1
|
Al-Beltagi M. Human milk oligosaccharide secretion dynamics during breastfeeding and its antimicrobial role: A systematic review. World J Clin Pediatr 2025; 14:104797. [DOI: 10.5409/wjcp.v14.i2.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) are bioactive components of breast milk with diverse health benefits, including shaping the gut microbiota, modulating the immune system, and protecting against infections. HMOs exhibit dynamic secretion patterns during lactation, influenced by maternal genetics and environmental factors. Their direct and indirect antimicrobial properties have garnered significant research interest. However, a comprehensive understanding of the secretion dynamics of HMOs and their correlation with antimicrobial efficacy remains underexplored.
AIM To synthesize current evidence on the secretion dynamics of HMOs during lactation and evaluate their antimicrobial roles against bacterial, viral, and protozoal pathogens.
METHODS A systematic search of PubMed, Scopus, Web of Science, and Cochrane Library focused on studies investigating natural and synthetic HMOs, their secretion dynamics, and antimicrobial properties. Studies involving human, animal, and in vitro models were included. Data on HMO composition, temporal secretion patterns, and mechanisms of antimicrobial action were extracted. Quality assessment was performed using validated tools appropriate for study design.
RESULTS A total of 44 studies were included, encompassing human, animal, and in vitro research. HMOs exhibited dynamic secretion patterns, with 2′-fucosyllactose (2′-FL) and lacto-N-tetraose peaking in early lactation and declining over time, while 3-fucosyllactose (3-FL) increased during later stages. HMOs demonstrated significant antimicrobial properties through pathogen adhesion inhibition, biofilm disruption, and enzymatic activity impairment. Synthetic HMOs, including bioengineered 2′-FL and 3-FL, were structurally and functionally comparable to natural HMOs, effectively inhibiting pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Campylobacter jejuni. Additionally, HMOs exhibited synergistic effects with antibiotics, enhancing their efficacy against resistant pathogens.
CONCLUSION HMOs are vital in antimicrobial defense, supporting infant health by targeting various pathogens. Both natural and synthetic HMOs hold significant potential for therapeutic applications, particularly in infant nutrition and as adjuncts to antibiotics. Further research, including clinical trials, is essential to address gaps in knowledge, validate findings, and explore the broader applicability of HMOs in improving maternal and neonatal health.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Paediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
2
|
Ilgaz F, Höller A, Marsaux C, Banta‐Wright S, Coşkun T, Dingess KA, Jörg‐Streller M, Newby C, Singh R, Stahl B, Szwec C, van Wegberg A, Woestenenk W, MacDonald A, Karall D. Human Milk Feeding in Inherited Metabolic Disorders: A Systematic Review of Growth, Metabolic Control, and Neurodevelopment Outcomes. J Inherit Metab Dis 2025; 48:e70001. [PMID: 39912448 PMCID: PMC11800321 DOI: 10.1002/jimd.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Human milk (HM) is the optimal source of nutrition for infants. Yet the suitability of HM macronutrient composition, paired with the challenge of regulating HM intake, may deserve some consideration for infants with inherited metabolic disorders (IMDs) requiring restrictive and controlled dietary management. Except for classic galactosemia, HM feeding is expected to be feasible, allowing infants to maintain metabolic stability, while growing and developing optimally. However, information about HM feeding in nonphenylketonuria (PKU) literature is scarce. In this systematic review, 52 studies were included, representing 861 infants (86% PKU) receiving HM after IMD diagnosis (mean duration 4-10 months depending on the IMD). For non-PKU IMDs (e.g., other amino acidopathies, urea cycle disorders, organic acidemias, fatty acid oxidation disorders), outcomes of HM feeding were available for few infants, except for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (n = 48). In PKU, HM feeding combined with phenylalanine-free formula, led to adequate metabolic control (25 studies), growth (15 studies), and neurodevelopment (10 studies). For other IMDs, more evidence is required, but the limited data suggest that HM feeding is possible, with attentive monitoring and disease-specific formula supplementation where applicable. In MCAD deficiency, ensuring adequate HM intake is essential, as symptoms were more frequently reported in exclusively breastfed infants. No IMD-specific articles were found on the relationship between HM feeding and many other outcomes of interest (e.g., immune status or comorbidity risk later in life). With the exception of galactosemia, HM feeding is expected to benefit infants with IMD. More data should be published for IMDs other than PKU.
