1
|
Al-Beltagi M. Human milk oligosaccharide secretion dynamics during breastfeeding and its antimicrobial role: A systematic review. World J Clin Pediatr 2025; 14:104797. [DOI: 10.5409/wjcp.v14.i2.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) are bioactive components of breast milk with diverse health benefits, including shaping the gut microbiota, modulating the immune system, and protecting against infections. HMOs exhibit dynamic secretion patterns during lactation, influenced by maternal genetics and environmental factors. Their direct and indirect antimicrobial properties have garnered significant research interest. However, a comprehensive understanding of the secretion dynamics of HMOs and their correlation with antimicrobial efficacy remains underexplored.
AIM To synthesize current evidence on the secretion dynamics of HMOs during lactation and evaluate their antimicrobial roles against bacterial, viral, and protozoal pathogens.
METHODS A systematic search of PubMed, Scopus, Web of Science, and Cochrane Library focused on studies investigating natural and synthetic HMOs, their secretion dynamics, and antimicrobial properties. Studies involving human, animal, and in vitro models were included. Data on HMO composition, temporal secretion patterns, and mechanisms of antimicrobial action were extracted. Quality assessment was performed using validated tools appropriate for study design.
RESULTS A total of 44 studies were included, encompassing human, animal, and in vitro research. HMOs exhibited dynamic secretion patterns, with 2′-fucosyllactose (2′-FL) and lacto-N-tetraose peaking in early lactation and declining over time, while 3-fucosyllactose (3-FL) increased during later stages. HMOs demonstrated significant antimicrobial properties through pathogen adhesion inhibition, biofilm disruption, and enzymatic activity impairment. Synthetic HMOs, including bioengineered 2′-FL and 3-FL, were structurally and functionally comparable to natural HMOs, effectively inhibiting pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Campylobacter jejuni. Additionally, HMOs exhibited synergistic effects with antibiotics, enhancing their efficacy against resistant pathogens.
CONCLUSION HMOs are vital in antimicrobial defense, supporting infant health by targeting various pathogens. Both natural and synthetic HMOs hold significant potential for therapeutic applications, particularly in infant nutrition and as adjuncts to antibiotics. Further research, including clinical trials, is essential to address gaps in knowledge, validate findings, and explore the broader applicability of HMOs in improving maternal and neonatal health.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Paediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
2
|
Liu P, Chen X, Cao X, Wang Y, Gao Y, Xu L, Jiang X, Xiao M. Semi-rational engineering of an α-L-fucosidase for regioselective synthesis of fucosyl- N-acetylglucosamine disaccharides. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100244. [PMID: 40034538 PMCID: PMC11875152 DOI: 10.1016/j.fochms.2025.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
α-L-Fucosidases are attractive biocatalysts for the production of bioactive fucosylated oligosaccharides, however, poor regioselectivity and activity for transglycosylation have significantly limited their applications. We have recently derived an α-L-Fucosidase, BF3242, from Bacteroides fragilis NCTC9343, which could efficiently synthesize a mixture of Fuc-α-1,3/1,6-GlcNAc, but its 1,3/1,6-regioselectivity was observably affected by reaction temperature. Here, we integrated loop-targeted random mutagenesis and site-directed mutagenesis to engineer the regioselectivity and transglycosylation activity of BF3242. Loop-targeted random mutagenesis revealed that L266 in the loop-4 (H242-S267) within the model of BF3242 was a key residue for the regioselectivity for transglycosylation, and the saturation mutagenesis at residue L266 uncovered a mutant L266H with a significantly increased 1,3-regioselectivity of 97 % from 69 % of WT BF3242. Subsequently, five designed single-site mutations at the putative aglycone subsites were performed, resulting in a double-site mutant L266H/M285C that increased the overall yield of Fuc-α-1,3/1,6-GlcNAc to 76 % from 68 % of WT BF3242. The saturation mutagenesis at residue M285 finally generated a double-site mutant L266H/M285T with the maximal overall yield of Fuc-α-1,3/1,6-GlcNAc of 85 % and 1,3-regioselectivity of 98 %. The R T/H of L266H/M285T was approximately 2.7-fold higher than that of the WT BF3242. Molecular dynamics simulations revealed that the structural flexibility of the loop-4 was substantially reduced in mutant L266H, and the hydrogen bond formation and binding affinity between mutant L266H/M285T and Fuc-α-1,3-GlcNAc was significantly enhanced. The semi-rationally engineered enzyme L266H/M285T would be a promising biocatalyst for highly 1,3-regioselective synthesis of fucosyl-N-acetylglucosamine disaccharide.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xiaodi Chen
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
| | - Xueting Cao
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| | - Yuying Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| | - Yafei Gao
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| | - Li Xu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| | - Xukai Jiang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| | - Min Xiao
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Afshar M, Molnar-Gabor D. Optimization, validation, and greenness assessment of a capillary zone electrophoresis method for analysis of inorganic and organic anions in human milk oligosaccharides. Talanta 2025; 287:127607. [PMID: 39837201 DOI: 10.1016/j.talanta.2025.127607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
The development and validation of an accurate, selective, and eco-friendly capillary zone electrophoretic detection (CZE) method has been presented for concurrent measurement of inorganic and organic anions including chloride, sulfate, formic acid, citric acid, acetic acid, phosphate, and glutamic acid in Human Milk Oligosaccharides (HMOs) for the first time. An electrolyte composed of an aqueous solution of benzoic acid, 16.38 mM; l-histidine, 24.49 mM; and polyacrylamide 0.0025 % provided a satisfactory separation of all analytes of interest. The electroosmotic flow was reversed using polyacrylamide in the background buffer. UV detection was carried out at a wavelength of 230 nm using benzoic acid in running buffer. Analysis was conducted on a 60 cm (53 cm to the detector) x 0.75 μm i.d. fused-silica capillary at a potential of -30 kV and the temperature of 20 °C. The procedure had a linear response in the concentration range of 2-200 mg/L for all analytes with correlation coefficients ≥0.9997. Validation was performed based on the International Council for Harmonization (ICH). The National Environmental Methods Index and the analytical GREEness metric were the tools applied for greenness assessment. System suitability parameter was determined using the expanded uncertainty of the method estimated from method validation data. The applicability of the proposed procedure was shown in diverse real samples.
Collapse
Affiliation(s)
- Minoo Afshar
- DSM-Firmenich, Kogle Allé 4, 2970, Hørsholm, Denmark.
| | | |
Collapse
|
4
|
Kou J, Guo H, Leng J, Xiang H, Wang H, Zhang J, Yang P, Zou F, Zhuang W, Niu H, Ying H, Wu J. Preparation of mixed-mode hydrophilic particle for efficient separation of common human milk oligosaccharides. J Chromatogr A 2025; 1748:465865. [PMID: 40086144 DOI: 10.1016/j.chroma.2025.465865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Human milk oligosaccharides (HMOs) are essential for babies' growth. The most commonly used method for HMOs analysis combines hydrophilic interaction liquid chromatography (HILIC) with ultra-performance liquid chromatography (UPLC). However, high-pressure operation and the cost of commercial HILIC columns limit progress in the HMOs research. In this study, we synthesized a novel mixed-mode adsorbent, PS-g-PAMPS, by grafting 2-acrylamido-2-methylpropane sulfonic acid (AMPS) onto a Merrifield resin (PS-g-Cl), and characterized it. The adsorbents were packed into a column (Mixed-HILIC column) for efficient high-performance liquid chromatography (HPLC) analysis of four HMOs: 2'-Focusllactose (2'-FL), Lacto-N-Tetraose (LNnT), 3'-Sialyllactose (3'-SL), and 6'-Sialyllactose (6'-SL). Compared to three commercial columns, AMINEX HPX-87H column, ROA-Organic Acid column, Glycan BEH amide column, our column offered several advantages: low-pressure operation, cost-effective adsorbent, and baseline separation of six analytes in the same analysis time. The mixed-mode mechanism of electrostatic repulsion and hydrophilic interactions was verified using zeta potential, and organic phase ratio. Key performance parameters, including spike recovery, limit of detection, and limit of quantification, were evaluated, and the column's reliability was confirmed using a real 2'-FL fermentation sample. These results demonstrated the potential of the Mixed-HILIC column for the development of application chromatography in HMOs.
Collapse
Affiliation(s)
- Jingwei Kou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Han Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Jing Leng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Houle Xiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Hui Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Jinming Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Pengpeng Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Fengxia Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Huanqing Niu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; National Engineering Technique Research Center for Biotechnology, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China.
| |
Collapse
|
5
|
An P, Lan D, Feng D, Zhang Y, An H, Zheng L, Wu Z, Wang D, Zhong Q. Quantitative nuclear magnetic analysis of human milk oligosaccharides 2'-fucosyllactose and 3-fucosyllactose in complicated food matrices. Food Chem 2025; 473:142821. [PMID: 39914138 DOI: 10.1016/j.foodchem.2025.142821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 02/26/2025]
Abstract
Human milk oligosaccharides (HMOs) are the third most abundant solid component in breast milk, which is essential for the healthy growth of infants. 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL) are the main components of HMOs. In this study, we developed and validated a quantitative nuclear magnetic resonance (qNMR) method for determining HMOs in different complex food matrices. The spectra of HMOs often overlap with impurities in the samples, which hampers quantification using the conventional integral method. We overcame this obstacle by building the Global Spectrum Deconvolution-area coefficients algorithm. The method proved to be precise, yielding satisfactory results in terms of precision (RSD% 0.5-1.9), trueness (bias% 1.9-8.2), and recovery (90.5-106.6 %). The limit of quantification for 2'-FL was 0.10 mg/mL, and for 3-FL, it was 0.15 mg/mL. A comparison using Deming regression between the existing high-performance liquid chromatography method and the developed qNMR method for determining HMOs demonstrated the high accuracy of the qNMR method. The proposed method allows for high-throughput measurements of large-volume samples due to its simple and fast sample preparation. Therefore, the method is an essential tool for determining HMOs in various complex foods.
Collapse
Affiliation(s)
- Puchang An
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Technology Innovation Center of Light Industrial Consumption Goods Quality and Safety, State Administration for Market Regulation, Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China; Sinolight Technology Innovation Center Co. Ltd., Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Di Feng
- Technology Innovation Center of Light Industrial Consumption Goods Quality and Safety, State Administration for Market Regulation, Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China; Sinolight Technology Innovation Center Co. Ltd., Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China; Beijing University of Technology, 100 Pingyuan Park, Chaoyang District, Beijing 100022, China
| | - Yihang Zhang
- Technology Innovation Center of Light Industrial Consumption Goods Quality and Safety, State Administration for Market Regulation, Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China; Sinolight Technology Innovation Center Co. Ltd., Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China
| | - Hongmei An
- Technology Innovation Center of Light Industrial Consumption Goods Quality and Safety, State Administration for Market Regulation, Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China; Sinolight Technology Innovation Center Co. Ltd., Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China
| | - Liting Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Technology Innovation Center of Light Industrial Consumption Goods Quality and Safety, State Administration for Market Regulation, Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China; Sinolight Technology Innovation Center Co. Ltd., Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China
| | - Zhuying Wu
- Technology Innovation Center of Light Industrial Consumption Goods Quality and Safety, State Administration for Market Regulation, Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China; Sinolight Technology Innovation Center Co. Ltd., Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China; China National Research Institute of Food and Fermentation Industries, Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China
| | - Daobing Wang
- Technology Innovation Center of Light Industrial Consumption Goods Quality and Safety, State Administration for Market Regulation, Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China; Sinolight Technology Innovation Center Co. Ltd., Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China.
| | - Qiding Zhong
- Technology Innovation Center of Light Industrial Consumption Goods Quality and Safety, State Administration for Market Regulation, Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China; Sinolight Technology Innovation Center Co. Ltd., Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China; China National Research Institute of Food and Fermentation Industries, Building 6, No.24 Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China.
| |
Collapse
|
6
|
Sheng M, Liu Y, Zhu Y, Wang R, Zhang W, Mu W. Efficient Biosynthesis of Sialyllacto- N-tetraose a by a Metabolically Engineered Escherichia coli BL21(DE3) Strain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6820-6827. [PMID: 40036487 DOI: 10.1021/acs.jafc.4c12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Recently, the construction of metabolically engineered strains for the microbial synthesis of human milk oligosaccharides (HMOs) has attracted increasing attention. However, fewer efforts were made in the in vivo biosynthesis of complex HMOs, especially sialylated complex HMOs. In this study, we engineered Escherichia coli BL21(DE3) to efficiently produce sialyllacto-N-tetraose a (LST-a) efficiently. Three sequential glycosylation steps were introduced to construct the LST-a pathway, catalyzed by β1,3-N-acetylglucosaminylation, β1,3-galactosylation, and α2,3-sialylation. Pathway genes for cytidine 5'-monophospho (CMP)-N-acetylneuraminic acid (Neu5Ac) were introduced to support the sialylation donor supply. Production of LST-a was improved by deleting competitive genes of CMP-Neu5Ac synthesis, screening a more efficient α2,3-sialyltransferase, and combinatorial optimization of pathway gene expression. LST-a was finally produced with the titer of 1.235 and 4.85 g/L by shake-flask and fed-batch cultivation, respectively, demonstrating the feasibility of efficient microbial production of complex sialylated HMOs.
