1
|
Sedighi R, Rafe A, Rajabzadeh G, Pardakhty A. Development and Characterization of Calcium Ion-Enhanced Nanophytosomes Encapsulating Pomegranate Fruit Extract. Food Sci Nutr 2025; 13:e70032. [PMID: 39958255 PMCID: PMC11828700 DOI: 10.1002/fsn3.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/18/2025] Open
Abstract
Nanophytosomes (NPS) loaded with whole pomegranate fruit extract with peel and arils (PFE) at different levels of phosphatidylcholine (PC) were produced using a thin-film hydration method and reinforced with calcium ions. PFE was obtained by pressing whole pomegranates, followed by mixing with PC at ratios of 1:1, 1:2, and 1:3, which then strengthens the phytosome wall by CaCl2 solutions (1.35 and 2.70 mM) and lyophilized to create a stable powder form. The characteristics of the NP powders, including encapsulation efficiency (EE), particle size, ζ-potential, polydispersity index (PDI), structure, microstructure, and thermal properties, were evaluated. Additionally, the storage stability of phenolic compounds over two months was investigated. The PFE powder demonstrated appropriate characteristics for incorporation into the phytosome system, with a total phenol content of 371.19 mg GAE/g dry weight, anthocyanins at 300.68 mg/g, flavonoids at 194 mg/100 g, and an antioxidant activity of 90.98%. The highest EE was determined to be 98.53%, indicating its unique ability as a nano-carrier. PFE-loaded NPs showed favorable characteristics, such as low PDI values (< 0.5), smaller particle size (170 nm), and a spherical morphology. The PFE-NP had a particle size of 128.6 nm, zeta potential of -40.15 mV, mobility of -3.15 μm cm/Vs, PDI of 0.168, and EE of 98.53%. The optimized nanoparticles remained stable for two months at 4°C, with negligible changes in particle size (~10 nm), total phenol content (TPC), and PDI of the PFE-Nanophytosomes. All NP samples showed better stability at storage temperatures over 60 days. PEF-NPs improved the stability of phenolic compounds while improving solubility, masking taste, and delivery to target tissues, which can be considered in future applications.
Collapse
Affiliation(s)
- Ramesh Sedighi
- Department of Food PhysicsResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Ali Rafe
- Department of Food PhysicsResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Ghadir Rajabzadeh
- Department of NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Neuropharmacology InstituteKerman University of Medical SciencesKermanIran
| |
Collapse
|
2
|
El-Nablaway M, Rashed F, Taher ES, Foda T, Abdeen A, Abdo M, Fericean L, Ioan BD, Mihaela O, Dinu S, Alexandru CC, Taymour N, Mohammed NA, El-Sherbiny M, Ibrahim AM, Zaghamir DE, Atia GA. Prospectives and challenges of nano-tailored biomaterials-assisted biological molecules delivery for tissue engineering purposes. Life Sci 2024; 349:122671. [PMID: 38697279 DOI: 10.1016/j.lfs.2024.122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Nano carriers have gained more attention for their possible medical and technological applications. Tailored nanomaterials can transport medications efficiently to targeted areas and allow for sustained medication discharge, reducing undesirable toxicities while boosting curative effectiveness. Nonetheless, transitioning nanomedicines from experimental to therapeutic applications has proven difficult, so different pharmaceutical incorporation approaches in nano scaffolds are discussed. Then numerous types of nanobiomaterials implemented as carriers and their manufacturing techniques are explored. This article is also supported by various applications of nanobiomaterials in the biomedical field.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Tarek Foda
- Oral Health Sciences Department, Temple University's Kornberg School of Dentistry, USA
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt; Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI, Romania
| | - Bănățean-Dunea Ioan
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI, Romania.
