1
|
Yap NAL, Ramasamy A, Tanboga IH, He X, Cap M, Bajaj R, Karaduman M, Jain A, Kitslaar P, Broersen A, Zhang X, Sokooti H, Reiber JHC, Dijkstra J, Ozkor M, Serruys PW, Moon JC, Mathur A, Baumbach A, Torii R, Pugliese F, Bourantas CV. Implications of coronary calcification on the assessment of plaque pathology: a comparison of computed tomography and multimodality intravascular imaging. Eur Radiol 2025; 35:1745-1760. [PMID: 39172246 PMCID: PMC11914240 DOI: 10.1007/s00330-024-10996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/21/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES This study aimed to investigate the impact of calcific (Ca) on the efficacy of coronary computed coronary angiography (CTA) in evaluating plaque burden (PB) and composition with near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS) serving as the reference standard. MATERIALS AND METHODS Sixty-four patients (186 vessels) were recruited and underwent CTA and 3-vessel NIRS-IVUS imaging (NCT03556644). Expert analysts matched and annotated NIRS-IVUS and CTA frames, identifying lumen and vessel wall borders. Tissue distribution was estimated using NIRS chemograms and the arc of Ca on IVUS, while in CTA Hounsfield unit cut-offs were utilized to establish plaque composition. Plaque distribution plots were compared at segment-, lesion-, and cross-sectional-levels. RESULTS Segment- and lesion-level analysis showed no effect of Ca on the correlation of NIRS-IVUS and CTA estimations. However, at the cross-sectional level, Ca influenced the agreement between NIRS-IVUS and CTA for the lipid and Ca components (p-heterogeneity < 0.001). Proportional odds model analysis revealed that Ca had an impact on the per cent atheroma volume quantification on CTA compared to NIRS-IVUS at the segment level (p-interaction < 0.001). At lesion level, Ca affected differences between the modalities for maximum PB, remodelling index, and Ca burden (p-interaction < 0.001, 0.029, and 0.002, respectively). Cross-sectional-level modelling demonstrated Ca's effect on differences between modalities for all studied variables (p-interaction ≤ 0.002). CONCLUSION Ca burden influences agreement between NIRS-IVUS and CTA at the cross-sectional level and causes discrepancies between the predictions for per cent atheroma volume at the segment level and maximum PB, remodelling index, and Ca burden at lesion-level analysis. CLINICAL RELEVANCE STATEMENT Coronary calcification affects the quantification of lumen and plaque dimensions and the characterization of plaque composition coronary CTA. This should be considered in the analysis and interpretation of CTAs performed in patients with extensive Ca burden. KEY POINTS Coronary CT Angiography is limited in assessing coronary plaques by resolution and blooming artefacts. Agreement between dual-source CT angiography and NIRS-IVUS is affected by a Ca burden for the per cent atheroma volume. Advanced CT imaging systems that eliminate blooming artefacts enable more accurate quantification of coronary artery disease and characterisation of plaque morphology.
Collapse
Affiliation(s)
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Ibrahim Halil Tanboga
- Department of Biostatistics and Cardiology, Nisantasi University Medical School, Istanbul, Turkey
| | - Xingwei He
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Murat Cap
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, London, UK
| | | | - Ajay Jain
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Pieter Kitslaar
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Medis Medical Imaging Systems, Leiden, The Netherlands
| | - Alexander Broersen
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaotong Zhang
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Johan H C Reiber
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Medis Medical Imaging Systems, Leiden, The Netherlands
| | - Jouke Dijkstra
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mick Ozkor
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Patrick W Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
- Department of Cardiology, National University of Ireland, Galway, Ireland
| | - James C Moon
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Institute of Cardiovascular Sciences, University College London, London, UK
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Francesca Pugliese
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, London, UK
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University London, London, UK.
- Institute of Cardiovascular Sciences, University College London, London, UK.
| |
Collapse
|
2
|
Klambauer K, Lisi C, Moser LJ, Mergen V, Flohr T, Eberhard M, Alkadhi H. Multienergy cardiovascular CT imaging: current state and future. Br J Radiol 2025; 98:321-329. [PMID: 39656967 PMCID: PMC11840172 DOI: 10.1093/bjr/tqae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
Multienergy cardiovascular CT imaging can be defined as data acquisition at 2 (dual-energy) or multiple X-ray energies. Multienergy cardiovascular CT imaging provides additional qualitative and quantitative information such as material maps or virtual monoenergetic images, which are supposed to further improve the quality and diagnostic yield of CT. Recently introduced photon-counting detector CT scanners further address some of the challenges and limitations of previous, conventional CT machines, hereby enhancing and extending the applications of CT for cardiovascular imaging. This review summarizes the technical principles of multienergy cardiovascular CT imaging and addresses the optimization of image quality and discusses the various dual-energy-based applications for coronary, valvular, and myocardial imaging. New developments in regard to k-edge imaging and new contrast media for multienergy cardiovascular CT imaging are being also discussed.
Collapse
Affiliation(s)
- Konstantin Klambauer
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Costanza Lisi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Lukas Jakob Moser
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Victor Mergen
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Thomas Flohr
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6229 Maastricht, The Netherlands
| | - Matthias Eberhard
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
3
|
Wu T, Zhao X, Feng L, Yang S, Xing H, Ma Z, Yang X, Zhang M, Ding M, He Y, Tu C, Song X, Zhang H. Comparison of magnetocardiography and coronary computed tomographic angiography for detection of coronary artery stenosis and the influence of calcium. Eur Radiol 2025:10.1007/s00330-025-11389-4. [PMID: 39953149 DOI: 10.1007/s00330-025-11389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/09/2024] [Accepted: 12/24/2024] [Indexed: 02/17/2025]
Abstract
OBJECTIVES This study aimed to compare the diagnostic performance of magnetocardiography (MCG) and coronary computed tomography angiography (CCTA) in detecting coronary artery stenosis in relation to coronary calcification. METHODS A total of 587 patients who underwent invasive coronary angiography (ICA) with both CCTA and MCG between September 1, 2022, and August 31, 2023, were included. The patients were divided into three subgroups based on their coronary artery calcium score (CACS), namely less than 100, 100-400, and 400 and above, as determined by the Agatston score. The diagnostic sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (ROC) of MCG, CCTA, and the combined diagnostic model (CCTA + MCG) were compared across all CACS subgroups. RESULTS According to ICA, 481 out of 587 patients (81.94%) had ischemia. The area under the ROC curve (AUC) of MCG for detecting ischemia was 0.80, with a sensitivity of 74.64% and specificity of 84.91% for all patients. In the different CACS subgroups, the diagnostic specificity of CCTA notably decreased (78.57% vs 24.13% vs 17.46%), while that of MCG remained stable (92.86% vs 86.21% vs 82.54%). The diagnostic accuracy of MCG and the combined diagnostic model was better than that of CCTA when CACS was ≥ 400 (77.22% vs 67.22% vs 58.89%). The AUC values of MCG, CCTA, and the combined model in the CACS ≥ 400 subgroups were 0.78, 0.49, and 0.71, respectively. CONCLUSIONS The diagnostic performance of MCG is less affected by CACS than that of CCTA. MCG and the combined model demonstrate better performance than CCTA alone in detecting coronary artery stenosis, particularly in cases with CACS ≥ 400. KEY POINTS Question How does the diagnostic performance of MCG compare with coronary computed tomographic angiography (CCTA) at different levels of calcification scores (CACS)? Findings MCG demonstrated better performance than CCTA in detecting coronary artery stenosis, particularly in patients with high CACS. Clinical relevance MCG or the MCG and CCTA combined model can be used to improve the noninvasive imaging diagnostic performance for detecting coronary artery stenosis and reduce unnecessary ICA, especially for patients with high calcification scores.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lanxin Feng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shuwen Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haoran Xing
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Min Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Ding
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Yi He
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chenchen Tu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Murphy D, Graby J, Hudson B, Lowe R, Carson K, Kandan SR, McKenzie D, Khavandi A, Rodrigues JCL. Calcific versus non-calcific plaque: a CAD-RADS and FFRCT study. Int J Cardiovasc Imaging 2025; 41:47-54. [PMID: 39572503 PMCID: PMC11741995 DOI: 10.1007/s10554-024-03281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/27/2024] [Indexed: 01/19/2025]
Abstract
Coronary Artery Disease-Reporting and Data System (CAD-RADS) standardises Computed Tomography Coronary Angiography (CTCA) reporting. Coronary calcification can overestimate stenosis. We hypothesized where CADRADS category is assigned due to predominantly calcified maximal stenosis (Ca+), the CTCA-derived Fractional Flow Reserve (FFRCT) would be lower compared to predominantly non-calcified maximal stenoses (Ca-) of the same CAD-RADS category. Consecutive patients undergoing routine clinical CTCA (September 2018 to May 2020) with ≥1 stenosis ≥25% with FFRCT correlation were included. CTCA's were subdivided into Ca+ and Ca-. FFRCT was measured in the left anterior descending (LAD), left circumflex (LCx) and right coronary artery (RCA). Potentially flow-limiting classified as FFRCT≤0.8. A subset had Invasive Coronary Angiography (ICA). 561 patients screened, 320 included (60% men, 69±10 years). Ca+ in 51%, 69% and 50% of CAD-RADS 2, 3 and 4 respectively. There was no difference in the prevalence of FFRCT≤0.8 between Ca+ and Ca- stenoses for each CAD-RADS categories. No difference was demonstrated in the median maximal stenoses FFRCT or end-vessel FFRCT within CAD-RADS 2 and 4. CAD-RADS 3 Ca+ had a lower FFRCT (maximal stenosis p= .02, end-vessel p= .005) vs Ca-. No difference in the prevalence of obstructive disease at ICA between predominantly Ca+ and Ca- for any CAD-RADS category. There was no difference in median FFRCT values or rate of obstructive disease at ICA between Ca+ and Castenosis in both CAD-RADS 2 and 4. Ca+ CAD-RADS 3 was suggestive of an underestimation based on FFRCT but not corroborated at ICA.
Collapse
Affiliation(s)
- David Murphy
- Cardiology Department, Royal United Hospitals Bath NHS Trust, Combe Park, Bath, Avon, BA1 3NG, UK
- Department of Health, University of Bath, Bath, UK
| | - John Graby
- Cardiology Department, Royal United Hospitals Bath NHS Trust, Combe Park, Bath, Avon, BA1 3NG, UK
- Department of Health, University of Bath, Bath, UK
| | | | - Robert Lowe
- Cardiology Department, Royal United Hospitals Bath NHS Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - Kevin Carson
- Cardiology Department, Royal United Hospitals Bath NHS Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - Sri Raveen Kandan
- Cardiology Department, Royal United Hospitals Bath NHS Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - Daniel McKenzie
- Cardiology Department, Royal United Hospitals Bath NHS Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - Ali Khavandi
- Cardiology Department, Royal United Hospitals Bath NHS Trust, Combe Park, Bath, Avon, BA1 3NG, UK
| | - Jonathan Carl Luis Rodrigues
- Department of Health, University of Bath, Bath, UK.
- Radiology Department, Royal United Hospitals Bath NHS Trust, Combe Park, Bath, Avon, BA1 3NG, UK.
| |
Collapse
|
5
|
Klüner LV, Chan K, Antoniades C. Using artificial intelligence to study atherosclerosis from computed tomography imaging: A state-of-the-art review of the current literature. Atherosclerosis 2024; 398:117580. [PMID: 38852022 PMCID: PMC11579307 DOI: 10.1016/j.atherosclerosis.2024.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024]
Abstract
With the enormous progress in the field of cardiovascular imaging in recent years, computed tomography (CT) has become readily available to phenotype atherosclerotic coronary artery disease. New analytical methods using artificial intelligence (AI) enable the analysis of complex phenotypic information of atherosclerotic plaques. In particular, deep learning-based approaches using convolutional neural networks (CNNs) facilitate tasks such as lesion detection, segmentation, and classification. New radiotranscriptomic techniques even capture underlying bio-histochemical processes through higher-order structural analysis of voxels on CT images. In the near future, the international large-scale Oxford Risk Factors And Non-invasive Imaging (ORFAN) study will provide a powerful platform for testing and validating prognostic AI-based models. The goal is the transition of these new approaches from research settings into a clinical workflow. In this review, we present an overview of existing AI-based techniques with focus on imaging biomarkers to determine the degree of coronary inflammation, coronary plaques, and the associated risk. Further, current limitations using AI-based approaches as well as the priorities to address these challenges will be discussed. This will pave the way for an AI-enabled risk assessment tool to detect vulnerable atherosclerotic plaques and to guide treatment strategies for patients.