Collapse
Affiliation(s)
- Mian Sheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruiyan Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Gonsalves J, Bauzá-Martinez J, Stahl B, Dingess KA, Mank M. Robust and High-Resolution All-Ion Fragmentation LC-ESI-IM-MS Analysis for In-Depth Characterization or Profiling of Up to 200 Human Milk Oligosaccharides. Anal Chem 2025; 97:5563-5574. [PMID: 40047520 PMCID: PMC11923967 DOI: 10.1021/acs.analchem.4c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Human milk oligosaccharides (HMOs) represent the third most abundant fraction of biomolecules in human milk (HM) and play a crucial role in infant health and development. The unique contributions of HMOs to healthy development of breast-fed infants are assumed to rely on the extraordinary complexity and diversity of HMO isomeric structures, which in turn still cause a huge analytical challenge. Many contemporary analytical methods aiming for more detailed HMO characterization combine ion mobility (IM) with LC-MS for enhanced structural resolution but are typically lacking the robustness necessary for application to HM cohorts with hundreds of samples. To overcome these challenges, we introduce a novel, robust all-ion fragmentation (AIF) LC-ESI-IM-MS method integrating four analytical dimensions: high-resolution LC separation, IM drift time, accurate mass precursor, and fragment ion measurements. This four-dimensional (4D) analytical characterization is sufficient for resolving various HMO structural isomers in an efficient way. Thereby, up to 200 HMO compounds with a maximum degree of polymerization of 13 could be simultaneously identified and relatively quantified. We devised two methods using this 4D analytical approach. One intended for in-depth characterization of multiple known but also novel HMO structures and the second is designed for robust, increased-throughput analyses. With the first approach, five trifucosyl-lacto-N-tetraose isomers (TF-LNTs), four of which were never detected before in HM, as well as additional difucosyl-lacto-N-heaose isomers (DF-LNHs), were revealed and structures fully elucidated by AIF and IM. This exemplifies the potential of our method for in-depth characterization of novel complex HMO structures. Furthermore, the increased-throughput method featuring a shorter LC gradient was applied to real-world HM samples. Here, we could differentiate the HM types I-IV based on a broader range of partly new marker HMOs. We could also derive valuable new insights into variations of multiple and rare HMOs up to DP 11 across lactational stages. Overall, our AIF LC-ESI-IM-MS approach facilitates in-depth monitoring and confident identification of a broad array of distinct and simple to very complex HMOs. We envision this robust AIF LC-ESI-IM-MS approach to advance HMO research by facilitating the characterization of a broad range of HMOs in high numbers of HM samples. This may help to further extend our understanding about HMOs structure-function relationships relevant for infants' healthy development.
Collapse
Affiliation(s)
- John Gonsalves
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | | | - Bernd Stahl
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Department of Chemical Biology & Drug Discovery, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Kelly A Dingess
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Marko Mank
- Danone Research & Innovation, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
8
|
Liu S, Zeng X, Li J, Li W, Gu Y, Li B, Wang J. Goat milk oligosaccharides: regulating infant immunity by intervention in the gut microbiota. Food Funct 2025; 16:2213-2229. [PMID: 40035489 DOI: 10.1039/d5fo00162e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The health status of the growing infant is closely related to the development of the gut microbiota during infancy, which is also a major stimulator of the immune system. Goat milk oligosaccharides (gMOs) are a class of bioactive compounds in goat milk, which have attracted extensive research interest in recent years. Recent studies have highlighted that gMOs as prebiotics can regulate the gut microbiota, exhibit multiple health effects, and act as immunomodulators. This article outlines the structure, classification, and functions of gMOs. In addition, we also deeply explored the mechanism of gMO interaction with infant gut microbiota and regulation of infant immunity. Finally, the possibility of gMOs as an effective substitute for natural prebiotics in breast milk is revisited. We concluded that gMOs improve infant immune function by regulating intestinal beneficial bacteria (Bifidobacteria, Lactobacilli, etc.) and their metabolism. Therefore, gMOs are significant to infant immune health and are expected to become a substitute for human milk oligosaccharides (HMOs).
Collapse
Affiliation(s)
- Sibo Liu
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoling Zeng
- Ausnutria Dairy (China) Co., Ltd, Changsha 410000, China.
| | - Jing Li
- Ausnutria Dairy (China) Co., Ltd, Changsha 410000, China.
| | - Wei Li
- Ausnutria Dairy (China) Co., Ltd, Changsha 410000, China.
| | - Yue Gu
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Wang
- Ausnutria Dairy (China) Co., Ltd, Changsha 410000, China.
| |
Collapse
|
9
|
Li C, Liu Z, Li M, Miao M, Zhang T. Review on bioproduction of sialylated human milk oligosaccharides: Synthesis methods, physiologic functions, and applications. Carbohydr Polym 2025; 352:123177. [PMID: 39843081 DOI: 10.1016/j.carbpol.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Human milk oligosaccharides (HMOs) are crucial for promoting neonatal health, with sialylated oligosaccharides, a significant subclass, offering a variety of health benefits such as prebiotic effects, anti-inflammatory and antimicrobial properties, antiviral defense, and cognitive development support. Among these, 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) have received "GRAS" status from the U.S. Food and Drug Administration and approval from the European Food Safety Authority for use as novel food additives in infant formula and supplements. This review focuses on the synthesis methods of sialylated human milk oligosaccharides (SHMOs), their functional properties, downstreaming developments and application technologies. Given the challenges associated with achieving sufficient availability for food and medical applications, the review emphasizes the viability and efficiency of various production strategies. The review also highlights recent research advancements and offers insights for optimizing large-scale production to support future applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou, 310052, Zhejiang, China
| | - Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Liu Y, Lin Q, Sheng M, Zhu Y, Wang R, Zhang W, Mu W. Highly Efficient In Vivo Production of Sialyllacto- N-tetraose C via Screening of Beneficial β1,4-galactosyltransferase and α2,6-sialyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5376-5384. [PMID: 39965110 DOI: 10.1021/acs.jafc.4c11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Biological production of human milk oligosaccharides (HMOs) using metabolically engineered strains is a research hotspot in food biotechnology, but less effort has been made on the biological production of sialylated complex HMOs. Sialyllacto-N-tetraose c is the only monosialylated complex HMO in the top 15 HMOs. In this study, the metabolic pathway of LST c was constructed in Escherichia coli BL21(DE3) by introducing three sequential glycosyltransferases: β1,3-N-acetylglucosaminyltransferase, β1,4-galactosyltransferase, and α2,6-sialyltransferase. The cytidine 5'-monophospho (CMP)-N-acetylneuraminic acid (Neu5Ac) pathway was enhanced to improve LST c production. The β1,4-galactosyltransferase from Helicobacter pylori J99 (HpGalT) and α2,6-sialyltransferase from Vespertiliibacter pulmonis (ED6ST) were screened as a pair of key glycosyltransferases for enhancing LST c production. The final engineered strain could produce 1.718 and 9.745 g/L LST c by shake-flask and fed-batch cultivation, respectively, indicating the feasibility of efficient biosynthesis of complex sialylated HMOs.
Collapse
Affiliation(s)
- Yuanlin Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Qian Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Mian Sheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Ruiyan Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
11
|
Zhu Y, Zhao M, Wang H, Zhu Y, Mu W. Metabolic engineering of Escherichia coli BL21(DE3) cocultured with glucose and xylose for efficient production of 2'-fucosyllactose. BIORESOURCE TECHNOLOGY 2025; 419:132062. [PMID: 39832618 DOI: 10.1016/j.biortech.2025.132062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide (HMO) and has been approved to be commercially added to infant formula. Microbial synthesis from exogenous lactose via metabolic engineering is currently the major approach to production of 2'-FL. Replacement of lactose with cheaper sugars such as glucose and sucrose has been studied to reduce the production costs. Herein, Escherichia coli BL21(DE3) was engineered to produce 2'-FL by co-culture with glucose and xylose, the main components of lignocellulosic biomass. Firstly, synthetic pathway of lactose from xylose and glucose was constructed by introducing a lactose-forming enzyme, strengthening xylose uptake pathway, and weakening glucose metabolic pathway. Then, a highly-active α1,2-fucosyltransferase BKHT was introduced to produce 2'-FL and GDP-fucose supply was enhanced to increase 2'-FL production. As a result, when cocultured with glucose and xylose, the engineered strain produced 6.53 g/L and 27.53 g/L of 2'-FL by shake-flask and fed-batch cultivation, respectively.
Collapse
Affiliation(s)
- Yunqi Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mingli Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, China
| | - Yingying Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wanmeng Mu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
12
|
Yang J, Mund NK, Yang L, Fang H. Engineering glycolytic pathway for improved Lacto-N-neotetraose production in pichia pastoris. Enzyme Microb Technol 2025; 184:110576. [PMID: 39742835 DOI: 10.1016/j.enzmictec.2024.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production. Here, we have reported the first-ever synthesis of LNnT employing P. pastoris as the host. Initially, LNnT biosynthetic pathway genes β-1,3-N-acetylglucosaminyltransferase (lgtA) and β-1,4-galactostltransferase (lgtB) along with lactose permease (lac12) and galactose epimerase (gal10) were integrated into the genome of P. pastoris, but only 0.139 g/L LNnT was obtained. Second, the titer of LNnT was improved to 0.162 g/L via up-regulating genes to strengthen the supply of precursors, UDP-GlcNAc (Uridine diphosphate N-acetylglucosamine) and UDP-Gal (Uridine diphosphate galactose), for LNnT biosynthesis. Third, by knocking out critical mediator pfk (6-phosphofructokinase) genes in glycolysis, the major glucose metabolic flux was rewired to the LNnT biosynthesis pathway. As a result, the strain accumulated 0.867 g/L LNnT in YPG medium supplemented with glucose and lactose. Finally, LNnT production was increased to 1.24 g/L in a 3 L bioreactor. The work aimed to explore the potential of P. pastoris as a for LNnT production.
Collapse
Affiliation(s)
- Jiao Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Nitesh Kumar Mund
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Hao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
13
|
Bai Y, Agrahari AK, Zhang L, Yu H, Yang X, Zheng Z, Su W, Fu J, Chen X. EASyMap-Guided Stepwise One-Pot Multienzyme (StOPMe) Synthesis and Multiplex Assays Identify Functional Tetraose-Core-Human Milk Oligosaccharides. JACS AU 2025; 5:822-837. [PMID: 40017787 PMCID: PMC11862933 DOI: 10.1021/jacsau.4c01094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 03/01/2025]
Abstract
Carbohydrates are biologically and medicinally important molecules that are attracting growing attention to their synthesis and applications. Unlike the biosynthetic processes for nucleic acids and proteins, carbohydrate biosynthesis is not template-driven, more challenging, and often leads to product variations. In lieu of templates for carbohydrate biosynthesis, we describe herein a new concept of designing enzyme assembly synthetic maps (EASyMaps) as blueprints to guide glycosyltransferase-dependent stepwise one-pot multienzyme (StOPMe) synthesis to systematically access structurally diverse carbohydrates in a target-oriented manner. The strategy is demonstrated for the construction of a comprehensive library of tetraose-core-containing human milk oligosaccharides (HMOs) presenting diverse functional important glycan epitopes shared by more complex HMOs. The tetraose-core-HMOs are attractive candidates for large-scale production and for the development of HMO-based nutraceuticals. To achieve the preparative-scale synthesis of targets containing a Neu5Acα2-6GlcNAc component, a human α2-6-sialyltransferase hST6GALNAC5 is successfully expressed in E. coli. Neoglycoproteins with controlled glycan valencies are prepared and immobilized on fluorescent magnetic beads. Multiplex bead assays reveal ligands of glycan-binding proteins from plants, influenza viruses, human, and bacteria, identifying promising HMO targets for functional applications. The concept of designing EASyMaps as blueprints to guide StOPMe synthesis in a systematic target-oriented manner is broadly applicable beyond the synthesis of HMOs. The efficient StOPMe process is suitable for the large-scale production of complex carbohydrates and can be potentially adapted for automation.