| | - Ostan Mihaela
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy Timisoara, Revolutiei Bv., 300041 Timisoara, Romania; Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy Timisoara, Revolutiei Bv., 300041 Timisoara, Romania
| | - Cucui-Cozma Alexandru
- Tenth Department of Surgery Victor Babeș, University of Medicine and Pharmacy Timisoara, Revolutiei Bv., 300041 Timisoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nourelhuda A Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah 61710, Al-Karak, Jordan
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah 13713, Riyadh, Saudi Arabia
| | - Ateya M Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said 42526, Egypt
| | - Donia E Zaghamir
- Department of Pediatric and Obstetrics Nursing, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pediatric Nursing, Faculty of Nursing, Port Said University, Port Said 42526, Egypt
| | - Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
3
|
Scarpa ES, Antonelli A, Balercia G, Sabatelli S, Maggi F, Caprioli G, Giacchetti G, Micucci M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024; 14:836. [PMID: 39062550 PMCID: PMC11275061 DOI: 10.3390/biom14070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polyphenols are natural bioactives occurring in medicinal and aromatic plants and food and beverages of plant origin. Compared with conventional therapies, plant-derived phytochemicals are more affordable and accessible and have no toxic side effects. Thus, pharmaceutical research is increasingly inclined to discover and study new and innovative natural molecules for the treatment of several chronic human diseases, like type 2 diabetes mellitus (T2DM) and osteoporosis. These pathological conditions are characterized by a chronic inflammatory state and persistent oxidative stress, which are interconnected and lead to the development and worsening of these two health disorders. Oral nano delivery strategies have been used to improve the bioavailability of polyphenols and to allow these natural molecules to exert their antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic biological activities in in vivo experimental models and in patients. Polyphenols are commonly used in the formulations of nutraceuticals, which can counteract the detrimental effects of T2DM and osteoporosis pathologies. This review describes the polyphenols that can exert protective effects against T2DM and osteoporosis through the modulation of specific molecular markers and pathways. These bioactives could be used as adjuvants, in combination with synthetic drugs, in the future to develop innovative therapeutic strategies for the treatment of T2DM and osteoporosis.
Collapse
Affiliation(s)
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| |
Collapse
|
4
|
Vargas-Vargas MA, González-Montoya M, Torres-Isidro O, García-Berumen CI, Ortiz-Avila O, Calderón-Cortés E, Cortés-Rojo C. Assessing the impact of concurrent high-fructose and high-saturated fat diets on pediatric metabolic syndrome: A review. World J Clin Pediatr 2024; 13:91478. [PMID: 38947987 PMCID: PMC11212767 DOI: 10.5409/wjcp.v13.i2.91478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
High-saturated fat (HF) or high-fructose (HFr) consumption in children predispose them to metabolic syndrome (MetS). In rodent models of MetS, diets containing individually HF or HFr lead to a variable degree of MetS. Nevertheless, simultaneous intake of HF plus HFr have synergistic effects, worsening MetS outcomes. In children, the effects of HF or HFr intake usually have been addressed individually. Therefore, we have reviewed the outcomes of HF or HFr diets in children, and we compare them with the effects reported in rodents. In humans, HFr intake causes increased lipogenesis, hypertriglyceridemia, obesity and insulin resistance. On the other hand, HF diets promote low grade-inflammation, obesity, insulin resistance. Despite the deleterious effects of simultaneous HF plus HFr intake on MetS development in rodents, there is little information about the combined effects of HF plus HFr intake in children. The aim of this review is to warn about this issue, as individually addressing the effects produced by HF or HFr may underestimate the severity of the outcomes of Western diet intake in the pediatric population. We consider that this is an alarming issue that needs to be assessed, as the simultaneous intake of HF plus HFr is common on fast food menus.
Collapse
Affiliation(s)
- Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Marcela González-Montoya
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Olin Torres-Isidro
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Claudia Isabel García-Berumen
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| | - Omar Ortiz-Avila
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico – Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico
| |
Collapse
|
5
|
Ma C, Liu B, Du L, Liu W, Zhu Y, Chen T, Wang Z, Chen H, Pang Y. Green Preparation and Antibacterial Activity Evaluation of AgNPs- Blumea balsamifera Oil Nanoemulsion. Molecules 2024; 29:2009. [PMID: 38731501 PMCID: PMC11085303 DOI: 10.3390/molecules29092009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bacterial infection is a thorny problem, and it is of great significance to developing green and efficient biological antibacterial agents that can replace antibiotics. This study aimed to rapidly prepare a new type of green antibacterial nanoemulsion containing silver nanoparticles in one step by using Blumea balsamifera oil (BBO) as an oil phase and tea saponin (TS) as a natural emulsifier and reducing agent. The optimum preparation conditions of the AgNPs@BBO-TS NE were determined, as well as its physicochemical properties and antibacterial activity in vitro being investigated. The results showed that the average particle size of the AgNPs@BBO-TS NE was 249.47 ± 6.23 nm, the PDI was 0.239 ± 0.003, and the zeta potential was -35.82 ± 4.26 mV. The produced AgNPs@BBO-TS NE showed good stability after centrifugation and 30-day storage. Moreover, the AgNPs@BBO-TS NE had an excellent antimicrobial effect on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These results demonstrated that the AgNPs@BBO-TS NE produced in this study can be used as an efficient and green antibacterial agent in the biomedical field.