Collapse
Affiliation(s)
- Laura Valentina Klüner
- Acute Multidisciplinary Imaging and Interventional Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, United Kingdom
| | - Kenneth Chan
- Acute Multidisciplinary Imaging and Interventional Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, United Kingdom
| | - Charalambos Antoniades
- Acute Multidisciplinary Imaging and Interventional Centre, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, United Kingdom.
| |
Collapse
|
6
|
Ma Z, Dong S, Ou S, Ma X, Liu L, An Z, Xu F, Zhang D, Tu C, Song X, Zhang H. The predictive value of coronary computed tomography angiography-derived fractional flow reserve for perioperative cardiac events in lung cancer surgery. Eur J Radiol 2024; 180:111688. [PMID: 39182273 DOI: 10.1016/j.ejrad.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE As a non-invasive coronary functional examination, coronary computed tomography angiography (CCTA)-derived fractional flow reserve (CT-FFR) showed predictive value in several non-cardiac surgeries. This study aimed to evaluate the predictive value of CT-FFR in lung cancer surgery. METHOD We retrospectively collected 227 patients from January 2017 to June 2022 and used machine learning-based CT-FFR to evaluate the stable coronary artery disease (CAD) patients undergoing lung cancer surgery. The major adverse cardiac event (MACE) was defined as perioperative myocardial injury (PMI), myocardial infarction, heart failure, atrial and ventricular arrhythmia with hemodynamic disorder, cardiogenic shock and cardiac death. The multivariate logistic regression analysis was performed to identify risk factors for MACE and PMI. The discriminative capacity, goodness-of-fit, and reclassification improvement of prediction model were determined before and after the addition of CT-FFR≤0.8. RESULTS The incidence of MACE was 20.7 % and PMI was 15.9 %. CT-FFR significantly outperformed CCTA in terms of accuracy for predicting MACE (0.737 vs 0.524). In the multivariate regression analysis, CT-FFR≤0.8 was an independent risk factor for both MACE [OR=10.77 (4.637, 25.016), P<0.001] and PMI [OR=8.255 (3.372, 20.207), P<0.001]. Additionally, we found that the performance of prediction model for both MACE and PMI improved after the addition of CT-FFR. CONCLUSIONS CT-FFR can be used to assess the risk of perioperative MACE and PMI in patients with stable CAD undergoing lung cancer surgery. It adds prognostic information in the cardiac evaluation of patients undergoing lung cancer surgery.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Shuo Dong
- Department of Thoracic Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Songlei Ou
- Department of Thoracic Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Xuchen Ma
- Department of Thoracic Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Linqi Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Feng Xu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China
| | - Chenchen Tu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
7
|
Lu H, Miao X, Wang D, Zheng X, Zhang S, Wang R, Li G, Qian X, Chen Y, Hu C, Jin H, Zeng M. Feasibility and Clinical Application of 5-T Noncontrast Dixon Whole-Heart Coronary MR Angiography: A Prospective Study. Radiology 2024; 313:e240389. [PMID: 39436288 DOI: 10.1148/radiol.240389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Background Coronary MR angiography (CMRA) at 3 T offers higher signal to noise ratio and contrast to noise ratio compared with 1.5 T. CMRA at 5 T may provide better diagnostic performance. Purpose To assess the feasibility and clinical application of 5-T noncontrast whole-heart CMRA and compare 5-T acquisition with 3-T acquisition. Materials and Methods From September 2023 to April 2024, patients scheduled for coronary CT angiography (CCTA) and volunteers were prospectively recruited. CCTA served as the reference standard in patients. CMRA was performed using a 3-T spectral attenuated inversion-recovery (3TSPAIR) sequence and 3-T Dixon (3TDixon) sequence with routine spatial resolution (3TSPAIR-routine and 3TDixon-routine, respectively), and 5-T Dixon (5TDixon) with routine and high spatial resolution (5TDixon-routine and 5TDixon-high, respectively). The study evaluated image quality, coronary artery calcium (CAC), the severity of coronary artery disease (CAD) graded according to Coronary Artery Disease Reporting and Data System, and the presence of ≥50% coronary stenosis. The nonparametric paired Wilcoxon signed rank test, McNemar test, generalized estimating equation model, and kappa test were used. Results Eight volunteers and 79 patients were included (mean age, 52 years ± 11 [SD]; 48 male). Image quality was higher for 5TDixon-routine compared with 3TSPAIR-routine and 3TDixon-routine (P < .001 for both) and similar for 5TDixon-high (P = .60). The per-segment sensitivity for CAC was higher at 5TDixon-high than 5TDixon-routine (78.3% vs 53.3%; P < .001), with no difference in specificity (98.6% vs 98.6%; P > .99). In grading the severity of CAD, 5TDixon-routine showed better consistency with CCTA than 3TSPAIR-routine (κ = 0.46 vs 0.13) and 3TDixon-routine (κ = 0.55 vs 0.42). For detecting ≥50% stenosis, the per-patient sensitivity, specificity, and accuracy were as follows: 5TDixon-routine versus 3TSPAIR-routine, 88.9% versus 55.6%, 86.5% versus 62.2%, and 87.0% versus 60.9% (P = .55, .01, and .18, respectively); 5TDixon-routine versus 3TDixon-routine, 90.0% versus 80.0%, 86.8% versus 71.1%, and 87.5% versus 72.9%, respectively (P > .05 for all). Conclusion Noncontrast CMRA at 5 T shows potential to evaluate CAC and coronary stenosis simultaneously and demonstrates superior diagnostic performance compared with at 3 T. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Rahsepar and Kim in this issue.
Collapse
Affiliation(s)
- Hongfei Lu
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| | - Xiyin Miao
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| | - Dong Wang
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| | - Xinde Zheng
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| | - Shiyu Zhang
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| | - Rui Wang
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| | - Guobin Li
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| | - Xianling Qian
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| | - Yinyin Chen
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| | - Chenxi Hu
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| | - Hang Jin
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| | - Mengsu Zeng
- From the Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai 200032, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); Shanghai Institute of Medical Imaging, Shanghai, China (H.L., X.M., X.Z., X.Q., Y.C., H.J., M.Z.); United Imaging Healthcare, Shanghai, China (D.W., S.Z., R.W., G.L.); National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (C.H.); and Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China (H.J., M.Z.)
| |
Collapse
|
8
|
Ma Z, Tu C, Zhang B, Zhang D, Song X, Zhang H. A meta-analysis comparing the diagnostic performance of computed tomography-derived fractional flow reserve and coronary computed tomography angiography at different levels of coronary artery calcium score. Eur Radiol 2024; 34:5621-5632. [PMID: 38334761 DOI: 10.1007/s00330-024-10591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/30/2023] [Accepted: 11/30/2023] [Indexed: 02/10/2024]
Abstract
OBJECTIVES The impact of coronary calcification on the diagnostic accuracy of computed tomography-derived fractional flow reserve (CT-FFR) and coronary computed tomography angiography (CCTA) remains a crucial consideration. This meta-analysis aims to compare the diagnostic performance of CT-FFR and CCTA at different levels of coronary artery calcium score (CACS). METHODS AND RESULTS We searched PubMed, Embase, and the Cochrane Library for relevant articles on CCTA, CT-FFR, and invasive fractional flow reserve (FFR). Ten studies were included to evaluate the diagnostic performance of CT-FFR and CCTA at the per-patient and per-vessel levels in four CACS groups. Invasive FFR was used as the reference standard. Except for the CACS ≥ 400 group, the AUC of CT-FFR was higher than those of CCTA in other subgroups of CACS (in CACS < 100 (per-patient, 0.9 (95% CI 0.87-0.92) vs. 0.32 (95% CI 0.28-0.36); per-vessel, 0.92 (95% CI 0.89-0.94) vs. 0.66 (95% CI 0.62-0.7); both p < 0.001), CACS ≥ 100 (per-patient, 0.86 (95% CI 0.82-0.88) vs. 0.44 (95% CI 0.4-0.48); per-vessel, 0.88 (95% CI 0.85-0.9) vs. 0.51 (95% CI 0.46-0.55); both p < 0.001), and CACS < 400 (per-patient, 0.9 (95% CI 0.87-0.93) vs. 0.74 (95% CI 0.7-0.78), p < 0.001; per-vessel, 0.8 (95% CI 0.76-0.83) vs. 0.74 (95% CI 0.7-0.78); p = 0.02)). CONCLUSIONS CT-FFR demonstrates superior diagnostic performance in low CACS groups (CACS < 400) than CCTA in detecting hemodynamic stenoses in patients with coronary artery disease (CAD). CLINICAL RELEVANCE STATEMENT Computed tomography-derived fractional flow reserve might be utilized to determine the necessity of invasive coronary angiography in coronary artery disease patients with coronary artery calcium score < 400. KEY POINTS • There is a lack of meta-analysis comparing the diagnostic performance of computed tomography-derived fractional flow reserve and coronary computed tomography angiography at different levels of calcification. • Computed tomography-derived fractional flow reserve only has a better diagnostic performance than coronary computed tomography angiography with low amounts of coronary calcium. • For the low coronary artery calcium score group, computed tomography-derived fractional flow reserve might be a good non-invasive method to detect hemodynamic stenoses in coronary artery disease patients.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, People's Republic of China
| | - Chenchen Tu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, People's Republic of China
| | - Baoen Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, People's Republic of China
| | - Dongfeng Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, People's Republic of China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, People's Republic of China.
| | - Hongjia Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, People's Republic of China
| |
Collapse
|
9
|
Zsarnoczay E, Fink N, Schoepf UJ, Pinos D, O'Doherty J, Allmendinger T, Hagenauer J, Griffith Iii JP, Vecsey-Nagy M, Maurovich-Horvat P, Emrich T, Varga-Szemes A. Accuracy of ultra-high resolution and virtual non-calcium reconstruction algorithm for stenosis evaluation with photon-counting CT: results from a dynamic phantom study. Eur Radiol Exp 2024; 8:102. [PMID: 39207565 PMCID: PMC11362394 DOI: 10.1186/s41747-024-00482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND We compared ultra-high resolution (UHR), standard resolution (SR), and virtual non-calcium (VNCa) reconstruction for coronary artery stenosis evaluation using photon-counting computed tomography (PC-CT). METHODS One vessel phantom (4-mm diameter) containing solid calcified lesions with 25% and 50% stenoses inside a thorax phantom with motion simulation underwent PC-CT using UHR (0.2-mm slice thickness) and SR (0.6-mm slice thickness) at heart rates of 60 beats per minute (bpm), 80 bpm, and 100 bpm. A paired t-test or Wilcoxon test with Bonferroni correction was used. RESULTS For 50% stenosis, differences in percent mean diameter stenosis between UHR and SR at 60 bpm (51.0 vs 60.3), 80 bpm (51.7 vs 59.6), and 100 bpm (53.7 vs 59.0) (p ≤ 0.011), as well as between VNCa and SR at 60 bpm (50.6 vs 60.3), 80 bpm (51.5 vs 59.6), and 100 bpm (53.7 vs 59.0) were significant (p ≤ 0.011), while differences between UHR and VNCa at all heart rates (p ≥ 0.327) were not significant. For 25% stenosis, differences between UHR and SR at 60 bpm (28.0 vs 33.7), 80 bpm (28.4 vs 34.3), and VNCa vs SR at 60 bpm (29.1 vs 33.7) were significant (p ≤ 0.015), while differences for UHR vs SR at 100 bpm (29.9 vs 34.0), as well as for VNCa vs SR at 80 bpm (30.7 vs 34.3) and 100 bpm (33.1 vs 34.0) were not significant (p ≥ 0.028). CONCLUSION Stenosis quantification accuracy with PC-CT improved using either UHR acquisition or VNCa reconstruction. RELEVANCE STATEMENT PC-CT offers to scan with UHR mode and the reconstruction of VNCa images both of them could provide improved coronary stenosis quantification at increased heart rates, allowing a more accurate stenosis grading at low and high heart rates compared to SR. KEY POINTS Evaluation of coronary stenosis with conventional CT is challenging at high heart rates. PC-CT allows for scanning with ECG-gated UHR and SR modes. UHR and VNCa images were compared in a dynamic phantom. UHR improves stenosis quantification up to 100 bpm. VNCa reconstruction improves stenosis evaluation up to 80 bpm.
Collapse
Affiliation(s)
- Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Nicola Fink
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel Pinos
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Siemens Medical Solutions USA Inc, Malvern, PA, USA
| | | | - Junia Hagenauer
- Siemens Healthcare GmbH, Forchheim, Germany
- Faculty of Medicine, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Joseph P Griffith Iii
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Milán Vecsey-Nagy
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany.
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
10
|
Meloni A, Maffei E, Clemente A, De Gori C, Occhipinti M, Positano V, Berti S, La Grutta L, Saba L, Cau R, Bossone E, Mantini C, Cavaliere C, Punzo B, Celi S, Cademartiri F. Spectral Photon-Counting Computed Tomography: Technical Principles and Applications in the Assessment of Cardiovascular Diseases. J Clin Med 2024; 13:2359. [PMID: 38673632 PMCID: PMC11051476 DOI: 10.3390/jcm13082359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Spectral Photon-Counting Computed Tomography (SPCCT) represents a groundbreaking advancement in X-ray imaging technology. The core innovation of SPCCT lies in its photon-counting detectors, which can count the exact number of incoming x-ray photons and individually measure their energy. The first part of this review summarizes the key elements of SPCCT technology, such as energy binning, energy weighting, and material decomposition. Its energy-discriminating ability represents the key to the increase in the contrast between different tissues, the elimination of the electronic noise, and the correction of beam-hardening artifacts. Material decomposition provides valuable insights into specific elements' composition, concentration, and distribution. The capability of SPCCT to operate in three or more energy regimes allows for the differentiation of several contrast agents, facilitating quantitative assessments of elements with specific energy thresholds within the diagnostic energy range. The second part of this review provides a brief overview of the applications of SPCCT in the assessment of various cardiovascular disease processes. SPCCT can support the study of myocardial blood perfusion and enable enhanced tissue characterization and the identification of contrast agents, in a manner that was previously unattainable.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Erica Maffei
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Mariaelena Occhipinti
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Vicenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Riccardo Cau
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy;
| | - Cesare Mantini
- Department of Radiology, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| |
Collapse
|
11
|
Sun Y, Tian D, Lu H, Zhao S, Chen Y, Ge M, Zeng M, Jin H. Diagnostic performance of 3.0 T unenhanced Dixon water-fat separation coronary MR angiography in patients with low-to-intermediate risk of coronary artery disease. Magn Reson Imaging 2024; 107:8-14. [PMID: 38159873 DOI: 10.1016/j.mri.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE To evaluate the diagnostic performance of 3.0 T unenhanced compressed-sensing sensitivity encoding (CS-SENSE) Dixon water-fat separation coronary MR angiography (CMRA) in patients with low-to-intermediate risk of coronary artery disease (CAD) and its ability to grade the severity of CAD based on Coronary Artery Disease Reporting and Data System (CAD-RADS). METHODS A total of 55 patients who was clinically evaluated as low-to-intermediate risk of CAD were finally included to undergo both 3.0 T CS-SENSE water-fat separation CMRA and coronary computed tomography angiography (CCTA), and 11 of them also underwent X-ray coronary angiography (CAG). The severity of coronary artery disease was graded in patients who had completed both CCTA and CMRA examinations by the use of CAD-RADS reports for the patients with stable chest pain, and the diagnostic consistency between the two approaches was evaluated. Diagnostic performance of CMRA was assessed using the combination of CCTA and CAG as the reference standard for excluding or confirming CAD respectively. RESULTS The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy of 3.0 T unenhanced water-fat separation coronary MRA were 90.0%, 95.0%, 81.8%, 97.4% and 94.0% for a patient-based analysis respectively. In comparison with CCTA, 3.0 T Dixon water-fat separation CMRA demonstrated excellent consistency in grading the severity of coronary heart disease according to CAD-RADS (0.77 for kappa value). CONCLUSION In the group of low-to-intermediate probability for CAD, 3.0 T unenhanced CS-SENSE Dixon water-fat separation CMRA can present satisfactory diagnostic performance for the exclusion of CAD with high sensitivity and negative predictive value as well as the evaluation of grading the severity of coronary artery disease.