Collapse
Affiliation(s)
| | | | | | - Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Xiaoxiao Yang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Zimin Zheng
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - William Su
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jingxin Fu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
14
|
Talbert JA, Townsend SD. Human milk as a complex natural product. Nat Prod Rep 2025; 42:406-420. [PMID: 39831434 DOI: 10.1039/d4np00058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Covering: up to the end of 2024Breastfeeding is one of the most effective ways to promote child health. However, characterizing the chemistry that fortifies the benefits of breastfeeding remains a grand challenge. Current efforts in the community are focused on characterizing the roles of the different carbohydrates, proteins, and fats in milk. The goal of this review is to highlight and describe current knowledge about the major classes of macromolecules in human milk and their potential role in infant health and wellness.
Collapse
Affiliation(s)
- Julie A Talbert
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, USA.
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, USA.
| |
Collapse
|
15
|
Tarabeih M, Sabbah M, Yahya O, Bisharat S, Awawdi K. Factors Contributing to Breastfeeding Cessation Among Arab Women in Israel. Nutrients 2025; 17:735. [PMID: 40005063 PMCID: PMC11858111 DOI: 10.3390/nu17040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/19/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Breastfeeding provides significant health benefits for both infants and mothers, but many women discontinue earlier than recommended. This study investigates the factors contributing to early breastfeeding cessation among Arab women in Israel, focusing on multiple factors, such as socio-demographic, work-related, cultural, and religious, impacting breastfeeding duration and shaping breastfeeding practices. Methods: A cross-sectional survey was conducted among 349 Arab women, 65% of whom were Muslim and 35% Christian. Logistic regression analyses were used to identify key predictors of breastfeeding cessation. Results: Findings showed that Christian Arab women were more likely to stop breastfeeding earlier than their Muslim counterparts. Mothers with four or more children and those balancing work demands were at higher risk of early cessation. Contrary to expectations, higher levels of religiosity were associated with a greater likelihood of stopping breastfeeding. Additionally, mothers who received personal breastfeeding guidance were more likely to discontinue, suggesting potential gaps in the quality of support provided. Conclusions: These findings underscore the importance of tailoring interventions to address the unique cultural and socio-economic challenges faced by Arab women in Israel. Recommendations include improving breastfeeding guidance quality, workplace support for breastfeeding mothers, and culturally sensitive interventions that consider the role of religiosity and family dynamics. This research provides valuable insights for healthcare providers and policymakers aiming to promote sustained breastfeeding practices in diverse populations. The study highlights the complexity of factors affecting breastfeeding cessation among Arab women in Israel, emphasizing the need for targeted interventions that address socio-demographic, cultural, and religious influences to promote sustained breastfeeding.
Collapse
Affiliation(s)
- Mahdi Tarabeih
- School of Nursing Sciences, The Academic College of Tel-Aviv-Yaffa, Rabenu Yeruham Street, P.O. Box 8401, Yaffo 6818211, Israel
| | - Mohammad Sabbah
- Rambam Hospital Health Care Campus, 8 HaAliyah HaShniya Street, Haifa 3109601, Israel;
- Department of Nursing, Faculty of Health Sciences, Ramat Gan Academic College, 87 Pinhas Rotenberg Street, Ramat-Gan 5227500, Israel;
| | - Orsan Yahya
- The Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold Street, Safed 1311502, Israel;
- Department of Family Health, Clalit Health Service, Afula 1812201, Israel
| | - Sana Bisharat
- The Holy Family Hospital Nazareth, Hagalil Street, Nazareth 1641116, Israel;
| | - Khaled Awawdi
- Department of Nursing, Faculty of Health Sciences, Ramat Gan Academic College, 87 Pinhas Rotenberg Street, Ramat-Gan 5227500, Israel;
| |
Collapse
|
16
|
Moriyama S, Sugita T, Yamashita M. Efficient fermentative production of lactodifucotetraose by controlling sequential glycosyltransferase reactions in Escherichia coli. Biotechnol Prog 2025:e70010. [PMID: 39912504 DOI: 10.1002/btpr.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/12/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Lactodifucotetraose (LDFT) is a human milk oligosaccharide (HMO) that might reduce inflammation in infants. In this study, we established a useful production process of LDFT by engineering two key enzymes, α1,2-fucosyltransferase (α1,2-FucT) and α1,3-fucosyltransferase (α1,3-FucT). First, we verified which of 2'-fucosyllactose (2'-FL) or 3-fucosyllactose (3-FL) (mostly unverified) was more useful. We searched for FucTs that functioned efficiently in vivo against the raw material lactose or the two intermediates 2'-FL or 3-FL by external substrate addition to culture medium. We found that α1,2- FucT (HMFT) from Helicobacter mustelae and the N-terminal truncated form of α1,3-FucT from Bacteroides fragilis (BfFucTΔN10) had high potential. 3-FL was not efficiently converted to LDFT, which might be attributed to the low reactivity of HMFT to 3-FL as well as the low uptake efficiency of 3-FL by LacY, as revealed by a growth test with exogenously added FL as the sole carbon source and heterologously expressed intracellular fucosidase. Furthermore, because 3-FL accumulation had a negative impact on cell growth, we avoided the route passing through 3-FL. By adjusting the copy numbers of HMFT and BffucTΔN10, we produced LDFT from lactose predominantly via 2'-FL. Finally, 17.5 g/L of LDFT (with 6.8 g/L 2'-FL and no 3-FL or residual lactose) accumulated in a 3-L fed-batch culture after 77 h. This study reports the detailed analysis of multiple pathways and shows the control of glycosyltransferases can improve the production efficiency of complex HMOs.
Collapse
Affiliation(s)
- Shu Moriyama
- Kirin Central Research Institute, Kirin Holdings Company Ltd., Fujisawa, Japan
| | - Tomotoshi Sugita
- Kirin Central Research Institute, Kirin Holdings Company Ltd., Fujisawa, Japan
| | - Makoto Yamashita
- Kirin Central Research Institute, Kirin Holdings Company Ltd., Fujisawa, Japan
| |
Collapse
|
17
|
Urashima T, Ajisaka K, Ujihara T, Nakazaki E. Recent advances in the science of human milk oligosaccharides. BBA ADVANCES 2025; 7:100136. [PMID: 39991261 PMCID: PMC11847054 DOI: 10.1016/j.bbadva.2024.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 02/25/2025] Open
Abstract
Human colostrum and mature milk contain oligosaccharides (Os), designated as human milk oligosaccharides (HMOs). Approximately 200 varieties of HMOs have been characterized. Although HMOs are not utilized as an energy source by infants, they have important protective functions, including pathogenic bacteria and viral infection inhibitors and immune modulators, among other functions, and HMOs stimulate brain-nerve development. The Os concentration is average 11 g/L in human milk but >100 mg/L in mature bovine milk, which is used to manufacture infant formula, suggesting that human-identical milk oligosaccharides (HiMOs) should be incorporated into milk substitutes. Some infant formulas incorporating 2'-fucosyllactose and lacto-N-neotetraose are now commercially available, and intervention trials have been concluded. We review basic HMO information, including their chemical structures and concentrations, attempts to synthesize HMOs at small and plant scale, studies that clarified HMO biological functions, and interventions with milk substitutes incorporating HiMOs in formula-fed infants.
Collapse
Affiliation(s)
- Tadasu Urashima
- Department of Food and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi2sen 11banchi, Inada cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Katsumi Ajisaka
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-Ku, Niigata City, Niigata, 956-8603, Japan
| | - Tetsuro Ujihara
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| | - Eri Nakazaki
- Kyowa Hakko Bio Co., Ltd. 4-10-2, Nakano-ku, Nakano, Tokyo, 164-0001, Japan
| |
Collapse
|
18
|
Urrutia-Baca VH, Álvarez-Buylla JR, Gueimonde M, Chuck-Hernández C, Ruas-Madiedo P, González-Iglesias H. Comparative study of the oligosaccharide profile in goat, bovine, sheep, and human milk whey. Food Chem 2025; 463:141123. [PMID: 39260165 DOI: 10.1016/j.foodchem.2024.141123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Milk oligosaccharides are high added value compounds that could be obtained by exploiting cheese whey, a byproduct of dairy industry. The objective was to compare the abundance and diversity of oligosaccharides in whey samples from domestic animals and humans. During fresh cheese making, whey samples were collected and analyzed by untargeted and targeted small molecule analysis using high-resolution mass-spectrometry. A great similarity in the metabolite profile between goat and sheep was observed. Up to 11 oligosaccharides were observed in the sheep whey from those typically found in humans. The concentration of 2'-Fucosyllactose (0.136 ± 0.055 g/L) and 3-Fucosyllactose (0.079 ± 0.009 g/L) were significantly higher (p-value <0.01) in sheep whey, while the concentration of 3'-Sialyllactose (0.826 ± 0.638 g/L) was higher in goat whey. No significant differences were observed between goat and sheep whey for the other oligosaccharides (p-value >0.05). Therefore, sheep and goat whey could become an important source of oligosaccharides through their revalorization.
Collapse
Affiliation(s)
- Víctor Hugo Urrutia-Baca
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Jorge R Álvarez-Buylla
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Cristina Chuck-Hernández
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.
| |
Collapse
|
19
|
Peng Z, Siziba LP, Mank M, Stahl B, Gonsalves J, Wernecke D, Rothenbacher D, Genuneit J. Profiles of 71 Human Milk Oligosaccharides and Novel Sub-Clusters of Type I Milk: Results from the Ulm SPATZ Health Study. Nutrients 2025; 17:280. [PMID: 39861410 PMCID: PMC11767774 DOI: 10.3390/nu17020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Although approximately 160 human milk oligosaccharides (HMOs) have been identified, current studies on HMO quantitation are limited to the 10-19 most abundant HMOs. We assessed the variations in the relative concentrations of 71 HMO structures over lactation in human milk samples by an advanced liquid chromatography-mass spectrometry approach. METHODS Samples were collected from 64 mothers at 6 weeks, 6 months, and 12 months of lactation in the Ulm SPATZ Health Study, a German birth cohort. In this longitudinal study, we fitted linear mixed-effect models to analyze changes in the log2-transformed and standardized HMO concentration over time. Based on the profile of 71 HMOs, we also fitted a group-based multi-trajectory (GBMT) model to cluster mothers secreting cluster type I milk, who account for the majority of lactating mothers. RESULTS We found that 52 HMOs had a decreasing trend (regression coefficients ranging from -1.41 to -0.17) and 9 had an increasing trend (regression coefficients ranging from 0.25 to 0.64) during lactation, and the findings were statistically significant after multiple testing corrections. Using human milk samples of 49 mothers with type I milk, we further identified two novel sub-clusters with distinct longitudinal trajectories of concentrations of 71 HMOs during lactation: Type I-a (N = 20) and I-b (N = 29). These sub-clusters were not associated with maternal non-genetic characteristics. CONCLUSIONS Our findings extend existing knowledge about the structural diversity of HMOs and their variations over lactation. These may pave the way to investigate the potential nutritional benefits of various HMOs on infant health and early life development in the future.
Collapse
Affiliation(s)
- Zhuoxin Peng
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Liebigstr 20a, Haus 6, 04103 Leipzig, Germany; (L.P.S.); (J.G.)
| | - Linda P. Siziba
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Liebigstr 20a, Haus 6, 04103 Leipzig, Germany; (L.P.S.); (J.G.)
| | - Marko Mank
- Danone Research & Innovation, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.)
| | - Bernd Stahl
- Danone Research & Innovation, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.)
- Department of Chemical Biology & Drug Discovery, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - John Gonsalves
- Danone Research & Innovation, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.)
| | - Deborah Wernecke
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (D.W.); (D.R.)
- German Center for Child and Adolescent Health (DZKJ), 89075 Ulm, Germany
| | - Dietrich Rothenbacher
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (D.W.); (D.R.)