Collapse
Affiliation(s)
- Chunfang Ma
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Bingnan Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Lingfeng Du
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Wei Liu
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Nano-Drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Nano-Drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Nano-Drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Hongpeng Chen
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
| | - Yuxin Pang
- College of Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China; (C.M.); (B.L.); (L.D.); (W.L.)
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Meidicine, Guiyang 550025, China; (T.C.); (Z.W.)
- Yunfu Traditional Chinese Medicine Resources and Germplasm Resources Database Management Center, Yunfu 527325, China
| |
Collapse
|
6
|
Pour PM, Nouri Z, Ghasemi D, Sajadimajd S, Farzaei MH. Cytotoxic Impact of Naringenin-Loaded Solid Lipid Nanoparticles on RIN5F Pancreatic β Cells via Autophagy Blockage. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:304-314. [PMID: 39356101 DOI: 10.2174/0126673878297658240804192222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Autophagy plays a crucial role in modulating the proliferation of cancer diseases. However, the application of Naringenin (Nar), a compound with potential benefits against these diseases, has been limited due to its poor solubility and bioavailability. OBJECTIVE This study aimed to develop solid lipid nanoparticles (Nar-SLNs) loaded with Nar to enhance their therapeutic impact. METHODS In vitro experiments using Rin-5F cells exposed to Nar and Nar-SLNs were carried out to investigate the protective effects of Nar and its nanoformulation against the pancreatic cancer cell line of Rin-5F. RESULTS Treatment with Nar and Nar-SLN led to an increase in autophagic markers (Akt, LC3, Beclin1, and ATG genes) and a decrease in the level of miR-21. Both Nar and Nar-SLN treatments inhibited cell proliferation and reduced the expression of autophagic markers. Notably, Nar-SLNs exhibited greater efficacy compared to free Nar. CONCLUSION These findings suggest that SLNs effectively enhance the cytotoxic impact of Nar, making Nar-SLNs a promising candidate for suppressing or preventing Rin-5F cell growth.
Collapse
Affiliation(s)
- Pardis Mohammadi Pour
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dariush Ghasemi
- Kimia Andisheh Teb Medical and Molecular Laboratory Research Co., Tehran, Iran
| | - Soraya Sajadimajd
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Li S, Chen J, Liu Y, Qiu H, Gao W, Che K, Zhou B, Liu R, Hu W. Characterization of garlic oil/β-cyclodextrin inclusion complexes and application. Front Nutr 2023; 10:1308787. [PMID: 38094921 PMCID: PMC10716253 DOI: 10.3389/fnut.2023.1308787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/14/2023] [Indexed: 06/19/2024] Open
Abstract
Garlic oil is a liquid extracted from garlic that has various natural antibacterial and anti-inflammatory properties and is believed to be used to prevent and treat many diseases. However, the main functional components of garlic oil are unstable. Therefore, in this study, encapsulating garlic oil with cyclodextrin using the saturated co-precipitation method can effectively improve its chemical stability and water solubility and reduce its characteristic odor and taste. After preparation, the microcapsules of garlic oil cyclodextrin were characterized, which proved that the encapsulation was successful. Finally, the results showed that the encapsulated garlic oil still had antioxidant ability and slow-release properties. The final addition to plant-based meat gives them a delicious flavor and adds texture and mouthfeel. Provided a new reference for the flavor application of garlic cyclodextrin micro-capsules in plant-based meat patties.