Collapse
Affiliation(s)
- Fatma Ilgaz
- Department of Nutrition and Dietetics, Faculty of Health SciencesHacettepe UniversityAnkaraTurkey
| | - Alexander Höller
- Division of Nutrition and DieteticsUniversity Hospital InnsbruckInnsbruckAustria
- Institute of Public Health, Medical Decision Making and Health Technology Assessment, Department of Public Health, Health Services Research and Health Technology AssessmentUMIT TIROL‐University for Health Sciences and TechnologyHall in TirolAustria
- Digital Health Information Systems, Center for Health & Bioresources, AIT Austrian Institute of TechnologyGrazAustria
| | | | | | - Turgay Coşkun
- Department of Pediatric Metabolism and NutritionHacettepe University Faculty of MedicineAnkaraTurkey
| | | | - Monika Jörg‐Streller
- Division of Nutrition and DieteticsUniversity Hospital InnsbruckInnsbruckAustria
| | - Camille Newby
- Department of Nutrition and DieteticsBristol Royal Hospital for ChildrenBristolUK
| | - Rani Singh
- Department of Human Genetics and PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Bernd Stahl
- Danone Research & InnovationUtrechtthe Netherlands
- Department of Chemical Biology & Drug DiscoveryUtrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtthe Netherlands
| | - Clare Szwec
- Danone Research & InnovationUtrechtthe Netherlands
| | - Annemiek van Wegberg
- Division of Metabolic DiseasesBeatrix Children's Hospital, University Medical Centre Groningen, University of GroningenGroningenthe Netherlands
- Department of Gastroenterology and Hepatology‐DieteticsRadboud University Medical CenterNijmegenthe Netherlands
| | | | - Anita MacDonald
- Department of DieteticsBirmingham Women's and Children's HospitalBirminghamUK
| | - Daniela Karall
- Department of Pediatrics I, Division of Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
3
|
Borer KT. Relevance of Milk Composition to Human Longitudinal Growth from Infancy Through Puberty: Facts and Controversies. Nutrients 2025; 17:827. [PMID: 40077697 PMCID: PMC11901938 DOI: 10.3390/nu17050827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Milk is the principal nutrient of newborn humans and a diagnostic feature of the order Mammalia. Its release is elicited as a reflex by infant sucking under the control of the hormone oxytocin. While it is recognized that breast milk optimally promotes infant longitudinal growth and development, this review explores facts and controversies regarding the extent to which the milks of several dairy animals and infant formula milk (IF) approximate special properties and bioactivities of breast milk. It also provides evidence that early exposure to undernutrition during the very rapid fetal and early infancy growth predominantly and permanently stunts longitudinal growth trajectory in both animals and humans and is often followed in later life by obesity and metabolic dysfunction, and sometimes also by precocious timing of sexual maturation. There is a knowledge gap as to whether there may be additional critical periods of nutritional vulnerability in human development, which is characterized by a relatively prolonged period of slow childhood growth bracketed by the rapid fetal-neonatal and pubertal growth spurts. It is also unclear whether any quantitative differences in caloric intake and supply during neonatal period may influence developmental fatness programming. A further knowledge gap exists regarding the role of infant microbiome composition and development in the possible epigenetic programming of longitudinal growth or fatness in later life. Extending the research of early developmental programming to the entire period of human growth from conception to the end of puberty, examining infant caloric intake and supply as possible factors modulating the epigenetic programming in favor of obesity, and examining the role of infant gut microbiome in developing infant's capacity to process nutrients may provide a better understanding of the interaction between critical nutritional influences in the control of human longitudinal growth and later-life obesity.