- German Center for Child and Adolescent Health (DZKJ), 89075 Ulm, Germany
| | - Jon Genuneit
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Liebigstr 20a, Haus 6, 04103 Leipzig, Germany; (L.P.S.); (J.G.)
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany; (D.W.); (D.R.)
- German Center for Child and Adolescent Health (DZKJ), 04103 Leipzig, Germany
| |
Collapse
|
20
|
Liang S, Quan Q, Liu D, Yang S, Yan Q, Jiang Z. Regulation of Metabolic Pathways to Enhance Difucosyllactose Biosynthesis in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:727-734. [PMID: 39699992 DOI: 10.1021/acs.jafc.4c09796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Difucosyllactose (DFL), an important kind of fucosylated human milk oligosaccharides (HMOs), has garnered considerable attention due to its excellent physiological activities in infants. Previously, we achieved de novo biosynthesis of DFL; however, substantial residual intermediates of fucosyllactoses (FL) were detected. In this study, DFL biosynthesis was optimized, and residual FL were reduced by regulating metabolic pathways. Different plasmid combinations were used to regulate gene expression, achieving an optimal flux balance between 2'-FL and DFL. The expression level of key enzyme α-1,3-fucosyltransferase (α-1,3-FT, FucTa) was then enhanced by increasing plasmid copy number and integrating fucTa gene into the chromosome. Exocytosis of 2'-FL was reduced by deleting the sugar efflux transporter setA gene, thereby minimizing residual FL. Finally, strain BSF41 produced 55.3 g/L of DFL with only 2.59 g/L of residual FL in a 5 L fermentor, representing the highest reported titer to date. This study provides an important foundation for advancing the biosynthesis of fucosylated HMOs.
Collapse
Affiliation(s)
- Shanquan Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Qi Quan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
21
|
Sun W, Tao L, Qian C, Xue PP, Du SS, Tao YN. Human milk oligosaccharides: bridging the gap in intestinal microbiota between mothers and infants. Front Cell Infect Microbiol 2025; 14:1386421. [PMID: 39835278 PMCID: PMC11743518 DOI: 10.3389/fcimb.2024.1386421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Breast milk is an essential source of infant nutrition. It is also a vital determinant of the structure and function of the infant intestinal microbial community, and it connects the mother and infant intestinal microbiota. Human milk oligosaccharides (HMOs) are a critical component in breast milk. HMOs can reach the baby's colon entirely from milk and become a fermentable substrate for some intestinal microorganisms. HMOs can enhance intestinal mucosal barrier function and affect the intestinal function of the host through immune function, which has a therapeutic effect on specific infant intestinal diseases, such as necrotizing enterocolitis. In addition, changes in infant intestinal microbiota can reflect the maternal intestinal microbiota. HMOs are a link between the maternal intestinal microbiota and infant intestinal microbiota. HMOs affect the intestinal microbiota of infants and are related to the maternal milk microbiota. Through breastfeeding, maternal microbiota and HMOs jointly affect infant intestinal bacteria. Therefore, HMOs positively influence the establishment and balance of the infant microbial community, which is vital to ensure infant intestinal function. Therefore, HMOs can be used as a supplement and alternative therapy for infant intestinal diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying-na Tao
- Department of Traditional Chinese Medicine, Shanghai Fourth People’s Hospital
Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
22
|
Liu Y, Qiao L, Yu L, Lin Q, Wang R, Zhu Y, Mu W. Highly efficient biosynthesis of 6'-sialyllactose in a metabolically engineered plasmid-free Escherichia coli using a novel α2,6-sialyltransferase from Nicoletella semolina. Int J Biol Macromol 2025; 284:138151. [PMID: 39613067 DOI: 10.1016/j.ijbiomac.2024.138151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
6'-Sialyllactose (6'-SL), one of the most prevalent sialylated human milk oligosaccharides (HMOs), has recently garnered significant attention due to its promising health effects for infants. In this study, the 6'-SL biosynthetic pathway in EZAK (E. coli BL21(DE3) ΔlacZΔnanAΔnanK) was initially constructed by introducing a plasmid expressing the precursor CMP-Neu5Ac synthesis pathway genes neuBCA. A novel α2,6-sialyltransferase Ev6ST (NCBI Reference Sequence: WP_132500470) was selected by introducing plasmids expressing various α2,6-sialyltransferase-encoding genes and subsequent comparisons of the yields of 6'-SL. Subsequently, by integrating neuBCA and ev6st individually or in combination on the chromosome of EZAK, the high-yielding plasmid-free strain EZAKBEP with an extracellular yield of 5.68 g/L. In the 5 L bioreactor, fed-batch fermentation resulted in an extracellular yield of 15.35 g/L of 6'-SL. This work successfully screened a high-efficiency α2,6-sialyltransferase Ev6ST and constructed a high-yielding strain EZAKBEP under plasmid-free conditions, which is the highest yield of shake flask fermentation to date, and provides some reference significance for subsequent research.
Collapse
Affiliation(s)
- Yuanlin Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Liping Qiao
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Lumeng Yu
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Qian Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Ruiyan Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
23
|
Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients 2024; 17:118. [PMID: 39796552 PMCID: PMC11723173 DOI: 10.3390/nu17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota. By encouraging the growth of advantageous intestinal bacteria, these sugars function as prebiotics and produce short-chain fatty acids (SCFAs), which are essential for gut health. HMOs can also specifically reduce harmful microbes and viruses binding to the gut epithelium, preventing illness. HMO addition to infant formula is safe and promotes healthy development, infection prevention, and microbiota. Current infant formulas frequently contain oligosaccharides (OSs) that differ structurally from those found in human milk, making it unlikely that they would reproduce the unique effects of HMOs. However, there is a growing trend in producing OSs resembling HMOs, but limited data make it unclear whether HMOs offer additional therapeutic benefits compared to non-human OSs. Better knowledge of how the human mammary gland synthesizes HMOs could direct the development of technologies that yield a broad variety of complex HMOs with OS compositions that closely mimic human milk. This review explores HMOs' complex nature and vital role in infant health, examining maternal variation in HMO composition and its contributing factors. It highlights recent technological advances enabling large-scale studies on HMO composition and its effects on infant health. Furthermore, HMOs' multifunctional roles in biological processes such as infection prevention, brain development, and gut microbiota and immune response regulation are investigated. The structural distinctions between HMOs and other mammalian OSs in infant formulas are discussed, with a focus on the trend toward producing more precise replicas of HMOs found in human milk.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| |
Collapse
|
24
|
Walsh C, Lane JA, van Sinderen D, Hickey RM. Tailored Combinations of Human Milk Oligosaccharides Modulate the Immune Response in an In Vitro Model of Intestinal Inflammation. Biomolecules 2024; 14:1481. [PMID: 39766188 PMCID: PMC11727556 DOI: 10.3390/biom14121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/15/2025] Open
Abstract
Infants rely on their developing immune system and the protective components of breast milk to defend against bacterial and viral pathogens, as well as immune disorders such as food allergies, prior to the introduction of solid foods. When breastfeeding is not feasible, fortified infant formula will most frequently be offered, usually based on a cow's milk-based substitute. The current study aimed to explore the immunomodulatory effects of combinations of commercially available human milk oligosaccharides (HMOs). An in vitro co-culture model of Caco-2 intestinal epithelial cells and THP-1 macrophages was established to replicate the hallmarks of intestinal inflammation and to evaluate the direct effects of different synthetic HMO combinations. Notably, a blend of the most prevalent fucosylated and sialylated HMOs, 2'-fucosyllactose (2'-FL) and 6'-siallylactose (6'-SL), respectively, resulted in decreased pro-inflammatory cytokine levels. These effects were dependent on the HMO concentration and on the HMO ratio resembling those in breastmilk. Interestingly, adding additional HMO structures did not enhance the anti-inflammatory effects. This research highlights the importance of carefully selecting HMO combinations in nutritional products, particularly for infant milk formulations, to effectively mimic the benefits associated with breastmilk.
Collapse
Affiliation(s)
- Clodagh Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- Health and Happiness Group, H&H Research, P61 K202 Cork, Ireland;
- APC Microbiome Ireland and School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
| | - Jonathan A. Lane
- Health and Happiness Group, H&H Research, P61 K202 Cork, Ireland;
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- APC Microbiome Ireland and School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
| |
Collapse
|
25
|
Li C, Li M, Gao W, Zhang T, Liu Z, Miao M. Biosynthesis of Sialyllacto- N-tetraose c in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25836-25846. [PMID: 39508523 DOI: 10.1021/acs.jafc.4c08711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable interest for their vital role in supporting infant health. Among these, sialyllacto-N-tetraose c (LST c), a pentasaccharide with the structure Neu5Ac(α2,6)Gal(β1,4)GlcNAc(β1,3)Gal(β1,4)Glc, stands out due to its critical importance in the development and application of complex HMOs. In this study, we employed multivariate modular metabolic engineering (MMME) to screen for efficient sialyltransferases and balance metabolic fluxes, successfully constructing strains capable of LST c biosynthesis. Additionally, by blocking competing pathway genes, enhancing the supply of UDP-GlcNAc and UDP-Gal precursors, and establishing a CTP cofactor regeneration system, we developed a high-yielding Escherichia coli strain, W15. This strain achieved an LST c titer of 220.9 mg/L in shake flask cultures. In a 3-L fed-batch fermentation, the LST c concentration reached 922.2 mg/L, with a productivity of 10.25 mg/L/h and a specific yield of 38.70 mg/g DCW. This research provides an effective strategy for producing LST c in microbial cell factories.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310052, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Shakeri Jooybari B, Nasri Nasrabadi F, Esteghamati A. Determination of Minor and Trace Elements in Breast Milk of Lactating Mothers in Early Lactation from Tehran, Iran Using Neutron Activation Analysis Method. Biol Trace Elem Res 2024:10.1007/s12011-024-04436-6. [PMID: 39557818 DOI: 10.1007/s12011-024-04436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
This study aimed to evaluate the concentrations of both essential and non-essential elements in the breast milk of lactating mothers from Tehran, Iran, during the colostrum period. Neutron activation analysis (NAA) was used to measure the element concentrations. Additionally, the study assessed how these element concentrations were influenced by maternal factors such as age and economic status. Breast milk samples were collected from 95 lactating mothers, aged 18 to 41, during the early lactation phase, specifically within the colostrum period (2-7 days postpartum). The colostrum milk samples were freeze-dried, powdered, and irradiated at the Tehran Research Reactor for neutron activation analysis (NAA). This method was used to measure the concentrations of essential elements-calcium (Ca), potassium (K), sodium (Na), chlorine (Cl), and iodine (I)-as well as non-essential elements-aluminum (Al), bromine (Br), and rubidium (Rb). Descriptive statistics, including mean, median, maximum, minimum, and standard deviation, were calculated for each element. Statistical analyses, such as Pearson's correlation, were performed to assess relationships between the concentrations of various elements. Additionally, t-tests and p-values were employed to evaluate differences in element levels across maternal age groups (17-34 years vs. 35-45 years) and economic status (high/middle vs. low). The mean concentrations of the elements in dry breast milk powder samples were: Al = 6.9 mg/kg, Br = 11.9 mg/kg, Ca = 2.757 mg/g, Cl = 7.836 mg/g, I = 1.22 mg/kg, K = 5.853 mg/g, Na = 4.932 mg/g, and Rb = 3.69 mg/kg. Significant correlations were found between element pairs, such as Na-Cl, Br-Cl, Na-Br, Rb-K, and I-Cl. Maternal age significantly influenced bromine concentrations, with older mothers showing 22% higher Br levels (p = 0.038), while calcium levels were 15% lower but not statistically significant (p = 0.20). Maternal economic status significantly impacted calcium and potassium concentrations, with higher levels observed in mothers from better economic conditions (p = 0.02 and p = 0.025, respectively). This study highlights the elemental composition of breast milk samples of lactating mothers in Tehran and shows that maternal factors, such as age and economic status, can significantly influence the concentrations of specific elements in breast milk.