Collapse
Affiliation(s)
- Shangjian Li
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Jiajia Chen
- Zhuhai Livzon Microsphere Technology Co. Ltd., Zhuhai, China
| | - Yuntong Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Honghao Qiu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wei Gao
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Kundian Che
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Baogang Zhou
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Ran Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Jilin University, Changchun, China
| | - Wenzhong Hu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- College of Life Science, Dalian Minzu University, Dalian, China
| |
Collapse
|
8
|
Oliveira da Silva L, Assunção Ferreira MR, Lira Soares LA. Nanotechnology Formulations Designed with Herbal Extracts and Their Therapeutic Applications - A Review. Chem Biodivers 2023; 20:e202201241. [PMID: 37455394 DOI: 10.1002/cbdv.202201241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Because of the increasing demand for natural products, the development of nanoformulations containing natural active ingredients requires in-depth knowledge of the substances used, methods of obtaining, and stability profiles to ensure product quality, efficacy, and safety. Considering this, the bibliography of the last five years presented in databases (PubMed and Science Direct) was discussed in this work, discussing the study with medicinal plants to obtain active metabolites with therapeutic properties, as well as the different nano-systems responsible for carrying these molecules. Due to the wealth of biodiversity found in the world, many species are submitted to the extraction process for several purposes. However, identifying, classifying, and quantifying the constituents of herbal matrices are crucial steps to verify their therapeutic potential. In addition, knowing the techniques of production and elaboration of nanotechnology products allows the optimization of the incorporation of herbal extracts as an innovation target. For studies to be successful, it is necessary to exhaust experimental results that guarantee the efficacy, safety, and quality of natural nanosystems, with the objective of obtaining reliable answers in nanotechnology therapy.
Collapse
Affiliation(s)
- Lucas Oliveira da Silva
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Luiz Alberto Lira Soares
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
9
|
Nsairat H, Lafi Z, Al-Sulaibi M, Gharaibeh L, Alshaer W. Impact of nanotechnology on the oral delivery of phyto-bioactive compounds. Food Chem 2023; 424:136438. [PMID: 37244187 DOI: 10.1016/j.foodchem.2023.136438] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Nanotechnology is an advanced field that has remarkable nutraceutical and food applications. Phyto-bioactive compounds (PBCs) play critical roles in promoting health and disease treatment. However, PBCs generally encounter several limitations that delay their widespread application. For example, most PBCs have low aqueous solubility, poor biostability, poor bioavailability, and a lack of target specificity. Moreover, the high concentrations of effective PBC doses also limit their application. As a result, encapsulating PBCs into an appropriate nanocarrier may increase their solubility and biostability and protect them from premature degradation. Moreover, nanoencapsulation could improve absorption and prolong circulation with a high opportunity for targeted delivery that may decrease unwanted toxicity. This review addresses the main parameters, variables, and barriers that control and affect oral PBC delivery. Moreover, this review discusses the potential role of biocompatible and biodegradable nanocarriers in improving the water solubility, chemical stability, bioavailability, and specificity/selectivity of PBCs.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mazen Al-Sulaibi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Lobna Gharaibeh
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
10
|
Evaluation of Antidiabetic Effect of Luteolin in STZ Induced Diabetic Rats: Molecular Docking, Molecular Dynamics, In Vitro and In Vivo Studies. J Funct Biomater 2023; 14:jfb14030126. [PMID: 36976050 PMCID: PMC10053838 DOI: 10.3390/jfb14030126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Despite the existence of modern antidiabetic medications, diabetes still affects millions of individuals worldwide, with a high death and disability rate. There has been a concerted search for alternative natural medicinal agents; luteolin (LUT), a polyphenolic molecule, might be a good choice, both because of its efficacy and because of it having fewer side effects, compared to conventional medicines. This study aims to explore the antidiabetic potential of LUT in diabetic rats, induced by streptozotocin (STZ; 50 mg/kg b.w.), intraperitoneally. The level of blood glucose, oral glucose tolerance test (OGTT), body weight, glycated hemoglobin A1c (HbA1c), lipidemic status, antioxidant enzymes, and cytokines were assessed. Also, its action mechanism was explored through molecular docking and molecular dynamics simulations. Oral supplementation of LUT for 21 days resulted in a significant decrease in the blood glucose, oxidative stress, and proinflammatory cytokine levels, and modulated the hyperlipidemia profile. LUT also ameliorated the tested biomarkers of liver and kidney function. In addition, LUT markedly reversed the damage to the pancreas, liver, and kidney cells. Moreover, molecular docking and molecular dynamics simulations revealed excellent antidiabetic behavior of LUT. In conclusion, the current investigation revealed that LUT possesses antidiabetic activity, through the reversing of hyperlipidemia, oxidative stress, and proinflammatory status in diabetic groups. Therefore, LUT might be a good remedy for the management or treatment of diabetes.