Collapse
Affiliation(s)
- Katarina T Borer
- School of Kinesiology, The University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
4
|
Duan G, Li M, Zheng C, Wan M, Yu J, Cao B, Yin Y, Duan Y, Cong F. Odd-chain fatty acids-enriched fats improved the growth and intestinal morphology and function in milk replacers-fed piglets. J Nutr 2025:S0022-3166(25)00028-8. [PMID: 39889853 DOI: 10.1016/j.tjnut.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The intestinal development and nutritional needs of piglets after birth are similar to those of human infants. OBJECTIVES This study aimed to investigate the effect of odd chain fatty acids (OCFAs) with different forms on the growth and intestinal morphology and function in milk replacers-fed piglets, as a model for human infants. METHODS Forty 7-day-old piglets from 8 sows were randomly assigned into 5 groups (n = 8, each of them was from different litters) and fed sow milk or milk replacers supplemented with different kinds of fats (namely, the control fats, and the DHA algal oil-, OCFA algal oil-, and OCFA-enriched fats) for 21 days. The statistical analysis about the data from milk replacers-fed piglet groups was conducted on the one-way ANOVA. And the data between sow milk- and milk replacers-fed piglets were analyzed by unpaired t-test. RESULTS Milk replacers supplemented with OCFA-enriched fats increased the average daily gain (ADG) and the ratio of villus height to crypt depth, increased the protein expression of Ki67, p-mTOR, p-p70S6k, Occludin, Claudin, and ZO-1 in selected intestines, and decreased the protein expression of p-ULK1, Parkin, and PINK1 to levels similar to the sow milk group (P < 0.05). CONCLUSION Overall, milk replacers supplemented with OCFA-enriched fats improved the ADG and intestinal morphology and function of piglets to levels comparable to the sow milk-fed piglets.
Collapse
Affiliation(s)
- Geyan Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Li
- Wilmar (Shanghai) Biotechnology R&D Center Co., Ltd 200137
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiayi Yu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Cao
- Wilmar (Shanghai) Biotechnology R&D Center Co., Ltd 200137
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Cong
- Wilmar (Shanghai) Biotechnology R&D Center Co., Ltd 200137.
| |
Collapse
|
5
|
Urrutia-Baca VH, Álvarez-Buylla JR, Gueimonde M, Chuck-Hernández C, Ruas-Madiedo P, González-Iglesias H. Comparative study of the oligosaccharide profile in goat, bovine, sheep, and human milk whey. Food Chem 2025; 463:141123. [PMID: 39260165 DOI: 10.1016/j.foodchem.2024.141123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Milk oligosaccharides are high added value compounds that could be obtained by exploiting cheese whey, a byproduct of dairy industry. The objective was to compare the abundance and diversity of oligosaccharides in whey samples from domestic animals and humans. During fresh cheese making, whey samples were collected and analyzed by untargeted and targeted small molecule analysis using high-resolution mass-spectrometry. A great similarity in the metabolite profile between goat and sheep was observed. Up to 11 oligosaccharides were observed in the sheep whey from those typically found in humans. The concentration of 2'-Fucosyllactose (0.136 ± 0.055 g/L) and 3-Fucosyllactose (0.079 ± 0.009 g/L) were significantly higher (p-value <0.01) in sheep whey, while the concentration of 3'-Sialyllactose (0.826 ± 0.638 g/L) was higher in goat whey. No significant differences were observed between goat and sheep whey for the other oligosaccharides (p-value >0.05). Therefore, sheep and goat whey could become an important source of oligosaccharides through their revalorization.