Collapse
Affiliation(s)
- Banin Shakeri Jooybari
- Physics and Accelerators Research School, Nuclear Science and Technology Research Institute (NSTRI), 14395-836, Tehran, Iran.
| | | | - Abdoulreza Esteghamati
- Pediatrics Infectious Diseases Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Farella I, D’Amato G, Orellana-Manzano A, Segura Y, Vitale R, Clodoveo ML, Corbo F, Faienza MF. "OMICS" in Human Milk: Focus on Biological Effects on Bone Homeostasis. Nutrients 2024; 16:3921. [PMID: 39599707 PMCID: PMC11597255 DOI: 10.3390/nu16223921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Human milk (HM) is a complex biofluid rich in nutrients and bioactive compounds essential for infant health. Recent advances in omics technologies-such as proteomics, metabolomics, and transcriptomics-have shed light on the influence of HM on bone development and health. This review discusses the impact of various HM components, including proteins, lipids, carbohydrates, and hormones, on bone metabolism and skeletal growth. Proteins like casein and whey promote calcium absorption and osteoblast differentiation, supporting bone mineralization. Long-chain polyunsaturated fatty acids like docosahexaenoic acid (DHA) contribute to bone health by modulating inflammatory pathways and regulating osteoclast activity. Additionally, human milk oligosaccharides (HMOs) act as prebiotics, improving gut health and calcium bioavailability while influencing bone mineralization. Hormones present in HM, such as insulin-like growth factor 1 (IGF-1), leptin, and adiponectin, have been linked to infant growth, body composition, and bone density. Research has shown that higher IGF-1 levels in breast milk are associated with increased weight gain, while leptin and adiponectin influence fat mass and bone metabolism. Emerging studies have also highlighted the role of microRNAs (miRNAs) in regulating key processes like adipogenesis and bone homeostasis. Furthermore, microbiome-focused techniques reveal HM's role in establishing a balanced infant gut microbiota, indirectly influencing bone development by enhancing nutrient absorption. Although current findings are promising, comprehensive longitudinal studies integrating omics approaches are needed to fully understand the intricate relationships among maternal diet, HM composition, and infant bone health. Bridging these gaps could offer novel dietary strategies to optimize skeletal health during infancy, advancing early-life nutrition science.
Collapse
Affiliation(s)
- Ilaria Farella
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy;
| | - Gabriele D’Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70012 Bari, Italy;
| | - Andrea Orellana-Manzano
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio Para Investigaciones Biomédicas, Facultad de Ciencias de la Vida (FCV), ESPOL Polytechnic University, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (A.O.-M.); (Y.S.)
| | - Yaritza Segura
- Escuela Superior Politécnica del Litoral, ESPOL, Laboratorio Para Investigaciones Biomédicas, Facultad de Ciencias de la Vida (FCV), ESPOL Polytechnic University, Campus Gustavo Galindo Km 30.5 vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador; (A.O.-M.); (Y.S.)
| | - Rossella Vitale
- Giovanni XXIII Pediatric Hospital, University of Bari “A. Moro”, 70124 Bari, Italy;
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, 70100 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, 70125 Bari, Italy;
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A.Moro”, 70124 Bari, Italy
| |
Collapse
|
28
|
Wichmann A. Biological effects of combinations of structurally diverse human milk oligosaccharides. Front Pediatr 2024; 12:1439612. [PMID: 39564380 PMCID: PMC11573541 DOI: 10.3389/fped.2024.1439612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of structures and an abundant bioactive component of breastmilk that contribute to infant health and development. Preclinical studies indicate roles for HMOs in shaping the infant gut microbiota, inhibiting pathogens, modulating the immune system, and influencing cognitive development. In the past decade, several industrially produced HMOs have become available to fortify infant formula. Clinical intervention trials with manufactured HMOs have begun to corroborate some of the physiological effects reported in preclinical studies, especially modulation of the gut microbiota in the direction of breastfed infants. As more HMOs become commercially available and as HMOs have some shared mechanisms of action, there is a need to better understand the unique and differential effects of individual HMOs and the benefits of combining multiple HMOs. This review focuses on the differential effects of different HMO structural classes and individual structures and presents a scientific rationale for why combining multiple structurally diverse HMOs is expected to exert greater biological effects.
Collapse
Affiliation(s)
- Anita Wichmann
- Global Regulatory Affairs HMOs, Early Life & Medical Nutrition, DSM-Firmenich, Hørsholm, Denmark
| |
Collapse
|
29
|
Riedy H, Bertrand K, Chambers C, Bandoli G. The Association Between Maternal Psychological Health and Human Milk Oligosaccharide Composition. Breastfeed Med 2024; 19:837-847. [PMID: 39286878 PMCID: PMC11807868 DOI: 10.1089/bfm.2024.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Background and Objective: Human milk oligosaccharides (HMOs) are carbohydrates abundant in human breast milk. Their composition varies widely among women, and prior research has identified numerous factors contributing to this variation. However, the relationship between maternal psychological health and HMO levels is currently unknown. Thus, our objective was to identify whether maternal stress, anxiety, or depressive symptoms are associated with HMOs. Methods: Data originated from 926 lactating individuals from the UC San Diego Human Milk Biorepository. Nineteen prevalent HMOs were assayed using high-performance liquid chromatography. Participants self-reported measures of the Edinburgh Postnatal Depression Scale (n = 495), State-Trait Anxiety Inventory S-Scale (n = 486), and/or Perceived Stress Scale (n = 493) within 60 days of their milk collection; their results were categorized using standard screening cutoffs. HMOs were assessed individually and grouped by principal component analysis (PCA), and associations with maternal psychological symptoms were analyzed using multivariable linear regression adjusted for covariates. Results: After Bonferroni correction (p < 0.002), the following HMOs significantly varied with maternal psychological distress in multivariate analysis: lacto-N-fucopentaose III (LNFP III) and lacto-N-hexaose (LNH) among Secretors with depressive symptoms and difucosyllactose (DFLac), LNFP III, and disialyl-LNH (DSLNH) among Secretors with stress. In PCA, depressive symptoms and stress were associated with one principal component among Secretors. No HMOs varied with anxiety symptoms. Conclusions: Several HMOs varied with maternal depressive symptoms and stress, suggesting a relationship between maternal psychological health and breast milk composition. Additional studies are needed to determine the impact of this variation on infant health.
Collapse
Affiliation(s)
- Hannah Riedy
- Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, USA
- UC San Diego Mommy’s Milk Human Milk Research Biorepository, University of California San Diego, La Jolla, California, USA
| | - Kerri Bertrand
- UC San Diego Mommy’s Milk Human Milk Research Biorepository, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Christina Chambers
- UC San Diego Mommy’s Milk Human Milk Research Biorepository, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gretchen Bandoli
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
30
|
Luo G, Huang Z, Zhu Y, Chen J, Hou X, Ni D, Xu W, Zhang W, Rao Y, Mu W. Crystal structure and structure-guided tunnel engineering in a bacterial β-1,4-galactosyltransferase. Int J Biol Macromol 2024; 279:135374. [PMID: 39265897 DOI: 10.1016/j.ijbiomac.2024.135374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Lacto-N-neotetraose (LNnT), a representative oligosaccharide found in human milk, has been previously examined for its beneficial traits. However, the LNnT titer is limited by the efficient glycosyltransferase pathway, particularly with respect to the catalysis of rate-limiting steps. As data on the crystal structure of the key enzyme required for synthesizing LNnT are lacking, the synthesis of LNnT remains an uncertainty. Here, for the first time we report the three-dimensional structure of a bacterial β-1,4-galactosyltransferase, Aaβ4GalT, and analyze the critical role played by residues in its catalytic efficacy. Guided by structural insights, we engineered this enzyme to enhance its catalytic efficiency using structure-guided tunnel engineering. The mutant enzyme L5 (K155M/H156D/F157W/K185M/Q216V) so produced, showed a 50-fold enhancement in catalytic activity. Crystal structure analysis revealed that the mechanism underlying the improvement in activity was of the swing door type. The closed conformation formed by dense hydrophobic packing with Q216V-K155M widened and permitted substrate entry. Our results show that altering the tunnel conformation helped appropriately accommodate the substrate for catalysis and provide a structural basis for the modification of other glycosyltransferases.
Collapse
Affiliation(s)
- Guocong Luo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaodong Hou
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
31
|
Ning Y, Xun Y, Fong B, McJarrow P, Ma L, Jan Mohamed HJ, Dong H, Yuan Q. Analysis of twelve human milk oligosaccharides over fifteen months post-partum in human milk from Chinese mothers. Heliyon 2024; 10:e39293. [PMID: 39640655 PMCID: PMC11620220 DOI: 10.1016/j.heliyon.2024.e39293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
Human milk Oligosaccharides (HMOs) are a major component in human milk and recognized to play an important role in modulating gut microbiota, intestinal cell response, and the development of the brain and immune system. While HMOs levels from Chinese mothers across different regions of China have been reported, data from Hebei are lacking. Twelve HMOs were measured from a cross-section of Hebei Han mothers over a 15-month lactation period. The average total of the 12 measured HMOs was 4872 ± 1902 mg/L, similar to that reported for Han mothers from other Chinese regions. Hebei Han mothers had much lower LNnT (59.0 ± 53.1 mg/L), LNFP II (257.5 ± 211.0 mg/L) and LNFP III (149.9 ± 121.7 mg/L) levels and higher 3FL levels (1875.2 ± 1065.3 mg/L) compared to other regional Chinese mother cohorts. The distribution of secretor and Lewis status for this Hebei mother cohort was measured at 68.5 %, 21.9 %, 8.2 % and 1.4 % respectively for Se+Le+, Se-Le+, Se+Le- and Se-Le- respectively. The results from this study suggest that location has influence over the HMOs concentration.
Collapse
Affiliation(s)
- Yibing Ning
- Nutrition Research Institute, Junlebao Dairy Groups Co. Ltd, No.36 Shitong Road, Luquan, Shijiazhuang, Hebei, China
| | - Yiping Xun
- Nutrition Research Institute, Junlebao Dairy Groups Co. Ltd, No.36 Shitong Road, Luquan, Shijiazhuang, Hebei, China
| | - Bertram Fong
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag, 11029, Palmerston North 4442, New Zealand
| | - Paul McJarrow
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag, 11029, Palmerston North 4442, New Zealand
| | - Lin Ma
- Fonterra Research and Development Centre, Dairy Farm Road, Private Bag, 11029, Palmerston North 4442, New Zealand
| | - Hamid Jan Jan Mohamed
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Huanzhe Dong
- Nutrition Research Institute, Junlebao Dairy Groups Co. Ltd, No.36 Shitong Road, Luquan, Shijiazhuang, Hebei, China
| | - Qingbin Yuan
- Nutrition Research Institute, Junlebao Dairy Groups Co. Ltd, No.36 Shitong Road, Luquan, Shijiazhuang, Hebei, China
| |
Collapse
|
32
|
Wang Y, Huang YP, Rogers M, Leskinen H, Soppela P, Tuomivaara A, Hyvönen J, Barile D. A Comparative Analysis of Milk Oligosaccharides via LC-MS: Globally Distributed Cattle Breeds and Native Northern Finncattle. BIOLOGY 2024; 13:855. [PMID: 39596810 PMCID: PMC11592061 DOI: 10.3390/biology13110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Milk oligosaccharides are complex carbohydrates composed of various monosaccharide units linked together by glycosidic bonds. They play an essential role in promoting gut health by fostering beneficial bacteria, supporting the development of the immune system, and protecting against infections and diseases. This work compared the oligosaccharide profiles in widely utilized breeds such as Holstein and Ayrshire (Nordic Red), with the native Northern Finncattle, which is considered an endangered breed. Oligosaccharides were extracted from milk and analyzed by liquid chromatography-mass spectrometry. The composition and relative abundance of the identified oligosaccharides were characterized and compared. The statistical analyses showed that neutral, sialylated, and fucosylated oligosaccharides vary among the breeds. Ayrshire and Northern Finncattle oligosaccharides formed a cluster, while Holstein's profile shared features with both Ayrshire and Northern Finncattle. Holstein had the lowest abundance of fucosylated OS among the three breeds, with Ayrshire having the highest content followed by Northern Finncattle. The relatively higher sialylated over neutral content of Northern Finncattle is an important feature that should be preserved. Ayrshire is a good candidate to recover more diverse oligosaccharides with potential gut health implications for consumers.
