and IL-23 in a FOXO1- and STAT3-dependent manner. Mice lacking CTLA-4 on ILC3s exhibited reduced regulatory T cells, elevated inflammatory T cells and more-severe intestinal inflammation. IL-23 induction of CTLA-4+ ILC3s was necessary and sufficient to reduce co-stimulatory molecules and increase PD-L1 bioavailability on intestinal myeloid cells. Finally, human ILC3s upregulated CTLA-4 in response to IL-23 or gut inflammation and correlated with immunoregulation in inflammatory bowel disease. These results reveal ILC3-intrinsic CTLA-4 as an essential checkpoint that restrains the pathological outcomes of IL-23, suggesting that disruption of these lymphocytes, which occurs in inflammatory bowel disease5-7, contributes to chronic inflammation.
Collapse
Affiliation(s)
- Anees Ahmed
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ann M Joseph
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jordan Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Veronika Horn
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jazib Uddin
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mengze Lyu
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Goc
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Robbyn E Sockolow
- Department of Pediatrics, Division of Gastroenterology, Hepatology, & Nutrition, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - James B Wing
- Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
- Laboratory of Human Single Cell Immunology, WPI IFReC, Osaka University, Suita, Japan
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
- Paris Saclay Cancer Cluster, Villejuif, France
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
38
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
39
|
Na J, Engwerda C. The role of CD4 + T cells in visceral leishmaniasis; new and emerging roles for NKG7 and TGFβ. Front Cell Infect Microbiol 2024; 14:1414493. [PMID: 38881737 PMCID: PMC11176485 DOI: 10.3389/fcimb.2024.1414493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Visceral leishmaniasis is a potentially devastating neglected tropical disease caused by the protozoan parasites Leishmania donovani and L. infantum (chagasi). These parasites reside in tissue macrophages and survive by deploying a number of mechanisms aimed at subverting the host immune response. CD4+ T cells play an important role in controlling Leishmania parasites by providing help in the form of pro-inflammatory cytokines to activate microbiocidal pathways in infected macrophages. However, because these cytokines can also cause tissue damage if over-produced, regulatory immune responses develop, and the balance between pro-inflammatory and regulatory CD4+ T cells responses determines the outcomes of infection. Past studies have identified important roles for pro-inflammatory cytokines such as IFNγ and TNF, as well as regulatory co-inhibitory receptors and the potent anti-inflammatory cytokine IL-10. More recently, other immunoregulatory molecules have been identified that play important roles in CD4+ T cell responses during VL. In this review, we will discuss recent findings about two of these molecules; the NK cell granule protein Nkg7 and the anti-inflammatory cytokine TGFβ, and describe how they impact CD4+ T cell functions and immune responses during visceral leishmaniasis.
Collapse
Affiliation(s)
- Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
40
|
Hosoki K, Govindhan A, Knight JM, Sur S. Allosteric inhibition of CXCR1 and CXCR2 abrogates Th2/Th17-associated Allergic Lung Inflammation in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593638. [PMID: 38798651 PMCID: PMC11118468 DOI: 10.1101/2024.05.13.593638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background IL4, IL5, IL13, and IL17-producing CD4 T helper 2 (Th2)-cells and IL17-producing CD4 T helper 17 (Th17)-cells contribute to chronic eosinophilic and neutrophilic airway inflammation in asthma and allergic airway inflammation. Chemokines and their receptors are upregulated in Th2/Th17-mediated inflammation. However, the ability of CXCR1 and CXCR2 modulate Th2 and Th17-cell-mediated allergic lung inflammation has not been reported. Methods Mice sensitized and challenged with cat dander extract (CDE) mount a vigorous Th2-Th17-mediated allergic lung inflammation. Allosteric inhibitor of CXCR1 and CXCR2, ladarixin was orally administered in this model. The ability of ladarixin to modulate allergen-challenge induced recruitment of CXCR1 and CXCR2-expressing Th2 and Th17-cells and allergic lung inflammation were examined. Results Allergen challenge in sensitized mice increased mRNA expression levels of Il4, Il5, Il13, Il6, Il1β, Tgfβ1, Il17, Il23, Gata3, and Rorc , and induced allergic lung inflammation characterized by recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils. Allosteric inhibition of CXCR1 and CXCR2 vigorously blocked each of these pro-inflammatory effects of allergen challenge. CXCL chemokines induced a CXCR1 and CXCR2-dependent proliferation of IL4, IL5, IL13, and IL17 expressing T-cells. Conclusion Allosteric inhibition of CXCR1 and CXCR2 abrogates blocks recruitment of CXCR1- and CXCR2-expressing Th2-cells, Th17-cells, neutrophils, and eosinophils in this mouse model of allergic lung inflammation. We suggest that the ability of allosteric inhibition of CXCR1 and CXCR2 to abrogate Th2 and Th17-mediated allergic inflammation should be investigated in humans.