Collapse
Affiliation(s)
- Víctor Hugo Urrutia-Baca
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Jorge R Álvarez-Buylla
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Cristina Chuck-Hernández
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.
| |
Collapse
|
6
|
Zhang W, Peng Q, Yuan L, Wu C, Wang M, Li H, Li H, Yu J. Comparative analysis of the structure and content of N-glycans from different commercial whey protein materials. J Food Sci 2025; 90:e70010. [PMID: 39832225 DOI: 10.1111/1750-3841.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Infant formulas are constantly being updated and upgraded, and N-glycans are functional glycans that have not been fully exploited to date. Commercial whey protein materials are often used as basic ingredients in infant formulas. Therefore, it is important to study N-glycans in commercial whey protein materials. We used matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and ion chromatography to analyze N-glycans in bovine lactoferrin (Lf), whey protein isolate (WPI), whey protein concentrate 70 (WPC 70), goat whey protein powder 50, demineralized whey powder 90 (D90), and desalted goat whey powder. The results showed that 30, 6, 28, 16, 8, and 9 N-glycans were found in Lf, D90, desalted goat whey powder, WPI, WPC 70, and goat whey protein powder 50, respectively. A total of four structures of N-glycans were detected in this study. Only bovine Lf and WPC 70 contained fucosylated and sialylated binding (SFN-type) glycan structures. Regarding content, WPC 70 showed the highest yield of 14.5 mg/g, and the degree of sialylation was higher than fucosylation. This study provides a potential basis for the future use of commercial whey protein materials in dairy products such as infant formula.
Collapse
Affiliation(s)
- Wanyi Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Qiuqi Peng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Linhan Yuan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Caiwen Wu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Mengqi Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Hongbo Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Hongjuan Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jinghua Yu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
7
|
Dold CA, Sahin AW, Giblin L. Effect of processing infant milk formula on protein digestion and gut barrier health (in vitro and preclinical). J Dairy Sci 2024:S0022-0302(24)01237-2. [PMID: 39694254 DOI: 10.3168/jds.2024-25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 12/20/2024]
Abstract
The infant gut is immature and permeable with high gastric pH, low protease activities and underdeveloped intestinal architecture. Protein digestion in the upper gastrointestinal tract of infants is slow and incomplete. During manufacture, infant milk formula (IMF) is typically heat-treated so it is safe for human consumption. This heat treatment causes denaturation and aggregation of milk proteins, and formation of undesirable Maillard reaction products. The aim of this review is to critically summarize the in vitro and preclinical data available on the effect of IMF thermal processing on protein digestion and gut barrier physiology in the immature infant gut. Recent research efforts have focused on reducing thermal loads during IMF manufacturing by sourcing ingredients with low thermal loads, by reducing temperatures during IMF processing itself and by seeking alternative processing technologies. This review also aims to evaluate if these thermal reductions have a knock-on effect on protein digestion and gut barrier health in the infant. The ultimate aim is to create a safe next generation IMF product that more closely mimics human breast milk in its protein digestion kinetics and its ability to promote gut barrier maturity in the infant.
Collapse
Affiliation(s)
- Cathal A Dold
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork, T12 CY82, Ireland
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, Cork, T12 CY82, Ireland
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| |
Collapse
|
8
|
Janner DE, Poetini MR, Musachio EAS, Chaves NSG, Meichtry LB, Fernandes EJ, Mustafa MMD, De Carvalho AS, Gonçalves OH, Leimann FV, de Freitas RA, Prigol M, Guerra GP. Neurodevelopmental changes in Drosophila melanogaster are restored by treatment with lutein-loaded nanoparticles: Positive modulation of neurochemical and behavioral parameters. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109998. [PMID: 39106915 DOI: 10.1016/j.cbpc.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), are characterized by persistent changes in communication and social interaction, as well as restricted and stereotyped patterns of behavior. The complex etiology of these disorders possibly combines the effects of multiple genes and environmental factors. Hence, exposure to insecticides such as imidacloprid (IMI) has been used to replicate the changes observed in these disorders. Lutein is known for its anti-inflammatory and antioxidant properties and is associated with neuroprotective effects. Therefore, the aim of this study was to evaluate the protective effect of lutein-loaded nanoparticles, along with their mechanisms of action, on Drosophila melanogaster offspring exposed to IMI-induced damage. To simulate the neurodevelopmental disorder model, flies were exposed to a diet containing IMI for 7 days. Posteriorly, their offspring were exposed to a diet containing lutein-loaded nanoparticles for a period of 24 h, and male and female flies were subjected to behavioral and biochemical evaluations. Treatment with lutein-loaded nanoparticles reversed the parameters of hyperactivity, aggressiveness, social interaction, repetitive movements, and anxiety in the offspring of flies exposed to IMI. It also protected markers of oxidative stress and cell viability, in addition to preventing the reduction of Nrf2 and Shank3 immunoreactivity. These results demonstrate that the damage induced by exposure to IMI was restored through treatment with lutein-loaded nanoparticles, elucidating lutein's mechanisms of action as a therapeutic agent, which, after further studies, can become a co-adjuvant in the treatment of neurodevelopmental disorders, such as ASD and ADHD.