Collapse
|
11
|
Nouri Z, Sajadimajd S, Hoseinzadeh L, Bahrami G, Arkan E, Moradi S, Abdi F, Farzaei MH. Neuroprotective effect of naringenin-loaded solid lipid nanoparticles against streptozocin-induced neurotoxicity through autophagy blockage. J Food Biochem 2022; 46:e14408. [PMID: 36129161 DOI: 10.1111/jfbc.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 01/13/2023]
Abstract
Autophagy is a pivotal contributing factor to modulate the progression of neurodegenerative diseases. Although naringenin (Nar) has shown beneficial effects against neurodegenerative diseases, its poor solubility and bioavailability have limited its application. The present research aimed to design a nanostructured formulation of Nar to achieve an enhanced therapeutic effect. Herein, Nar-loaded solid lipid nanoparticles (Nar-SLNs) were prepared and characterized. Then, PC12 cells were exposed to streptozocin (STZ) and/or Nar and Nar-SLNs in vitro to clarify the protective effect of Nar and its nanoformulation against STZ-stimulated neurotoxicity. The empty SLNs and Nar-SLNs indicated a narrow polydispersity index value with a negative zeta potential. As determined by the scanning electron microscopy images, the nanoparticles had a spherical shape and were less than 20 nm in size. FTIR results demonstrated the interaction between Nar and SLNs and supported the presence of Nar in the nanoparticle. The nanoformulation revealed an initial burst release followed by a sustained release manner. Treatment of PC12 cells with STZ resulted in mitochondrial dysfunction and increased autophagic markers, including LC3-II, Beclin1, Akt, ATG genes, and accumulation of miR-21 and miR-22. Both Nar and Nar-SLNs pre-treatment improved cell survival and augmented mitochondrial membrane potential, accompanied by reduced autophagic markers expression. However, Nar-SLNs were more effective than free Nar. As a result, our findings suggested that SLNs effectively enhance the neuroprotective effect of Nar, and Nar-SLNs may be a promising candidate to suppress or prevent STZ-elicited neurotoxicity. PRACTICAL APPLICATIONS: According to the beneficial effect of Nar in the management of neurodegenerative diseases, we evaluated the protective effect of Nar and Nar-SLNs against STZ-stimulated neurotoxicity and analyzed the role of autophagy in STZ-stimulated neurotoxicity. Our results proposed that Nar-SLNs could be a promising option for neurological disorders prevention through autophagy suppression.
Collapse
Affiliation(s)
- Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Leila Hoseinzadeh
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fereshteh Abdi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Taha M, Alhakamy NA, Md S, Ahmad MZ, Rizwanullah M, Fatima S, Ahmed N, Alyazedi FM, Karim S, Ahmad J. Nanogels as Potential Delivery Vehicles in Improving the Therapeutic Efficacy of Phytopharmaceuticals. Polymers (Basel) 2022; 14:4141. [PMID: 36236089 PMCID: PMC9570606 DOI: 10.3390/polym14194141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Nanogel is a promising drug delivery approach to improve the pharmacokinetics and pharmacodynamic prospect of phytopharmaceuticals. In the present review, phytopharmaceuticals with astonishing therapeutic utilities are being explored. However, their in vivo delivery is challenging, owing to poor biopharmaceutical attributes that impact their drug release profile, skin penetration, and the reach of optimal therapeutic concentrations to the target site. Nanogel and its advanced version in the form of nanoemulgel (oil-in-water nanoemulsion integrated gel matrix) offer better therapeutic prospects than other conventional counterparts for improving the biopharmaceutical attributes and thus therapeutic efficacy of phytopharmaceuticals. Nanoemulgel-loaded phytopharmaceuticals could substantially improve permeation behavior across skin barriers, subsequently enhancing the delivery and therapeutic effectiveness of the bioactive compound. Furthermore, the thixotropic characteristics of polymeric hydrogel utilized in the fabrication of nanogel/nanoemulgel-based drug delivery systems have also imparted improvements in the biopharmaceutical attributes of loaded phytopharmaceuticals. This formulation approach is about to be rife in the coming decades. Thus, the current review throws light on the recent studies demonstrating the role of nanogels in enhancing the delivery of bioactive compounds for treating various disease conditions and the challenges faced in their clinical translation.