Collapse
Affiliation(s)
- Yi Sun
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Di Tian
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Hongfei Lu
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Shihai Zhao
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032, China; Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai 200237, China
| | - Yinyin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Meiying Ge
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032, China; Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai 200237, China.
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032, China; Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai 200237, China
| | - Hang Jin
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032, China; Department of Radiology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai 200237, China
| |
Collapse
|
12
|
Wolf EV, Halfmann MC, Varga-Szemes A, Fink N, Kloeckner R, Bockius S, Allmendinger T, Hagenauer J, Koehler T, Kreitner KF, Schoepf UJ, Münzel T, Düber C, Gori T, Yang Y, Hell MM, Emrich T. Photon-Counting Detector CT Virtual Monoenergetic Images for Coronary Artery Stenosis Quantification: Phantom and In Vivo Evaluation. AJR Am J Roentgenol 2024; 222:e2330481. [PMID: 38197760 DOI: 10.2214/ajr.23.30481] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND. Calcium blooming causes stenosis overestimation on coronary CTA. OBJECTIVE. The purpose of this article was to evaluate the impact of virtual monoenergetic imaging (VMI) reconstruction level on coronary artery stenosis quantification using photon-counting detector (PCD) CT. METHODS. A phantom containing two custom-made vessels (representing 25% and 50% stenosis) underwent PCD CT acquisitions without and with simulated cardiac motion. A retrospective analysis was performed of 33 patients (seven women, 26 men; mean age, 71.3 ± 9.0 [SD] years; 64 coronary artery stenoses) who underwent coronary CTA by PCD CT followed by invasive coronary angiography (ICA). Scans were reconstructed at nine VMI energy levels (40-140 keV). Percentage diameter stenosis (PDS) was measured, and bias was determined from the ground-truth stenosis percentage in the phantom and ICA-derived quantitative coronary angiography measurements in patients. Extent of blooming artifact was measured in the phantom and in calcified and mixed plaques in patients. RESULTS. In the phantom, PDS decreased for 25% stenosis from 59.9% (40 keV) to 13.4% (140 keV) and for 50% stenosis from 81.6% (40 keV) to 42.3% (140 keV). PDS showed lowest bias for 25% stenosis at 90 keV (bias, 1.4%) and for 50% stenosis at 100 keV (bias, -0.4%). Blooming artifacts decreased for 25% stenosis from 61.5% (40 keV) to 35.4% (140 keV) and for 50% stenosis from 82.7% (40 keV) to 52.1% (140 keV). In patients, PDS for calcified plaque decreased from 70.8% (40 keV) to 57.3% (140 keV), for mixed plaque decreased from 69.8% (40 keV) to 56.3% (140 keV), and for noncalcified plaque was 46.6% at 40 keV and 54.6% at 140 keV. PDS showed lowest bias for calcified plaque at 100 keV (bias, 17.2%), for mixed plaque at 140 keV (bias, 5.0%), and for noncalcified plaque at 40 keV (bias, -0.5%). Blooming artifacts decreased for calcified plaque from 78.4% (40 keV) to 48.6% (140 keV) and for mixed plaque from 73.1% (40 keV) to 44.7% (140 keV). CONCLUSION. For calcified and mixed plaque, stenosis severity measurements and blooming artifacts decreased at increasing VMI reconstruction levels. CLINICAL IMPACT. PCD CT with VMI reconstruction helps overcome current limitations in stenosis quantification on coronary CTA.
Collapse
Affiliation(s)
- Elias V Wolf
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
| | - Moritz C Halfmann
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
| | - Nicola Fink
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
- Department of Radiology, University Hospital, LMU Munich, München, Germany
| | - Roman Kloeckner
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany
| | - Stefanie Bockius
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | | | | | | | - Karl-Friedrich Kreitner
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
| | - Thomas Münzel
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christoph Düber
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Tommaso Gori
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Yang Yang
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
| | - Michaela M Hell
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Tilman Emrich
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Langenbeckstraβe 1, 55131 Mainz, Germany
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, Charleston, SC
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
13
|
Shu G, Zhao L, Li F, Jiang Y, Zhang X, Yu C, Pan J, Sun SK. Metallic artifacts-free spectral computed tomography angiography based on renal clearable bismuth chelate. Biomaterials 2024; 305:122422. [PMID: 38128318 DOI: 10.1016/j.biomaterials.2023.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Computed tomography angiography (CTA) is one of the most important diagnosis techniques for various vascular diseases in clinic. However, metallic artifacts caused by metal implants and calcified plaques in more and more patients severely hinder its wide applications. Herein, we propose an improved metallic artifacts-free spectral CTA technique based on renal clearable bismuth chelate (Bi-DTPA dimeglumine) for the first time. Bi-DTPA dimeglumine owns the merits of ultra-simple synthetic process, approximately 100% of yield, large-scale production capability, good biocompatibility, and favorable renal clearable ability. More importantly, Bi-DTPA dimeglumine shows superior contrast-enhanced effect in CTA compared with clinical iohexol at a wide range of X-ray energies especially in higher X-ray energy. In rabbits' model with metallic transplants, Bi-DTPA dimeglumine assisted-spectral CTA can not only effectively mitigate metallic artifacts by reducing beam hardening effect under high X-ray energy, but also enables accurate delineation of vascular structure. Our proposed strategy opens a revolutionary way to solve the bottleneck problem of metallic artifacts in CTA examinations.
Collapse
Affiliation(s)
- Gang Shu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China; Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lu Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fengtan Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingjian Jiang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
14
|
Halfmann MC, Bockius S, Emrich T, Hell M, Schoepf UJ, Laux GS, Kavermann L, Graafen D, Gori T, Yang Y, Kloeckner R, Maurovich-Horvat P, Ricke J, Müller L, Varga-Szemes A, Fink N. Ultrahigh-Spatial-Resolution Photon-counting Detector CT Angiography of Coronary Artery Disease for Stenosis Assessment. Radiology 2024; 310:e231956. [PMID: 38376407 DOI: 10.1148/radiol.231956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Background Coronary CT angiography is a first-line test in coronary artery disease but is limited by severe calcifications. Photon-counting-detector (PCD) CT improves spatial resolution. Purpose To investigate the effect of improved spatial resolution on coronary stenosis assessment and reclassification. Materials and Methods Coronary stenoses were evaluated prospectively in a vessel phantom (in vitro) containing two stenoses (25%, 50%), and retrospectively in patients (in vivo) who underwent ultrahigh-spatial-resolution cardiac PCD CT (from July 2022 to April 2023). Images were reconstructed at standard resolution (section thickness, 0.6 mm; increment, 0.4 mm; Bv44 kernel), high spatial resolution (section thickness, 0.4 mm; increment, 0.2 mm; Bv44 kernel), and ultrahigh spatial resolution (section thickness, 0.2; increment, 0.1 mm; Bv64 kernel). Percentages of diameter stenosis (DS) were compared between reconstructions. In vitro values were compared with the manufacturer specifications of the phantom and patient results were assessed regarding effects on Coronary Artery Disease Reporting and Data System (CAD-RADS) reclassification. Results The in vivo sample included 114 patients (mean age, 68 years ± 9 [SD]; 71 male patients). In vitro percentage DS measurements were more accurate with increasing spatial resolution for both 25% and 50% stenoses (mean bias for standard resolution, high spatial resolution, and ultrahigh spatial resolution, respectively: 10.1%, 8.0%, and 2.3%; P < .001). In vivo results confirmed decreasing median percentage DS with increasing spatial resolution for calcified stenoses (n = 161) (standard resolution, high spatial resolution, and ultrahigh spatial resolution, respectively: 41.5% [IQR, 27.3%-58.2%], 34.8% [IQR, 23.7%-55.1%], and 26.7% [IQR, 18.6%-44.3%]; P < .001), whereas noncalcified (n = 13) and mixed plaques (n = 19) did not show evidence of a difference (P ≥ .88). Ultrahigh-spatial-resolution reconstructions led to reclassification of 62 of 114 (54.4%) patients to lower CAD-RADS category than that assigned using standard resolution. Conclusion In vivo and in vitro coronary stenosis assessment improved for calcified stenoses by using ultrahigh-spatial-resolution PCD CT reconstructions, leading to lower percentage DS compared with standard resolution and clinically relevant rates of reclassification. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by McCollough in this issue.
Collapse
Affiliation(s)
- Moritz C Halfmann
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Stefanie Bockius
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Tilman Emrich
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Michaela Hell
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - U Joseph Schoepf
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Gerald S Laux
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Larissa Kavermann
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Dirk Graafen
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Tomasso Gori
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Yang Yang
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Roman Kloeckner
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Pál Maurovich-Horvat
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Jens Ricke
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Lukas Müller
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Akos Varga-Szemes
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| | - Nicola Fink
- From the Department of Diagnostic and Interventional Radiology (M.C.H., S.B., T.E., D.G., Y.Y., L.M.) and Department of Cardiology (M.H., G.S.L., L.K., T.G.), University Medical Center of the Johannes Gutenberg-University, Langenbeckstr 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany (M.C.H., T.E., T.G.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E., U.J.S., A.V.S.); Department for Interventional Radiology, University Hospital of Lübeck, Lübeck, Germany (R.K.); Department of Radiology, Medical Imaging Center, Semmelweis University, Budapest, Hungary (P.M.H.); and Department of Radiology, University Hospital, LMU Munich, Munich, Germany (J.R., N.F.)
| |
Collapse
|
15
|
Böttcher B, Zsarnoczay E, Varga-Szemes A, Schoepf UJ, Meinel FG, van Assen M, De Cecco CN. Dual-Energy Computed Tomography in Cardiac Imaging. Radiol Clin North Am 2023; 61:995-1009. [PMID: 37758366 DOI: 10.1016/j.rcl.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual-energy computed tomography (DECT) acquires images using two energy spectra and offers a variation of reconstruction techniques for improved cardiac imaging. Virtual monoenergetic images decrease artifacts improving coronary plaque and stent visualization. Further, contrast attenuation is increased allowing significant reduction of contrast dose. Virtual non-contrast reconstructions enable coronary artery calcium scoring from contrast-enhanced scans. DECT provides advanced plaque imaging with detailed analysis of plaque components, indicating plaque stability. Extracellular volume assessment using DECT offers noninvasive detection of myocardial fibrosis. This review aims to outline the current cardiac applications of DECT, summarize recent literature, and discuss their findings.
Collapse
Affiliation(s)
- Benjamin Böttcher
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road NE, Suite D112, Atlanta, GA 30322, USA; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Strasse 6, 18057 Rostock, Germany
| | - Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA; MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA
| | - Uwe Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA
| | - Felix G Meinel
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Strasse 6, 18057 Rostock, Germany
| | - Marly van Assen
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road NE, Suite D112, Atlanta, GA 30322, USA
| | - Carlo N De Cecco
- Division of Cardiothoracic Imaging and Imaging Informatics, Department of Radiology and Imaging Sciences, Emory University Hospital, Emory Healthcare, Inc. 1365 Clifton Road NE, Suite - AT503, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Meloni A, Cademartiri F, Positano V, Celi S, Berti S, Clemente A, La Grutta L, Saba L, Bossone E, Cavaliere C, Punzo B, Maffei E. Cardiovascular Applications of Photon-Counting CT Technology: A Revolutionary New Diagnostic Step. J Cardiovasc Dev Dis 2023; 10:363. [PMID: 37754792 PMCID: PMC10531582 DOI: 10.3390/jcdd10090363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Photon-counting computed tomography (PCCT) is an emerging technology that can potentially transform clinical CT imaging. After a brief description of the PCCT technology, this review summarizes its main advantages over conventional CT: improved spatial resolution, improved signal and contrast behavior, reduced electronic noise and artifacts, decreased radiation dose, and multi-energy capability with improved material discrimination. Moreover, by providing an overview of the existing literature, this review highlights how the PCCT benefits have been harnessed to enhance and broaden the diagnostic capabilities of CT for cardiovascular applications, including the detection of coronary artery calcifications, evaluation of coronary plaque extent and composition, evaluation of coronary stents, and assessment of myocardial tissue characteristics and perfusion.
Collapse
Affiliation(s)
- Antonella Meloni
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
- Unità Operativa Complessa di Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| | - Vicenzo Positano
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
- Unità Operativa Complessa di Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato, CA, Italy;
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SynLab-SDN, 80131 Naples, Italy; (C.C.); (B.P.)
