1
|
Dolskii A, dos Santos SAA, Andrake M, Franco-Barraza J, Dunbrack RL, Cukierman E. Exploring the potential role of palladin in modulating human CAF/ECM functional units. Cytoskeleton (Hoboken) 2025; 82:175-185. [PMID: 39239855 PMCID: PMC11882928 DOI: 10.1002/cm.21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Fibroblasts, crucial for maintaining tissue homeostasis, significantly shape the tumor microenvironment (TME). In pancreatic cancer, a highly aggressive malignancy, cancer-associated fibroblast (CAF)/extracellular matrix (ECM) units dominate the TME, influencing tumor initiation, progression, and treatment responses. Palladin, an actin-associated protein, is vital for fibroblast structural integrity and activation, playing a key role in CAF/ECM functionality. Palladin interacts with cytoskeletal proteins such as alpha-actinin (α-Act) and can therefore regulate other proteins like syndecans, modulating cytoskeletal features, cell adhesion, integrin recycling, and signaling. In this review, we propose that targeting the palladin/α-Act/syndecan interaction network could modulate CAF/ECM units, potentially shifting the TME from a tumor-promoting to a tumor-suppressive state. In silico data and reported studies to suggest that stabilizing palladin-α-Act interactions, via excess palladin, influences syndecan functions; potentially modulating integrin endocytosis via syndecan engagement with protein kinase C alpha as opposed to syndecan binding to α-Act. This mechanism can then affect the distribution of active α5β1-integrin between the plasma membrane and known intracellular vesicular compartments, thereby influencing the tumor-suppressive versus tumor-promoting functions of CAF/ECM units. Understanding these interactions offers likely future therapeutic avenues for stroma normalization in pancreatic and other cancers, aiming to inhibit tumor progression and improve future treatment outcomes.
Collapse
Affiliation(s)
| | | | - Mark Andrake
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Roland L. Dunbrack
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| |
Collapse
|
2
|
Handschin C, Shalhoub H, Mazet A, Guyon C, Dusserre N, Boutet-Robinet E, Oliveira H, Guillermet-Guibert J. Biotechnological advances in 3D modeling of cancer initiation. Examples from pancreatic cancer research and beyond. Biofabrication 2025; 17:022008. [PMID: 40018875 DOI: 10.1088/1758-5090/adb51c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
In recent years, biofabrication technologies have garnered significant attention within the scientific community for their potential to create advancedin vitrocancer models. While these technologies have been predominantly applied to model advanced stages of cancer, there exists a pressing need to develop pertinent, reproducible, and sensitive 3D models that mimic cancer initiation lesions within their native tissue microenvironment. Such models hold profound relevance for comprehending the intricacies of cancer initiation, to devise novel strategies for early intervention, and/or to conduct sophisticated toxicology assessments of putative carcinogens. Here, we will explain the pivotal factors that must be faithfully recapitulated when constructing these models, with a specific focus on early pancreatic cancer lesions. By synthesizing the current state of research in this field, we will provide insights into recent advances and breakthroughs. Additionally, we will delineate the key technological and biological challenges that necessitate resolution in future endeavors, thereby paving the way for more accurate and insightfulin vitrocancer initiation models.
Collapse
Affiliation(s)
- C Handschin
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - H Shalhoub
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
| | - A Mazet
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - C Guyon
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - N Dusserre
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - E Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - H Oliveira
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - J Guillermet-Guibert
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| |
Collapse
|
3
|
Dieli R, Lioy R, Crispo F, Cascelli N, Martinelli M, Lerose R, Telesca D, Milella MR, Colella M, Loperte S, Mazzoccoli C. The Oncoprotein Mucin 1 in Pancreatic Cancer Onset and Progression: Potential Clinical Implications. Biomolecules 2025; 15:275. [PMID: 40001578 PMCID: PMC11853026 DOI: 10.3390/biom15020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy characterized by poor prognosis, therapeutic resistance, and frequent recurrence. Current therapeutic options for PDAC include surgery, radiotherapy, immunological and targeted approaches. However, all these therapies provide only a slight improvement in patient survival. Consequently, the discovery of novel specific targets is becoming a priority to develop more effective treatments for PDAC. Mucin 1 (MUC1), a transmembrane glycoprotein, is aberrantly glycosylated and frequently overexpressed in pancreatic cancer. Recent studies highlighted the role of this oncoprotein in pancreatic carcinogenesis and its involvement in the acquisition of typical aggressive features of PDAC, like local invasion, metastases, and drug resistance. This review explores the mechanisms by which MUC1 contributes to cancer onset and progression, with a focus on its potential role as a biomarker and novel therapeutic target for pancreatic adenocarcinoma treatment.
Collapse
Affiliation(s)
- Rosalia Dieli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Rosa Lioy
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Nicoletta Cascelli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Mara Martinelli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| | - Rosa Lerose
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.L.); (D.T.); (M.R.M.)
| | - Donatella Telesca
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.L.); (D.T.); (M.R.M.)
| | - Maria Rita Milella
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.L.); (D.T.); (M.R.M.)
| | - Marco Colella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Simona Loperte
- Institute of Methodologies for Environmental Analysis, National Research Council, 85050 Tito Scalo, Italy;
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (R.D.); (R.L.); (N.C.); (M.M.); (C.M.)
| |
Collapse
|
4
|
Althobaiti S, Parajuli P, Luong D, Sau S, Polin LA, Kim S, Ge Y, Iyer AK, Gavande NS. Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes. Nanomedicine (Lond) 2025; 20:155-166. [PMID: 39764733 PMCID: PMC11731328 DOI: 10.1080/17435889.2024.2446008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
AIM To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity. MATERIALS AND METHODS A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry. In vivo studies were performed using PDAC (Panc02) transplanted mice. Tumor tissue was analyzed by flow cytometry, and plasma cytokines and liver enzymes were analyzed by ELISA. RESULTS pHTANL-CD40a reduced tumor growth, enhanced tumor immune infiltration/activation, and enhanced survival compared to vehicle and free-CD40a. Importantly, pHTANL-CD40a treatment resulted in significantly lower systemic toxicity as indicated by unchanged body weight, minimal organ deformity, and reduced serum levels of liver enzyme alanine transaminase (ALT) and inflammatory cytokine IL-6. CONCLUSION pHTANL-CD40a is more effective than free CD40a in anti-tumor activity, especially in altering the TME immune landscape for a potential therapeutic benefit in combination with immunotherapy.
Collapse
Affiliation(s)
- Salma Althobaiti
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Prahlad Parajuli
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Duy Luong
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Samaresh Sau
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Lisa A. Polin
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Seongho Kim
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yubin Ge
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Arun K. Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Pan H, Zhang X, Zhu S, Zhu B, Wu D, Yan J, Guan X, Huang Y, Zhao Y, Yang Y, Guo Y. Piezo1 Mediates Glycolysis-Boosted Pancreatic Ductal Adenocarcinoma Chemoresistance within a Biomimetic Three-Dimensional Matrix Stiffness. ACS Biomater Sci Eng 2024; 10:7632-7646. [PMID: 39556518 DOI: 10.1021/acsbiomaterials.4c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a very low 5-year survival rate, which is partially attributed to chemoresistance. Although the regulation of chemoresistance through biochemical signaling is well-documented, the influence of three-dimensional (3D) matrix stiffness is poorly understood. In this study, gelatin methacrylate (GelMA) hydrogels were reconstructed with stiffnesses spanning the range from normal to cancerous PDAC tissues, which are termed as the soft group and stiff group. The PDAC cell lines (Mia-PaCa2 and CFPAC-1) encapsulated in the stiff group displayed a chemoresistance phenotype and were prominent against gemcitabine. RNA-sequencing and bioinformatics analysis indicated that glycolysis was apparently enriched in the stiff group versus the soft group, which was also validated through assays of glucose uptake, lactate production, and the expression of GLUT2, HK2, and LDHA. A rescue assay with 2-deoxy-d-glucose and N-acetylcysteine demonstrated that glycolysis is involved in chemoresistance. Furthermore, the expression of Piezo1 and the content of Ca2+ were elevated in the stiff group. The addition of Yoda1 (Piezo1 agonist) in the soft group promoted glycolysis, whereas in the stiff group, treatment with GsMTx4 (Piezo1 inhibitor) inhibited glycolysis, which showcased that Piezo1 participated in 3D matrix stiffness-induced glycolysis. Taken together, Piezo1-mediated glycolysis was involved in PDAC chemoresistance triggered by the 3D matrix stiffness. Our study sheds light on the mechanism underlying chemoresistance in PDAC from the perspective of 3D mechanical cues.
Collapse
Affiliation(s)
- Haopeng Pan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Xue Zhang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Biwen Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Di Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jiashuai Yan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaoqi Guan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Yan Huang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Yahong Zhao
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yumin Yang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
6
|
Yun WG, Gil J, Choi H, Han Y, Jung HS, Cho YJ, Suh M, Kwon W, Lee YS, Cheon GJ, Jang JY. Prospective Comparison of [ 18F]FDG and [ 18F]AIF-FAPI-74 PET/CT in the Evaluation of Potentially Resectable Pancreatic Ductal Adenocarcinoma. Mol Imaging Biol 2024; 26:1068-1077. [PMID: 39365411 PMCID: PMC11634952 DOI: 10.1007/s11307-024-01950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE Accurate clinical staging of potentially resectable pancreatic ductal adenocarcinoma (PDAC) is critical for establishing optimal treatment strategies. While the efficacy of fluorine-18-fluorodeoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) in clinical staging is unclear, PET/CT detecting fibroblast-activation protein (FAP) expression has recently received considerable attention for detecting various tumors, including PDAC, with high sensitivity. We explored the efficacy of [18F]FDG and [18F]AIF-FAPI-74 PET/CT in the initial evaluation of potentially resectable PDAC. PROCEDURES Between 2021 and 2022, twenty participants with newly diagnosed potentially resectable PDAC were enrolled. After the initial evaluation with pancreatic CT, [18F]FDG PET/CT, and [18F]AIF-FAPI-74 PET/CT, treatment strategies were determined considering the participant's general status, clinical staging, and resectability. Pathological information from the surgical specimens was only available in 17 participants who underwent curative-intent surgery. Head-to-head comparisons of quantitative radiotracer uptake and diagnostic performance were performed among imaging modalities. RESULTS [18F]AIF-FAPI-74 PET/CT showed a significantly higher maximum standardized uptake value than [18F]FDG PET/CT did in evaluating primary pancreatic lesions (median [interquartile range]; 12.6 [10.7-13.7] vs. 6.3 [4.8-9.2]; P < 0.001). In contrast, [18F]AIF-FAPI-74 PET/CT showed a significantly lower mean standardized uptake value than [18F]FDG PET/CT did in evaluating background organ (median [interquartile range]) 0.8 [0.7-0.9] vs. 2.6 [2.3-2.7]; P < 0.001). In addition, the sensitivity of [18F]AIF-FAPI-74 PET/CT in detecting metastatic lymph nodes was higher than that of [18F]FDG PET/CT (50.0% vs. 0.0%; P = 0.026). CONCLUSION This study demonstrated that [18F]AIF-FAPI-74 PET/CT could improve the clinical staging of potentially resectable PDAC.