Collapse
Affiliation(s)
- Murtada Taha
- Department of Clinical Laboratory Science, Prince Sultan Military College of Health Sciences, Dhahran 31932, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Sana Fatima
- Sufia Unani Medical College Hospital & Research Centre, Bara Chakia, Motihari 845412, Bihar, India
| | - Naveed Ahmed
- Prince Sultan Military College of Health Sciences, Dhahran 31932, Saudi Arabia
| | - Faisal M. Alyazedi
- Prince Sultan Military College of Health Sciences, Dhahran 31932, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
13
|
Multi target interactions of essential oil nanoemulsion of Cinnamomum travancoricum against diabetes mellitus via in vitro, in vivo and in silico approaches. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Torabian F, Akhavan Rezayat A, Ghasemi Nour M, Ghorbanzadeh A, Najafi S, Sahebkar A, Sabouri Z, Darroudi M. Administration of Silver Nanoparticles in Diabetes Mellitus: A Systematic Review and Meta-analysis on Animal Studies. Biol Trace Elem Res 2022; 200:1699-1709. [PMID: 34114175 DOI: 10.1007/s12011-021-02776-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/28/2021] [Indexed: 01/05/2023]
Abstract
Biological features of silver nanoparticles in rising the insulin level of diabetic animal models were considered in recent years, which resulted in decreasing hyperglycemia condition. We reviewed the published literature to investigate the possible role of silver nanoparticles (Ag-NPs) throughout the treatment of diabetes mellitus in animal studies. In this systematic review and meta-analysis, we performed a search throughout the English literature of electronic databases, including Scopus, PubMed, and ISI Web of Science, up to the date of May 22, 2020. Primary outcomes and data regarding fast blood sugar (FBS), lipid profile, and liver enzyme were collected from the available articles, while the studies that did not provide sufficient information on the effects of silver nanoparticles through the course of diabetes mellitus were excluded. Our search yielded 1283 results that included five animal studies in the meta-analysis. The comparison between the plasma insulin level of the diabetic group treated by Ag-NPs with the diabetic control group displayed no significant differences with the P values = 0.299. In addition, significant differences were revealed by comparing the FBS level of the diabetic group treated by Ag-NPs with the diabetic control group (P value < 0.001). According to the present meta-analysis, the application of Ag-NPs in animal models resulted in displaying the anti-diabetic effects, which can be applied in future treatments. Furthermore, a correlation was noticed between these nanoparticles and the reduction of serum FBS among diabetic cases.
Collapse
Affiliation(s)
- Farnaz Torabian
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Akhavan Rezayat
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ghasemi Nour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sara Najafi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabouri
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Nanoformulation of plant-based natural products for type 2 diabetes mellitus: From formulation design to therapeutic applications. Curr Ther Res Clin Exp 2022; 96:100672. [PMID: 35586563 PMCID: PMC9108891 DOI: 10.1016/j.curtheres.2022.100672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Inorganic element based nanoformulations were prominent in the delivery drug leads. Polymer and lipid based nanoformulations are emerging as novel formulations. Majority of investigations on nanoherbal formulations were on in vitro models. Proper glycemic control was an important property in nanoherbalformulations. Background Herbal remedies are used to manage type 2 diabetes mellitus (type 2 DM) as the sole treatment or as a complementary therapy. Limitations of herbal remedies, such as poor stability and limited absorption, impede their development as therapeutic agents, which could be overcome by nanoformulations. Objectives This review attempts to summarize the studies reported between 2009 and 2020 in the development of medicinal plant-based nanoformulations for the management of type 2 DM, discuss formulation methods, mechanisms of action, and identify gaps in the literature to conduct future research on nanoparticle-based herbal treatment options targeting type 2 DM. Methods To retrieve articles published between January 2009 and December 2020, the electronic databases PubMed, Science Direct, and Google Scholar were searched with the keywords nanoparticle, plant, and diabetes in the entire text. Peer-reviewed research articles on herbal nanoformulations published in English-language based on in vitro and/or in vivo models of type 2 DM and/or its complications were included. The literature search and selection of titles/abstracts were carried out independently by 2 authors. The list of full-text articles was selected considering inclusion and exclusion criteria, with the agreement of all the authors. Results Among the reported studies, 68% of the studies were on inorganic herbal nanoformulations, whereas 17% and 8% were of polymer-based and lipid-based herbal nanoformulations, respectively. Some of the important biological properties of nanoformulations included improvement in glycemic control and insulin levels, inhibition of the formation of advanced glycation end products, and regeneration of pancreatic β cells. The aforementioned properties were observed by screening nanoformulations using in vitro cellular and noncellular models, as well as in vivo animal models of type 2 DM studied for acute or subacute durations. Only 2 clinical trials with patients with diabetes were reported, indicating the need for further research on medicinal plant-based nanoformulations as a therapeutic option for the management of type 2 DM. Conclusions Medicinal plant extracts and isolated compounds have been nanoformulated using various methods. The properties of the nanoformulations were found superior to those of the corresponding herbal extracts and isolated compounds. At both the preclinical and clinical levels, there are a number of poorly explored research areas in the development and bioactivity assessment of herbal nanoformulations. (Curr Ther Res Clin Exp. 2022; 83:XXX–XXX) © 2022 Elsevier HS Journals, Inc.