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SynLab-SDN, 80131 Naples, Italy; (C.C.); (B.P.)
| | - Erica Maffei
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.); (A.C.); (E.M.)
| |
Collapse
|
17
|
Basheer M, Saad E, Jeries H, Assy N. Liver Fat Storage Is a Better Predictor of Coronary Artery Disease than Visceral Fat. Metabolites 2023; 13:896. [PMID: 37623840 PMCID: PMC10456344 DOI: 10.3390/metabo13080896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Fatty liver is one aspect of metabolic syndrome. The roles and contributions of fatty liver and visceral fat storage to coronary artery disease (CAD) are not clear. This study measured associations among visceral fat storage, fatty liver, insulin resistance, atherosclerosis, and CAD. Patients were divided into three groups: excess visceral fat (visceral fat area >330 ± 99 cm2), non-alcoholic fatty liver disease (NAFLD), and a control group. The definition of fatty liver is liver minus spleen density greater than or equal to -10. We defined early atherosclerosis as intima-media thickness of the common carotid artery >7 mm in men and >0.65 mm in women, measured with Doppler ultrasound. Visceral fat area was defined using CT (>330 ± 99 cm2). Insulin-resistance biomarkers (HOMA), CRP, and oxidant-antioxidant status (MDA-Paraoxonase) were also measured. Patients with high liver or visceral fat showed higher coronary plaque prevalence (50% (p < 0.001), 38% (p < 0.01), respectively vs. 25% in the control group), higher prevalence of coronary stenosis (30% (p < 0.001), 22% (p < 0.01) vs. 11% in the control group), higher intimal thickening (0.98 ± 0.3 (p< 0.01), 0.86 ± 0.1 (p < 0.01) vs. 0.83 ± 0.1 in the control group), higher HOMA (4.0 ± 3.0 (p < 0.005), 3.0 ± 1.0 (p < 0.001) vs. 1.5 ± 1.2 in the control group), and higher triglyceride levels (196.8 ± 103 (p < 0.005), 182.6 ± 90.87 (p < 0.005) vs. 145 ± 60 in the control group). Multiple logistic regression analysis showed that fatty liver predicted CAD (OR 2.7, 95% CI 2.3-4.9, p < 0.001) independently of visceral fat storage (OR 2.01, 95% CI 1.2-2.8, p < 0.001). Liver fat storage is a strong independent risk factor for CAD and carotid atherosclerosis and contributes more than visceral fat storage.
Collapse
Affiliation(s)
- Maamoun Basheer
- Internal Medicine Department, Galilee Medical Center, Nahariya 221001, Israel; (M.B.); (E.S.); (H.J.)
| | - Elias Saad
- Internal Medicine Department, Galilee Medical Center, Nahariya 221001, Israel; (M.B.); (E.S.); (H.J.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safad 1311502, Israel
| | - Helena Jeries
- Internal Medicine Department, Galilee Medical Center, Nahariya 221001, Israel; (M.B.); (E.S.); (H.J.)
| | - Nimer Assy
- Internal Medicine Department, Galilee Medical Center, Nahariya 221001, Israel; (M.B.); (E.S.); (H.J.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safad 1311502, Israel
| |
Collapse
|
18
|
Singhal M, Pilania RK, Gupta P, Johnson N, Singh S. Emerging role of computed tomography coronary angiography in evaluation of children with Kawasaki disease. World J Clin Pediatr 2023; 12:97-106. [PMID: 37342454 PMCID: PMC10278081 DOI: 10.5409/wjcp.v12.i3.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Coronary artery abnormalities are the most important complications in children with Kawasaki disease (KD). Two-dimensional transthoracic echocardiography currently is the standard of care for initial evaluation and follow-up of children with KD. However, it has inherent limitations with regard to evaluation of mid and distal coronary arteries and, left circumflex artery and the poor acoustic window in older children often makes evaluation difficult in this age group. Catheter angiography (CA) is invasive, has high radiation exposure and fails to demonstrate abnormalities beyond lumen. The limitations of echocardiography and CA necessitate the use of an imaging modality that overcomes these problems. In recent years advances in computed tomography technology have enabled explicit evaluation of coronary arteries along their entire course including major branches with optimal and acceptable radiation exposure in children. Computed tomography coronary angiography (CTCA) can be performed during acute as well as convalescent phases of KD. It is likely that CTCA may soon be considered the reference standard imaging modality for evaluation of coronary arteries in children with KD.
Collapse
Affiliation(s)
- Manphool Singhal
- Departments of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Chandigarh, India
| | - Rakesh Kumar Pilania
- Pediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Chandigarh, India
| | - Pankaj Gupta
- Departments of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Chandigarh, India
| | - Nameirakpam Johnson
- Pediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Chandigarh, India
| | - Surjit Singh
- Pediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, Chandigarh, India
| |
Collapse
|
19
|
Meloni A, Cademartiri F, Pistoia L, Degiorgi G, Clemente A, De Gori C, Positano V, Celi S, Berti S, Emdin M, Panetta D, Menichetti L, Punzo B, Cavaliere C, Bossone E, Saba L, Cau R, La Grutta L, Maffei E. Dual-Source Photon-Counting Computed Tomography-Part III: Clinical Overview of Vascular Applications beyond Cardiac and Neuro Imaging. J Clin Med 2023; 12:jcm12113798. [PMID: 37297994 DOI: 10.3390/jcm12113798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Photon-counting computed tomography (PCCT) is an emerging technology that is expected to radically change clinical CT imaging. PCCT offers several advantages over conventional CT, which can be combined to improve and expand the diagnostic possibilities of CT angiography. After a brief description of the PCCT technology and its main advantages we will discuss the new opportunities brought about by PCCT in the field of vascular imaging, while addressing promising future clinical scenarios.
Collapse
Affiliation(s)
- Antonella Meloni
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | | | - Laura Pistoia
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Giulia Degiorgi
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Vincenzo Positano
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Department of Bioengineering, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Sergio Berti
- Cardiology Unit, Ospedale del Cuore, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Michele Emdin
- Department of Cardiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Daniele Panetta
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Bruna Punzo
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy
| | - Luca Saba
- Department of Radiology, University Hospital, 09042 Monserrato, CA, Italy
| | - Riccardo Cau
- Department of Radiology, University Hospital, 09042 Monserrato, CA, Italy
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties-ProMISE, Department of Radiology, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| |
Collapse
|
20
|
Zsarnoczay E, Fink N, Schoepf UJ, O'Doherty J, Allmendinger T, Hagenauer J, Wolf EV, Griffith JP, Maurovich-Horvat P, Varga-Szemes A, Emrich T. Ultra-high resolution photon-counting coronary CT angiography improves coronary stenosis quantification over a wide range of heart rates - A dynamic phantom study. Eur J Radiol 2023; 161:110746. [PMID: 36821957 DOI: 10.1016/j.ejrad.2023.110746] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
PURPOSE To investigate the effect of using photon-counting detector (PCD)-CT with ultra-high resolution (UHR) on stenosis quantification accuracy and blooming artifacts from low to high heart rates in a dynamic motion phantom. METHOD Two vessel phantoms (diameter: 4 mm) containing solid calcified lesions (25%, 50% stenoses), filled with different concentrations of iodine, inside an anthropomorphic thorax phantom attached to a coronary motion simulator were used. Scanning was performed on a PCD-CT system using an ECG-gated mode at UHR and standard resolution (SR) (0.2, 0.6 mm slice thickness, respectively). Images were reconstructed at 60, 80 and 100 beats per minute (bpm) (UHR: Bv56 kernel, quantum iterative reconstruction (QIR) level 3; SR: 55 keV, Bv40 kernel, QIR3). Percent diameter stenosis (PDS) and blooming artifacts were measured by two readers. RESULTS PDS measurements derived from UHR were more accurate than SR for both lesions at every heart rate (p ≤ 0.005 for all, e.g. 50% lesion SR vs. UHR: at 60 bpm 57.1% [55.2-59.2] vs. 50.0% [48.5-51.2], at 100 bpm 61.0% [58.6-64.3] vs. 52.4% [51.3-54.3]). Overall mean difference across heart rates and lesions compared to the nominal stenoses was 9.2% (Limit of Agreement (LoA), 2.4%/16.0%) for SR vs. 2.4% (LoA, -2.8%/7.5%) for UHR. Blooming artifacts decreased with UHR compared to SR for both lesions at every heart rate (p < 0.001 for all, e.g. 50% lesion SR vs. UHR: at 60 bpm 63.8% [60.6-69.5] vs. 52.5% [50.0-57.5], at 100 bpm 70.2% [64.8-78.1] vs. 56.1% [51.2-60.8]). CONCLUSIONS This motion phantom study demonstrates improved stenosis quantification accuracy and reduced blooming artifacts with UHR-PCD-CT compared to SR, independent of heart rate.
Collapse
Affiliation(s)
- Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University, Korányi Sándor utca 2, Budapest 1083, Hungary.
| | - Nicola Fink
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Department of Radiology, University Hospital, LMU Munich, Marchioninistraße 15, Munich 81377, Germany.
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States.
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Siemens Medical Solutions USA Inc, 40 Liberty Boulevard, Malvern, PA 19355, United States.
| | | | - Junia Hagenauer
- Siemens Healthcare GmbH, Siemensstraße 1, Forchheim 91301, Germany; Faculty of Medicine, Friedrich Alexander University of Erlangen-Nuremberg, Krankenhausstraße 12, Erlangen 91054, Germany.
| | - Elias V Wolf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, Mainz 55131, Germany.
| | - Joseph P Griffith
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States.
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University, Korányi Sándor utca 2, Budapest 1083, Hungary.
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States.
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, United States; Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, Mainz 55131, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, Mainz 55131, Germany.
| |
Collapse
|
21
|
Photon-Counting Computed Tomography (PCCT): Technical Background and Cardio-Vascular Applications. Diagnostics (Basel) 2023; 13:diagnostics13040645. [PMID: 36832139 PMCID: PMC9955798 DOI: 10.3390/diagnostics13040645] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Photon-counting computed tomography (PCCT) is a new advanced imaging technique that is going to transform the standard clinical use of computed tomography (CT) imaging. Photon-counting detectors resolve the number of photons and the incident X-ray energy spectrum into multiple energy bins. Compared with conventional CT technology, PCCT offers the advantages of improved spatial and contrast resolution, reduction of image noise and artifacts, reduced radiation exposure, and multi-energy/multi-parametric imaging based on the atomic properties of tissues, with the consequent possibility to use different contrast agents and improve quantitative imaging. This narrative review first briefly describes the technical principles and the benefits of photon-counting CT and then provides a synthetic outline of the current literature on its use for vascular imaging.
Collapse
|
22
|
Han X, He Y, Luo N, Zheng D, Hong M, Wang Z, Yang Z. The influence of artificial intelligence assistance on the diagnostic performance of CCTA for coronary stenosis for radiologists with different levels of experience. Acta Radiol 2023; 64:496-507. [PMID: 35389276 DOI: 10.1177/02841851221089263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The interpretation of coronary computed tomography angiography (CCTA) stenosis may be difficult among radiologists of different experience levels. Artificial intelligence (AI) may improve the diagnostic performance. PURPOSE To investigate whether the diagnostic performance and time efficiency of radiologists with different levels of experience in interpreting CCTA images could be improved by using CCTA with AI assistance (CCTA-AI). MATERIAL AND METHODS This analysis included 200 patients with complete CCTA and invasive coronary angiography (ICA) data, using ICA results as the reference. Eighteen radiologists were divided into three levels based on experience (Levels I, II, and III), and the three levels were divided into groups without (Groups 1, 2, and 3) and with (Groups 4, 5, and 6) AI assistance, totaling six groups (to avoid reader recall bias). The average sensitivity, specificity, NPV, PPV, and AUC were reported for the six groups and CCTA-AI at the patient, vessel, and segment levels. The interpretation time in the groups with and without CCTA-AI was recorded. RESULTS Compared to the corresponding group without CCTA-AI, the Level I group with CCTA-AI had improved sensitivity (75.0% vs. 83.0% on patient-based; P = 0.003). At Level III, the specificity was better with CCTA-AI. The median interpretation times for the groups with and without CCTA-AI were 413 and 615 s, respectively (P < 0.001). CONCLUSION CCTA-AI could assist with and improve the diagnostic performance of radiologists with different experience levels, with Level I radiologists exhibiting improved sensitivity and Level III radiologists exhibiting improved specificity. The use of CCTA-AI could shorten the training time for radiologists.
Collapse
Affiliation(s)
- Xianjun Han
- Department of Radiology, Beijing Friendship Hospital, 535066Capital Medical University, Beijing, PR China
| | - Yi He
- Department of Radiology, Beijing Friendship Hospital, 535066Capital Medical University, Beijing, PR China
| | - Nan Luo
- Department of Radiology, Beijing Friendship Hospital, 535066Capital Medical University, Beijing, PR China
| | - Dandan Zheng
- Shukun (Beijing) Technology Co., Ltd., Beijing, PR China
| | - Min Hong
- Department of Computer Software Engineering, 37969Soonchunhyang University, Asan, Republic of Korea
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, 535066Capital Medical University, Beijing, PR China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, 535066Capital Medical University, Beijing, PR China
| |
Collapse
|
23
|
Soschynski M, Hagen F, Baumann S, Hagar MT, Weiss J, Krauss T, Schlett CL, von zur Mühlen C, Bamberg F, Nikolaou K, Greulich S, Froelich MF, Riffel P, Overhoff D, Papavassiliu T, Schoenberg SO, Faby S, Ulzheimer S, Ayx I, Krumm P. High Temporal Resolution Dual-Source Photon-Counting CT for Coronary Artery Disease: Initial Multicenter Clinical Experience. J Clin Med 2022; 11:jcm11206003. [PMID: 36294324 PMCID: PMC9604695 DOI: 10.3390/jcm11206003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this paper is to evaluate the diagnostic image quality of spectral dual-source photon-counting detector coronary computed tomography angiography (PCD-CCTA) for coronary artery disease in a multicenter study. The image quality (IQ), assessability, contrast-to-noise ratio (CNR), Agatston score, and radiation exposure were measured. Stenoses were quantified and compared with invasive coronary angiography, if available. A total of 92 subjects (65% male, age 58 ± 14 years) were analyzed. The prevalence of significant coronary artery disease (CAD) (stenosis ≥ 50%) was 17% of all patients, the range of the Agatston score was 0−2965 (interquartile range (IQR) 0−135). The IQ was very good (one, IQR one−two), the CNR was very high (20 ± 10), and 5% of the segments were rated non-diagnostic. The IQ and assessability were higher in proximal coronary segments (p < 0.001). Agatston scores up to 600 did not significantly affect the assessability of the coronary segments (p = 0.3). Heart rate influenced assessability only at a high-pitch mode (p = 0.009). For the invasive coronary angiography (ICA) subgroup (n = nine), the diagnostic performance for CAD per segment was high (sensitivity 92%, specificity 96%), although the limited number of patients who underwent both diagnostic modalities limits the generalization of this finding at this stage. PCD-CCTA provides good image quality for low and moderate levels of coronary calcifications.