Collapse
Affiliation(s)
- Won-Gun Yun
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Joonhyung Gil
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno- gu, Seoul, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno- gu, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Youngmin Han
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hye-Sol Jung
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Young Jae Cho
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Minseok Suh
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno- gu, Seoul, Republic of Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno- gu, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute & Institute on Aging, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
7
|
Ouissam AJ, Hind C, Sami Aziz B, Said A. Inhibition of the PI3K/AKT/mTOR pathway in pancreatic cancer: is it a worthwhile endeavor? Ther Adv Med Oncol 2024; 16:17588359241284911. [PMID: 39399412 PMCID: PMC11468005 DOI: 10.1177/17588359241284911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease that is challenging to treat and is associated with a high mortality rate. The most common type of PC is pancreatic ductal adenocarcinoma (PDAC), and the existing treatment options are insufficient for PDAC patients. Due to the complexity and heterogeneity of PDAC, personalized medicine is necessary for effectively treating this illness. To achieve this, it is essential to understand the mechanism of PDAC carcinogenesis. Targeted therapies are a promising strategy to improve patient outcomes. Aberrant activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a crucial role in PC pathogenesis, from initiation to progression. This review provides a comprehensive overview of the current state of knowledge regarding the PI3K pathway in PDAC, summarizes clinical data on PI3K pathway inhibition in PDAC, and explores potential effective combinations that are a promising direction requiring further investigation in PDAC.
Collapse
Affiliation(s)
- Al Jarroudi Ouissam
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Chibani Hind
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Brahmi Sami Aziz
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Afqir Said
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
8
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
9
|
Laney V, Hall R, Yuan X, Hampson E, Halle A, Yeung G, Bonk KW, Apte S, Winter J, Keri R, Lu ZR. MR Molecular Image Guided Treatment of Pancreatic Cancer with Targeted ECO/miR-200c Nanoparticles in Immunocompetent Mouse Tumor Models. Pharm Res 2024; 41:1811-1825. [PMID: 39198318 PMCID: PMC11436418 DOI: 10.1007/s11095-024-03762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is characterized by desmoplasia due to increased deposition of extracellular matrix (ECM) proteins. This work investigates the efficacy of targeted ECO/miR-200c nanoparticles (ELNP) on ECM remodeling in PDAC and tumor proliferation with MR molecular imaging (MRMI) with MT218 in immunocompetent mouse models. METHODS The miR-200c mediated regulation of EMT markers was measured in PDAC cells in vitro. Wild-type mice bearing mutated KRAS-driven KPC subcutaneous or orthotopic tumors were dosed weekly with RGD-ELNP/miR-200c at 1 mg-RNA/kg for a total of 4 doses. We utilized MT218-MRMI to non-invasively monitor the alteration of tumor ECM EDN-FN levels by miR-200c and tumor response to the treatment. The changes were also validated by posthumous histopathology. RESULTS Transfection of PDAC cells with ELNP/miR-200c downregulated the expression of FN1 and EDB-FN and some mesenchymal markers, inhibiting 3D spheroid formation and migration of KPC PDAC cells. RGD-ELNP/miR-200c treatment resulted in significant signal reduction in the MT218 enhanced MRMI images of both subcutaneous and orthotopic KPC tumors compared to those prior to treatment and treated with a non-specific control. MT218-MRMI results were suggestive of EDB-FN downregulation in tumors, which was later confirmed by immunohistochemistry. Tumor growth in subcutaneous tumors was significantly attenuated with RGD-ELNP/miR-200c and was an observed trend in orthotopic tumors. Substantial necrosis and remodeling were observed in both models treated with RGD-ELNP/miR-200c based on H&E staining. CONCLUSION These results demonstrate the feasibility of RGD-ELNP/miR-200c in modulating PDAC ECM and restraining tumor growth and the utility of MT218-MRMI for non-invasively monitoring miR-200c efficacy.
Collapse
Affiliation(s)
- Victoria Laney
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Ryan Hall
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Xueer Yuan
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Emma Hampson
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Augusta Halle
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Grace Yeung
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | | | - Suneel Apte
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Jordan Winter
- Surgical Oncology, The University Hospitals of Cleveland, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ruth Keri
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Hartl L, ten Brink MS, Aberson HL, Koster J, Zwijnenburg DA, Duitman J, Bijlsma MF, Spek CA. Hypoxia Abrogates Tumor-Suppressive Activities of C/EBPδ in Pancreatic Cancer. Int J Mol Sci 2024; 25:9449. [PMID: 39273396 PMCID: PMC11394991 DOI: 10.3390/ijms25179449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a low 5-year survival rate of only 13%. Despite intense research efforts, PDAC remains insufficiently understood. In part, this is attributed to opposing effects of key players being unraveled, including the stroma but also molecules that act in a context-dependent manner. One such molecule is the transcription factor C/EBPδ, where we recently showed that C/EBPδ exerts tumor-suppressive effects in PDAC cells in vitro. To better understand the role of C/EBPδ in different contexts and the development of PDAC, we here build on these findings and assess the effect of C/EBPδ in a PDAC model in mice. We establish that the lack of oxygen in vivo-hypoxia-counteracts the tumor-suppressive effects of C/EBPδ, and identify a reciprocal feedback loop between C/EBPδ and HIF-1α. RNA sequencing of C/EBPδ-induced cells under hypoxia also suggests that the growth-limiting effects of C/EBPδ decrease with oxygen tension. Consequently, in vitro proliferation assays reveal that the tumor-suppressive activities of C/EBPδ are abrogated due to hypoxia. This study demonstrates the importance of considering major physiological parameters in preclinical approaches.
Collapse
Affiliation(s)
- Leonie Hartl
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Marieke S. ten Brink
- Center for Experimental and Molecular Medicine, Division of Infectious Diseases, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hella L. Aberson
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Danny A. Zwijnenburg
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - JanWillem Duitman
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - C. Arnold Spek
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Zhang J, Wu YL, Xu HX, Zhang YB, Ren PY, Xian YF, Lin ZX. Brusatol alleviates pancreatic carcinogenesis via targeting NLRP3 in transgenic Kras tm4Tyj Trp53 tm1Brn Tg (Pdx1-cre/Esr1*) #Dam mice. Biomed Pharmacother 2024; 177:116977. [PMID: 38901203 DOI: 10.1016/j.biopha.2024.116977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PanCa), ranked as the 4th leading cause of cancer-related death worldwide, exhibits an dismal 5-year survival rate of less than 5 %. Chronic pancreatitis (CP) is a known major risk factor for PanCa. Brusatol (BRT) possesses a wide range of biological functions, including the inhibition of PanCa proliferation. However, its efficacy in halting the progression from CP to pancreatic carcinogenesis remains unexplored. METHODS We assess the effects of BRT against pancreatic carcinogenesis from CP using an experimentally induced CP model with cerulein, and further evaluate the therapeutic efficacy of BRT on PanCa by employing Krastm4TyjTrp53tm1BrnTg (Pdx1-cre/Esr1*) #Dam/J (KPC) mouse model. RESULTS Our finding demonstrated that BRT mitigated the severity of cerulein-induced pancreatitis, reduced pancreatic fibrosis and decreased the expression of α-smooth muscle actin (α-SMA), which is a biomarker for pancreatic fibrosis. In addition, BRT exerted effects against cerulein-induced pancreatitis via inactivation of NLRP3 inflammasome. Moreover, BRT significantly inhibited tumor growth and impeded cancer progression. CONCLUSIONS The observed effect of BRT on impeding pancreatic carcinogenesis through targeting NLRP3 inflammasome suggests its good potential as a potential agent for treatment of PanCa.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, PR China.
| | - Yu-Lin Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| | - Hong-Xi Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Shuguang Hosipital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Yi-Bo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Pei-Yao Ren
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, PR China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518087, PR China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
12
|
Suzuki S, Nagakawa Y, Miyamoto R, Osakabe H, Kiya Y, Yamaguchi H, Nagao T, Einama T, Ao T, Shimoda M. Prognostic factors based on histological categorization of desmoplastic reactions in pancreatic cancer. World J Surg 2024; 48:1973-1980. [PMID: 38943046 DOI: 10.1002/wjs.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND/PURPOSE In colorectal cancer, the morphological categorization of fibrotic cancer stroma in the invasive frontal zone of the primary tumor is well reflected in the prognosis. Conversely, the histological characteristics of pancreatic cancer (PC) reveal fibrotic hyperplasia of stroma known as desmoplasia; however, its characterization is unknown. Therefore, this study aimed to evaluate the prognostic factors according to the histological categorization of desmoplastic reactions in PC. METHODS We retrospectively enrolled 167 patients who underwent curative resection for PC. The desmoplastic pattern was histologically classified as mature, intermediate, or immature. Clinicopathological features were evaluated, and disease-free and overall survival (OS) were analyzed in the three groups. Prognostic factors were assessed using univariate and multivariate analyses. RESULTS In total, 19 mature, 87 intermediate, and 61 immature desmoplastic patterns were evaluated. Jaundice decompression, white blood cell count, and platelet/lymphocyte ratio were significantly different among the groups. The mature group had a better disease-free survival (DFS) prognosis than the other two groups; however, OS did not differ between the groups. Desmoplastic patterns showed significant differences between the three groups for DFS. CONCLUSIONS Desmoplastic patterns are a prognostic factor of DFS for PC, with mature desmoplastic reactions associated with good prognosis. Thus, they may aid in individualized therapeutic approaches in patients with PC.
Collapse
Affiliation(s)
- Shuji Suzuki
- Department of Gastroenterological Surgery, Ibaraki Medical Center, Tokyo Medical University, Inashikigun, Ibaraki, Japan
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Ryoichi Miyamoto
- Department of Gastroenterological Surgery, Ibaraki Medical Center, Tokyo Medical University, Inashikigun, Ibaraki, Japan
| | - Hiroaki Osakabe
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Yoshitaka Kiya
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Yamaguchi
- Department of Diagnostic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Toshitaka Nagao
- Department of Diagnostic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Einama
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tadakazu Ao
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Mitsugi Shimoda
- Department of Gastroenterological Surgery, Ibaraki Medical Center, Tokyo Medical University, Inashikigun, Ibaraki, Japan
| |
Collapse
|
13
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
14
|
Basu R, Kulkarni P, Swegan D, Duran-Ortiz S, Ahmad A, Caggiano LJ, Davis E, Walsh C, Brenya E, Koshal A, Brody R, Sandbhor U, Neggers SJCMM, Kopchick JJ. Growth Hormone Receptor Antagonist Markedly Improves Gemcitabine Response in a Mouse Xenograft Model of Human Pancreatic Cancer. Int J Mol Sci 2024; 25:7438. [PMID: 39000545 PMCID: PMC11242728 DOI: 10.3390/ijms25137438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Chemotherapy treatment against pancreatic ductal adenocarcinoma (PDAC) is thwarted by tumoral activation of multiple therapy resistance pathways. The growth hormone (GH)-GH receptor (GHR) pair is a covert driver of multimodal therapy resistance in cancer and is overexpressed in PDAC tumors, yet the therapeutic potential of targeting the same has not been explored. Here, we report that GHR expression is a negative prognostic factor in patients with PDAC. Combinations of gemcitabine with different GHR antagonists (GHRAs) markedly improve therapeutic outcomes in nude mice xenografts. Employing cultured cells, mouse xenografts, and analyses of the human PDAC transcriptome, we identified that attenuation of the multidrug transporter and epithelial-to-mesenchymal transition programs in the tumors underlie the observed augmentation of chemotherapy efficacy by GHRAs. Moreover, in human PDAC patients, GHR expression strongly correlates with a gene signature of tumor promotion and immune evasion, which corroborate with that in syngeneic tumors in wild-type vs. GH transgenic mice. Overall, we found that GH action in PDAC promoted a therapy-refractory gene signature in vivo, which can be effectively attenuated by GHR antagonism. Our results collectively present a proof of concept toward considering GHR antagonists to improve chemotherapeutic outcomes in the highly chemoresistant PDAC.