Collapse
|
16
|
Gupta S, Tejavath KK. Nano Phytoceuticals: A Step Forward in Tracking Down Paths for Therapy Against Pancreatic Ductal Adenocarcinoma. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Negri G, Calló D, Mano-Sousa BJ, Duarte-Almeida J, Tabach R. Phytochemistry profile of rosella and jambolan extracts and the therapeutic effects on obesity. Food Funct 2022; 13:2606-2617. [DOI: 10.1039/d1fo02763h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hibiscus sabdariffa extract (HSE) and Syzygium cumini extract (SCE) have been used in traditional medicine due to their hypoglycemic, antidiabetic, anti-obesity and antioxidant activities. The aim of this study was...
Collapse
|
18
|
Onaizi SA. Effect of salinity on the characteristics, pH-triggered demulsification and rheology of crude oil/water nanoemulsions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Development of Piperine-Loaded Solid Self-Nanoemulsifying Drug Delivery System: Optimization, In-Vitro, Ex-Vivo, and In-Vivo Evaluation. NANOMATERIALS 2021; 11:nano11112920. [PMID: 34835684 PMCID: PMC8624913 DOI: 10.3390/nano11112920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
Hypertension is a cardiovascular disease that needs long-term medication. Oral delivery is the most common route for the administration of drugs. The present research is to develop piperine self-nanoemulsifying drug delivery system (PE-SNEDDS) using glyceryl monolinoleate (GML), poloxamer 188, and transcutol HP as oil, surfactant, and co-surfactant, respectively. The formulation was optimized by three-factor, three-level Box-Behnken design. PE-SNEDDs were characterized for globule size, emulsification time, stability, in-vitro release, and ex-vivo intestinal permeation study. The optimized PE-SNEDDS (OF3) showed the globule size of 70.34 ± 3.27 nm, percentage transmittance of 99.02 ± 2.02%, and emulsification time of 53 ± 2 s Finally, the formulation OF3 was transformed into solid PE-SNEDDS (S-PE-SNEDDS) using avicel PH-101 as adsorbent. The reconstituted SOF3 showed a globule size of 73.56 ± 3.54 nm, PDI of 0.35 ± 0.03, and zeta potential of −28.12 ± 2.54 mV. SEM image exhibited the PE-SNEDDS completely adsorbed on avicel. Thermal analysis showed the drug was solubilized in oil, surfactant, and co-surfactant. S-PE-SNEDDS formulation showed a more significant (p < 0.05) release (97.87 ± 4.89% in 1 h) than pure PE (27.87 ± 2.65% in 1 h). It also exhibited better antimicrobial activity against S. aureus and P. aeruginosa and antioxidant activity as compared to PE dispersion. The in vivo activity in rats exhibited better (p < 0.05) antihypertensive activity as well as 4.92-fold higher relative bioavailability than pure PE dispersion. Finally, from the results it can be concluded that S-PE-SNEDDS might be a better approach for the oral delivery to improve the absorption and therapeutic activity.
Collapse
|
20
|
El-Aassar MR, Ibrahim OM, Al-Oanzi ZH. Biotechnological Applications of Polymeric Nanofiber Platforms Loaded with Diverse Bioactive Materials. Polymers (Basel) 2021; 13:3734. [PMID: 34771291 PMCID: PMC8586957 DOI: 10.3390/polym13213734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023] Open
Abstract
This review article highlights the critical research and formative works relating to nanofiber composites loaded with bioactive materials for diverse applications, and discusses the recent research on the use of electrospun nanofiber incorporating bioactive compounds such as essential oils, herbal bioactive components, plant extracts, and metallic nanoparticles. Inevitably, with the common advantages of bioactive components and polymer nanofibers, electrospun nanofibers containing bioactive components have attracted intense interests for their applications in biomedicine and cancer treatment. Many studies have only concentrated on the production and performance of electrospun nanofiber loaded with bioactive components; in this regard, the features of different types of electrospun nanofiber incorporating a wide variety of bioactive compounds and their developing trends are summarized and assessed in the present article, as is the feasible use of nanofiber technology to produce products on an industrial scale in different applications.