Collapse
Affiliation(s)
- Martin Soschynski
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Florian Hagen
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Stefan Baumann
- First Department of Medicine-Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Muhammad Taha Hagar
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Tobias Krauss
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Christopher L. Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Constantin von zur Mühlen
- Department of Cardiology and Angiology I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Simon Greulich
- Department of Cardiology and Angiology, University of Tuebingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
| | - Matthias F. Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Philipp Riffel
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Daniel Overhoff
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Theano Papavassiliu
- First Department of Medicine-Cardiology, University Medical Centre Mannheim, and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stefan O. Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Sebastian Faby
- Computed Tomography, Siemens Healthcare GmbH, 91301 Forchheim, Germany
| | - Stefan Ulzheimer
- Computed Tomography, Siemens Healthcare GmbH, 91301 Forchheim, Germany
| | - Isabelle Ayx
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-62-1383-2067
| | - Patrick Krumm
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| |
Collapse
|
24
|
Fink N, Joseph Schoepf U. Photon Counting Detectors – Not Only a Technical Breakthrough, But Also a New Era in Patient Care? Eur J Radiol 2022; 154:110435. [DOI: 10.1016/j.ejrad.2022.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
|
25
|
Allmendinger T, Nowak T, Flohr T, Klotz E, Hagenauer J, Alkadhi H, Schmidt B. Photon-Counting Detector CT-Based Vascular Calcium Removal Algorithm: Assessment Using a Cardiac Motion Phantom. Invest Radiol 2022; 57:399-405. [PMID: 35025834 PMCID: PMC9071027 DOI: 10.1097/rli.0000000000000853] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The diagnostic performance of coronary computed tomography angiography is known to be negatively affected by the presence of severely calcified plaques in the coronary arteries. In this article, the performance of a novel image reconstruction algorithm (PureLumen) based on spectral CT data of a first-generation dual-source photon-counting detector computed tomography (PCD-CT) system was assessed in a phantom study. PureLumen tries to remove only the calcified contributions from the image while leaving the rest unmodified. MATERIALS AND METHODS The study uses 2 iodine contrast filled vessel phantoms (diameter 4 mm) filled with different concentrations of iodine and equipped with calcified stenosis inserts. Each phantom features 2 separate calcified lesions of 25% and 50% percentage diameter stenosis (PDS) size. The vessel phantoms were mounted inside an anthropomorphic thorax phantom attached to an artificial motion device, simulating realistic cardiac motion at heart rates between 50 beats per minute and 100 beats per minute. Acquisitions were performed using a prospectively electrocardiogram triggered dual-source sequence mode on a PCD-CT system (NAEOTOM Alpha, Siemens Healthineers). Images were reconstructed at 80% of the RR interval with virtual monoenergetic images (Mono) and with additional calcium-removal (PureLumen), both at 65 keV. PureLumen is based on a spectral base material decomposition into iodine and calcium, which aims to reconstruct images without calcium contributions, while leaving all other material contribution unchanged. Stenosis grade was assessed individually for each vessel insert in all reconstructed image series by 2 readers. RESULTS The measured median PDS values for the 50% lesion were 56.0% (52.0%, 57.0%) for the Mono case and 50.0% (48.5%, 51.0%) for PureLumen. The 25% lesion median PDS values were 36.0% (29.5%, 39.5%) for Mono and 31.5% (30.5%, 34.0%) for PureLumen. Both lesion sizes demonstrate a significant difference between Mono and PureLumen in their result (P < 0.05) with PureLumen median values being closer to the actual true stenosis size for the 50% and 25% lesion. A visual assessment of the image quality depending on the heart rate yielded good image quality up to a heart rate of 80 beats per minute in the PureLumen case. CONCLUSIONS This phantom study shows that a novel calcium-removal image reconstruction algorithm (PureLumen) using a first-generation dual-source PCD-CT effectively decreases blooming artifacts caused by heavily calcified plaques and improves image interpretability. It also shows that PureLumen retains its performance in the presence of motion with simulated heart rates up to 80 beats per minute. Future in vivo clinical studies are needed to confirm the benefits of this type of reconstruction in terms of coronary computed tomography angiography quality and accuracy.
Collapse
Affiliation(s)
| | | | - Thomas Flohr
- From Siemens Healthcare GmbH, Forchheim
- University Tübingen, Tübingen
| | | | | | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bernhard Schmidt
- From Siemens Healthcare GmbH, Forchheim
- University Erlangen, Erlangen, Germany
| |
Collapse
|
26
|
Kawashima H, Kogame N, Ono M, Hara H, Takahashi K, Reiber JH, Thomsen B, de Winter RJ, Tanaka K, La Meir M, de Mey J, Schneider U, Doenst T, Teichgräber U, Wijns W, Mushtaq S, Pompilio G, Bartorelli AL, Andreini D, Serruys PW, Onuma Y. Diagnostic Concordance and Discordance Between Angiography-Based Quantitative Flow Ratio and Fractional Flow Reserve Derived from Computed Tomography in Complex Coronary Artery Disease. J Cardiovasc Comput Tomogr 2022; 16:336-342. [DOI: 10.1016/j.jcct.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
|
27
|
Tripathy TP, Patel R, Chandel K, Mukund A. Utility of Dual-Energy CT in Abdominal Interventions. JOURNAL OF GASTROINTESTINAL AND ABDOMINAL RADIOLOGY 2022. [DOI: 10.1055/s-0041-1740475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractDual-energy computed tomography (DECT) is an emerging CT technique based on data acquisition at two different settings. Various postprocessing techniques generate different sets of images, each with unique advantages. With DECT, it is possible to obtain virtual unenhanced images from monochromatic reconstructions and attenuation maps of different elements, thereby improving the detection and characterization of a variety of lesions. Presently, DECT is widely used to evaluate pulmonary embolism, characterize abdominal masses, determine the composition of urinary calculi, and detect tophi in gout. CT angiography is an essential prerequisite for endovascular intervention. DECT allows a better quality of angiographic images with a lesser dose of contrast. Various postprocessing techniques in DECT also help in a better evaluation of response to locoregional therapy. Virtual noncontrast images and iodine map differentiate residual or recurrent tumors from intrinsically hyperdense materials. Superior metallic artifact reduction allows better evaluation of vascular injuries adjacent to bony fractured fragments or previously deployed embolization coils. In addition to metal artifacts reduction, virtual monochromatic spectral imaging could further mitigate metal artifacts during CT-guided biopsy, providing an improved depiction of lesions and safe and versatile access for long puncture pathways. This article reviews and illustrates the different applications of DECT in various abdominal interventions. Familiarity with the capabilities of DECT may help interventional radiologists to improve their practice and ameliorate patient care.
Collapse
Affiliation(s)
- Tara Prasad Tripathy
- Department of Interventional Radiology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Ranjan Patel
- Department of Interventional Radiology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Karamvir Chandel
- Department of Interventional Radiology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Amar Mukund
- Department of Interventional Radiology, Institute of Liver & Biliary Sciences, New Delhi, India
| |
Collapse
|
28
|
Yi Y, Xu C, Xu M, Yan J, Li YY, Wang J, Yang SJ, Guo YB, Wang Y, Li YM, Jin ZY, Wang YN. Diagnostic Improvements of Deep Learning-Based Image Reconstruction for Assessing Calcification-Related Obstructive Coronary Artery Disease. Front Cardiovasc Med 2021; 8:758793. [PMID: 34805313 PMCID: PMC8595262 DOI: 10.3389/fcvm.2021.758793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Objectives: The objective of this study was to explore the diagnostic value of deep learning-based image reconstruction (DLR) and hybrid iterative reconstruction (HIR) for calcification-related obstructive coronary artery disease (CAD) evaluation by using coronary CT angiography (CCTA) images and subtraction CCTA images. Methods: Forty-two consecutive patients with known or suspected coronary artery disease who underwent coronary CTA on a 320-row CT scanner and subsequent invasive coronary angiography (ICA), which was used as the reference standard, were enrolled. The DLR and HIR images were reconstructed as CTADLR and CTAHIR, and, based on which, the corresponding subtraction CCTA images were established as CTAsDLR and CTAsHIR, respectively. Qualitative images quality comparison was performed by using a Likert 4 stage score, and quantitative images quality parameters, including image noise, signal-to-noise ratio, and contrast-to-noise ratio were calculated. Diagnostic performance on the lesion level was assessed and compared among the four CCTA approaches (CTADLR, CTAHIR, CTAsDLR, and CTAsHIR). Results: There were 166 lesions of 86 vessels in 42 patients (32 men and 10 women; 62.9 ± 9.3 years) finally enrolled for analysis. The qualitative and quantitative image qualities of CTAsDLR and CTADLR were superior to those of CTAsHIR and CTAHIR, respectively. The diagnostic accuracies of CTAsDLR, CTADLR, CTAsHIR, and CTAHIR to identify calcification-related obstructive diameter stenosis were 83.73%, 69.28%, 75.30%, and 65.66%, respectively. The false-positive rates of CTAsDLR, CTADLR, CTAsHIR, and CTAHIR for luminal diameter stenosis ≥50% were 15%, 31%, 24%, and 34%, respectively. The sensitivity and the specificity to identify ≥50% luminal diameter stenosis was 90.91% and 83.23% for CTAsDLR. Conclusion: Our study showed that deep learning–based image reconstruction could improve the image quality of CCTA images and diagnostic performance for calcification-related obstructive CAD, especially when combined with subtraction technique.
Collapse
Affiliation(s)
- Yan Yi
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Xu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Xu
- Canon Medical System, Beijing, China
| | - Jing Yan
- Canon Medical System, Beijing, China
| | - Yan-Yu Li
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Wang
- Canon Medical System, Beijing, China
| | - Si-Jie Yang
- Medical Science Research Center, Peking Union Medical College Hospital, Beijing, China
| | - Yu-Bo Guo
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Mei Li
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Yu Jin
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Ning Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Coronary Computer Tomography Angiography in 2021-Acquisition Protocols, Tips and Tricks and Heading beyond the Possible. Diagnostics (Basel) 2021; 11:diagnostics11061072. [PMID: 34200866 PMCID: PMC8230532 DOI: 10.3390/diagnostics11061072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
Recent technological advances, together with an increasing body of evidence from randomized trials, have placed coronary computer tomography angiography (CCTA) in the center of the diagnostic workup of patients with coronary artery disease. The method was proven reliable in the diagnosis of relevant coronary artery stenosis. Furthermore, it can identify different stages of the atherosclerotic process, including early atherosclerotic changes of the coronary vessel wall, a quality not met by other non-invasive tests. In addition, newer computational software can measure the hemodynamic relevance (fractional flow reserve) of a certain stenosis. In addition, if required, information related to cardiac and valvular function can be provided with specific protocols. Importantly, recent trials have highlighted the prognostic relevance of CCTA in patients with coronary artery disease, which helped establishing CCTA as the first-line method for the diagnostic work-up of such patients in current guidelines. All this can be gathered in one relatively fast examination with minimal discomfort for the patient and, with newer machines, with very low radiation exposure. Herein, we provide an overview of the current technical aspects, indications, pitfalls, and new horizons with CCTA, providing examples from our own clinical practice.
Collapse
|
30
|
van den Boogert TPW, Claessen BEPM, van Randen A, van Schuppen J, Boekholdt SM, Beijk MAM, Vrijmoeth MK, Baan J, Vis MM, Winkelman JA, Driessen AHG, Stoker J, Planken RN, Henriques JP. Implementation of CT Coronary Angiography as an Alternative to Invasive Coronary Angiography in the Diagnostic Work-Up of Non-Coronary Cardiac Surgery, Cardiomyopathy, Heart Failure and Ventricular Arrhythmias. J Clin Med 2021; 10:jcm10112374. [PMID: 34071249 PMCID: PMC8199189 DOI: 10.3390/jcm10112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
To assess the need for additional invasive coronary angiography (CAG) after initial computed tomography coronary angiography (CTCA) in patients awaiting non-coronary cardiac surgery and in patients with cardiomyopathy, heart failure or ventricular arrhythmias, and to determine differences between patients that were referred to initial CTCA or direct CAG, consecutive patients were included between August 2017 and January 2020 and categorized as those referred to initial CTCA (conform protocol), and to direct CAG (non-conform protocol). Out of a total of 415 patients, 78.8% (327 patients, mean age: 57.9 years, 67.3% male) were referred to initial CTCA, of whom 260 patients (79.5%) had no obstructive lesions (<50% DS). A total of 55 patients (16.8%) underwent additional CAG after initial CTCA, which showed coronary lesions of >50% DS in 21 patients (6.3% of 327). Eighty-eight patients (mean age: 66.0 years, 59.1% male) were directly referred to CAG (non-conform protocol). These patients were older and had more cardiovascular risk factors compared to patients that underwent initial CTCA (conform protocol), and coronary lesions of >50% DS were detected in 16 patients (17.2%). Revascularization procedures were infrequently performed in both groups: initial CTCA (3.0%), direct CAG (3.4%). The use of CTCA as a gatekeeper CAG in the diagnostic work-up of non-coronary cardiac surgery, cardiomyopathy, heart failure and ventricular arrhythmias is feasible, and only 17% of these patients required additional CAG after initial CTCA. Therefore, CTCA should be considered as the initial imaging modality to rule out CAD in these patients.