Collapse
Affiliation(s)
- Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Nathalie Savedra Gomes Chaves
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Mustafa Munir Dahleh Mustafa
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Amarilis Santos De Carvalho
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | | | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil.
| |
Collapse
|
9
|
Zhang L, Hu Y, Jiang L. Advancements in emulsion systems for specialized infant formulas: Research process and formulation proposals for optimizing bioavailability of nutraceuticals. Compr Rev Food Sci Food Saf 2024; 23:e70043. [PMID: 39455164 DOI: 10.1111/1541-4337.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
With the rapid advancements in nutrition and dietary management, infant formulas for special medical purposes (IFSMPs) have been developed to cater to the unique nutraceutical requirements of infants with specific medical conditions or physiological features. However, there are various challenges in effectively preserving and maximizing the health benefits of the specific nutraceuticals incorporated in IFSMPs. This review provides an overview of the nutritional compositions of various IFSMPs and highlights the challenges associated with the effective supplementation of specific nutraceuticals for infants. In addition, it emphasizes the promising potential of emulsion delivery systems, which possess both encapsulation and delivery features, to significantly improve the solubility, stability, oral acceptance, and bioavailability (BA) of nutraceutical bioactives. Based on this information, this work proposes detailed strategies for designing and developing model IFSMP emulsions to enhance the BA of specially required nutraceuticals. Key areas covered include emulsion stabilization, selective release mechanisms, and effective absorption of nutraceuticals. By following these proposals, researchers and industry professionals can design and optimize emulsion-based IFSMPs with enhanced health benefits. This review not only outlines the developmental states of IFSMP formulations but also identifies future research directions aimed at improving the physiological health benefits of IFSMPs. This effort lays the theoretical groundwork for the further development of emulsion-type IFSMP in infant formula (IF) industry, positioning the IF industry to better meet the complex needs of infants requiring specialized nutrition.
Collapse
Affiliation(s)
- Liling Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yang Hu
- Department of Scientific and Technological Innovation, Future Food (Bai Ma) Research Institute, Nanjing, Jiangsu, China
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Jia W, Wang X, Shi L. Interference of endogenous benzoic acid with the signatures of sulfonic acid derivatives and carbohydrates in fermented dairy products. FUNDAMENTAL RESEARCH 2024; 4:1523-1532. [PMID: 39734529 PMCID: PMC11670729 DOI: 10.1016/j.fmre.2022.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Endogenous benzoic acid causes detrimental effects on public health, but the underlying mechanisms often remain elusive. Benzoic acid (0.00-40.00 mg L -1) was detected from sixty fermented goat milk samples in six replicates, indicating the existence of endogenous benzoic acid. Herein, we investigated the effects of benzoic acid on the variations of metabolome and proteome signatures in fermented goat milk via integrative metabolomics (LOQ 2.39-98.98 μg L -1) and proteomics approach based on UHPLC-Q-Orbitrap HRMS. Explicitly, benzoic acid reduced the content of taurine (7.06-4.80 mg L -1) and hypotaurine (3.86-1.74 mg L -1) due to a significant decrease in the levels of glutamate decarboxylase 1 by benzoic acid. The reduction in lactose (7.13-5.31 mg L -1) and d-galactose (4.39-3.37 mg L -1) content was related to the decrease in α-lactalbumin and β-galactosidase levels, respectively, in fermented goat milk containing 40.00 mg L -1 benzoic acid. Meanwhile, the levels of maltose (22.84-16.53 mg L -1) and raffinose (4.19-3.10 mg L -1) progressively decreased with increasing benzoic acid concentrations (0.00-40.00 mg L -1), which had detrimental effects on the nutritional quality of fermented goat milk. Additionally, the concentration of benzoic acid and fermentation temperature are the most important factors to control the loss of nutrients in fermented dairy products.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