Collapse
Affiliation(s)
- Yu Wang
- Food Science and Technology, University of California, 595 Hilgard Ln, Davis, CA 95616, USA
| | - Yu-Ping Huang
- Food Science and Technology, University of California, 595 Hilgard Ln, Davis, CA 95616, USA
| | - Mana Rogers
- Food Science and Technology, University of California, 595 Hilgard Ln, Davis, CA 95616, USA
| | - Heidi Leskinen
- Natural Resources Institute Finland, Tietotie 4, 31600 Jokioinen, Finland
| | - Päivi Soppela
- Arctic Centre, University of Lapland, Pohjoisranta 4, 96200 Rovaniemi, Finland
| | - Anne Tuomivaara
- Arctic Centre, University of Lapland, Pohjoisranta 4, 96200 Rovaniemi, Finland
| | - Juha Hyvönen
- Natural Resources Institute Finland, Ounasjoentie 6, 96200 Rovaniemi, Finland
| | - Daniela Barile
- Food Science and Technology, University of California, 595 Hilgard Ln, Davis, CA 95616, USA
| |
Collapse
|
33
|
Astono J, Huang YP, Sundekilde UK, Barile D. Human milk oligosaccharide profiles remain unaffected by maternal pre-pregnancy body mass index in an observational study. Front Nutr 2024; 11:1455251. [PMID: 39479194 PMCID: PMC11523534 DOI: 10.3389/fnut.2024.1455251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are important carbohydrates in human milk that infants cannot digest, acting as prebiotics linked to infant health. The risk of childhood obesity increases with maternal obesity, potentially mediated through the gut microbiota affected by the available HMOs. Studies on whether maternal obesity affects HMO abundance, yield conflicting results. This study aimed to investigate the HMO profile and its association with maternal obesity measured by pre-pregnancy body mass index (BMI) and infant anthropometrics. The results were discussed in the context of existing literature. 90 human milk samples were collected at 3 months postpartum from mothers in three BMI-groups: 32 normal weight (BMI: 18.5-24.99 kg/m2), 34 overweight (BMI: 25-30 kg/m2), and 24 obese (BMI > 30 kg/m2). The samples were analyzed using nano liquid chromatography chip quadrupole time-of-flight mass spectrometry yielding 51 HMO structures and isomers. Their peak areas were integrated and normalized to determine relative abundances. Univariate and multivariate analysis showed associations between relative HMO abundance and donors' secretor status and specific infant anthropometric variables, but not with maternal pre-pregnancy BMI. This study does not support the hypothesis that maternal overweight influences the HMO profile and highlights the importance of reporting results despite absence of significant correlations.
Collapse
Affiliation(s)
- Julie Astono
- Department of Food Science, Aarhus University, Aarhus, Denmark
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Yu-Ping Huang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | | | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
34
|
Mingat S(X, Ehara T, Nakamura H, Miyaji K. Comparative Study of Prebiotics for Infants Using a Fecal Culture System: Insights into Responders and Non-Responders. Nutrients 2024; 16:3347. [PMID: 39408314 PMCID: PMC11478422 DOI: 10.3390/nu16193347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The gut microbiota of breast-fed infants is dominated by infant-type human-residential bifidobacteria (HRB) that contribute to infant health; thus, it is crucial to develop infant formulas that promote the establishment of a gut microbiota enriched with infant-type HRB, closely resembling that of breastfed infants. METHODS We compared various non-digestible prebiotic oligosaccharides and their combinations using a fecal culture system to explore which candidates could promote the growth of all infant-type HRB and rarely yield non-responders. The analysis included lactulose (LAC), raffinose (RAF), galactooligosaccharides (GOS), and short- and long-chain fructooligosaccharides. Fecal samples were collected from seven infants aged 1.5-10.2 months and cultured with each oligosaccharide individually or their combinations. RESULTS No single oligosaccharide effectively promoted the growth of all infant-type HRB, although GOS promoted the growth of HRB other than Bifidobacterium longum subsp. longum. Only the LAC/RAF/GOS group evenly and effectively promoted the growth of all infant-type HRB. Accordingly, acetate production was higher in fecal cultures supplemented with GOS or LAC/RAF/GOS than in the other cultures, suggesting that it is a superior combination for all infant-type HRB and rarely yields non-responders. CONCLUSIONS This study can aid in developing infant formulas that help align the gut microbiota of formula-fed infants with that of breastfed infants.
Collapse
Affiliation(s)
- Shijir (Xijier) Mingat
- Health Care & Nutritional Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan; (T.E.); (H.N.); (K.M.)
| | | | | | | |
Collapse
|
35
|
Jiang Y, Sun T, Lin Y, Liu M, Wang X. Is it possible to obtain substitutes for human milk oligosaccharides from bovine milk, goat milk, or other mammal milks? Compr Rev Food Sci Food Saf 2024; 23:e70018. [PMID: 39302160 DOI: 10.1111/1541-4337.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Considering the current level of chemical and biological synthesis technology, it was a sensible selection to obtain milk oligosaccharides (MOs) from other mammals as the potential substitute for human MOs (HMOs) that possessed various structural features in the infant formula. Through a comprehensive analysis of the content, structure, and function of MOs in six distinct varieties of mammal milk, it has been shown that goat milk was the most suitable material for the preparation as a human milk substitute. Goat MOs (GMOs) had a relatively high content and diverse structural features compared to those found in other mammalian milks. The concentration of GMOs in colostrum ranged from 60 to 350 mg/L, whereas in mature milk, it ranged from 200 to 24,00 mg/L. The acidic oligosaccharides in goat milk have attracted considerable attention due to their closeness in acidic content and structural diversity with HMOs. Simultaneously, it was discovered that some structures, like N-glycolylneuraminic acid, were found to have a certain content in GMOs and served essential functional properties. Moreover, studies focused on the extraction of MOs from goat milk indicated that the production of GMOs on an industrial scale was viable. Furthermore, it is imperative to do further study on GMOs to enhance the preparation process, discover of new MOs structures and bioactivity evaluation, which will contribute to the development of both the commercial production of MOs and the goat milk industry.
Collapse
Affiliation(s)
- Yishan Jiang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Tianrui Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yihan Lin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Manshun Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
- College of Enology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
- Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong Province, China
| |
Collapse
|
36
|
Konieczna M, Koryszewska-Bagińska A, Bzikowska-Jura A, Chmielewska-Jeznach M, Jarzynka S, Olędzka G. Modifiable and Non-Modifiable Factors That Affect Human Milk Oligosaccharides Composition. Nutrients 2024; 16:2887. [PMID: 39275203 PMCID: PMC11397269 DOI: 10.3390/nu16172887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Human milk, the gold standard in infant nutrition, is a unique fluid that provides essential nutrients such as lactose, lipids, proteins, and free oligosaccharides. While its primary role is nutritional, it also protects against pathogens. This protection mainly comes from immunoglobulins, with human milk oligosaccharides (HMOs) providing additional support by inhibiting pathogen binding to host cell ligands. The prebiotic and immune-modulatory activity of HMOs strongly depends on their structure. Over 200 individual structures have been identified so far, with the composition varying significantly among women. The structure and composition of HMOs are influenced by factors such as the Lewis blood group, secretor status, and the duration of nursing. HMO profiles are heavily influenced by maternal phenotypes, which are defined based on the expression of two specific fucosyltransferases. However, recent data have shown that HMO content can be modified by various factors, both changeable and unchangeable, including diet, maternal age, gestational age, mode of delivery, breastfeeding frequency, and race. The first part of this overview presents the historical background of these sugars and the efforts by scientists to extract them using the latest chromatography methods. The second part is divided into subchapters that examine modifiable and non-modifiable factors, reviewing the most recent articles on HMO composition variations due to specific reasons and summarizing potential future challenges in conducting these types of studies.
Collapse
Affiliation(s)
- Małgorzata Konieczna
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | | | - Agnieszka Bzikowska-Jura
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
- Laboratory of Human Milk and Lactation Research, Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | | | - Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| |
Collapse
|
37
|
Welp A, Laser E, Seeger K, Haiß A, Hanke K, Faust K, Stichtenoth G, Fortmann-Grote C, Pagel J, Rupp J, Göpel W, Gembicki M, Scharf JL, Rody A, Herting E, Härtel C, Fortmann I. Effects of multistrain Bifidobacteria and Lactobacillus probiotics on HMO compositions after supplementation to pregnant women at threatening preterm delivery: design of the randomized clinical PROMO trial. Mol Cell Pediatr 2024; 11:6. [PMID: 39085734 PMCID: PMC11291828 DOI: 10.1186/s40348-024-00179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As an indigestible component of human breast milk, Human Milk Oligosaccharides (HMOs) play an important role as a substrate for the establishing microbiome of the newborn. They have further been shown to have beneficial effects on the immune system, lung and brain development. For preterm infants HMO composition of human breast milk may be of particular relevance since the establishment of a healthy microbiome is challenged by multiple disruptive factors associated with preterm birth, such as cesarean section, hospital environment and perinatal antibiotic exposure. In a previous study it has been proposed that maternal probiotic supplementation during late stages of pregnancy may change the HMO composition in human milk. However, there is currently no study on pregnancies which are threatened to preterm birth. Furthermore, HMO composition has not been investigated in association with clinically relevant outcomes of vulnerable infants including inflammation-mediated diseases such as sepsis, necrotizing enterocolitis (NEC) or chronic lung disease. MAIN BODY A randomized controlled intervention study (PROMO = probiotics for human milk oligosaccharides) has been designed to analyze changes in HMO composition of human breast milk after supplementation of probiotics (Lactobacillus acidophilus, Bifidobacterium lactis and Bifidobacterium infantis) in pregnancies at risk for preterm birth. The primary endpoint is HMO composition of 3-fucosyllactose and 3'-sialyllactose in expressed breast milk. We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. As secondary outcomes we will measure preterm infants' clinical outcomes (preterm birth, sepsis, weight gain growth, gastrointestinal complications) and effects on microbiome composition in the rectovaginal tract of mothers at delivery and in the gut of term and preterm infants by sequencing at high genomic resolution. Therefore, we will longitudinally collect bio samples in the first 4 weeks after birth as well as in follow-up investigations at 3 months, one year, and five years of age. CONCLUSIONS We estimate that probiotic intervention will increase these two HMO levels by 50% according to the standardized mean difference between treatment and control groups. The PROMO study will gain insight into the microbiome-HMO interaction at the fetomaternal interface and its consequences for duration of pregnancy and outcome of infants.
Collapse
Affiliation(s)
- A Welp
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany.
| | - E Laser
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Seeger
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - A Haiß
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Hanke
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - K Faust
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - G Stichtenoth
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Fortmann-Grote
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - J Pagel
- Department of Pediatrics, University Hospital of Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Lübeck, Germany
| | - J Rupp
- German Center for Infection Research, Lübeck, Germany
- Institute for Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - W Göpel
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - M Gembicki
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - J L Scharf
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - A Rody
- Department of Gynecology and Obstetrics, University Hospital of Lübeck, Lübeck, Germany
| | - E Herting
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
| | - C Härtel
- Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - I Fortmann
- Department of Pediatrics, University Hospital of Lübeck, Lübeck, Germany
- German Center for Infection Research, Lübeck, Germany
| |
Collapse
|
38
|
Perez KM, Strobel KM, Hendrixson DT, Brandon O, Hair AB, Workneh R, Abayneh M, Nangia S, Hoban R, Kolnik S, Rent S, Salas A, Ojha S, Valentine GC. Nutrition and the gut-brain axis in neonatal brain injury and development. Semin Perinatol 2024; 48:151927. [PMID: 38897828 DOI: 10.1016/j.semperi.2024.151927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Early nutritional exposures, including during embryogenesis and the immediate postnatal period, affect offspring outcomes in both the short- and long-term. Alterations of these modifiable exposures shape the developing gut microbiome, intestinal development, and even neurodevelopmental outcomes. A gut-brain axis exists, and it is intricately connected to early life feeding and nutritional exposures. Here, we seek to discuss the (1) origins of the gut-brain access and relationship with neurodevelopment, (2) components of human milk (HM) beyond nutrition and their role in the developing newborn, and (3) clinical application of nutritional practices, including fluid management and feeding on the development of the gut-brain axis, and long-term neurodevelopmental outcomes. We conclude with a discussion on future directions and unanswered questions that are critical to provide further understanding and insight into how clinicians and healthcare providers can optimize early nutritional practices to ensure children not only survive, but thrive, free of neurodevelopmental impairment.