Collapse
|
41
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
42
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. WIREs Mech Dis 2024; 16:e1639. [PMID: 38146626 DOI: 10.1002/wsbm.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
43
|
Zindl CL, Wilson CG, Chadha AS, Duck LW, Cai B, Harbour SN, Nagaoka-Kamata Y, Hatton RD, Gao M, Figge DA, Weaver CT. Distal colonocytes targeted by C. rodentium recruit T-cell help for barrier defence. Nature 2024; 629:669-678. [PMID: 38600382 PMCID: PMC11096101 DOI: 10.1038/s41586-024-07288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Interleukin 22 (IL-22) has a non-redundant role in immune defence of the intestinal barrier1-3. T cells, but not innate lymphoid cells, have an indispensable role in sustaining the IL-22 signalling that is required for the protection of colonic crypts against invasion during infection by the enteropathogen Citrobacter rodentium4 (Cr). However, the intestinal epithelial cell (IEC) subsets targeted by T cell-derived IL-22, and how T cell-derived IL-22 sustains activation in IECs, remain undefined. Here we identify a subset of absorptive IECs in the mid-distal colon that are specifically targeted by Cr and are differentially responsive to IL-22 signalling. Major histocompatibility complex class II (MHCII) expression by these colonocytes was required to elicit sustained IL-22 signalling from Cr-specific T cells, which was required to restrain Cr invasion. Our findings explain the basis for the regionalization of the host response to Cr and demonstrate that epithelial cells must elicit MHCII-dependent help from IL-22-producing T cells to orchestrate immune protection in the intestine.
Collapse
Affiliation(s)
- Carlene L Zindl
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - C Garrett Wilson
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Awalpreet S Chadha
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lennard W Duck
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baiyi Cai
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stacey N Harbour
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yoshiko Nagaoka-Kamata
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robin D Hatton
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Gao
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David A Figge
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey T Weaver
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
44
|
Abimannan T, Parthibane V, Le SH, Vijaykrishna N, Fox SD, Karim B, Kunduri G, Blankenberg D, Andresson T, Bamba T, Acharya U, Acharya JK. Sphingolipid biosynthesis is essential for metabolic rewiring during T H17 cell differentiation. SCIENCE ADVANCES 2024; 10:eadk1045. [PMID: 38657065 PMCID: PMC11042737 DOI: 10.1126/sciadv.adk1045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
T helper 17 (TH17) cells are implicated in autoimmune diseases, and several metabolic processes are shown to be important for their development and function. In this study, we report an essential role for sphingolipids synthesized through the de novo pathway in TH17 cell development. Deficiency of SPTLC1, a major subunit of serine palmitoyl transferase enzyme complex that catalyzes the first and rate-limiting step of de novo sphingolipid synthesis, impaired glycolysis in differentiating TH17 cells by increasing intracellular reactive oxygen species (ROS) through enhancement of nicotinamide adenine dinucleotide phosphate oxidase 2 activity. Increased ROS leads to impaired activation of mammalian target of rapamycin C1 and reduced expression of hypoxia-inducible factor 1-alpha and c-Myc-induced glycolytic genes. SPTLCI deficiency protected mice from developing experimental autoimmune encephalomyelitis and experimental T cell transfer colitis. Our results thus show a critical role for de novo sphingolipid biosynthetic pathway in shaping adaptive immune responses with implications in autoimmune diseases.