Collapse
MESH Headings
- Animals
- Gemcitabine
- Humans
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Mice
- Xenograft Model Antitumor Assays
- Receptors, Somatotropin/metabolism
- Receptors, Somatotropin/antagonists & inhibitors
- Receptors, Somatotropin/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Cell Line, Tumor
- Mice, Nude
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Female
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Deborah Swegan
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
| | - Arshad Ahmad
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
| | - Lydia J. Caggiano
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Honors Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Christopher Walsh
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
| | - Edward Brenya
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Adeel Koshal
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA;
| | - Rich Brody
- InfinixBio LLC, Columbus, OH 43212, USA; (R.B.); (U.S.)
| | - Uday Sandbhor
- InfinixBio LLC, Columbus, OH 43212, USA; (R.B.); (U.S.)
| | | | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA; (R.B.); (P.K.); (D.S.); (S.D.-O.); (A.A.); (L.J.C.); (E.D.); (C.W.); (E.B.)
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
15
|
Mancini A, Gentile MT, Pentimalli F, Cortellino S, Grieco M, Giordano A. Multiple aspects of matrix stiffness in cancer progression. Front Oncol 2024; 14:1406644. [PMID: 39015505 PMCID: PMC11249764 DOI: 10.3389/fonc.2024.1406644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
The biophysical and biomechanical properties of the extracellular matrix (ECM) are crucial in the processes of cell differentiation and proliferation. However, it is unclear to what extent tumor cells are influenced by biomechanical and biophysical changes of the surrounding microenvironment and how this response varies between different tumor forms, and over the course of tumor progression. The entire ensemble of genes encoding the ECM associated proteins is called matrisome. In cancer, the ECM evolves to become highly dysregulated, rigid, and fibrotic, serving both pro-tumorigenic and anti-tumorigenic roles. Tumor desmoplasia is characterized by a dramatic increase of α-smooth muscle actin expressing fibroblast and the deposition of hard ECM containing collagen, fibronectin, proteoglycans, and hyaluronic acid and is common in many solid tumors. In this review, we described the role of inflammation and inflammatory cytokines, in desmoplastic matrix remodeling, tumor state transition driven by microenvironment forces and the signaling pathways in mechanotransduction as potential targeted therapies, focusing on the impact of qualitative and quantitative variations of the ECM on the regulation of tumor development, hypothesizing the presence of matrisome drivers, acting alongside the cell-intrinsic oncogenic drivers, in some stages of neoplastic progression and in some tumor contexts, such as pancreatic carcinoma, breast cancer, lung cancer and mesothelioma.
Collapse
Affiliation(s)
- Alessandro Mancini
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- BioUp Sagl, Lugano, Switzerland
| | - Maria Teresa Gentile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University “Giuseppe De Gennaro,” Casamassima, Bari, Italy
| | - Salvatore Cortellino
- Laboratory of Molecular Oncology, Responsible Research Hospital, Campobasso, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, Naples, NA, Italy
- Sbarro Health Research Organization (S.H.R.O.) Italia Foundation ETS, Candiolo, TO, Italy
| | - Michele Grieco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Su PC, Chen CY, Yu MH, Kuo IY, Yang PS, Hsu CH, Hou YC, Hsieh HT, Chang CP, Shan YS, Wang YC. Fully human chitinase-3 like-1 monoclonal antibody inhibits tumor growth, fibrosis, angiogenesis, and immune cell remodeling in lung, pancreatic, and colorectal cancers. Biomed Pharmacother 2024; 176:116825. [PMID: 38820971 DOI: 10.1016/j.biopha.2024.116825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Considering the limited efficacy of current therapies in lung, colorectal, and pancreatic cancers, innovative combination treatments with diverse mechanisms of action are needed to improve patients' outcomes. Chitinase-3 like-1 protein (CHI3L1) emerges as a versatile factor with significant implications in various diseases, particularly cancers, fostering an immunosuppressive tumor microenvironment for cancer progression. Therefore, pre-clinical validation is imperative to fully realize its potential in cancer treatment. We developed phage display-derived fully human monoclonal CHI3L1 neutralizing antibodies (nAbs) and verified the nAbs-antigen binding affinity and specificity in lung, pancreatic and colorectal cancer cell lines. Tumor growth signals, proliferation and migration ability were all reduced by CHI3L1 nAbs in vitro. Orthotopic or subcutaneous tumor mice model and humanized mouse model were established for characterizing the anti-tumor properties of two CHI3L1 nAb leads. Importantly, CHI3L1 nAbs not only inhibited tumor growth but also mitigated fibrosis, angiogenesis, and restored immunostimulatory functions of immune cells in pancreatic, lung, and colorectal tumor mice models. Mechanistically, CHI3L1 nAbs directly suppressed the activation of pancreatic stellate cells and the transformation of macrophages into myofibroblasts, thereby attenuating fibrosis. These findings strongly support the therapeutic potential of CHI3L1 nAbs in overcoming clinical challenges, including the failure of gemcitabine in pancreatic cancer.
Collapse
Affiliation(s)
- Pei-Chia Su
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Ching-Yu Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Min-Hua Yu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - I-Ying Kuo
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Pei-Shan Yang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Ching-Hsuan Hsu
- AP Biosciences, Inc, No. 508, Sec. 7, Zhongxiao E. Rd, Taipei 115011, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan; Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan
| | - Hsin-Ta Hsieh
- AP Biosciences, Inc, No. 508, Sec. 7, Zhongxiao E. Rd, Taipei 115011, Taiwan
| | - Chih-Peng Chang
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan; Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan.
| | - Yi-Ching Wang
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan.
| |
Collapse
|
17
|
Vendramini-Costa DB, Francescone R, Franco-Barraza J, Luong T, Graves M, de Aquino AM, Steele N, Gardiner JC, Dos Santos SAA, Ogier C, Malloy E, Borghaei L, Martinez E, Zhigarev DI, Tan Y, Lee H, Zhou Y, Cai KQ, Klein-Szanto AJ, Wang H, Andrake M, Dunbrack RL, Campbell K, Cukierman E. Netrin G1 Ligand is a new stromal immunomodulator that promotes pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594354. [PMID: 38798370 PMCID: PMC11118300 DOI: 10.1101/2024.05.15.594354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding pancreatic cancer biology is fundamental for identifying new targets and for developing more effective therapies. In particular, the contribution of the stromal microenvironment to pancreatic cancer tumorigenesis requires further exploration. Here, we report the stromal roles of the synaptic protein Netrin G1 Ligand (NGL-1) in pancreatic cancer, uncovering its pro-tumor functions in cancer-associated fibroblasts and in immune cells. We observed that the stromal expression of NGL-1 inversely correlated with patients' overall survival. Moreover, germline knockout (KO) mice for NGL-1 presented decreased tumor burden, with a microenvironment that is less supportive of tumor growth. Of note, tumors from NGL-1 KO mice produced less immunosuppressive cytokines and displayed an increased percentage of CD8 + T cells than those from control mice, while preserving the physical structure of the tumor microenvironment. These effects were shown to be mediated by NGL-1 in both immune cells and in the local stroma, in a TGF-β-dependent manner. While myeloid cells lacking NGL-1 decreased the production of immunosuppressive cytokines, NGL-1 KO T cells showed increased proliferation rates and overall polyfunctionality compared to control T cells. CAFs lacking NGL-1 were less immunosuppressive than controls, with overall decreased production of pro-tumor cytokines and compromised ability to inhibit CD8 + T cells activation. Mechanistically, these CAFs downregulated components of the TGF-β pathway, AP-1 and NFAT transcription factor families, resulting in a less tumor-supportive phenotype. Finally, targeting NGL-1 genetically or using a functionally antagonistic small peptide phenocopied the effects of chemotherapy, while modulating the immunosuppressive tumor microenvironment (TME), rather than eliminating it. We propose NGL-1 as a new local stroma and immunomodulatory molecule, with pro-tumor roles in pancreatic cancer. Statement of Significance Here we uncovered the pro-tumor roles of the synaptic protein NGL-1 in the tumor microenvironment of pancreatic cancer, defining a new target that simultaneously modulates tumor cell, fibroblast, and immune cell functions. This study reports a new pathway where NGL-1 controls TGF-β, AP-1 transcription factor members and NFAT1, modulating the immunosuppressive microenvironment in pancreatic cancer. Our findings highlight NGL-1 as a new stromal immunomodulator in pancreatic cancer.
Collapse
|
18
|
Kulkarni T, Robinson OM, Dutta A, Mukhopadhyay D, Bhattacharya S. Machine learning-based approach for automated classification of cell and extracellular matrix using nanomechanical properties. Mater Today Bio 2024; 25:100970. [PMID: 38312803 PMCID: PMC10835007 DOI: 10.1016/j.mtbio.2024.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Fibrosis characterized by excess accumulation of extracellular matrix (ECM) due to complex cell-ECM interactions plays a pivotal role in pathogenesis. Herein, we employ the pancreatic ductal adenocarcinoma (PDAC) model to investigate dynamic alterations in nanomechanical attributes arising from the cell-ECM interactions to study the fibrosis paradigm. Several segregated studies performed on cellular and ECM components fail to recapitulate their complex collaboration. We utilized collagen and fibronectin, the two most abundant PDAC ECM components, and studied their nanomechanical attributes. We demonstrate alteration in morphology and nanomechanical attributes of collagen with varying thicknesses of collagen gel. Furthermore, by mixing collagen and fibronectin in various stoichiometry, their nanomechanical attributes were observed to vary. To demonstrate the dynamicity and complexity of cell-ECM, we utilized Panc-1 and AsPC-1 cells with or without collagen. We observed that Panc-1 and AsPC-1 cells interact differently with collagen and vice versa, evident from their alteration in nanomechanical properties. Further, using nanomechanics data, we demonstrate that ML-based techniques were able to classify between ECM as well as cell, and cell subtypes in the presence/absence of collagen with higher accuracy. This work demonstrates a promising avenue to explore other ECM components facilitating deeper insights into tumor microenvironment and fibrosis paradigm.
Collapse
Affiliation(s)
- Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Olivia-Marie Robinson
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ayan Dutta
- School of Computing, University of North Florida, Jacksonville, FL, 32224 USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| |
Collapse
|
19
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
20
|
Horvat NK, Karpovsky I, Phillips M, Wyatt MM, Hall MA, Herting CJ, Hammons J, Mahdi Z, Moffitt RA, Paulos CM, Lesinski GB. Clinically relevant orthotopic pancreatic cancer models for adoptive T cell transfer therapy. J Immunother Cancer 2024; 12:e008086. [PMID: 38191243 PMCID: PMC10806555 DOI: 10.1136/jitc-2023-008086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor. Prognosis is poor and survival is low in patients diagnosed with this disease, with a survival rate of ~12% at 5 years. Immunotherapy, including adoptive T cell transfer therapy, has not impacted the outcomes in patients with PDAC, due in part to the hostile tumor microenvironment (TME) which limits T cell trafficking and persistence. We posit that murine models serve as useful tools to study the fate of T cell therapy. Currently, genetically engineered mouse models (GEMMs) for PDAC are considered a "gold-standard" as they recapitulate many aspects of human disease. However, these models have limitations, including marked tumor variability across individual mice and the cost of colony maintenance. METHODS Using flow cytometry and immunohistochemistry, we characterized the immunological features and trafficking patterns of adoptively transferred T cells in orthotopic PDAC (C57BL/6) models using two mouse cell lines, KPC-Luc and MT-5, isolated from C57BL/6 KPC-GEMM (KrasLSL-G12D/+p53-/- and KrasLSL-G12D/+p53LSL-R172H/+, respectively). RESULTS The MT-5 orthotopic model best recapitulates the cellular and stromal features of the TME in the PDAC GEMM. In contrast, far more host immune cells infiltrate the KPC-Luc tumors, which have less stroma, although CD4+ and CD8+ T cells were similarly detected in the MT-5 tumors compared with KPC-GEMM in mice. Interestingly, we found that chimeric antigen receptor (CAR) T cells redirected to recognize mesothelin on these tumors that signal via CD3ζ and 41BB (Meso-41BBζ-CAR T cells) infiltrated the tumors of mice bearing stroma-devoid KPC-Luc orthotopic tumors, but not MT-5 tumors. CONCLUSIONS Our data establish for the first time a reproducible and realistic clinical system useful for modeling stroma-rich and stroma-devoid PDAC tumors. These models shall serve an indepth study of how to overcome barriers that limit antitumor activity of adoptively transferred T cells.