Collapse
Affiliation(s)
- Krystle M Perez
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Katie M Strobel
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - D Taylor Hendrixson
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Olivia Brandon
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Amy B Hair
- Division of Neonatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Redeat Workneh
- St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Mahlet Abayneh
- St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Sushma Nangia
- Department of Neonatology, Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Rebecca Hoban
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Sarah Kolnik
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America
| | - Sharla Rent
- Division of Neonatology, Duke University, Durham, NC, United States of America
| | - Ariel Salas
- Department of Pediatrics, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Shalini Ojha
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gregory C Valentine
- Division of Neonatology, University of Washington/Seattle Children's Hospital, Seattle, WA, United States of America; Department of Oral Health Sciences, University of Washington, Seattle, WA, United States of America; Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, United States of America.
| |
Collapse
|
39
|
Molnár-Gábor D, Lengyel M, Krongaard T. Rapid method for quantitation of seven human milk oligosaccharides in infant formula and premix. Carbohydr Res 2024; 541:109149. [PMID: 38796900 DOI: 10.1016/j.carres.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
As the evidence supporting the beneficial effects of human milk oligosaccharides (HMOs) grows, so does the commercial interest in their inclusion in infant formula products. This also requires analytical methods capable of their quantification from finished infant formula products as well as from premixed ingredients in some cases. The objective of the present study was the development and single-laboratory validation of a method that can be used for this purpose for seven HMOs: 2'-fucosyllactose (2'FL), 3-fucosyllactose (3FL), difucosyllactose (DFL), 3'-sialyllactose (3'SL), 6'-sialyllactose (6'SL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT). The present method uses labeling by reductive amination, with 4-aminobenzoic acid ethyl ester (benzocaine) as the labeling reagent and picoline borane as the reducing agent, then applies HPLC separation with UV detection. The seven HMOs could be analyzed from infant formula and premix samples with recoveries between 91 and 108 %, relative standard deviations of 4.3 % or lower across all replicates, and limits of quantitation between 0.001 % and 0.004 % of powder sample by weight. The method was found to be rapid and reliable, with a runtime of only 14 min per injection, in contrast to other methods found in literature which typically use nearly or more than an hour. In addition, it uses instrumentation that's readily available in most analytical laboratories.
Collapse
|
40
|
Loutet MG, Narimani A, Qamar H, Yonemitsu C, Pell LG, Mahmud AA, Ahmed T, Bode L, Bassani DG, Roth DE. Associations between human milk oligosaccharides and infant growth in a Bangladeshi mother-infant cohort. Pediatr Res 2024; 96:356-364. [PMID: 38052861 PMCID: PMC11343707 DOI: 10.1038/s41390-023-02927-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND We aimed to estimate associations between human milk oligosaccharides (HMOs) and infant growth (length-for-age (LAZ) and weight-for-length (WLZ) z-scores) at 12 months postnatal age. METHODS In this secondary analysis of data from a maternal vitamin D trial in Dhaka, Bangladesh (N = 192), absolute concentrations of HMOs were measured in 13 ± 1 week(s) postpartum milk samples, infant anthropometric measurements were obtained soon after birth and at 12 months postpartum, and infant feeding was classified during 6 months postpartum. Associations between individual HMOs or HMO groups and LAZ or WLZ were estimated by multivariable linear regression adjusting for infant feeding pattern, maternal secretor status, and other potential confounders. RESULTS The concentrations of 6'sialyllactose, lacto-N-neotetraose, and the non-fucosylated non-sialylated HMOs were inversely associated with LAZ at 12 months of age, whereas the fucosylated non-sialylated HMO concentration was positively associated with LAZ at 12 months. These associations were robust in analyses restricted to infants who were primarily exclusively/predominantly fed human milk during the first 3 (or 6) months. CONCLUSIONS Since HMOs are both positively and negatively associated with postnatal growth, there is a need for randomized trials to estimate the causal benefits and risks of exogenously administered HMOs on infant growth and other health outcomes. IMPACT 6'sialyllactose, lacto-N-neotetraose, and the non-fucosylated non-sialylated human milk oligosaccharides (HMOs) were inversely associated with length-for-age z-scores (LAZ) at 12 months, whereas the fucosylated non-sialylated HMO concentration was positively associated with LAZ at 12 months among Bangladeshi infants. Associations between individual and grouped HMOs with infant length growth at 12 months were as strong or stronger in analyses restricted to infants who were exclusively or predominantly fed human milk up to 3 (or 6) months. Randomized trials are needed to characterize the effects of specific HMOs on infant growth, particularly in countries where postnatal linear growth faltering is common.
Collapse
Affiliation(s)
- Miranda G Loutet
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- The University of Toronto, Toronto, ON, M5S 1A1, Canada.
| | - Arash Narimani
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Huma Qamar
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | | | - Lisa G Pell
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | | | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, icddr,b, Dhaka, Bangladesh
| | - Lars Bode
- University of California San Diego, San Diego, CA, USA
| | - Diego G Bassani
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Daniel E Roth
- The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- The University of Toronto, Toronto, ON, M5S 1A1, Canada
| |
Collapse
|
41
|
Chen Q, Mueed A, Zhu L, Deng Z, Peng H, Li H, Zhang B. HPLC-QQQ-MS/MS-based authentication and determination of free and bound sialic acids content in human, bovine, sheep, goat milk, and infant formula. J Food Sci 2024; 89:4178-4191. [PMID: 38847763 DOI: 10.1111/1750-3841.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
An accurate method for qualitative and quantitative analysis of lipid-bound (LB), protein-bound (PB), oligosaccharides-bound, and free sialic acids in milk was developed by using high-performance liquid chromatography -triple quadrupole-tandem mass spectrometer. The profile of free and bound sialic acids in milk (human, bovine, goat, and sheep) and infant formula (IF) was examined in the present study. Human milk contains only N-acetylneuraminic acid (Neu5Ac) and was mainly present in the form of oligosaccharide-bound. The content of total Neu5Ac (T-Neu5Ac), free and bound Neu5Ac in human milk decreased with the prolongation of lactation. The most intriguing finding was the increase in the proportion of PB and LB sialic acids. The sialic acids in bovine and sheep milk were mainly PB and oligosaccharides-bound Neu5Ac. T-Neu5Ac in goat milk (GM) was 67.44-89.72 µg/mL and was mainly PB Neu5Ac, but total N-glycolylneuraminic acid (T-Neu5Gc) content of GM can be as high as 100.01 µg/mL. The concentration of T-Neu5Gc in sheep and GM was significantly higher than that of bovine milk (BM). T-Neu5Gc content of GM -based IF was 264.86 µg/g, whereas T-Neu5Gc content of BM -based IF was less (2.26-17.01 µg/g). Additionally, our results found that there were also sialic acids in IF ingredients, which were mainly bound with protein and oligosaccharides, primarily derived from desalted whey powder and whey protein concentrate.
Collapse
Affiliation(s)
- Qingyan Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Han Peng
- Department of Food Science and Technology, University of California, Davis, California, USA
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
42
|
Du Z, Zhu Y, Lu Z, Chen R, Huang Z, Chen Y, Guang C, Mu W. Combinatorial Optimization Strategies for 3-Fucosyllactose Hyperproduction in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14191-14198. [PMID: 38878091 DOI: 10.1021/acs.jafc.4c02950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
3-Fucosyllactose (3-FL), an important fucosylated human milk oligosaccharide in breast milk, offers numerous health benefits to infants. Previously, we metabolically engineered Escherichia coli BL21(DE3) for the in vivo biosynthesis of 3-FL. In this study, we initially optimized culture conditions to double 3-FL production. Competing pathway genes involved in in vivo guanosine 5'-diphosphate-fucose biosynthesis were subsequently inactivated to redirect fluxes toward 3-FL biosynthesis. Next, three promising transporters were evaluated using plasmid-based or chromosomally integrated expression to maximize extracellular 3-FL production. Additionally, through analysis of α1,3-fucosyltransferase (FutM2) structure, we identified Q126 residues as a highly mutable residue in the active site. After site-saturation mutation, the best-performing mutant, FutM2-Q126A, was obtained. Structural analysis and molecular dynamics simulations revealed that small residue replacement positively influenced helical structure generation. Finally, the best strain BD3-A produced 6.91 and 52.1 g/L of 3-FL in a shake-flask and fed-batch cultivations, respectively, highlighting its potential for large-scale industrial applications.
Collapse
Affiliation(s)
- Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhen Lu
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
43
|
Wang H, Zhang X, Yao Y, Huo Z, Cui X, Liu M, Zhao L, Ge W. Oligosaccharide profiles as potential biomarkers for detecting adulteration of caprine dairy products with bovine dairy products. Food Chem 2024; 443:138551. [PMID: 38301550 DOI: 10.1016/j.foodchem.2024.138551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Adulteration of caprine dairy products raises concerns among consumers. This study aimed to identify the differences in oligosaccharide profiles of caprine dairy products, including raw milk, colostrum powder, and lactose powder, and their corresponding bovine dairy products, and provide new insights for detecting adulteration of bovine dairy products in caprine dairy products. Twenty-seven oligosaccharides were detected in caprine and bovine dairy products. The principal component analysis plot of the oligosaccharide profiles clearly differentiated among the six types of dairy products. Specific oligosaccharides that were most distinctive for caprine and bovine dairy products were identified. Lacto-N-triose (LNTri) could be used as a potential biomarker for distinguishing caprine milk from bovine milk, caprine colostrum powder from bovine colostrum powder, and caprine lactose powder from bovine lactose powder. The results demonstrated that oligosaccharides could be used as biomarkers for detecting bovine dairy products in caprine dairy products, especially caprine lactose powder.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Zhang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Yu Yao
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Zhenquan Huo
- Zhejiang Zhongmengchang Health Technology Co., Ltd., Hangzhou 310000, China
| | - Xiuxiu Cui
- Xi'an Baiyue Goat Dairy Group Co., Ltd., Yanliang 710089, China
| | - Mengjia Liu
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Lili Zhao
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China.
| | - Wupeng Ge
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
44
|
Jepsen SD, Lund A, Matwiejuk M, Andresen L, Christensen KR, Skov S. Human milk oligosaccharides regulate human macrophage polarization and activation in response to Staphylococcus aureus. Front Immunol 2024; 15:1379042. [PMID: 38903508 PMCID: PMC11187579 DOI: 10.3389/fimmu.2024.1379042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are present in high numbers in milk of lactating women. They are beneficial to gut health and the habitant microbiota, but less is known about their effect on cells from the immune system. In this study, we investigated the direct effect of three structurally different HMOs on human derived macrophages before challenge with Staphylococcus aureus (S. aureus). The study demonstrates that individual HMO structures potently affect the activation, differentiation and development of monocyte-derived macrophages in response to S. aureus. 6´-Sialyllactose (6'SL) had the most pronounced effect on the immune response against S. aureus, as illustrated by altered expression of macrophage surface markers, pointing towards an activated M1-like macrophage-phenotype. Similarly, 6'SL increased production of the pro-inflammatory cytokines TNF-α, IL-6, IL-8, IFN-γ and IL-1β, when exposing cells to 6'SL in combination with S. aureus compared with S. aureus alone. Interestingly, macrophages treated with 6'SL exhibited an altered proliferation profile and increased the production of the classic M1 transcription factor NF-κB. The HMOs also enhanced macrophage phagocytosis and uptake of S. aureus. Importantly, the different HMOs did not notably affect macrophage activation and differentiation without S. aureus exposure. Together, these findings show that HMOs can potently augment the immune response against S. aureus, without causing inflammatory activation in the absence of S. aureus, suggesting that HMOs assist the immune system in targeting important pathogens during early infancy.
Collapse
Affiliation(s)
- Stine Dam Jepsen
- dsm-firmenich, Hørsholm, Denmark
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Astrid Lund
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Lars Andresen
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Søren Skov
- Immunology, Section for Preclinical Disease Biology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
45
|
Barnum CR, Paviani B, Couture G, Masarweh C, Chen Y, Huang YP, Markel K, Mills DA, Lebrilla CB, Barile D, Yang M, Shih PM. Engineered plants provide a photosynthetic platform for the production of diverse human milk oligosaccharides. NATURE FOOD 2024; 5:480-490. [PMID: 38872016 PMCID: PMC11199141 DOI: 10.1038/s43016-024-00996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Human milk oligosaccharides (HMOs) are a diverse class of carbohydrates which support the health and development of infants. The vast health benefits of HMOs have made them a commercial target for microbial production; however, producing the approximately 200 structurally diverse HMOs at scale has proved difficult. Here we produce a diversity of HMOs by leveraging the robust carbohydrate anabolism of plants. This diversity includes high-value and complex HMOs, such as lacto-N-fucopentaose I. HMOs produced in transgenic plants provided strong bifidogenic properties, indicating their ability to serve as a prebiotic supplement with potential applications in adult and infant health. Technoeconomic analyses demonstrate that producing HMOs in plants provides a path to the large-scale production of specific HMOs at lower prices than microbial production platforms. Our work demonstrates the promise in leveraging plants for the low-cost and sustainable production of HMOs.