Collapse
Affiliation(s)
- Thomas P. W. van den Boogert
- Part of the Amsterdam Cardiovascular Sciences, Heart Centre, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (T.P.W.v.d.B.); (S.M.B.); (M.A.M.B.); (M.K.V.); (J.B.); (M.M.V.); (J.A.W.); (A.H.G.D.)
| | | | - Adrienne van Randen
- Amsterdam Cardiovascular Sciences, Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (A.v.R.); (J.v.S.); (R.N.P.)
| | - Joost van Schuppen
- Amsterdam Cardiovascular Sciences, Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (A.v.R.); (J.v.S.); (R.N.P.)
| | - S. Matthijs Boekholdt
- Part of the Amsterdam Cardiovascular Sciences, Heart Centre, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (T.P.W.v.d.B.); (S.M.B.); (M.A.M.B.); (M.K.V.); (J.B.); (M.M.V.); (J.A.W.); (A.H.G.D.)
| | - Marcel A. M. Beijk
- Part of the Amsterdam Cardiovascular Sciences, Heart Centre, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (T.P.W.v.d.B.); (S.M.B.); (M.A.M.B.); (M.K.V.); (J.B.); (M.M.V.); (J.A.W.); (A.H.G.D.)
| | - M. Karlijn Vrijmoeth
- Part of the Amsterdam Cardiovascular Sciences, Heart Centre, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (T.P.W.v.d.B.); (S.M.B.); (M.A.M.B.); (M.K.V.); (J.B.); (M.M.V.); (J.A.W.); (A.H.G.D.)
| | - Jan Baan
- Part of the Amsterdam Cardiovascular Sciences, Heart Centre, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (T.P.W.v.d.B.); (S.M.B.); (M.A.M.B.); (M.K.V.); (J.B.); (M.M.V.); (J.A.W.); (A.H.G.D.)
| | - M. Marije Vis
- Part of the Amsterdam Cardiovascular Sciences, Heart Centre, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (T.P.W.v.d.B.); (S.M.B.); (M.A.M.B.); (M.K.V.); (J.B.); (M.M.V.); (J.A.W.); (A.H.G.D.)
| | - Jacobus A. Winkelman
- Part of the Amsterdam Cardiovascular Sciences, Heart Centre, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (T.P.W.v.d.B.); (S.M.B.); (M.A.M.B.); (M.K.V.); (J.B.); (M.M.V.); (J.A.W.); (A.H.G.D.)
| | - Antoine H. G. Driessen
- Part of the Amsterdam Cardiovascular Sciences, Heart Centre, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (T.P.W.v.d.B.); (S.M.B.); (M.A.M.B.); (M.K.V.); (J.B.); (M.M.V.); (J.A.W.); (A.H.G.D.)
| | - Jaap Stoker
- Amsterdam Gastroenterology Endocrinology Metabolism, Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands;
| | - R. Nils Planken
- Amsterdam Cardiovascular Sciences, Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (A.v.R.); (J.v.S.); (R.N.P.)
| | - Jose P. Henriques
- Part of the Amsterdam Cardiovascular Sciences, Heart Centre, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands; (T.P.W.v.d.B.); (S.M.B.); (M.A.M.B.); (M.K.V.); (J.B.); (M.M.V.); (J.A.W.); (A.H.G.D.)
- Correspondence: ; Tel.: +31-205665987
| |
Collapse
|
31
|
Chisena RS, Sengenberger J, Shih AJ, Gurm H. Novel preclinical method for evaluating the efficacy of a percutaneous treatment in human ex vivo calcified plaque. Med Biol Eng Comput 2021; 59:799-811. [PMID: 33710527 DOI: 10.1007/s11517-021-02334-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Abstract
The lack of suitable atherosclerotic calcification models and testing strategies inhibits preclinical efficacy testing of existing and novel percutaneous devices. The goal of this study is to develop a preclinical testing method for quantitatively and qualitatively evaluating the efficacy of noncompliant balloon angioplasty (NC BA) treatment in human ex vivo calcified plaque (CP). NC BA using a 3- and 4-mm diameter balloon was performed on an ex vivo tibial calcified vessel obtained from an amputation. Three-dimensional microcomputed tomography (μ-CT) imaging was performed pre- and post-BA to compare crack density in the CP. Comparing the pre- and posttreatment three-dimensional μ-CT images showed a glass-like cracking that occurred in the CP due to the BA procedure. Expansion of the 3-mm balloon showed little tissue deformation and no CP cracking. Although expansion of the 4-mm balloon occurred nonuniformly along balloon length and across the perpendicular projections, the balloon generated cracking throughout the CP, which allowed the surrounding elastic tissue to be dilated. This combined X-ray microscopy and μ-CT technique is a useful preclinical tool for quantifying the efficacy of percutaneous treatments for CP. Because of its nondestructive nature, the CP structure can be visualized pre- and posttreatment to determine the treatment effect.
Collapse
Affiliation(s)
- Robert S Chisena
- Department of Mechanical Engineering, University of Michigan at Ann Arbor, 2350 Hayward St, Ann Arbor, MI, 48109, USA.
| | - Jordan Sengenberger
- Department of Biomedical Engineering, University of Michigan at Ann Arbor, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Albert J Shih
- Department of Mechanical Engineering, University of Michigan at Ann Arbor, 2350 Hayward St, Ann Arbor, MI, 48109, USA
| | - Hitinder Gurm
- Department of Internal Medicine, University of Michigan Health System at Ann Arbor, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
| |
Collapse
|
32
|
Canan A, Ranganath P, Goerne H, Abbara S, Landeras L, Rajiah P. CAD-RADS: Pushing the Limits. Radiographics 2020; 40:629-652. [PMID: 32281902 DOI: 10.1148/rg.2020190164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coronary CT angiography is now established as the first-line diagnostic imaging test to exclude coronary artery disease (CAD) in the population at low to intermediate risk. Wide variability exists in both the reporting of coronary CT angiography and the interpretation of these reports by referring physicians. The CAD Reporting and Data System (CAD-RADS) is sponsored by multiple societies and is a collaborative effort to provide standard classification of CAD, which is then integrated into patient clinical care. The main goals of the CAD-RADS are to decrease variability among readers; enhance communication between interpreting and referring clinicians, allowing collaborative determination of the best course of patient care; and generate consistent data for auditing, data mining, quality improvement, research, and education. There are several scenarios in which the CAD-RADS guidelines are ambiguous or do not provide definite recommendations for further management of CAD. The authors discuss the CAD-RADS categories and modifiers, highlight a variety of complex or ambiguous scenarios, and provide recommendations for managing these scenarios. Online supplemental material is available for this article. ©RSNA, 2020 See discussion on this article by Aviram and Wolak.
Collapse
Affiliation(s)
- Arzu Canan
- From the Department of Radiology, Division of Cardiothoracic Imaging, UT Southwestern Medical Center, Dallas, Tex (A.C., P. Ranganath, H.G., S.A., P. Rajiah); Imaging and Diagnosis Center, Guadalajara, Mexico (H.G.); and Department of Radiology, University of Chicago Medical Center, Chicago, Ill (L.L.)
| | - Praveen Ranganath
- From the Department of Radiology, Division of Cardiothoracic Imaging, UT Southwestern Medical Center, Dallas, Tex (A.C., P. Ranganath, H.G., S.A., P. Rajiah); Imaging and Diagnosis Center, Guadalajara, Mexico (H.G.); and Department of Radiology, University of Chicago Medical Center, Chicago, Ill (L.L.)
| | - Harold Goerne
- From the Department of Radiology, Division of Cardiothoracic Imaging, UT Southwestern Medical Center, Dallas, Tex (A.C., P. Ranganath, H.G., S.A., P. Rajiah); Imaging and Diagnosis Center, Guadalajara, Mexico (H.G.); and Department of Radiology, University of Chicago Medical Center, Chicago, Ill (L.L.)
| | - Suhny Abbara
- From the Department of Radiology, Division of Cardiothoracic Imaging, UT Southwestern Medical Center, Dallas, Tex (A.C., P. Ranganath, H.G., S.A., P. Rajiah); Imaging and Diagnosis Center, Guadalajara, Mexico (H.G.); and Department of Radiology, University of Chicago Medical Center, Chicago, Ill (L.L.)
| | - Luis Landeras
- From the Department of Radiology, Division of Cardiothoracic Imaging, UT Southwestern Medical Center, Dallas, Tex (A.C., P. Ranganath, H.G., S.A., P. Rajiah); Imaging and Diagnosis Center, Guadalajara, Mexico (H.G.); and Department of Radiology, University of Chicago Medical Center, Chicago, Ill (L.L.)
| | - Prabhakar Rajiah
- From the Department of Radiology, Division of Cardiothoracic Imaging, UT Southwestern Medical Center, Dallas, Tex (A.C., P. Ranganath, H.G., S.A., P. Rajiah); Imaging and Diagnosis Center, Guadalajara, Mexico (H.G.); and Department of Radiology, University of Chicago Medical Center, Chicago, Ill (L.L.)
| |
Collapse
|
33
|
Diagnostic and Prognostic Value of Coronary Computed Tomography Angiography in Patients with Severe Calcification. J Cardiovasc Transl Res 2020; 14:131-139. [PMID: 32239435 DOI: 10.1007/s12265-020-09977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
Our aim was to analyze its diagnostic and prognostic value in patients with high coronary calcium score (CCS). A total of 113 patients with CCS > 400 were included. Significant coronary artery disease (CAD) was defined as stenosis ≥ 50%. Invasive coronary angiography and major cardiovascular events were recorded. The CCS and heart rate during the acquisition were significantly lower in the diagnostic coronary computed tomography angiography (CCTA) group. The cut-off value of CCS to establish the diagnostic utility of CCTA was 878. The rate of cardiovascular events was 9.3%. The positive predictive value of CCTA to detect significant CAD was 73.5% and the negative predictive value for predicting cardiovascular events was 96%. In patients with high CCS, CCTA is useful to evaluate CAD, especially when the CCS is lower or equal to 878; moreover, the prognostic value of CCTA is better in patients where significant CAD has been ruled out.
Collapse
|
34
|
Guo W, Tripathi P, Yang S, Qian J, Rai B, Zeng M. Modified Subtraction Coronary CT Angiography with a Two-Breathhold Technique: Image Quality and Diagnostic Accuracy in Patients with Coronary Calcifications. Korean J Radiol 2019; 20:1146-1155. [PMID: 31270978 PMCID: PMC6609439 DOI: 10.3348/kjr.2018.0845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/20/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate a modified subtraction coronary computed tomography angiography (CCTA) technique with a two-breathhold approach in terms of image quality and stenosis grading of calcified coronary segments and in the detection of significant coronary stenosis in segments with severe calcification. MATERIALS AND METHODS The institutional board approved this study, and all subjects provided written consent. A total of 128 patients were recruited into this trial, of which 32 underwent subtraction CCTA scans and invasive coronary angiography (ICA). The average Agatston score was 356 ± 145. In severely calcified coronary segments, the presence of significant (> 50%) stenosis was assessed on both conventional CCTA and subtraction CCTA images, and the results were finally compared with ICA findings as the gold standard. RESULTS For severely calcified segments, the image quality in conventional CCTA significantly improved from 2.51 ± 0.98 to 3.12 ± 0.94 in subtraction CCTA (p < 0.001). In target segments, specificity (70% vs. 87%; p = 0.005) and positive predictive value (61% vs. 79%, p < 0.01) were improved using subtraction CCTA in comparison with conventional CCTA, with no loss in the negative predictive value. The segment-based diagnostic accuracy for detecting significant stenosis was significantly better in subtraction CCTA than in conventional CCTA (area under the receiver operating characteristic curve, 0.94 vs. 0.85; p = 0.03). CONCLUSION This modified subtraction CCTA method showed lower misregistration and better image quality in patients with limited breathhold capability. In comparison with conventional CCTA, modified subtraction CCTA would allow stenosis regrading and improve the diagnostic accuracy in coronary segments with severe calcification.
Collapse
Affiliation(s)
- Weifeng Guo
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China
| | - Pratik Tripathi
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bimal Rai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.
| |
Collapse
|
35
|
Li RX, Apostolakis IZ, Kemper P, McGarry MDJ, Ip A, Connolly ES, McKinsey JF, Konofagou EE. Pulse Wave Imaging in Carotid Artery Stenosis Human Patients in Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:353-366. [PMID: 30442386 PMCID: PMC6375685 DOI: 10.1016/j.ultrasmedbio.2018.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 05/03/2023]
Abstract
Carotid stenosis involves narrowing of the lumen in the carotid artery potentially leading to a stroke, which is the third leading cause of death in the United States. Several recent investigations have found that plaque structure and composition may represent a more direct biomarker of plaque rupture risk compared with the degree of stenosis. In this study, pulse wave imaging was applied in 111 (n = 11, N = 13 plaques) patients diagnosed with moderate (>50%) to severe (>80%) carotid artery stenosis to investigate the feasibility of characterizing plaque properties based on the pulse wave-induced arterial wall dynamics captured by pulse wave imaging. Five (n = 5 patients, N = 20 measurements) healthy volunteers were also imaged as a control group. Both conventional and high-frame-rate plane wave radiofrequency imaging sequences were used to generate piecewise maps of the pulse wave velocity (PWV) at a single depth along stenotic carotid segments, as well as intra-plaque PWV mapping at multiple depths. Intra-plaque cumulative displacement and strain maps were also calculated for each plaque region. The Bramwell-Hill equation was used to estimate the compliance of the plaque regions based on the PWV and diameter. Qualitatively, wave convergence, elevated PWV and decreased cumulative displacement around and/or within regions of atherosclerotic plaque were observed and may serve as biomarkers for plaque characterization. Intra-plaque mapping revealed the potential to capture wave reflections between calcified inclusions and differentiate stable (i.e., calcified) from vulnerable (i.e., lipid) plaque components based on the intra-plaque PWV and cumulative strain. Quantitatively, one-way analysis of variance indicated that the pulse wave-induced cumulative strain was significantly lower (p < 0.01) in the moderately and severely calcified plaques compared with the normal controls. As expected, compliance was also significantly lower in the severely calcified plaques regions compared with the normal controls (p < 0.01). The results from this pilot study indicated the potential of pulse wave imaging coupled with strain imaging to differentiate plaques of varying stiffness, location and composition. Such findings may serve as valuable information to compensate for the limitations of currently used methods for the assessment of stroke risk.