Collapse
Affiliation(s)
| | - Velayoudame Parthibane
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Si-Hung Le
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Nagampalli Vijaykrishna
- Genomic Medicine Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen D. Fox
- Mass Spectrometry Group, National Cancer Institute, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Daniel Blankenberg
- Genomic Medicine Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Usha Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Jairaj K. Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
45
|
Ishibashi T, Inagaki T, Okazawa M, Yamagishi A, Ohta-Ogo K, Asano R, Masaki T, Kotani Y, Ding X, Chikaishi-Kirino T, Maedera N, Shirai M, Hatakeyama K, Kubota Y, Kishimoto T, Nakaoka Y. IL-6/gp130 signaling in CD4 + T cells drives the pathogenesis of pulmonary hypertension. Proc Natl Acad Sci U S A 2024; 121:e2315123121. [PMID: 38602915 PMCID: PMC11032454 DOI: 10.1073/pnas.2315123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Tomohiko Ishibashi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Makoto Okazawa
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Akiko Yamagishi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Keiko Ohta-Ogo
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Ryotaro Asano
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Yui Kotani
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Xin Ding
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Tomomi Chikaishi-Kirino
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Noriko Maedera
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Tadamitsu Kishimoto
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka565-0871, Japan
- Department of Molecular Imaging in Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka565-0871, Japan
| |
Collapse
|
46
|
Krueger JG, Eyerich K, Kuchroo VK, Ritchlin CT, Abreu MT, Elloso MM, Fourie A, Fakharzadeh S, Sherlock JP, Yang YW, Cua DJ, McInnes IB. IL-23 past, present, and future: a roadmap to advancing IL-23 science and therapy. Front Immunol 2024; 15:1331217. [PMID: 38686385 PMCID: PMC11056518 DOI: 10.3389/fimmu.2024.1331217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Interleukin (IL)-23, an IL-12 cytokine family member, is a hierarchically dominant regulatory cytokine in a cluster of immune-mediated inflammatory diseases (IMIDs), including psoriasis, psoriatic arthritis, and inflammatory bowel disease. We review IL-23 biology, IL-23 signaling in IMIDs, and the effect of IL-23 inhibition in treating these diseases. We propose studies to advance IL-23 biology and unravel differences in response to anti-IL-23 therapy. Experimental evidence generated from these investigations could establish a novel molecular ontology centered around IL-23-driven diseases, improve upon current approaches to treating IMIDs with IL-23 inhibition, and ultimately facilitate optimal identification of patients and, thereby, outcomes.
Collapse
Affiliation(s)
- James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Kilian Eyerich
- Department of Medicine, Division of Dermatology and Venereology, Karolinska Institute, Stockholm, Sweden
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Christopher T. Ritchlin
- Allergy, Immunology & Rheumatology Division, Center for Musculoskeletal Research, University of Rochester Medical School, Rochester, NY, United States
| | - Maria T. Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Leonard Miller School of Medicine, Miami, FL, United States
| | | | - Anne Fourie
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Steven Fakharzadeh
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Jonathan P. Sherlock
- Janssen Research & Development, LLC, Spring House, PA, United States
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ya-Wen Yang
- Immunology Global Medical Affairs, Janssen Pharmaceutical Companies of Johnson & Johnson, Horsham, PA, United States
| | - Daniel J. Cua
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - Iain B. McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
47
|
Chen W, Jin B, Cheng C, Peng H, Zhang X, Tan W, Tang R, Lian X, Diao H, Luo N, Li X, Fan J, Shi J, Yin C, Wang J, Peng S, Yu L, Li J, Wu RQ, Kuang DM, Shi GP, Zhou Y, Wang F, Jiang X. Single-cell profiling reveals kidney CD163 + dendritic cell participation in human lupus nephritis. Ann Rheum Dis 2024; 83:608-623. [PMID: 38290829 DOI: 10.1136/ard-2023-224788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVES The current work aimed to provide a comprehensive single-cell landscape of lupus nephritis (LN) kidneys, including immune and non-immune cells, identify disease-associated cell populations and unravel their participation within the kidney microenvironment. METHODS Single-cell RNA and T cell receptor sequencing were performed on renal biopsy tissues from 40 patients with LN and 6 healthy donors as controls. Matched peripheral blood samples from seven LN patients were also sequenced. Multiplex immunohistochemical analysis was performed on an independent cohort of 60 patients and validated using flow cytometric characterisation of human kidney tissues and in vitro assays. RESULTS We uncovered a notable enrichment of CD163+ dendritic cells (DC3s) in LN kidneys, which exhibited a positive correlation with the severity of LN. In contrast to their counterparts in blood, DC3s in LN kidney displayed activated and highly proinflammatory phenotype. DC3s showed strong interactions with CD4+ T cells, contributing to intrarenal T cell clonal expansion, activation of CD4+ effector T cell and polarisation towards Th1/Th17. Injured proximal tubular epithelial cells (iPTECs) may orchestrate DC3 activation, adhesion and recruitment within the LN kidneys. In cultures, blood DC3s treated with iPTECs acquired distinct capabilities to polarise Th1/Th17 cells. Remarkably, the enumeration of kidney DC3s might be a potential biomarker for induction treatment response in LN patients. CONCLUSION The intricate interplay involving DC3s, T cells and tubular epithelial cells within kidneys may substantially contribute to LN pathogenesis. The enumeration of renal DC3 holds potential as a valuable stratification feature for guiding LN patient treatment decisions in clinical practice.