Collapse
Affiliation(s)
- Natalie K Horvat
- Department of Pediatric Hematology, Oncology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Isaac Karpovsky
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Maggie Phillips
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Megan M Wyatt
- Department of Surgery, Department of Microbiology & Immunology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Margaret A Hall
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Cameron J Herting
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Jacklyn Hammons
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Zaid Mahdi
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Richard A Moffitt
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Chrystal M Paulos
- Department of Surgery, Department of Microbiology & Immunology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| | - Gregory B Lesinski
- Department of Hematology and Oncology, Emory University Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Pan H, Zhu S, Gong T, Wu D, Zhao Y, Yan J, Dai C, Huang Y, Yang Y, Guo Y. Matrix stiffness triggers chemoresistance through elevated autophagy in pancreatic ductal adenocarcinoma. Biomater Sci 2023; 11:7358-7372. [PMID: 37781974 DOI: 10.1039/d3bm00598d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a signature of extremely high matrix stiffness caused by a special desmoplastic reaction, which dynamically stiffens along with the pathological process. The poor prognosis and low five-year survival rate of PDAC are partly owing to chemoresistance triggered by substrate stiffness. Understanding the potential mechanisms of matrix stiffness causing PDAC chemoresistance is of great significance. In this study, methacrylated gelatin hydrogel was used as platform for PANC-1 and MIA-PaCa2 cell culture. The results indicated that compared to soft substrate, stiff substrate distinctively reduced the gemcitabine sensitivity of pancreatic cancer. Intriguingly, transmission electron microscopy, immunofluorescence staining, western blot and qRT-PCR assay showcased that the number of autophagosomes and the expression of LC3 were elevated. The observations indicate that matrix stiffness may regulate the autophagy level, which plays a vital role during chemoresistance. In brief, soft substrate exhibited low autophagy level, while the counterpart displayed elevated autophagy level. In order to elucidate the underlying interaction between matrix stiffness-mediated cell autophagy and chemoresistance, rescue experiments with rapamycin and chloroquine were conducted. We found that inhibiting cell autophagy dramatically increased the sensitivity of pancreatic cancer cells to gemcitabine in the stiff group, while promoting autophagy-driven chemoresistance in the soft group, demonstrating that matrix stiffness modulated chemoresistance via autophagy. Furthermore, RNA-seq results showed that miR-1972 may regulate autophagy level in response to matrix stiffness. Overall, our research shed light on the synergistic therapy of PDAC combined with gemcitabine and chloroquine, which is conducive to promoting a therapeutic effect.
Collapse
Affiliation(s)
- Haopeng Pan
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, 226001, Jiangsu, PR China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Tiancheng Gong
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Di Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yahong Zhao
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, 226001, Jiangsu, PR China.
| | - Jiashuai Yan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Chaolun Dai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Medical School of Nantong University, Nantong, 226001, China
| | - Yan Huang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yumin Yang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, 226001, Jiangsu, PR China.
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
22
|
Dimitrijevic Stojanovic M, Stojanovic B, Radosavljevic I, Kovacevic V, Jovanovic I, Stojanovic BS, Prodanovic N, Stankovic V, Jocic M, Jovanovic M. Galectin-3's Complex Interactions in Pancreatic Ductal Adenocarcinoma: From Cellular Signaling to Therapeutic Potential. Biomolecules 2023; 13:1500. [PMID: 37892182 PMCID: PMC10605315 DOI: 10.3390/biom13101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Galectin-3 (Gal-3) plays a multifaceted role in the development, progression, and prognosis of pancreatic ductal adenocarcinoma (PDAC). This review offers a comprehensive examination of its expression in PDAC, its interaction with various immune cells, signaling pathways, effects on apoptosis, and therapeutic resistance. Additionally, the prognostic significance of serum levels of Gal-3 is discussed, providing insights into its potential utilization as a biomarker. Critical analysis is also extended to the inhibitors of Gal-3 and their potential therapeutic applications in PDAC, offering new avenues for targeted treatments. The intricate nature of Gal-3's role in PDAC reveals a complex landscape that demands a nuanced understanding for potential therapeutic interventions and monitoring.
Collapse
Affiliation(s)
- Milica Dimitrijevic Stojanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.S.); (V.S.)
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Ivan Radosavljevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Vojin Kovacevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojana S. Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nikola Prodanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (I.R.); (N.P.)
| | - Vesna Stankovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.S.); (V.S.)
| | - Miodrag Jocic
- Institute for Transfusiology and Haemobiology, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
23
|
Huang Y, Wu Z, Lan W, Zhong C. Predicting Disease-Associated N7-Methylguanosine (m 7G) Sites via Random Walk on Heterogeneous Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3173-3181. [PMID: 37294648 DOI: 10.1109/tcbb.2023.3284505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent studies revealed that the modification of N7-methylguanosine (m7G) has associations with many human diseases. Effectively identifying disease-associated m7G methylation sites would provide crucial clues for disease diagnosis and treatment. Previous studies have developed computational methods to predict disease-associated m7G sites based on similarities among m7G sites and diseases. However, few have focused on the influence of the known m7G-disease association information on calculating similarity measures of m7G site and disease, which potentially promotes the identification of the disease-associated m7G sites. In this work, we propose а computational method called m7GDP-RW to predict m7G-disease associations by random walk algorithm. m7GDP-RW first incorporates the feature information of m7G site and disease with the known m7G-disease associations to compute m7G site similarity and disease similarity. Then m7GDP-RW combines the known m7G-disease associations with the computed similarity of m7G site and disease to construct a m7G-disease heterogeneous network. Finally, m7GDP-RW utilizes a two-pass random walk with restart algorithm to find novel m7G-disease associations on the heterogeneous network. The experimental results show that our method achieves higher prediction accuracy compared to the existing methods. The study case also demonstrates the effectiveness of m7GDP-RW in discovering potential m7G-disease associations.
Collapse
|
24
|
Rafaeva M, Jensen ARD, Horton ER, Zornhagen KW, Strøbech JE, Fleischhauer L, Mayorca-Guiliani AE, Nielsen SR, Grønseth DS, Kuś F, Schoof EM, Arnes L, Koch M, Clausen-Schaumann H, Izzi V, Reuten R, Erler JT. Fibroblast-derived matrix models desmoplastic properties and forms a prognostic signature in cancer progression. Front Immunol 2023; 14:1154528. [PMID: 37539058 PMCID: PMC10395327 DOI: 10.3389/fimmu.2023.1154528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
The desmoplastic reaction observed in many cancers is a hallmark of disease progression and prognosis, particularly in breast and pancreatic cancer. Stromal-derived extracellular matrix (ECM) is significantly altered in desmoplasia, and as such plays a critical role in driving cancer progression. Using fibroblast-derived matrices (FDMs), we show that cancer cells have increased growth on cancer associated FDMs, when compared to FDMs derived from non-malignant tissue (normal) fibroblasts. We assess the changes in ECM characteristics from normal to cancer-associated stroma at the primary tumor site. Compositional, structural, and mechanical analyses reveal significant differences, with an increase in abundance of core ECM proteins, coupled with an increase in stiffness and density in cancer-associated FDMs. From compositional changes of FDM, we derived a 36-ECM protein signature, which we show matches in large part with the changes in pancreatic ductal adenocarcinoma (PDAC) tumor and metastases progression. Additionally, this signature also matches at the transcriptomic level in multiple cancer types in patients, prognostic of their survival. Together, our results show relevance of FDMs for cancer modelling and identification of desmoplastic ECM components for further mechanistic studies.
Collapse
Affiliation(s)
- Maria Rafaeva
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Adina R. D. Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Edward R. Horton
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla W. Zornhagen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jan E. Strøbech
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Lutz Fleischhauer
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience – CsNS, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Sebastian R. Nielsen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Dina S. Grønseth
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Filip Kuś
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Erwin M. Schoof
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luis Arnes
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Koch
- Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience – CsNS, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Raphael Reuten
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Janine T. Erler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Komarla A, Dufresne S, Towers CG. Recent Advances in the Role of Autophagy in Endocrine-Dependent Tumors. Endocr Rev 2023; 44:629-646. [PMID: 36631217 PMCID: PMC10335171 DOI: 10.1210/endrev/bnad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Autophagy plays a complex role in several cancer types, including endocrine-dependent cancers, by fueling cellular metabolism and clearing damaged substrates. This conserved recycling process has a dual function across tumor types where it can be tumor suppressive at early stages but tumor promotional in established disease. This review highlights the controversial roles of autophagy in endocrine-dependent tumors regarding cancer initiation, tumorigenesis, metastasis, and treatment response. We summarize clinical trial results thus far and highlight the need for additional mechanistic, preclinical, and clinical studies in endocrine-dependent tumors, particularly in breast cancer and prostate cancer.
Collapse
Affiliation(s)
- Anvita Komarla
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Suzanne Dufresne
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christina G Towers
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
26
|
Tunable hybrid hydrogels with multicellular spheroids for modeling desmoplastic pancreatic cancer. Bioact Mater 2023; 25:360-373. [PMID: 36879666 PMCID: PMC9984297 DOI: 10.1016/j.bioactmat.2023.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
The tumor microenvironment consists of diverse, complex etiological factors. The matrix component of pancreatic ductal adenocarcinoma (PDAC) plays an important role not only in physical properties such as tissue rigidity but also in cancer progression and therapeutic responsiveness. Although significant efforts have been made to model desmoplastic PDAC, existing models could not fully recapitulate the etiology to mimic and understand the progression of PDAC. Here, two major components in desmoplastic pancreatic matrices, hyaluronic acid- and gelatin-based hydrogels, are engineered to provide matrices for tumor spheroids composed of PDAC and cancer-associated fibroblasts (CAF). Shape analysis profiles reveals that incorporating CAF contributes to a more compact tissue formation. Higher expression levels of markers associated with proliferation, epithelial to mesenchymal transition, mechanotransduction, and progression are observed for cancer-CAF spheroids cultured in hyper desmoplastic matrix-mimicking hydrogels, while the trend can be observed when those are cultured in desmoplastic matrix-mimicking hydrogels with the presence of transforming growth factor-β1 (TGF-β1). The proposed multicellular pancreatic tumor model, in combination with proper mechanical properties and TGF-β1 supplement, makes strides in developing advanced pancreatic models for resembling and monitoring the progression of pancreatic tumors, which could be potentially applicable for realizing personalized medicine and drug testing applications.