11
|
Klaassens ES, Baak ML, Mekkes NJ, Bongoni R, Schaubeck M. Effect of protein modification in synbiotic infant formula on probiotic metabolic activity and bacterial composition in an infant gut-model. MICROBIOME RESEARCH REPORTS 2024; 3:38. [PMID: 39421252 PMCID: PMC11480727 DOI: 10.20517/mrr.2024.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 10/19/2024]
Abstract
Aim: Microbial colonization of the neonatal gut is pivotal in priming the infant's immune system. Human milk (HM) is the best nutrition for infants and supports the development of the microbiota due to prebiotic compounds and probiotic microorganisms. When exclusive breastfeeding is not possible, infant formula (IF) with probiotics is a strategy to support the infant's microbiome development. However, knowledge about the effects of the infant gut microbiota and different compounds in IF on individual probiotic strains is limited, as strain-level detection in a complex ecosystem is challenging. The aim of the present study was to show the effects of IF with different protein forms on the metabolic activity of two probiotic strains isolated from HM in a complex ecosystem. Methods: By using an ex-vivo infant gut model containing infant donor-microbiota, the effects of IF with either intact or extensively hydrolyzed protein on the metabolic activity of the donor microbiota, as well as two probiotic strains [Limosilactobacillus fermentum (L. fermentum) CECT 5716 (Lf) and Bifidobacterium breve (B. breve) DSM 32583 (Bb)], were analyzed. A new bioinformatic pipeline combined with a specific infant microbiome database was used to explore shotgun metagenome datasets (1200 Megabases) for taxonomic identification and strain-level tracking. Results: Both protein forms (i.e., intact or extensively hydrolyzed protein) in IF supported infant gut microbial metabolic activity equally, as evidenced by similar levels of short-chain fatty acids (SCFAs). Interestingly, gut microbial metabolic activity was found to be differently activated in a strain-dependent manner. Taxonomic profiling of the microbiome at the strain level enabled monitoring of the prevalence and abundance of both probiotic strains, even in a complex ecosystem. Conclusion: Food matrix and host microbiota interactions should be considered when evaluating strain-specific probiotic effects in the future.
Collapse
Affiliation(s)
| | | | | | | | - Monika Schaubeck
- Research & Development, HiPP GmbH & Co. Vertrieb KG, Pfaffenhofen 85276, Germany
| |
Collapse
|
12
|
Hick E, Suárez M, Rey A, Mantecón L, Fernández N, Solís G, Gueimonde M, Arboleya S. Personalized Nutrition with Banked Human Milk for Early Gut Microbiota Development: In Pursuit of the Perfect Match. Nutrients 2024; 16:1976. [PMID: 38999725 PMCID: PMC11243202 DOI: 10.3390/nu16131976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The correct initial colonization and establishment of the gut microbiota during the early stages of life is a key step, with long-lasting consequences throughout the entire lifespan of the individual. This process is affected by several perinatal factors; among them, feeding mode is known to have a critical role. Breastfeeding is the optimal nutrition for neonates; however, it is not always possible, especially in cases of prematurity or early pathology. In such cases, most commonly babies are fed with infant formulas in spite of the official nutritional and health international organizations' recommendation on the use of donated human milk through milk banks for these cases. However, donated human milk still does not totally match maternal milk in terms of infant growth and gut microbiota development. The present review summarizes the practices of milk banks and hospitals regarding donated human milk, its safety and quality, and the health outcomes in infants fed with donated human milk. Additionally, we explore different alternatives to customize pasteurized donated human milk with the aim of finding the perfect match between each baby and banked milk for promoting the establishment of a beneficial gut microbiota from the early stages of life.