Collapse
Affiliation(s)
- M. R. El-Aassar
- Department of Chemistry, College of Science, Jouf University, Sakaka 75471, Saudi Arabia
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Omar M. Ibrahim
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Ziad H. Al-Oanzi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Saudi Arabia
| |
Collapse
|
21
|
A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv Colloid Interface Sci 2021; 287:102318. [PMID: 33242713 DOI: 10.1016/j.cis.2020.102318] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Applications of nanotechnology in various spheres have increased manifold as it offers solution to unsolved problems with higher effectiveness. Nanoemulsions are one such system that are widely studied and have a very promising potential in solving various issues as those encountered in delivery of drugs, pesticides or any other biologically potent substance. Apart from this, nanoemulsions have wide applications in the field of food, cosmetics, skincare and agriculture. In this review, we have discussed and compared the methods of nanoemulsion preparation and various methods of synthesis, along with few major applications in various fields of science and technology. We sincerely hope that this review will help to understand the different aspects of nanoemulsions and help us to explore its potent applications in various fields.
Collapse
|
22
|
Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, Zhang Z, Fu C, Ren B, Zhang J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int J Nanomedicine 2020; 15:10215-10240. [PMID: 33364755 PMCID: PMC7751584 DOI: 10.2147/ijn.s285134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
In view of the worldwide serious health threat of type 2 diabetes mellitus (T2DM), natural sources of chemotherapies have been corroborated as the promising alternatives, with the excellent antidiabetic activities, bio-safety, and more cost-effective properties. However, their clinical application is somewhat limited, because of the poor solubility, instability in the gastrointestinal tract (GIT), low bioavailability, and so on. Nowadays, to develop nanoscaled systems has become a prominent strategy to improve the drug delivery of phytochemicals. In this review, we primarily summarized the intervention mechanisms of phytocompounds against T2DM and presented the recent advances in various nanosystems of antidiabetic phytocompounds. Selected nanosystems were grouped depending on their classification and structures, including polymeric NPs, lipid-based nanosystems, vesicular systems, inorganic nanocarriers, and so on. Based on this review, the state-of-the-art nanosystems for phytocompounds in T2DM treatment have been presented, suggesting the preponderance and potential of nanotechnologies.
Collapse
Affiliation(s)
- Xin Nie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999087, People’s Republic of China
| | - Lan Pang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Huajuan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Yi Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Bo Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| |
Collapse
|
23
|
Protective Role of Picralima nitida Seed Extract in High-Fat High-Fructose-Fed Rats. Adv Pharmacol Pharm Sci 2020; 2020:5206204. [PMID: 33163962 PMCID: PMC7604582 DOI: 10.1155/2020/5206204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/22/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022] Open
Abstract
Picralima nitida is a therapeutic herb used in ethnomedicine for the management of several disease conditions including diabetes. This study examined the potential palliative effect of aqueous seed extract of Picralima nitida (APN) on dyslipidemia, hyperglycemia, oxidative stress, insulin resistance, and the expression of some metabolic genes in high-fat high-fructose-fed rats. Experimental rats (2 months old) were fed a control diet or a high-fat diet with 25% fructose (HFHF diet) in their drinking water for nine weeks. APN was administered orally during the last four weeks. Anthropometric and antioxidant parameters, lipid profile, plasma glucose, and insulin levels and the relative expression of some metabolic genes were assessed. APN caused a significant decrease (P < 0.05) in weight gained, body mass index, insulin resistance, plasma glucose, and insulin levels. High-density lipoprotein cholesterol level was significantly increased (P < 0.05), while triacylglycerol, cholesterol, low-density lipoprotein, cardiac index, atherogenic index, coronary artery index, and malondialdehyde levels in plasma and liver samples were also significantly decreased (P < 0.05) by APN at all experimental doses when compared to the group fed with an HFHF diet only. APN also significantly (P < 0.05) upregulated the relative expression of glucokinase, carnitine palmitoyltransferase-1 (CPT-1), and leptin at 400 mg/kg body weight when compared to the group fed with an HFHF diet only. This study showed that APN alleviated dyslipidemia, hyperglycemia, and oxidant effect associated with the intake of a high-fat high-fructose diet.
Collapse
|