Collapse
|
27
|
Wlodarczyk B, Durko L, Wlodarczyk P, Talar-Wojnarowska R, Malecka-Wojciesko E. CA 19-9 but Not IGF-1/IGFBP-2 Is a Useful Biomarker for Pancreatic Ductal Adenocarcinoma (PDAC) and Chronic Pancreatitis (CP) Differentiation. J Clin Med 2023; 12:4050. [PMID: 37373743 DOI: 10.3390/jcm12124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION There are still no effective diagnostic and prognostic biomarkers in pancreatic ductal adenocarcinoma (PDAC). The differentiation between PDAC and chronic pancreatitis (CP) is often challenging. The inflammatory mass in the course of CP causes diagnostic difficulties in differentiating them from neoplastic lesions and, thus, delays the initiation of radical treatment. Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor-binding protein 2 (IGFBP-2) form a network involved in PDAC development. The role of IGFs in promoting pancreatic cancer cell proliferation, survival, and migration is well established, and their ability to stimulate tumor growth and metastasis is well documented. The aim of the study was to evaluate the usability of IGF-1, IGFBP-2, and IGF-1/IGFBP-2 ratio in PDAC and CP differentiation. MATERIAL AND METHODS The study included 137 patients: 89 patients with PDAC and 48 patients with CP. All subjects were tested for the levels of IGF-1 and IGFBP-2 using the ELISA method (Corgenix UK Ltd. R&D Systems), along with the level of CA 19-9 in serum. Additionally, the IGF-1/IGFBP-2 ratio was calculated. Further analyses used logit and probit models with varying determinants in order to discern between PDAC and CP patients. The models served as a basis for AUROC calculation. RESULTS The mean IGF-1 serum level was equal to 52.12 ± 33.13 ng/mL in PDAC vs. 74.23 ± 48.98 ng/mL in CP (p = 0.0053). The mean level of IGFBP-2 was equal to 305.95 ± 194.58 ng/mL in PDAC vs. 485.43 ± 299 ng/mL in CP (p = 0.0002). The mean CA 19-9 serum concentration was 434.95 ± 419.98 U/mL in PDAC vs. 78.07 ± 182.36 U/mL in CP (p = 0.0000). The mean IGF-1/IGFBP-2 ratio was 0.213 ± 0.14 in PDAC vs. 0.277 ± 0.33 in CP (p = 0.1914). The diagnostic usefulness of indicators for the purpose of PDAC and CP differentiation was assessed by means of AUROC comparison. The AUROCs of IGF-1, IGFBP-2, and IGF-1/IGFBP-2 ratio ranged below 0.7, being lower than the AUROC of CA 19-9 (0.7953; 0.719 within 95% CI). Together, the CA 19-9 and IGFBP-2 AUROCs also ranged below 0.8. When age was included, the AUROC increased to 0.8632, and its 95% confidence interval held above the 0.8 limit. The sensitivity of the used markers was not correlated to the stage of pancreatic PDAC. CONCLUSIONS The presented results indicate that CA 19-9 is a marker demonstrating high potential for PDAC and CP differentiation. The inclusion of additional variables into the model, such as the serum level of IGF-1 or IGFBP-2, slightly increased the sensitivity in differentiating CP from PDAC. The IGF-1/IGFBP-2 ratio turned out to be a good marker of pancreatic diseases, but insufficient for the purpose of CP and PDAC differentiation.
Collapse
Affiliation(s)
- Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-419 Lodz, Poland
| | - Lukasz Durko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-419 Lodz, Poland
| | | | | | - Ewa Malecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
28
|
Patras L, Paul D, Matei IR. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front Oncol 2023; 13:1163786. [PMID: 37350937 PMCID: PMC10282420 DOI: 10.3389/fonc.2023.1163786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
The discovery that primary tumors condition distant organ sites of future metastasis for seeding by disseminating tumor cells through a process described as the pre-metastatic niche (PMN) formation revolutionized our understanding of cancer progression and opened new avenues for therapeutic interventions. Given the inherent inefficiency of metastasis, PMN generation is crucial to ensure the survival of rare tumor cells in the otherwise hostile environments of metastatic organs. Early on, it was recognized that preparing the "soil" of the distal organ to support the outgrowth of metastatic cells is the initiating event in PMN development, achieved through the remodeling of the organ's extracellular matrix (ECM). Remote restructuring of ECM at future sites of metastasis under the influence of primary tumor-secreted factors is an iterative process orchestrated through the crosstalk between resident stromal cells, such as fibroblasts, epithelial and endothelial cells, and recruited innate immune cells. In this review, we will explore the ECM changes, cellular effectors, and the mechanisms of ECM remodeling throughout PMN progression, as well as its impact on shaping the PMN and ultimately promoting metastasis. Moreover, we highlight the clinical and translational implications of PMN ECM changes and opportunities for therapeutically targeting the ECM to hinder PMN formation.
Collapse
Affiliation(s)
- Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Doru Paul
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Irina R. Matei
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
29
|
McCarthy GA, Di Niro R, Finan JM, Jain A, Guo Y, Wyatt C, Guimaraes A, Waugh T, Keith D, Morgan T, Sears R, Brody J. Deletion of the mRNA stability factor ELAVL1 (HuR) in pancreatic cancer cells disrupts the tumor microenvironment integrity. NAR Cancer 2023; 5:zcad016. [PMID: 37089813 PMCID: PMC10113877 DOI: 10.1093/narcan/zcad016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Stromal cells promote extensive fibrosis in pancreatic ductal adenocarcinoma (PDAC), which is associated with poor prognosis and therapeutic resistance. We report here for the first time that loss of the RNA-binding protein human antigen R (HuR, ELAVL1) in PDAC cells leads to reprogramming of the tumor microenvironment. In multiple in vivo models, CRISPR deletion of ELAVL1 in PDAC cells resulted in a decrease of collagen deposition, accompanied by a decrease of stromal markers (i.e. podoplanin, α-smooth muscle actin, desmin). RNA-sequencing data showed that HuR plays a role in cell-cell communication. Accordingly, cytokine arrays identified that HuR regulates the secretion of signaling molecules involved in stromal activation and extracellular matrix organization [i.e. platelet-derived growth factor AA (PDGFAA) and pentraxin 3]. Ribonucleoprotein immunoprecipitation analysis and transcription inhibition studies validated PDGFA mRNA as a novel HuR target. These data suggest that tumor-intrinsic HuR supports extrinsic activation of the stroma to produce collagen and desmoplasia through regulating signaling molecules (e.g. PDGFAA). HuR-deficient PDAC in vivo tumors with an altered tumor microenvironment are more sensitive to the standard of care gemcitabine, as compared to HuR-proficient tumors. Taken together, we identified a novel role of tumor-intrinsic HuR in its ability to modify the surrounding tumor microenvironment and regulate PDGFAA.
Collapse
Affiliation(s)
- Grace A McCarthy
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Roberto Di Niro
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jennifer M Finan
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yifei Guo
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexander R Guimaraes
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Trent A Waugh
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rosalie C Sears
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
30
|
Zhao F, Yang T, Zhou L, Li R, Liu J, Zhao J, Jia R. Sig1R activates extracellular matrix-induced bladder cancer cell proliferation and angiogenesis by combing β-integrin. Aging (Albany NY) 2023; 15:204721. [PMID: 37199665 DOI: 10.18632/aging.204721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/15/2023] [Indexed: 05/19/2023]
Abstract
The extracellular matrix (ECM) regulates many biological functions involved in tumorigenesis and tumor development; however, the underlying mechanism remains unknown. Sigma 1 receptor (Sig1R), a stress-activated chaperone, regulates the crosstalk between the ECM and tumor cells and is related to the malignant characteristics of several tumors. However, the link between Sig1R overexpression and ECM during malignancy has not been established in bladder cancer (BC). Here, we analyzed the interaction of Sig1R and β-integrin in BC cells and its role in ECM-mediated cell proliferation and angiogenesis. We found that Sig1R forms a complex with β-integrin to promote ECM-mediated BC cell proliferation and angiogenesis, which enhances the aggressiveness of the tumor cells. This leads to poor survival. Our research revealed that Sig1R mediates the cross-talk between BC cells and their ECM microenvironment, thereby driving the progression of BC. Promisingly, targeting an ion channel function through Sig1R inhibition may serve as a potential approach for BC treatment.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Rongfei Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
31
|
Rebelo R, Xavier CPR, Giovannetti E, Vasconcelos MH. Fibroblasts in pancreatic cancer: molecular and clinical perspectives. Trends Mol Med 2023; 29:439-453. [PMID: 37100646 DOI: 10.1016/j.molmed.2023.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/28/2023]
Abstract
Pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) are highly abundant cells in the pancreatic tumor microenvironment (TME) that modulate desmoplasia. The formation of a dense stroma leads to immunosuppression and therapy resistance that are major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that several subpopulations of CAFs in the TME can interconvert, explaining the dual roles (antitumorigenic and protumorigenic) of CAFs in PDAC and the contradictory results of CAF-targeted therapies in clinical trials. This highlights the need to clarify CAF heterogeneity and their interactions with PDAC cells. This review focuses on the communication between activated PSCs/CAFs and PDAC cells, as well as on the mechanisms underlying this crosstalk. CAF-focused therapies and emerging biomarkers are also outlined.
Collapse
Affiliation(s)
- Rita Rebelo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - M Helena Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal.
| |
Collapse
|
32
|
Myo Min KK, Ffrench CB, Jessup CF, Shepherdson M, Barreto SG, Bonder CS. Overcoming the Fibrotic Fortress in Pancreatic Ductal Adenocarcinoma: Challenges and Opportunities. Cancers (Basel) 2023; 15:2354. [PMID: 37190281 PMCID: PMC10137060 DOI: 10.3390/cancers15082354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
An overabundance of desmoplasia in the tumour microenvironment (TME) is one of the defining features that influences pancreatic ductal adenocarcinoma (PDAC) development, progression, metastasis, and treatment resistance. Desmoplasia is characterised by the recruitment and activation of fibroblasts, heightened extracellular matrix deposition (ECM) and reduced blood supply, as well as increased inflammation through an influx of inflammatory cells and cytokines, creating an intrinsically immunosuppressive TME with low immunogenic potential. Herein, we review the development of PDAC, the drivers that initiate and/or sustain the progression of the disease and the complex and interwoven nature of the cellular and acellular components that come together to make PDAC one of the most aggressive and difficult to treat cancers. We review the challenges in delivering drugs into the fortress of PDAC tumours in concentrations that are therapeutic due to the presence of a highly fibrotic and immunosuppressive TME. Taken together, we present further support for continued/renewed efforts focusing on aspects of the extremely dense and complex TME of PDAC to improve the efficacy of therapy for better patient outcomes.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Charlie B. Ffrench
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Claire F. Jessup
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Mia Shepherdson
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Savio George Barreto
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
33
|
Joshi VB, Gutierrez Ruiz OL, Razidlo GL. The Cell Biology of Metastatic Invasion in Pancreatic Cancer: Updates and Mechanistic Insights. Cancers (Basel) 2023; 15:cancers15072169. [PMID: 37046830 PMCID: PMC10093482 DOI: 10.3390/cancers15072169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related mortality worldwide. This is largely due to the lack of routine screening protocols, an absence of symptoms in early-stage disease leading to late detection, and a paucity of effective treatment options. Critically, the majority of patients either present with metastatic disease or rapidly develop metastatic disease. Thus, there is an urgent need to deepen our understanding of metastasis in PDAC. During metastasis, tumor cells escape from the primary tumor, enter the circulation, and travel to a distant site to form a secondary tumor. In order to accomplish this relatively rare event, tumor cells develop an enhanced ability to detach from the primary tumor, migrate into the surrounding matrix, and invade across the basement membrane. In addition, cancer cells interact with the various cell types and matrix proteins that comprise the tumor microenvironment, with some of these factors working to promote metastasis and others working to suppress it. In PDAC, many of these processes are not well understood. The purpose of this review is to highlight recent advances in the cell biology of the early steps of the metastatic cascade in pancreatic cancer. Specifically, we will examine the regulation of epithelial-to-mesenchymal transition (EMT) in PDAC and its requirement for metastasis, summarize our understanding of how PDAC cells invade and degrade the surrounding matrix, and discuss how migration and adhesion dynamics are regulated in PDAC to optimize cancer cell motility. In addition, the role of the tumor microenvironment in PDAC will also be discussed for each of these invasive processes.