Collapse
Affiliation(s)
- Ronny X Li
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Iason Z Apostolakis
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Paul Kemper
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Matthew D J McGarry
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Ada Ip
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Edward S Connolly
- Department of Neurologic Surgery, New York-Presbyterian Hospital/Columbia University Medical Center, New York, New York, USA
| | - James F McKinsey
- Division of Vascular Surgery and Endovascular Interventions, New York-Presbyterian Hospital/Columbia University Medical Center, New York, New York, USA
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
36
|
Wallace A, Pershad Y, Saini A, Alzubaidi S, Naidu S, Knuttinen G, Oklu R. Computed tomography angiography evaluation of acute limb ischemia. VASA 2018; 48:57-64. [PMID: 30376423 DOI: 10.1024/0301-1526/a000759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acute limb ischemia (ALI), a subclass of critical limb ischemia, is a medical emergency. The cause of ALI is usually thrombotic or embolic in nature, and the specific etiology often dictates the appropriate therapy. While the diagnosis is a clinical with common presenting symptoms, advances in ultrasound, computed tomography, and magnetic resonance technology have impacted the diagnosis and subsequent therapy. In ALI, the time to revascularization is critical and computed tomography angiography (CTA) provides a highly sensitive and specific technique for rapidly identifying occlusions and precisely defining vascular anatomy prior to interventions. In patients with significant renal disease, magnetic resonance angiography with or without contrast provides effective alternatives at the expense of imaging time. Treatment can include a variety of endovascular or surgical interventions, including thromboembolectomy, angioplasty, or bypass. Proper evaluation of the etiology of the ischemia, affected vasculature, and medical history is critical to select appropriate treatment and improve patient outcomes. Here, we examine the presentation, evaluation, and treatment of ALI and the role of CTA in diagnosis and therapy.
Collapse
|
37
|
Pierro A, Cilla S, Totaro A, Ienco V, Sacra C, De Filippo CM, Sallustio G. ECG-gated CT angiography of the thoracic aorta: the importance of evaluating the coronary arteries. Clin Radiol 2018; 73:983.e1-983.e6. [PMID: 30041811 DOI: 10.1016/j.crad.2018.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/20/2018] [Indexed: 12/26/2022]
Abstract
AIM To evaluate the feasibility of coronary artery disease (CAD) evaluation using electrocardiogram-gated computed tomography CT of the thoracic aorta. MATERIALS AND METHODS A total of 477 patients, who underwent CT angiography of the thoracic aorta, were included retrospectively. Dose-length products (DLP) were recorded. Two blinded readers graded image quality of the coronary arteries on a three-point scale. Coronary artery stenosis has only been reported if considered significant, i.e., ≥50%. The type of plaque responsible for the stenosis was considered. The normal distribution of the data was assessed using Shapiro-Wilk and Anderson-Darling tests. Results were expressed as means and standard deviations and percentages. Inter-reader agreements were analysed by calculating the intraclass correlation coefficient, and by using Cohen kappa statistics. RESULTS The mean DLP was 566±90.4 mGy∙cm, corresponding to an effective dose of 9.6±1.5 mSv. Five point three percent of asymptomatic patients were positive for CAD with stenosis ≥50%. All patients with coronary stenosis presented with a soft plaque. Two anomalous coronary origins were found. The inter-reader agreement was excellent in defining both the quality of the examination and the degree of coronary stenosis (k=0.85). CONCLUSION The opportunity to prove the presence of CAD in asymptomatic patients during a ECG-gated CT of the thoracic aorta can have an extremely important clinical impact, promoting the best therapeutic pathway for the patient. Therefore, coronary arteries should always be analysed carefully and reported in ECG-gated CT angiography of the thoracic aorta.
Collapse
Affiliation(s)
- A Pierro
- Radiology Department, Fondazione di Ricerca e Cura "Giovanni Paolo II", Università Cattolica del Sacro Cuore, Campobasso, Italy.
| | - S Cilla
- Medical Physics Unit, Fondazione di Ricerca e Cura "Giovanni Paolo II", Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - A Totaro
- Division of Cardiology, Fondazione di Ricerca e Cura "Giovanni Paolo II", Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - V Ienco
- Division of Cardiology, Fondazione di Ricerca e Cura "Giovanni Paolo II", Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - C Sacra
- Division of Cardiology, Fondazione di Ricerca e Cura "Giovanni Paolo II", Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - C M De Filippo
- Departement of Cardiovascular Surgery, Fondazione di Ricerca e Cura "Giovanni Paolo II", Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - G Sallustio
- Radiology Department, Fondazione di Ricerca e Cura "Giovanni Paolo II", Università Cattolica del Sacro Cuore, Campobasso, Italy
| |
Collapse
|
38
|
Lambert JW, Sun Y, Ordovas KG, Gould RG, Wang S, Yeh BM. Improved Calcium Scoring at Dual-Energy Computed Tomography Angiography Using a High-Z Contrast Element and Novel Material Separation Technique. J Comput Assist Tomogr 2018; 42:459-466. [PMID: 28937491 PMCID: PMC5860919 DOI: 10.1097/rct.0000000000000676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The aim of this study was to compare the accuracy of existing dual-energy computed tomography (CT) angiography coronary artery calcium scoring methods to those obtained using an experimental tungsten-based contrast material and a recently described contrast material extraction process (CMEP). METHODS Phantom coronary arteries of varied diameters, with different densities and arcs of simulated calcified plaque, were sequentially filled with water, iodine, and tungsten contrast materials and scanned within a thorax phantom at rapid-kVp-switching dual-energy CT. Calcium and contrast density images were obtained by material decomposition (MD) and CMEP. Relative calcium scoring errors among the 4 reconstructed datasets were compared with a ground truth, 120-kVp dataset. RESULTS Compared with the 120-kVp dataset, tungsten CMEP showed a significantly lower mean absolute error in calcium score (6.2%, P < 0.001) than iodine CMEP, tungsten MD, and iodine MD (9.9%, 15.7%, and 40.8%, respectively). CONCLUSIONS Novel contrast elements and material separation techniques offer improved coronary artery calcium scoring accuracy and show potential to improve the use of dual-energy CT angiography in a clinical setting.
Collapse
Affiliation(s)
- Jack W Lambert
- From the University of California, San Francisco, San Francisco, CA
| | | | | | | | | | | |
Collapse
|
39
|
Blooming Artifact Reduction in Coronary Artery Calcification by A New De-blooming Algorithm: Initial Study. Sci Rep 2018; 8:6945. [PMID: 29720611 PMCID: PMC5931966 DOI: 10.1038/s41598-018-25352-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/16/2018] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the use of de-blooming algorithm in coronary CT angiography (CCTA) for optimal evaluation of calcified plaques. Calcified plaques were simulated on a coronary vessel phantom and a cardiac motion phantom. Two convolution kernels, standard (STND) and high-definition standard (HD STND), were used for imaging reconstruction. A dedicated de-blooming algorithm was used for imaging processing. We found a smaller bias towards measurement of stenosis using the de-blooming algorithm (STND: bias 24.6% vs 15.0%, range 10.2% to 39.0% vs 4.0% to 25.9%; HD STND: bias 17.9% vs 11.0%, range 8.9% to 30.6% vs 0.5% to 21.5%). With use of de-blooming algorithm, specificity for diagnosing significant stenosis increased from 45.8% to 75.0% (STND), from 62.5% to 83.3% (HD STND); while positive predictive value (PPV) increased from 69.8% to 83.3% (STND), from 76.9% to 88.2% (HD STND). In the patient group, reduction in calcification volume was 48.1 ± 10.3%, reduction in coronary diameter stenosis over calcified plaque was 52.4 ± 24.2%. Our results suggest that the novel de-blooming algorithm could effectively decrease the blooming artifacts caused by coronary calcified plaques, and consequently improve diagnostic accuracy of CCTA in assessing coronary stenosis.
Collapse
|
40
|
Patterns of Coronary Calcification and Their Impact on the Diagnostic Accuracy of Computed Tomography Coronary Angiography. J Comput Assist Tomogr 2018; 42:263-268. [PMID: 29189397 DOI: 10.1097/rct.0000000000000681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Despite coronary calcifications being a major factor affecting the diagnostic accuracy of coronary computed tomography angiography (CTA), there is a lack of established criteria for categorizing calcifications. We aimed to evaluate patterns of coronary calcification based on quantitative radiodensity and size parameters to provide coronary calcium categories and assess their impact on the accuracy of coronary CTA. METHODS AND RESULTS We analyzed length, maximum thickness, volume, mean density, and maximum density of coronary calcium and divided each of these parameters into tertiles. Subsequently, we summarized the tertiles for each individual calcification and divided them into 3 equal groups of: mild, moderate, and severe calcification. The accuracy of coronary CTA was defined as the difference between the measurements obtained on coronary CTA versus the reference of intravascular ultrasound (IVUS). We evaluated 252 coronary calcifications within 97 arteries of 60 patients. There was an expected increase in size and density values for mild versus moderate versus severe calcifications, but there was no difference in IVUS measured minimum lumen area among the 3 groups. Of note, coronary CTA significantly underestimated IVUS minimum lumen area measurement by 1.2 ± 1.6 mm (14.6 ± 23.1%, P < 0.001) for severe calcifications and by 0.5 ± 2.0 mm (3.7 ± 32.1%, P = 0.021) for moderate calcifications. Within mild calcifications, the difference was not significant. CONCLUSION Based on their dimensional and radiodensity characteristics, our analysis revealed patterns of individual coronary artery calcifications that affected the accuracy of coronary CTA measurements; coronary CTA inaccuracy was associated with the presence of moderate or severe calcifications, but not mild calcifications.
Collapse
|
41
|
Singhal M, Gupta P, Singh S, Khandelwal N. Computed tomography coronary angiography is the way forward for evaluation of children with Kawasaki disease. Glob Cardiol Sci Pract 2017; 2017:e201728. [PMID: 29564349 PMCID: PMC5856970 DOI: 10.21542/gcsp.2017.28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Kawasaki disease (KD) is an acute idiopathic vasculitis affecting infants and children. Coronary artery abnormalities and myocarditis are the major cardiovascular complications of KD. Coronary artery abnormalities develop in 15–25% of untreated KD. Two-dimensional transthoracic echocardiography has hitherto been considered the modality of choice for evaluation of children with KD. There are, however, several limitations inherent to echocardiography - including limited evaluation of distal vessels, left circumflex artery and poor acoustic window in growing children. Catheter angiography is the gold standard for evaluation of coronary artery abnormalities in older children and adults; however it also has inherent limitations - including complications related to its invasive nature, higher radiation exposure, and inability to evaluate intramural abnormalities. Thus serial invasive coronary angiography studies are not feasible in children. There have been major advances in computed tomography (CT) coronary imaging so that it is now possible to delineate the coronary artery anatomy with higher temporal resolution and motion-free images at all heart rates with acceptable radiation exposure. There is, however, a paucity of literature with regard to the use of this technique in children with KD. In this review, we discuss the application of computed tomography coronary angiography (CTCA) in children with KD with special reference to strategies aimed at reducing the effective radiation dose.
Collapse
Affiliation(s)
- Manphool Singhal
- Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, INDIA-160012
| | - Pankaj Gupta
- Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, INDIA-160012
| | - Surjit Singh
- Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, INDIA-160012
| | - Niranjan Khandelwal
- Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, INDIA-160012
| |
Collapse
|
42
|
Takamura K, Fujimoto S, Kondo T, Hiki M, Kawaguchi Y, Kato E, Daida H. Incremental Prognostic Value of Coronary Computed Tomography Angiography: High-Risk Plaque Characteristics in Asymptomatic Patients. J Atheroscler Thromb 2017; 24:1174-1185. [PMID: 28674321 PMCID: PMC5684482 DOI: 10.5551/jat.39115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM Coronary computed tomography angiography (CCTA) findings of positive remodeling (index >1.1) and low-attenuation plaque (<30 Hounsfield units) are recognized as CT-verified high-risk plaque (CT-HRP). Therefore, we investigated the incremental prognostic value of evaluation of plaque characteristics using CCTA in asymptomatic patients. METHODS Overall, 495 consecutive patients without any known coronary artery disease who underwent CCTA were included in this study. Patients who underwent revascularization within 30 days of CCTA or had scans with poor image quality were excluded. Clinical follow-up data (716.5±262.6 days) were available for 339 patients, who were analyzed for the current study. Framingham risk score (FRS), coronary artery calcium score (CACS), and CT-HRP were investigated as predictors of cardiac events by multivariable analysis using Cox proportional hazard model. Improvement of predictive accuracy by including CT findings was evaluated from reclassification [net reclassification indices (NRI) and integrated discrimination improvement (IDI)] standpoints. RESULTS During the follow-up period, 9 cardiac events (cardiac death: 0, nonfatal myocardial infarction: 2, hospitalization for unstable or progressive angina: 7) occurred. Multivariate Cox proportional hazard analysis demonstrated that CACS (HR, 13.23; 95% CI, 1.62-107.78, p<0.0164) and CT-HRP (HR, 11.27; 95% CI, 1.24-102.12, p<0.0321) were the independent predictors of cardiac events. NRI was 0.9556 (p<0.0007) and IDI was 0.2582 (p<0.0203), and the diagnostic performance improved by CT-HRP added to the combination of CACS and FRS. CONCLUSION Although the cardiac event rate was low, the evaluation of CCTA plaque characteristics may provide incremental prognostic value to CACS in asymptomatic patients.
Collapse
Affiliation(s)
- Kazuhisa Takamura
- Department of Cardiovascular Medicine, Juntendo University, Graduate School of Medicine
| | - Shinichiro Fujimoto
- Department of Cardiovascular Medicine, Juntendo University, Graduate School of Medicine
| | - Takeshi Kondo
- Department of Cardiology, Jukokai Central Hospital.,Department of Cardiology, Takase Clinic
| | - Makoto Hiki
- Department of Cardiovascular Medicine, Juntendo University, Graduate School of Medicine
| | - Yuko Kawaguchi
- Department of Cardiovascular Medicine, Juntendo University, Graduate School of Medicine
| | - Etsuro Kato
- Department of Cardiovascular Medicine, Juntendo University, Graduate School of Medicine
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University, Graduate School of Medicine
| |
Collapse
|
43
|
Engel LC, Thai WE, Medina-Zuluaga H, Karolyi M, Sidhu MS, Maurovich-Horvat P, Margey R, Pomerantsev E, Abbara S, Ghoshhajra BB, Hoffmann U, Liew GY. Non-diagnostic coronary artery calcification and stenosis: a correlation of coronary computed tomography angiography and invasive coronary angiography. Acta Radiol 2017; 58:528-536. [PMID: 27614067 DOI: 10.1177/0284185116663041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Heavy coronary artery calcification (CAC) impairs diagnostic accuracy of coronary computed tomography angiography (cCTA) and is considered to be a major limitation. Purpose To investigate the effect of non-evaluable CAC seen on cCTA on clinical decision-making by determining the degree of subsequent invasive testing and to assess the relationship between non-evaluable segments containing CAC and significant stenosis as seen in invasive coronary angiography (ICA). Material and Methods The study comprised of 356 patients who underwent cCTA and subsequent ICA within 2 months between 2005 and 2009. Clinical reports were reviewed to identify the indications for referral to ICA. In a subset of 68 patients where non-diagnostic CAC on cCTA and significant stenosis on ICA were present in the same segment, we correlated and analyzed the underlying stenosis severity of the lesion on ICA to the cCTA. Lesions with CAC were analyzed in a standardized fashion by application of reading rules. Results Non-diagnostic CAC on cCTA prompted ICA in 5.6% of patients. CAC occurred at the site of maximum stenosis in segments with stenosis <50% (95.9% [47/49]), 50-69% (82.4% [28/34]), 70-99% (64.5% [31/48]), and 100% (33.3% [1/3]). At the point of maximum calcium deposit, non-obstructive disease was present in 61.2%. Application of reading rules resulted in a 44% reduction in non-diagnostic cCTA reads. Conclusion Severe CAC may prompt further investigation with ICA. There is less CAC with increasing lesion severity at the point of maximum stenosis. Additional application of reading rules improved non-diagnostic cCTA reads.