Collapse
Affiliation(s)
- Emilia Hick
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Marta Suárez
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandra Rey
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Laura Mantecón
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Nuria Fernández
- Pediatrics Service, University Hospital of Cabueñes (CAB-SESPA), 33394 Gijón, Spain
| | - Gonzalo Solís
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
13
|
Li J, Zhu F. Whey protein hydrolysates and infant formulas: Effects on physicochemical and biological properties. Compr Rev Food Sci Food Saf 2024; 23:e13337. [PMID: 38578124 DOI: 10.1111/1541-4337.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Whey protein hydrolysates are recognized for their substantial functional and biological properties. Their high digestibility and amino acid composition make them a valuable ingredient to hydrolyzed whey infant formulas, enhancing both product functionality and nutritional values for infant growth. It is important to understand the functional and biological properties of whey protein hydrolysates for their applications in infant formula systems. This review explored preparation methods of whey protein hydrolysates for infant formula-based applications. The effects of whey protein hydrolysate on the physicochemical and biological properties of hydrolyzed whey infant formulas were summarized. The influences of whey protein hydrolysates on the functional and nutritional properties of formulas from manufacturing to infant consumption were discussed. Whey protein hydrolysates are crucial components in the preparation of infant formula, tailored to meet the functional and nutritional demands of the product. The selection of enzyme types and hydrolysis parameters is decisive for obtaining "optimal" whey protein hydrolysates that match the intended characteristics. "Optimal" whey protein hydrolysates offer diverse functionalities, including solubility, emulsification and production stability to hydrolyzed whey infant formulas during manufacturing processes and formulations. They simultaneously promote protein digestibility, infant growth and other potential health benefits, including reduced allergenic potential, as supported by in vitro, in vivo and clinical trials. Overall, the precise selection of enzymes and hydrolysis parameters in the production of whey protein hydrolysates is crucial in achieving the desired characteristics and functional benefits for hydrolyzed whey infant formulas, making them critical in the development of infant nutrition products.
Collapse
Affiliation(s)
- Jiecheng Li
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Lawson Y, Mpasi P, Young M, Comerford K, Mitchell E. A review of dairy food intake for improving health among black infants, toddlers, and young children in the US. J Natl Med Assoc 2024; 116:228-240. [PMID: 38360504 DOI: 10.1016/j.jnma.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Adequate nutrition is paramount for proper growth and musculoskeletal, neurocognitive, and immunological development in infants, toddlers, and young children. Among breastfeeding mother-child dyads, this critical window of development, is impacted by both maternal and offspring dietary patterns. For mothers, their dietary patterns impact not only their own health and well-being, but also the nutrition of their breast milk - which is recommended as the sole source of food for the first 6 months of their infant's life, and as a complementary source of nutrition until at least 2 years of age. For infants and toddlers, the breast milk, formulas, and first foods they consume can have both short-term and long-term effects on their health and well-being - with important impacts on their taste perception, microbiome composition, and immune function. According to dietary intake data in the US, infants and young children meet a greater number of nutrient requirements than older children and adults, yet numerous disparities among socially disadvantaged racial/ethnic groups still provide significant challenges to achieving adequate nutrition during these early life stages. For example, Black children are at greater risk for disparities in breastfeeding, age-inappropriate complementary feeding patterns, nutrient inadequacies, food insecurity, and obesity relative to most other racial/ethnic groups in the US. For infants who do not receive adequate breast milk, which includes a disproportionate number of Black infants, dairy-based infant formulas are considered the next best option for meeting nutritional needs. Fermented dairy foods (e.g., yogurt, cheese) can serve as ideal first foods for complementary feeding, and cow's milk is recommended for introduction during the transitional feeding period to help meet the nutrient demands during this phase of rapid growth and development. Low dairy intake may put children at risk for multiple nutrient inadequacies and health disparities - some of which may have lifelong consequences on physical and mental health. A burgeoning body of research shows that in addition to breast milk, cow's milk and other dairy foods may play critical roles in supporting physical growth, neurodevelopment, immune function, and a healthy gut microbiome in early life. However, most of this research so far has been conducted in White populations and can only be extrapolated to Black infants, toddlers, and young children. Therefore, to better understand and support the health and development of this population, greater research and education efforts on the role of milk and dairy products are urgently needed. This review presents the current evidence on health disparities faced by Black children in the US from birth to four years of age, and the role that dairy foods can play in supporting the normal growth and development of this vulnerable population.