Collapse
Affiliation(s)
- Vidhu B Joshi
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Omar L Gutierrez Ruiz
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Lansbergen MF, Khelil M, Etten-Jamaludin FSV, Bijlsma MF, van Laarhoven HWM. Poor-prognosis molecular subtypes in adenocarcinomas of pancreato-biliary and gynecological origin: A systematic review. Crit Rev Oncol Hematol 2023; 185:103982. [PMID: 37004743 DOI: 10.1016/j.critrevonc.2023.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Pancreato-biliary and gynecological adenocarcinomas need better tools to predict clinical outcome. Potential prognostic mesenchymal(-like) transcriptome-based subtypes have been identified in these cancers. In this systematic review, we include studies into molecular subtyping and summarize biological and clinical features of the subtypes within and across sites of origin, searching for suggestions to improve classification and prognostication. PubMed and Embase were searched for original research articles describing potential mesenchymal(-like) mRNA-based subtypes in pancreato-biliary or gynecological adenocarcinomas. Studies limited to supervised clustering were excluded. Fourty-four studies, discussing cholangiocarcinomas, gallbladder, ampullary, pancreatic, ovarian, and endometrial adenocarcinomas were included. There was overlap in molecular and clinical features in mesenchymal(-like) subtypes across all adenocarcinomas. Approaches including microdissection were more likely to identify prognosis-associating subtypes. To conclude, molecular subtypes in pancreato-biliary and gynecological adenocarcinomas share biological and clinical characteristics. Furthermore, separation of stromal and epithelial signals should be applied in future studies into biliary and gynecological adenocarcinomas.
Collapse
Affiliation(s)
- Marjolein F Lansbergen
- Amsterdam UMC location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Center for Experimental Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, the Netherlands.
| | - Maryam Khelil
- University of Amsterdam, Spui 21, 1012 WX Amsterdam, the Netherlands
| | - Faridi S van Etten-Jamaludin
- Amsterdam UMC location University of Amsterdam, Research Support Medical Library, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental Molecular Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
35
|
Aziz A, Rehman U, Sheikh A, Abourehab MAS, Kesharwani P. Lipid-based nanocarrier mediated CRISPR/Cas9 delivery for cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:398-418. [PMID: 36083788 DOI: 10.1080/09205063.2022.2121592] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CRISPR/Cas mediated gene-editing has opened new avenues for therapies that show great potential for treating or curing cancers, genetic disorders, and microbial infections such as HIV. CRISPR/Cas9 tool is highly efficacious in revolutionizing the advent of genome editing; however, its efficient and safe delivery is a major hurdle due to its cellular impermeability and instability. Nano vectors could be explored to scale up the safe and effective delivery of CRISPR/Cas9. This review highlights the importance of CRISPR/Cas9 genome editing system in cancer treatment along with the effect of lipid-based nanoparticles in its safe delivery to cancer cells. The solid-lipid nanoparticles, nanostructured lipid carrier, lipid nanoparticles and niosomes have shown great effect in the delivery of CRISPR compounds to the cancer cells. The design and genome editing application in cancer therapy has been discussed along with the future concern and prospects of lipid nanoparticle based CRISPR/Cas9 has been focused toward the end.
Collapse
Affiliation(s)
- Aisha Aziz
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
36
|
Lidström T, Cumming J, Gaur R, Frängsmyr L, Pateras IS, Mickert MJ, Franklin O, Forsell MN, Arnberg N, Dongre M, Patthey C, Öhlund D. Extracellular Galectin 4 Drives Immune Evasion and Promotes T-cell Apoptosis in Pancreatic Cancer. Cancer Immunol Res 2023; 11:72-92. [PMID: 36478037 PMCID: PMC9808371 DOI: 10.1158/2326-6066.cir-21-1088] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/19/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by rich deposits of extracellular matrix (ECM), affecting the pathophysiology of the disease. Here, we identified galectin 4 (gal 4) as a cancer cell-produced protein that was deposited into the ECM of PDAC tumors and detected high-circulating levels of gal 4 in patients with PDAC. In orthotopic transplantation experiments, we observed increased infiltration of T cells and prolonged survival in immunocompetent mice transplanted with cancer cells with reduced expression of gal 4. Increased survival was not observed in immunodeficient RAG1-/- mice, demonstrating that the effect was mediated by the adaptive immune system. By performing single-cell RNA-sequencing, we found that the myeloid compartment and cancer-associated fibroblast (CAF) subtypes were altered in the transplanted tumors. Reduced gal 4 expression associated with a higher proportion of myofibroblastic CAFs and reduced numbers of inflammatory CAFs. We also found higher proportions of M1 macrophages, T cells, and antigen-presenting dendritic cells in tumors with reduced gal 4 expression. Using a coculture system, we observed that extracellular gal 4 induced apoptosis in T cells by binding N-glycosylation residues on CD3ε/δ. Hence, we show that gal 4 is involved in immune evasion and identify gal 4 as a promising drug target for overcoming immunosuppression in PDAC.
Collapse
Affiliation(s)
- Tommy Lidström
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Joshua Cumming
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Rahul Gaur
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Lars Frängsmyr
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Oskar Franklin
- Department of Surgical and Perioperative Science, Umeå University, Umeå, Sweden
| | | | - Niklas Arnberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Mitesh Dongre
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Cedric Patthey
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Corresponding Author: Daniel Öhlund, Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90187 Umeå, Sweden. Phone: 469-0785-1727; E-mail:
| |
Collapse
|
37
|
Thambi T, Hong J, Yoon AR, Yun CO. Challenges and progress toward tumor-targeted therapy by systemic delivery of polymer-complexed oncolytic adenoviruses. Cancer Gene Ther 2022; 29:1321-1331. [PMID: 35444290 PMCID: PMC9576595 DOI: 10.1038/s41417-022-00469-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Oncolytic adenovirus (oAd) elicits antitumor activity by preferential viral replication in cancer cells. However, poor systemic administrability or suboptimal intratumoral retainment of the virus remains a major challenge toward maximizing the antitumor activity of oAd in a clinical environment. To surmount these issues, a variety of non-immunogenic polymers has been used to modify the surface of oAds chemically or physically. Complexation of oAd with polymers can effectively evade the host immune response and reduces nonspecific liver sequestration. The tumor-specific delivery of these complexes can be further improved upon by inclusion of tumor-targeting moieties on the surface. Therefore, modification of the Ad surface using polymers is viewed as a potential strategy to enhance the delivery of Ad via systemic administration. This review aims to provide a comprehensive overview of polymer-complexed Ads, their progress, and future challenges in cancer treatment.
Collapse
Affiliation(s)
- Thavasyappan Thambi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Korea
| | - JinWoo Hong
- GeneMedicine CO., Ltd., 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Seoul, Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Korea.
- GeneMedicine CO., Ltd., 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Seoul, Korea.
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, 04763, Korea.
- Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| |
Collapse
|
38
|
Wang CX, Elganainy D, Zaid MM, Butner JD, Agrawal A, Nizzero S, Minsky BD, Holliday EB, Taniguchi CM, Smith GL, Koong AC, Herman JM, Das P, Maitra A, Wang H, Wolff RA, Katz MHG, Crane CH, Cristini V, Koay EJ. Mass Transport Model of Radiation Response: Calibration and Application to Chemoradiation for Pancreatic Cancer. Int J Radiat Oncol Biol Phys 2022; 114:163-172. [PMID: 35643254 PMCID: PMC10042520 DOI: 10.1016/j.ijrobp.2022.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The benefit of radiation therapy for pancreatic ductal adenocarcinoma (PDAC) remains unclear. We hypothesized that a new mechanistic mathematical model of chemotherapy and radiation response could predict clinical outcomes a priori, using a previously described baseline measurement of perfusion from computed tomography scans, normalized area under the enhancement curve (nAUC). METHODS AND MATERIALS We simplified an existing mass transport model that predicted cancer cell death by replacing previously unknown variables with averaged direct measurements from randomly selected pathologic sections of untreated PDAC. This allowed using nAUC as the sole model input to approximate tumor perfusion. We then compared the predicted cancer cell death to the actual cell death measured from corresponding resected tumors treated with neoadjuvant chemoradiation in a calibration cohort (n = 80) and prospective cohort (n = 25). After calibration, we applied the model to 2 separate cohorts for pathologic and clinical associations: targeted therapy cohort (n = 101), cetuximab/bevacizumab + radiosensitizing chemotherapy, and standard chemoradiation cohort (n = 81), radiosensitizing chemotherapy to 50.4 Gy in 28 fractions. RESULTS We established the relationship between pretreatment computed v nAUC to pathologically verified blood volume fraction of the tumor (r = 0.65; P = .009) and fractional tumor cell death (r = 0.97-0.99; P < .0001) in the calibration and prospective cohorts. On multivariate analyses, accounting for traditional covariates, nAUC independently associated with overall survival in all cohorts (mean hazard ratios, 0.14-0.31). Receiver operator characteristic analyses revealed discrimination of good and bad prognostic groups in the cohorts with area under the curve values of 0.64 to 0.71. CONCLUSIONS This work presents a new mathematical modeling approach to predict clinical response from chemotherapy and radiation for PDAC. Our findings indicate that oxygen/drug diffusion strongly influences clinical responses and that nAUC is a potential tool to select patients with PDAC for radiation therapy.