Collapse
Affiliation(s)
- Leif-Christopher Engel
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wai-ee Thai
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hector Medina-Zuluaga
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mihaly Karolyi
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Manavjot S Sidhu
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Pal Maurovich-Horvat
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ronan Margey
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eugene Pomerantsev
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Suhny Abbara
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian B Ghoshhajra
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Udo Hoffmann
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gary Y Liew
- Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Ma Y, Liu H, Hou Y, Qiao A, Hou Y, Yang Q, Guo Q. Instantaneous wave-free ratio derived from coronary computed tomography angiography in evaluation of ischemia-causing coronary stenosis: Feasibility and initial clinical research. Medicine (Baltimore) 2017; 96:e5979. [PMID: 28121952 PMCID: PMC5287976 DOI: 10.1097/md.0000000000005979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/31/2016] [Accepted: 01/06/2017] [Indexed: 01/10/2023] Open
Abstract
The instantaneous wave-free ratio (iFR) closely related to fractional flow reserve (FFR) is a adenosine-independent physiologic index of coronary stenosis severity. We sought to evaluate whether iFR derived from coronary computed tomographic angiography (iFRCT) can be used as a novel noninvasive method for diagnosis of ischemia-causing coronary stenosis.We retrospectively enrolled 33 patients (47 lesions) with coronary artery disease (CAD) and examined with coronary computed tomographic angiography (CTA), invasive coronary angiography (ICA), and FFR. Patient-specific anatomical model of the coronary artery was built by original resting end-diastolic CTA images. Based on the model and computational fluid dynamics, individual boundary conditions were set to calculate iFRCT as the mean pressure distal to the stenosis divided by the mean aortic pressure during the diastolic wave-free period of rest state. Ischemia was assessed by an FFR of up to 0.8, while anatomically obstructive CAD was defined by a stenosis of at least 50% by ICA. The correlation between iFRCT and FFR was evaluated. The receiver operating characteristic (ROC) curve was used to select the cut-off value of iFRCT for diagnosis of ischemia-causing stenosis. The diagnostic performances of iFRCT, coronary CTA, and iFRCT plus CTA for ischemia-causing stenosis were compared with ROC curve and Delong method.On a per-vessel basis, iFRCT and FFR had linear correlation (r = 0.75, p < 0.01). ROC analysis identified an optimal iFRCT cut-off value of 0.82 for categorization based on an FFR cut-off value 0.8, and the diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of iFRCT were 78.72%,70.59%, 83.33%,70.59%, and 83.33%, respectively. Compared with obstructive CAD diagnosed by coronary CTA (AUC = 0.60), iFRCT yielded diagnostic improvement over stenosis assessment with AUC increasing from 0.6 by CTA to 0.87 (P < 0.01) and 0.90 (P < 0.01) when iFRCT plus CTA.In conclusion, iFRCT is a promising index improving diagnostic performance over coronary CTA for detection of ischemia-causing coronary stenosis.
Collapse
Affiliation(s)
- Yue Ma
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang
| | - Hui Liu
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang
| | - Aike Qiao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yingying Hou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Qingqing Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang
| |
Collapse
|
45
|
Diagnostic performance of calcification-suppressed coronary CT angiography using rapid kilovolt-switching dual-energy CT. Eur Radiol 2016; 27:2794-2801. [DOI: 10.1007/s00330-016-4675-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/02/2016] [Accepted: 11/23/2016] [Indexed: 11/30/2022]
|
46
|
Wu G, Yang J, Zhang T, Morelli JN, Giri S, Li X, Tang W. The diagnostic value of non-contrast enhanced quiescent interval single shot (QISS) magnetic resonance angiography at 3T for lower extremity peripheral arterial disease, in comparison to CT angiography. J Cardiovasc Magn Reson 2016; 18:71. [PMID: 27760564 PMCID: PMC5072342 DOI: 10.1186/s12968-016-0294-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/07/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The high incidence of renal insufficiency in patients with Peripheral Arterial Disease raises the concern for nephrogenic systemic fibrosis (NSF) with respect to contrast enhanced MRA. The risk of NSF is eliminated with non-contrast enhanced magnetic resonance angiography. The purpose of the current study is to compare image quality and diagnostic performance of non-contrast enhanced Quiescent Interval Single Shot (QISS) magnetic resonance angiography at 3 T versus CT angiography for evaluation of lower extremity Peripheral Arterial Disease (PAD). METHODS 32 consecutive patients (23 male, 9 female, age range 40-81 years, average age 61.97 years) with clinically suspected lower extremity PAD underwent QISS MRA and CTA. 19 of 32 patients underwent Digital Subtraction Angiography (DSA). Image quality of MRA was compared with CTA by two radiologists with 10 and 8 years' experience according to a 4-point scale. The Kappa test was used to determine the intermodality agreement between MRA and CTA in stenosis assessment, and interobserver agreement with each method. Sensitivity and specificity of CTA and MRA in detecting hemodynamically significant stenosis (≥50 %) were compared, with DSA serving as reference standard when available. RESULTS Image quality of QISS MRA was rated 3.70 ± 0.49 by reader 1, and 3.72 ± 0.47 by reader 2, significantly lower than that of CTA (3.80 ± 0.44 and 3.82 ± 0.42, P < 0.001 for both readers). Intermodality agreement between MRA and CTA was excellent for assessment of stenosis (Kappa = 0.923 ± 0.013 for reader 1, 0.930 ± 0.012 for reader 2). Interobserver agreement was 0.936 ± 0.012 for CTA and 0.935 ± 0.011 for MRA. For readers 1 and 2 respectively, the sensitivity of QISS was 94.25 and 93.26 % (versus 90.11 and 89.13 % for CTA, P > 0.05), and specificity of QISS was 96.70 and 97.75 % (versus 96.55 and 96.51 % for CTA, P > 0.05). For heavily calcified segments, sensitivity of QISS (95.83 and 95.83 %) was significantly higher than that of CTA (74.19 and 76.67 %, P < 0.05). CONCLUSION QISS is a reliable alternative to CTA for evaluation of lower extremity PAD, and may be suitable as a first-line screening examination in patients with contraindications to intravenous contrast administration.
Collapse
Affiliation(s)
- Gang Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Jun Yang
- Department of Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Tianjing Zhang
- Northeast Asia Collaboration, Siemens Healthineers, Beijing, China
| | | | | | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenlin Tang
- MR Scientific, SIEMENS Healthcare, Shanghai, China
| |
Collapse
|
47
|
Samim M, Goldstein A, Schindler J, Johnson MH. Multimodality Imaging of Vertebrobasilar Dolichoectasia: Clinical Presentations and Imaging Spectrum. Radiographics 2016; 36:1129-46. [PMID: 27315445 DOI: 10.1148/rg.2016150032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vertebrobasilar dolichoectasia (VBD) is characterized by ectasia, elongation, and tortuosity of the vertebrobasilar arteries, with a high degree of variability in clinical presentation. The disease origin is believed to involve degeneration of the internal elastic lamina, thinning of the media secondary to reticular fiber deficiency, and smooth muscle atrophy. The prevalence of VBD is variable, ranging from 0.05% to 18%. Most patients with VBD are asymptomatic and their VBD is detected incidentally; however, it is important to recognize that the presence of symptoms, which can lead to clinically significant morbidity and sometimes mortality, may influence clinical management. The most important clinical presentations of VBD are vascular events, such as ischemic stroke and catastrophic intracranial hemorrhage, or progressive compressive symptoms related to compression of adjacent structures, including the cranial nerves, brainstem, or third ventricle, causing hydrocephalus. The imaging diagnostic criteria for computed tomography and magnetic resonance (MR) imaging include three quantitative measures of basilar artery morphology: laterality score, height of bifurcation, and basilar artery diameter. The authors review the relevant anatomy and disease origin of VBD; pertinent imaging findings, including intraluminal thrombus and relation to the cranial nerves; and imaging pitfalls, such as the hyperintense vessel sign on MR images and artifacts related to slow flow in the dolichoectatic vessel. In addition, clinical manifestations, the role of radiology in diagnosis and management of this condition, and available management options are reviewed. (©)RSNA, 2016.
Collapse
Affiliation(s)
- Mohammad Samim
- From the Departments of Diagnostic Radiology (M.S., A.G., M.H.J.) and Neurology (J.S.), Yale University School of Medicine, 20 York St, New Haven, CT 06510
| | - Alan Goldstein
- From the Departments of Diagnostic Radiology (M.S., A.G., M.H.J.) and Neurology (J.S.), Yale University School of Medicine, 20 York St, New Haven, CT 06510
| | - Joseph Schindler
- From the Departments of Diagnostic Radiology (M.S., A.G., M.H.J.) and Neurology (J.S.), Yale University School of Medicine, 20 York St, New Haven, CT 06510
| | - Michele H Johnson
- From the Departments of Diagnostic Radiology (M.S., A.G., M.H.J.) and Neurology (J.S.), Yale University School of Medicine, 20 York St, New Haven, CT 06510
| |
Collapse
|
48
|
Horie K, Kikuchi Y, Takizawa K, Inoue N. Role of Coronary Calcium Scoring in the Assessment of Physiological Ischemia in Patients with Intermediate Stenosis. Int J Angiol 2015; 24:283-91. [PMID: 26648671 DOI: 10.1055/s-0035-1554943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Although coronary artery calcium (CAC) is an established marker of coronary atherosclerosis, whether it also reflects the physiological significance is unknown. This study aims to evaluate if CAC could indicate physiological ischemia in intermediate stenosis defined by an invasive fractional flow reserve (FFR). CAC score (CACS) derived from either whole coronary arteries or individual arteries was measured by computed tomography among patients with intermediate de novo lesions (percent diameter stenosis from 30% to less than 70%). All stenoses were evaluated by invasive FFR; lesions with an FFR ≤ 0.80 were considered significant. We enrolled 119 patients with 143 lesions. Of these, 42 lesions (29.4%) demonstrated significant ischemia by FFR measurement. FFR values had modest but significant correlations with CACS in individual arteries with intermediate stenosis (r = - 0.290; p < 0.001). A receiver operating characteristic curve analysis showed that CACS of individual arteries with intermediate stenosis had 71.4% sensitivity and 67.3% specificity as a predictor of significant ischemia at a cut off value of 145.9. Multivariable analysis showed that percent diameter stenosis and CACS in individual arteries with intermediate stenosis were independent predictors for significant ischemia. By net reclassification improvement analysis, CACS in individual arteries with intermediate stenosis provided incremental prediction for significant ischemia over minimum lumen diameter, percent diameter stenosis, and lesion length. CACS measured in each artery, but not the total CACS, provides additional information as to whether an angiographically intermediate stenosis within the artery is significant enough to cause myocardial ischemia.
Collapse
Affiliation(s)
- Kazunori Horie
- Division of Cardiovascular Medicine, Sendai Kousei Hospital, Sendai, Miyagi, Japan
| | - Yuichi Kikuchi
- Miyagi East Department of Interventional Cardiology, Higashi-Matsushima, Miyagi, Japan
| | - Kaname Takizawa
- Division of Cardiovascular Medicine, Sendai Kousei Hospital, Sendai, Miyagi, Japan
| | - Naoto Inoue
- Division of Cardiovascular Medicine, Sendai Kousei Hospital, Sendai, Miyagi, Japan
| |
Collapse
|
49
|
Andrew M, John H. The challenge of coronary calcium on coronary computed tomographic angiography (CCTA) scans: effect on interpretation and possible solutions. Int J Cardiovasc Imaging 2015; 31 Suppl 2:145-57. [DOI: 10.1007/s10554-015-0773-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022]
|
50
|
Zhou J, Huang W, Chi Y, Duan Y, Zhong L, Zhao X, Zhang J, Xiong W, Tan RS, Toe KK. Quantification of coronary artery Stenosis by Area Stenosis from cardiac CT angiography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:695-698. [PMID: 26736357 DOI: 10.1109/embc.2015.7318457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Non-invasive cardiac computed tomography angiography (CTA) is widely used to assess coronary artery stenosis and give clinical decision-making support to clinicians. The severity of stenosis lesion is commonly graded by a range of percent Diameter Stenosis (DS), which can introduce false positive diagnoses or over-estimation, triggering unnecessary further procedures. In this paper, a system and the associate methods to quantify stenosis by the percent Area Stenosis (AS) from cardiac CTA is presented. In the process, coronary artery tree is segmented and the centerline is extracted by Hessian filtering and the minimal path method. After a serial of 2D cross-sectional artery images along the artery centerline are obtained, lumen areas are segmented by ellipse-fitting with deformable models, and consequently to compute the lesion's AS. Experimental results on 5 CTA data sets show that compared to DS, AS better correlates to the reference standard for stenosis quantification, suggesting the efficacy of the proposed system.
Collapse
|