Collapse
Affiliation(s)
- Collin R Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, USA
| | - Bruna Paviani
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Garret Couture
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Chad Masarweh
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Ye Chen
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Yu-Ping Huang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Minliang Yang
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
- Feedstocks Division, Joint Bioenergy Institute, Emeryville, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
46
|
Matharu D, Ponsero AJ, Lengyel M, Meszaros-Matwiejuk A, Kolho KL, de Vos WM, Molnar-Gabor D, Salonen A. Human milk oligosaccharide composition is affected by season and parity and associates with infant gut microbiota in a birth mode dependent manner in a Finnish birth cohort. EBioMedicine 2024; 104:105182. [PMID: 38838470 PMCID: PMC11215963 DOI: 10.1016/j.ebiom.2024.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs), their determinants, infant gut microbiota and health are under extensive research; however, seldom jointly addressed. Leveraging data from the HELMi birth cohort, we investigated them collectively, considering maternal and infant secretor status. METHODS HMO composition in breastmilk collected 3 months postpartum (n = 350 mothers) was profiled using high-performance liquid chromatography. Infant gut microbiota taxonomic and functional development was studied at 3, 6, and 12 months (n = 823 stool samples) via shotgun metagenomic sequencing, focusing on HMO metabolism via glycoside hydrolase (GH) analysis. Maternal and infant secretor statuses were identified through phenotyping and genotyping, respectively. Child health, emphasizing allergies and antibiotics as proxies for infectious diseases, was recorded until 2 years. FINDINGS Mother's parity, irritable bowel syndrome, gestational diabetes, and season of milk collection associated with HMO composition. Neither maternal nor infant secretor status associated with infant gut microbiota, except for a few taxa linked to individual HMOs. Analysis stratified for birth mode revealed distinct patterns between the infant gut microbiota and HMOs. Child health parameters were not associated to infant or maternal secretor status. INTERPRETATION This comprehensive exploration unveils intricate links between secretor genotype, maternal factors, HMO composition, infant microbiota, and child health. Understanding these nuanced relationships is paramount for refining strategies to optimize early life nutrition and its enduring impact on long-term health. FUNDING Sweet Crosstalk EU H2020 MSCA ITN, Academy of Finland, Mary and Georg C. Ehrnrooth Foundation, Päivikki and Sakari Sohlberg Foundation, and Tekes.
Collapse
Affiliation(s)
- Dollwin Matharu
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alise J Ponsero
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marton Lengyel
- DSM-Firmenich, (Formerly: Glycom A/S), Hørsholm, Denmark
| | | | - Kaija-Leena Kolho
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Children's Hospital, University of Helsinki and HUS, Helsinki, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Microbiology, Wageningen University, the Netherlands
| | | | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
47
|
Zhang W, Zhu Y, Wang H, Huang Z, Liu Y, Xu W, Mu W. Highly efficient biosynthesis of 3'-sialyllactose in engineered Escherichia coli. Int J Biol Macromol 2024; 269:132081. [PMID: 38705330 DOI: 10.1016/j.ijbiomac.2024.132081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
3'-Sialyllactose (3'-SL), one of the abundant and important sialylated human milk oligosaccharides, is an emerging food ingredient used in infant formula milk. We previously developed an efficient route for 3'-SL biosynthesis in metabolically engineered Escherichia coli BL21(DE3). Here, several promising α2,3-sialyltransferases were re-evaluated from the byproduct synthesis perspective. The α2,3-sialyltransferase from Neisseria meningitidis MC58 (NST) with great potential and the least byproducts was selected for subsequent molecular modification. Computer-assisted mutation sites combined with a semi-rational modification were designed and performed. A combination of two mutation sites (P120H/N113D) of NST was finally confirmed as the best one, which significantly improved 3'-SL biosynthesis, with extracellular titers of 24.5 g/L at 5-L fed-batch cultivations. When NST-P120H/N113D was additionally integrated into the genome of host EZAK (E. coli BL21(DE3)ΔlacZΔnanAΔnanT), the final strain generated 32.1 g/L of extracellular 3'-SL in a 5-L fed-batch fermentation. Overall, we underscored the existence of by-products and improved 3'-SL production by engineering N. meningitidis α2,3-sialyltransferase.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
48
|
Wong CB, Huang H, Ning Y, Xiao J. Probiotics in the New Era of Human Milk Oligosaccharides (HMOs): HMO Utilization and Beneficial Effects of Bifidobacterium longum subsp. infantis M-63 on Infant Health. Microorganisms 2024; 12:1014. [PMID: 38792843 PMCID: PMC11124435 DOI: 10.3390/microorganisms12051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A healthy gut microbiome is crucial for the immune system and overall development of infants. Bifidobacterium has been known to be a predominant species in the infant gut; however, an emerging concern is the apparent loss of this genus, in particular, Bifidobacterium longum subsp. infantis (B. infantis) in the gut microbiome of infants in industrialized nations, underscoring the importance of restoring this beneficial bacterium. With the growing understanding of the gut microbiome, probiotics, especially infant-type human-residential bifidobacteria (HRB) strains like B. infantis, are gaining prominence for their unique ability to utilize HMOs and positively influence infant health. This article delves into the physiology of a probiotic strain, B. infantis M-63, its symbiotic relationship with HMOs, and its potential in improving gastrointestinal and allergic conditions in infants and children. Moreover, this article critically assesses the role of HMOs and the emerging trend of supplementing infant formulas with the prebiotic HMOs, which serve as fuel for beneficial gut bacteria, thereby emulating the protective effects of breastfeeding. The review highlights the potential of combining B. infantis M-63 with HMOs as a feasible strategy to improve health outcomes in infants and children, acknowledging the complexities and requirements for further research in this area.
Collapse
Affiliation(s)
- Chyn Boon Wong
- International Division, Morinaga Milk Industry Co., Ltd., 5-2, Higashi Shimbashi 1-Chome, Minato-ku, Tokyo 105-7122, Japan
| | - Huidong Huang
- Nutrition Research Institute, Junlebao Dairy Group Co., Ltd., 36 Shitong Road, Shijiazhuang 050221, China
| | - Yibing Ning
- Nutrition Research Institute, Junlebao Dairy Group Co., Ltd., 36 Shitong Road, Shijiazhuang 050221, China
| | - Jinzhong Xiao
- Morinaga Milk Industry (Shanghai) Co., Ltd., Room 509 Longemont Yes Tower, No. 369 Kaixuan Road, Changning District, Shanghai 200050, China
- Department of Microbiota Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Research Center for Probiotics, Department of Nutrition and Health, China Agricultural University, Beijing 100093, China
| |
Collapse
|
49
|
Wang L, Zhu Y, Zhao C, Zhao M, Li Z, Xu W, Mu W. Engineering Escherichia coli for Highly Efficient Biosynthesis of Lacto- N-difucohexaose II through De Novo GDP-l-fucose Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10469-10476. [PMID: 38659344 DOI: 10.1021/acs.jafc.4c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Lacto-N-difucohexaose II (LNDFH II) is a typical fucosylated human milk oligosaccharide and can be enzymatically produced from lacto-N-tetraose (LNT) by a specific α1,3/4-fucosyltransferase from Helicobacter pylori DMS 6709, referred to as FucT14. Previously, we constructed an engineered Escherichia coli BL21(DE3) with a single plasmid for highly efficient biosynthesis of LNT. In this study, two additional plasmids harboring the de novo GDP-L-fucose pathway module and FucT14, respectively, were further introduced to construct the strain for successful biosynthesis of LNDFH II. FucT14 was actively expressed, and the engineered strain produced LNDFH II as the major product, lacto-N-fucopentaose (LNFP) V as the minor product, and a trace amount of LNFP II and 3-fucosyllactose as very minor products. Additional expression of the α1,3-fucosyltransferase FutM1 from a Bacteroidaceae bacterium from the gut metagenome could obviously enhance the LNDFH II biosynthesis. After optimization of induction conditions, the maximum titer reached 3.011 g/L by shake-flask cultivation. During the fed-batch cultivation, LNDFH II was highly efficiently produced with the highest titer of 18.062 g/L and the productivity yield of 0.301 g/L·h.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chunhua Zhao
- Bloomature Biotechnology Corporation, Limited, Beijing 102629, People's Republic of China
| | - Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
50
|
Pitt J, Bond J, Roper J, Tenning P, Mukherjea R, Evans K, Saarinen MT, Anglenius H, Hirvonen J, Hasselwander O, Lim A. A 21-day safety evaluation of biotechnologically produced 3-fucosyllactose (3-FL) in neonatal farm piglets to support use in infant formulas. Food Chem Toxicol 2024; 187:114592. [PMID: 38493976 DOI: 10.1016/j.fct.2024.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
3-Fucosyllactose (3-FL) is one of the most abundant fucosylated oligosaccharides in human breast milk and is an approved infant formula ingredient world-wide. 3-FL functions as a prebiotic to promote early microbial colonization of the gut, increase pathogen resistance and modulate immune responses. To investigate safety and potential gut microbiota effects, 3-FL was fed for 21-days to farm piglets beginning on Postnatal Day (PND) 2. Fructooligosaccharide (FOS), an approved infant formula ingredient, was used as a reference control. Standard toxicological endpoints were evaluated, and the gut microbiota were assessed. Neither 3-FL (245.77 and 489.72 mg/kg/day for males and 246.57 and 494.18 mg/kg/day for females) nor FOS (489.44 and 496.33 mg/kg/day males and females, respectively) produced any adverse differences in growth, food intake or efficiency, clinical observations, or clinical or anatomic pathology changes. Differences in the gut microbiota after 3-FL consumption (versus control and FOS groups) included the absence of Bifidobacterium species from the piglets, enrichment of Prevotellamassilia timonensis, Blautia species, Mediterranea massiliensis, Lachnospiraceae incertae sedis, and Eubacterium coprostanoligens and lower relative abundance of Allisonella histaminiformans and Roseburia inulinivorans. This study further supports the safe use of 3-FL produced using biotechnology as a nutritional ingredient in foods.
Collapse
Affiliation(s)
- Jeffrey Pitt
- International Flavors & Fragrances, Larkin Laboratory, 1803 Larkin Center Drive, Midland, MI, 48642, USA.
| | - Jennifer Bond
- Charles River (CR-MWN), 54943 N. Main Street, Mattawan, MI, 49071, USA; Labcorp Drug Development, 671 South Meridian Road, Greenfield, IN, 46140, USA
| | - Jason Roper
- DuPont Stine-Haskell, 1090 Elkton Rd, Newark, DE, 19714, USA; Teva Pharmaceuticals, 145 Brandywine Parkway, West Chester, PA, 19380, USA
| | - Paul Tenning
- International Flavors & Fragrances, Leiden Bio Science Park, Galileiweg 8, 2333 BD, Leiden, the Netherlands
| | - Ratna Mukherjea
- DuPont Stine-Haskell, 1090 Elkton Rd, Newark, DE, 19714, USA; Benson Hill, 1001 N Warson Rd, St. Louis, MO, 63132, USA
| | - Kara Evans
- International Flavors & Fragrances, 3329 Agriculture Drive, Madison, WI, 53716, USA
| | - Markku T Saarinen
- International Flavors & Fragrances, Health & Biosciences Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460, Kantvik, Finland
| | - Heli Anglenius
- International Flavors & Fragrances, Health & Biosciences Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460, Kantvik, Finland
| | - Johanna Hirvonen
- International Flavors & Fragrances, Health & Biosciences Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460, Kantvik, Finland
| | - Oliver Hasselwander
- International Flavors & Fragrances, Health & Biosciences, c/o Danisco UK Ltd., Reigate, RH2 9PW, United Kingdom
| | - Angela Lim
- International Flavors & Fragrances, DuPont Experimental Station, Bldg. 353, 200 Powder Mill Rd, Wilmington, DE, 19803, USA
| |
Collapse
|