Collapse
Affiliation(s)
- Charles X Wang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, California
| | - Dalia Elganainy
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mohamed M Zaid
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas
| | - Anshuman Agrawal
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sara Nizzero
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas
| | - Bruce D Minsky
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emma B Holliday
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Grace L Smith
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Albert C Koong
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph M Herman
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prajnan Das
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Matthew H G Katz
- Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas; Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York
| | - Eugene J Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
39
|
Belli C, Antonarelli G, Repetto M, Boscolo Bielo L, Crimini E, Curigliano G. Targeting Cellular Components of the Tumor Microenvironment in Solid Malignancies. Cancers (Basel) 2022; 14:4278. [PMID: 36077813 PMCID: PMC9454727 DOI: 10.3390/cancers14174278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cancers are composed of transformed cells, characterized by aberrant growth and invasiveness, in close relationship with non-transformed healthy cells and stromal tissue. The latter two comprise the so-called tumor microenvironment (TME), which plays a key role in tumorigenesis, cancer progression, metastatic seeding, and therapy resistance. In these regards, cancer-TME interactions are complex and dynamic, with malignant cells actively imposing an immune-suppressive and tumor-promoting state on surrounding, non-transformed, cells. Immune cells (both lymphoid and myeloid) can be recruited from the circulation and/or bone marrow by means of chemotactic signals, and their functionality is hijacked upon arrival at tumor sites. Molecular characterization of tumor-TME interactions led to the introduction of novel anti-cancer therapies targeting specific components of the TME, such as immune checkpoint blockers (ICB) (i.e., anti-programmed death 1, anti-PD1; anti-Cytotoxic T-Lymphocyte Antigen 4, anti-CTLA4). However, ICB resistance often develops and, despite the introduction of newer technologies able to study the TME at the single-cell level, a detailed understanding of all tumor-TME connections is still largely lacking. In this work, we highlight the main cellular and extracellular components of the TME, discuss their dynamics and functionality, and provide an outlook on the most relevant clinical data obtained with novel TME-targeting agents, with a focus on T lymphocytes, macrophages, and cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Carmen Belli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Matteo Repetto
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Edoardo Crimini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20141 Milan, Italy
| |
Collapse
|
40
|
Monteiro MV, Ferreira LP, Rocha M, Gaspar VM, Mano JF. Advances in bioengineering pancreatic tumor-stroma physiomimetic Biomodels. Biomaterials 2022; 287:121653. [PMID: 35803021 DOI: 10.1016/j.biomaterials.2022.121653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer exhibits a unique bioarchitecture and desmoplastic cancer-stoma interplay that governs disease progression, multi-resistance, and metastasis. Emulating the biological features and microenvironment heterogeneity of pancreatic cancer stroma in vitro is remarkably complex, yet highly desirable for advancing the discovery of innovative therapeutics. Diverse bioengineering approaches exploiting patient-derived organoids, cancer-on-a-chip platforms, and 3D bioprinted living constructs have been rapidly emerging in an endeavor to seamlessly recapitulate major tumor-stroma biodynamic interactions in a preclinical setting. Gathering on this, herein we showcase and discuss the most recent advances in bio-assembling pancreatic tumor-stroma models that mimic key disease hallmarks and its desmoplastic biosignature. A reverse engineering perspective of pancreatic tumor-stroma key elementary units is also provided and complemented by a detailed description of biodesign guidelines that are to be considered for improving 3D models physiomimetic features. This overview provides valuable examples and starting guidelines for researchers envisioning to engineer and characterize stroma-rich biomimetic tumor models. All in all, leveraging advanced bioengineering tools for capturing stromal heterogeneity and dynamics, opens new avenues toward generating more predictive and patient-personalized organotypic 3D in vitro platforms for screening transformative therapeutics targeting the tumor-stroma interplay.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Luís P Ferreira
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Rocha
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
41
|
Teske C, Kahlert C, Welsch T, Liedel K, Weitz J, Uckermann O, Steiner G. Label-free differentiation of human pancreatic cancer, pancreatitis, and normal pancreatic tissue by molecular spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:75001. [PMID: 36399853 PMCID: PMC9313287 DOI: 10.1117/1.jbo.27.7.075001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/22/2022] [Indexed: 05/19/2023]
Abstract
SIGNIFICANCE Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer deaths with a best median survival of only 40 to 50 months for localized disease despite multimodal treatment. The standard tissue differentiation method continues to be pathology with histological staining analysis. Microscopic discrimination between inflammatory pancreatitis and malignancies is demanding. AIM We aim to accurately distinguish native pancreatic tissue using infrared (IR) spectroscopy in a fast and label-free manner. APPROACH Twenty cryopreserved human pancreatic tissue samples were collected from surgical resections. In total, more than 980,000 IR spectra were collected and analyzed using aMATLAB package. For differentiation of PDAC, pancreatitis, and normal tissue, a three-class training set for supervised classification was created with 25,000 spectra and the principal component analysis (PCA) score values for each cohort. Cross-validation was performed using the leaveone- out method. Validation of the algorithm was accomplished with 13 independent test samples. RESULTS Reclassification of the training set and the independent test samples revealed an overall accuracy of more than 90% using a discrimination algorithm. CONCLUSION IR spectroscopy in combination with PCA and supervised classification is an efficient analytical method to reliably distinguish between benign and malignant pancreatic tissues. It opens up a wide research field for oncological and surgical applications.
Collapse
Affiliation(s)
- Christian Teske
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Department of Visceral, Thoracic and Vascular Surgery, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- Address all correspondence to Christian Teske,
| | - Christoph Kahlert
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Department of Visceral, Thoracic and Vascular Surgery, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | - Thilo Welsch
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Department of Visceral, Thoracic and Vascular Surgery, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | - Katja Liedel
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Department of Visceral, Thoracic and Vascular Surgery, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | - Jürgen Weitz
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Department of Visceral, Thoracic and Vascular Surgery, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | - Ortrud Uckermann
- University Hospital Carl Gustav Carus, Department of Neurosurgery, Dresden, Germany
| | - Gerald Steiner
- Technische Universität Dresden, Department of Anaesthesiology and Critical Care Medicine, Clinical Sensoring and Monitoring, Faculty of Medicine, Dresden, Germany
| |
Collapse
|
42
|
Monteiro MV, Rocha M, Gaspar VM, Mano JF. Programmable Living Units for Emulating Pancreatic Tumor-Stroma Interplay. Adv Healthc Mater 2022; 11:e2102574. [PMID: 35426253 DOI: 10.1002/adhm.202102574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/02/2022] [Indexed: 12/19/2022]
Abstract
Bioengineering close-to-native in vitro models that emulate tumors bioarchitecture and microenvironment is highly appreciable for improving disease modeling toolboxes. Herein, pancreatic cancer living units-so termed cancer-on-a-bead models-are generated. Such user-programmable in vitro platforms exhibit biomimetic multicompartmentalization and tunable integration of cancer associated stromal elements. These stratified units can be rapidly assembled in-air, exhibit reproducible morphological features, tunable size, and recapitulate spatially resolved tumor-stroma extracellular matrix (ECM) niches. Compartmentalization of pancreatic cancer and stromal cells in well-defined ECM microenvironments stimulates the secretion of key biomolecular effectors including transforming growth factor β and Interleukin 1-β, closely emulating the signatures of human pancreatic tumors. Cancer-on-a-bead models also display increased drug resistance to chemotherapeutics when compared to their reductionistic counterparts, reinforcing the importance to differentially model ECM components inclusion and their spatial stratification as observed in vivo. Beyond providing a universal technology that enables spatial modularity in tumor-stroma elements bioengineering, a scalable, in-air fabrication of ECM-tunable 3D platforms that can be leveraged for recapitulating differential matrix composition occurring in other human neoplasias is provided here.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Marta Rocha
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
43
|
Afify SM, Hassan G, Seno A, Seno M. Cancer-inducing niche: the force of chronic inflammation. Br J Cancer 2022; 127:193-201. [PMID: 35292758 PMCID: PMC9296522 DOI: 10.1038/s41416-022-01775-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
The growth of cancer tissue is thought to be considered driven by a small subpopulation of cells, so-called cancer stem cells (CSCs). CSCs are located at the apex of a hierarchy in a cancer tissue with self-renewal, differentiation and tumorigenic potential that produce the progeny in the tissue. Although CSCs are generally believed to play a critical role in the growth, metastasis, and recurrence of cancers, the origin of CSCs remains to be reconsidered. We hypothesise that, chronic diseases, including obesity and diabetes, establish the cancer-inducing niche (CIN) that drives the undifferentiated/progenitor cells into CSCs, which then develop malignant tumours in vivo. In this context, a CIN could be traced to chronic inflammation that involves long-lasting tissue damage and repair after being exposed to factors such as cytokines and growth factors. This must be distinguished from the cancer microenvironment, which is responsible for cancer maintenance. The concept of a CIN is most important for cancer prevention as well as cancer therapy.
Collapse
Affiliation(s)
- Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia, 32511, Egypt.
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, USA
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
44
|
Zeng Z, Zuo Y, Jin Y, Peng Y, Zhu X. Identification of Extracellular Matrix Signatures as Novel Potential Prognostic Biomarkers in Lung Adenocarcinoma. Front Genet 2022; 13:872380. [PMID: 35711936 PMCID: PMC9197387 DOI: 10.3389/fgene.2022.872380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/03/2022] [Indexed: 02/05/2023] Open
Abstract
The extracellular matrix (ECM) is vital to normal cellular function and has emerged as a key factor in cancer initiation and metastasis. However, the prognostic and oncological values of ECM organization-related genes have not been comprehensively explored in lung adenocarcinoma (LUAD) patients. In this study, we included LUAD samples from The Cancer Genome Atlas (TCGA, training set) and other three validation sets (GSE87340, GSE140343 and GSE115002), then we constructed a three-gene prognostic signature based on ECM organization-related genes. The prognostic signature involving COL4A6, FGA and FSCN1 was powerful and robust in both the training and validation datasets. We further constructed a composite prognostic nomogram to facilitate clinical practice by integrating an ECM organization-related signature with clinical characteristics, including age and TNM stage. Patients with higher risk scores were characterized by proliferation, metastasis and immune hallmarks. It is worth noting that high-risk group showed higher fibroblast infiltration in tumor tissue. Accordingly, factors (IGFBP5, CLCF1 and IL6) reported to be secreted by cancer-associated fibroblasts (CAFs) showed higher expression level in the high-risk group. Our findings highlight the prognostic value of the ECM organization signature in LUAD and provide insights into the specific clinical and molecular features underlying the ECM organization-related signature, which may be important for patient treatment.
Collapse
Affiliation(s)
- Zhen Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanli Zuo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Chen W, Chen Q, Parker RA, Zhou Y, Lustigova E, Wu BU. Risk Prediction of Pancreatic Cancer in Patients With Abnormal Morphologic Findings Related to Chronic Pancreatitis: A Machine Learning Approach. GASTRO HEP ADVANCES 2022; 1:1014-1026. [PMID: 36467394 PMCID: PMC9718544 DOI: 10.1016/j.gastha.2022.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS A significant factor contributing to poor survival in pancreatic cancer is the often late stage at diagnosis. We sought to develop and validate a risk prediction model to facilitate the distinction between chronic pancreatitis-related vs potential early pancreatic ductal adenocarcinoma (PDAC)-associated changes on pancreatic imaging. METHODS In this retrospective cohort study, patients aged 18-84 years whose abdominal computed tomography/magnetic resonance imaging reports indicated duct dilatation, atrophy, calcification, cyst, or pseudocyst between January 2008 and November 2019 were identified. The outcome of interest is PDAC in 3 years. More than 100 potential predictors were extracted. Random survival forests approach was used to develop and validate risk models. Multivariable Cox proportional hazard model was applied to estimate the effect of the covariates on the risk of PDAC. RESULTS The cohort consisted of 46,041 (mean age 66.4 years). The 3-year incidence rate was 4.0 (95% confidence interval CI 3.6-4.4)/1000 person-years of follow-up. The final models containing age, weight change, duct dilatation, and either alkaline phosphatase or total bilirubin had good discrimination and calibration (c-indices 0.81). Patients with pancreas duct dilatation and at least another morphological feature in the absence of calcification had the highest risk (adjusted hazard ratio [aHR] = 14.15, 95% CI 8.7-22.6), followed by patients with calcification and duct dilatation (aHR = 7.28, 95% CI 4.09-12.96), and patients with duct dilation only (aHR = 6.22, 95% CI 3.86-10.03), compared with patients with calcifications alone as the reference group. CONCLUSION The study characterized the risk of pancreatic cancer among patients with 5 abnormal morphologic findings based on radiology reports and demonstrated the ability of prediction algorithms to provide improved risk stratification of pancreatic cancer in these patients.