Collapse
Affiliation(s)
- Wei Chen
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Bei Jin
- Department of Pediatric Rheumatology and Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Cheng Cheng
- Department of Pediatric Rheumatology and Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Huajing Peng
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Xinxin Zhang
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Weiping Tan
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruihan Tang
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Xingji Lian
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Hui Diao
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Ning Luo
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Xiaoyan Li
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Jinjin Fan
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Jian Shi
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Changjun Yin
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Ji Wang
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Sui Peng
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Clinical Trials Unit, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Rui-Qi Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Zhou
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Fang Wang
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xiaoyun Jiang
- Department of Pediatric Rheumatology and Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Wang J, Gao Y, Yuan Y, Wang H, Wang Z, Zhang X. Th17 Cells and IL-17A in Ischemic Stroke. Mol Neurobiol 2024; 61:2411-2429. [PMID: 37884768 DOI: 10.1007/s12035-023-03723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The neurological injury and repair mechanisms after ischemic stroke are complex. The inflammatory response is present throughout stroke onset and functional recovery, in which CD4 + T helper(Th) cells play a non-negligible role. Th17 cells, differentiated from CD4 + Th cells, are regulated by various extracellular signals, transcription factors, RNA, and post-translational modifications. Th17 cells specifically produce interleukin-17A(IL-17A), which has been reported to have pro-inflammatory effects in many studies. Recently, experimental researches showed that Th17 cells and IL-17A play an important role in promoting stroke pathogenesis (atherosclerosis), inducing secondary damage after stroke, and regulating post-stroke repair. This makes Th17 and IL-17A a possible target for the treatment of stroke. In this paper, we review the mechanism of action of Th17 cells and IL-17A in ischemic stroke and the progress of research on targeted therapy.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Yuxiao Gao
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China.
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
49
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
50
|
Mills JL, Lepletier A, Ozberk V, Dooley J, Kaden J, Calcutt A, Huo Y, Hicks A, Zaid A, Good MF, Pandey M. Disruption of IL-17-mediated immunosurveillance in the respiratory mucosa results in invasive Streptococcus pyogenes infection. Front Immunol 2024; 15:1351777. [PMID: 38576622 PMCID: PMC10991685 DOI: 10.3389/fimmu.2024.1351777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Streptococcus pyogenes is a Gram-positive pathogen that causes a significant global burden of skin pyoderma and pharyngitis. In some cases, infection can lead to severe invasive streptococcal diseases. Previous studies have shown that IL-17 deficiency in mice (IL-17-/-) can reduce S. pyogenes clearance from the mucosal surfaces. However, the effect of IL-17 on the development of severe invasive streptococcal disease has not yet been assessed. Methods Here, we modeled single or repeated non-lethal intranasal (IN) S. pyogenes M1 strain infections in immunocompetent and IL-17-/- mice to assess bacterial colonization following a final IN or skin challenge. Results Immunocompetent mice that received a single S. pyogenes infection showed long-lasting immunity to subsequent IN infection, and no bacteria were detected in the lymph nodes or spleens. However, in the absence of IL-17, a single IN infection resulted in dissemination of S. pyogenes to the lymphoid organs, which was accentuated by repeated IN infections. In contrast to what was observed in the respiratory mucosa, skin immunity did not correlate with the systemic levels of IL-17. Instead, it was found to be associated with the activation of germinal center responses and accumulation of neutrophils in the spleen. Discussion Our results demonstrated that IL-17 plays a critical role in preventing invasive disease following S. pyogenes infection of the respiratory tract.
Collapse
Affiliation(s)
- Jamie-Lee Mills
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ailin Lepletier
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jessica Dooley
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jacqualine Kaden
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Yongbao Huo
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Allan Hicks
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Ali Zaid
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|