Collapse
Affiliation(s)
- Wansu Chen
- Department of Research and Evaluation, Kaiser Permanente Southern California Research and Evaluation, Pasadena, California
| | - Qiaoling Chen
- Department of Research and Evaluation, Kaiser Permanente Southern California Research and Evaluation, Pasadena, California
| | - Rex A. Parker
- Department of Radiology, Los Angeles Medical Center, Southern California Permanente Medical Group, Los Angeles, California
| | - Yichen Zhou
- Department of Research and Evaluation, Kaiser Permanente Southern California Research and Evaluation, Pasadena, California
| | - Eva Lustigova
- Department of Research and Evaluation, Kaiser Permanente Southern California Research and Evaluation, Pasadena, California
| | - Bechien U. Wu
- Department of Gastroenterology, Center for Pancreatic Care, Los Angeles Medical Center, Southern California Permanente Medical Group, Los Angeles, California
| |
Collapse
|
46
|
Richards KE, Xiao W, Hill R. Cancer-Associated Fibroblasts Confer Gemcitabine Resistance to Pancreatic Cancer Cells through PTEN-Targeting miRNAs in Exosomes. Cancers (Basel) 2022; 14:cancers14112812. [PMID: 35681792 PMCID: PMC9179363 DOI: 10.3390/cancers14112812] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Previous studies have shown that cancer associated fibroblasts exposed to chemotherapy release exosomes which promote chemoresistance in recipient cells. However, the molecular mechanism responsible for this has not been fully elucidated. In this study, we found that gemcitabine treatment caused fibroblasts to release exosome which contain PTEN-targeting miRNAs. These findings shed light on how fibroblasts exposed to chemotherapy promote tumor growth and drug resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC) is currently the third leading cause of cancer-related death in the United States. Even though the poor prognosis of PDAC is often attributed to late diagnosis, patients with an early diagnosis who undergo tumor resection and adjuvant chemotherapy still show tumor recurrence, highlighting a need to develop therapies which can overcome chemoresistance. Chemoresistance has been linked to the high expression of microRNAs (miRs), such as miR-21, within tumor cells. Tumor cells can collect miRs through the uptake of miR-containing lipid extracellular vesicles called exosomes. These exosomes are secreted in high numbers from cancer-associated fibroblasts (CAFs) within the tumor microenvironment during gemcitabine treatment and can contribute to cell proliferation and chemoresistance. Here, we show a novel mechanism in which CAF-derived exosomes may promote proliferation and chemoresistance, in part, through suppression of the tumor suppressor PTEN. We identified five microRNAs: miR-21, miR-181a, miR-221, miR-222, and miR-92a, that significantly increased in number within the CAF exosomes secreted during gemcitabine treatment which target PTEN. Furthermore, we found that CAF exosomes suppressed PTEN expression in vitro and that treatment with the exosome inhibitor GW4869 blocked PTEN suppression in vivo. Collectively, these findings highlight a mechanism through which the PTEN expression loss, often seen in PDAC, may be attained and lend support to investigations into the use of exosome inhibitors as potential therapeutics to improve the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Katherine E. Richards
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 45556, USA;
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Weikun Xiao
- Lawrence J. Ellison Institute of Transformative Medicine, Los Angeles, CA 90064, USA;
| | - Reginald Hill
- Lawrence J. Ellison Institute of Transformative Medicine, Los Angeles, CA 90064, USA;
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| | | |
Collapse
|
47
|
Cancer-Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14051231. [PMID: 35267539 PMCID: PMC8909913 DOI: 10.3390/cancers14051231] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in determining the biological behavior of several of the more aggressive malignancies. Among the various cell types evident in the tumor “field”, cancer-associated fibroblasts (CAFs) are a heterogenous collection of activated fibroblasts secreting a wide repertoire of factors that regulate tumor development and progression, inflammation, drug resistance, metastasis and recurrence. Insensitivity to chemotherapeutics and metastatic spread are the major contributors to cancer patient mortality. This review discusses the complex interactions between CAFs and the various populations of normal and neoplastic cells that interact within the dynamic confines of the tumor microenvironment with a focus on the involved pathways and genes. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous population of stromal cells found in solid malignancies that coexist with the growing tumor mass and other immune/nonimmune cellular elements. In certain neoplasms (e.g., desmoplastic tumors), CAFs are the prominent mesenchymal cell type in the tumor microenvironment, where their presence and abundance signal a poor prognosis in multiple cancers. CAFs play a major role in the progression of various malignancies by remodeling the supporting stromal matrix into a dense, fibrotic structure while secreting factors that lead to the acquisition of cancer stem-like characteristics and promoting tumor cell survival, reduced sensitivity to chemotherapeutics, aggressive growth and metastasis. Tumors with high stromal fibrotic signatures are more likely to be associated with drug resistance and eventual relapse. Clarifying the molecular basis for such multidirectional crosstalk among the various normal and neoplastic cell types present in the tumor microenvironment may yield novel targets and new opportunities for therapeutic intervention. This review highlights the most recent concepts regarding the complexity of CAF biology including CAF heterogeneity, functionality in drug resistance, contribution to a progressively fibrotic tumor stroma, the involved signaling pathways and the participating genes.
Collapse
|
48
|
Kandimalla R, Shimura T, Mallik S, Sonohara F, Tsai S, Evans DB, Kim SC, Baba H, Kodera Y, Von Hoff D, Chen X, Goel A. Identification of Serum miRNA Signature and Establishment of a Nomogram for Risk Stratification in Patients With Pancreatic Ductal Adenocarcinoma. Ann Surg 2022; 275:e229-e237. [PMID: 32398486 PMCID: PMC7648727 DOI: 10.1097/sla.0000000000003945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of the study was to perform mRNA-miRNA regulatory network analyses to identify a miRNA panel for molecular subtype identification and stratification of high-risk patients with pancreatic ductal adenocarcinoma (PDAC). BACKGROUND Recent transcriptional profiling effort in PDAC has led to the identification of molecular subtypes that associate with poor survival; however, their clinical significance for risk stratification in patients with PDAC has been challenging. METHODS By performing a systematic analysis in The Cancer Genome Atlas and International Cancer Genome Consortium cohorts, we discovered a panel of miRNAs that associated with squamous and other poor molecular subtypes in PDAC. Subsequently, we used logistic regression analysis to develop models for risk stratification and Cox proportional hazard analysis to determine survival prediction probability of this signature in multiple cohorts of 433 patients with PDAC, including a tissue cohort (n = 199) and a preoperative serum cohort (n = 51). RESULTS We identified a panel of 9 miRNAs that were significantly upregulated (miR-205-5p and -934) or downregulated (miR-192-5p, 194-5p, 194-3p, 215-5p, 375-3p, 552-3p, and 1251-5p) in PDAC molecular subtypes with poor survival [squamous, area under the receiver operating characteristic curve (AUC) = 0.90; basal, AUC = 0.89; and quasimesenchymal, AUC = 0.83]. The validation of this miRNA panel in a tissue clinical cohort was a significant predictor of overall survival (hazard ratio = 2.48, P < 0.0001), and this predictive accuracy improved further in a risk nomogram which included key clinicopathological factors. Finally, we were able to successfully translate this miRNA predictive signature into a liquid biopsy-based assay in preoperative serum specimens from PDAC patients (hazard ratio: 2.85, P = 0.02). CONCLUSION We report a novel miRNA risk-stratification signature that can be used as a noninvasive assay for the identification of high-risk patients and potential disease monitoring in patients with PDAC.
Collapse
Affiliation(s)
- Raju Kandimalla
- Center for Gastrointestinal Research; Center from Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Tadanobu Shimura
- Center for Gastrointestinal Research; Center from Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Saurav Mallik
- Division of Biostatistics and Bioinformatics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Fuminori Sonohara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Susan Tsai
- Department of Surgery, Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Douglas B Evans
- Department of Surgery, Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Song Cheol Kim
- Department of Hepatic and Pancreatobiliary Surgery, Asan Medical Center, Seoul, Korea
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Xi Chen
- Division of Biostatistics and Bioinformatics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center from Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
49
|
Alhobayb T, Peravali R, Ashkar M. The Relationship between Acute and Chronic Pancreatitis with Pancreatic Adenocarcinoma: Review. Diseases 2021; 9:diseases9040093. [PMID: 34940031 PMCID: PMC8700754 DOI: 10.3390/diseases9040093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with poor prognosis, leading to significant cancer-related mortality and an overall five-year survival rate of about nine percent. Acute and chronic pancreatitis have been associated with PDAC through common risk factors based on multiple epidemiological studies. Acute pancreatitis (AP) might be one of the earliest manifestations of PDAC, but evolving chronic pancreatitis (CP) following recurrent bouts of AP has been proposed as a risk factor for cancer development in the setting of persistent inflammation and ongoing exposure to carcinogens. This review aims to highlight the evidence supporting the relationship between acute and chronic pancreatitis with PDAC.
Collapse
Affiliation(s)
- Tamara Alhobayb
- Department of Medicine, Division of Gastroenterology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Rahul Peravali
- Department of Internal Medicine, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Motaz Ashkar
- Department of Medicine, Division of Gastroenterology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
- Correspondence:
| |
Collapse
|
50
|
Winter K, Dzieniecka M, Strzelczyk J, Wągrowska-Danilewicz M, Danilewicz M, Małecka-Wojciesko E. Alpha Smooth Muscle Actin (αSMA) Immunohistochemistry Use in the Differentiation of Pancreatic Cancer from Chronic Pancreatitis. J Clin Med 2021; 10:jcm10245804. [PMID: 34945100 PMCID: PMC8707555 DOI: 10.3390/jcm10245804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Aim: Fibrosis is observed both in pancreatic cancer (PDAC) and chronic pancreatitis (CP). The main cells involved in fibrosis are pancreatic stellate cells (PSCs), which activate alpha smooth muscle actin (αSMA), which is considered to be the best-known fibrosis marker. The aim of the study was to evaluate the expression of the αSMA in patients with PDAC and CP as the possible differentiation marker. Methods: We enrolled 114 patients undergoing pancreatic resection: 83 with PDAC and 31 with CP. Normal fragments of resected specimen from 21 patients represented the control tissue. The immunoexpressions of αSMA were detected in tissue specimens with immunohistochemistry (Abcam antibodies, GB). Results: Mean cytoplasmatic expression of αSMA protein in PDAC stromal cells was significantly higher compared to CP: 2.42 ± 0.37 vs 1.95 ± 0.45 (p < 0.01) and control group 0.61 ± 0.45 (p < 0.01). Strong immunoexpression of the αSMA protein was found in the vast majority (80.7%) of patients with PDAC, in about half (58%) of patients with CP, and not at all in healthy tissue. The expression of αSMA of different intensity was found in all patients with PDAC and CP, while in healthy tissue was minimal or absent. In PDAC patients, αSMA expression was significantly higher in tumors of diameter higher than 3 cm compared to smaller ones (p = 0.017). Conclusions: Presented findings confirm the significant role of fibrosis in both PDAC and CP; however, they do not confirm the role of αSMA as a marker of differentiation.
Collapse
Affiliation(s)
- Katarzyna Winter
- Clinical Department of General and Oncological Gastroenterology, University Clinical Hospital No. 1, 90-153 Lodz, Poland;
- Correspondence: ; Tel.: +48-500-275-615; +48-4267-76-664; Fax: +48-678-6480
| | | | - Janusz Strzelczyk
- Department of General and Transplant Surgery, Medical University of Lodz, 90-153 Lodz, Poland;
| | | | - Marian Danilewicz
- Department of Nephropathology, Division of Morphometry, Medical University of Lodz, 90-153 Lodz, Poland; (M.W.-D.); (M.D.)
| | - Ewa Małecka-Wojciesko
- Clinical Department of General and Oncological Gastroenterology, University Clinical Hospital No. 1, 90-153 Lodz, Poland;
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|