Collapse
Affiliation(s)
- Yolanda Lawson
- Associate Attending, Baylor University Medical Center, Dallas, TX, United States
| | - Priscilla Mpasi
- ChristianaCare Health System, Assistant Clinical Director Complex Care and Community Medicine, Wilmington, DE, United States
| | - Michal Young
- Emeritus, Howard University College of Medicine, Department of Pediatrics and Child Health, Washington D.C., United States
| | - Kevin Comerford
- OMNI Nutrition Science; California Dairy Research Foundation, Davis, CA, United States.
| | - Edith Mitchell
- Sidney Kimmel Cancer at Jefferson, Philadelphia, PA, United States
| |
Collapse
|
15
|
Naik NC, Holzhausen EA, Chalifour BN, Coffman MM, Lurmann F, Goran MI, Bode L, Alderete TL. Air pollution exposure may impact the composition of human milk oligosaccharides. Sci Rep 2024; 14:6730. [PMID: 38509153 PMCID: PMC10954706 DOI: 10.1038/s41598-024-57158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Human milk oligosaccharides (HMOs) impact neonate immunity and health outcomes. However, the environmental factors influencing HMO composition remain understudied. This study examined the associations between ambient air pollutant (AAP) exposure and HMOs at 1-month postpartum. Human milk samples were collected at 1-month postpartum (n = 185). AAP (PM2.5, PM10, NO2) exposure included the 9-month pregnancy period through 1-month postpartum. Associations between AAP with (1) HMO diversity, (2) the sum of sialylated and fucosylated HMOs, (3) 6 a priori HMOs linked with infant health, and (4) all HMOs were examined using multivariable linear regression and principal component analysis (PCA). Exposure to AAP was associated with lower HMO diversity. PM2.5 and PM10 exposure was positively associated with the HMO 3-fucosyllactose (3FL); PM2.5 exposure was positively associated with the sum of total HMOs, sum of fucosylated HMOs, and the HMO 2'-fucosyllactose (2'FL). PCA indicated the PM2.5, PM10, and NO2 exposures were associated with HMO profiles. Individual models indicated that AAP exposure was associated with five additional HMOs (LNFP I, LNFP II, DFLNT, LNH). This is the first study to demonstrate associations between AAP and breast milk HMOs. Future longitudinal studies will help determine the long-term impact of AAP on human milk composition.
Collapse
Affiliation(s)
- Noopur C Naik
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University College of Medicine, Cleveland, OH, USA
| | | | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Maria M Coffman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | | | - Michael I Goran
- Department of Pediatrics, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Lars Bode
- Department of Pediatrics, Larson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
16
|
Hu Y, Wu X, Zhou L, Liu J. Which is the optimal choice for neonates' formula or breast milk? NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:21. [PMID: 38488905 PMCID: PMC10942964 DOI: 10.1007/s13659-024-00444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
The incidence of prematurity has been increasing since the twenty-first century. Premature neonates are extremely vulnerable and require a rich supply of nutrients, including carbohydrates, proteins, docosahexaenoic acid (DHA), arachidonic acid (ARA) and others. Typical breast milk serves as the primary source for infants under six months old to provide these nutrients. However, depending on the individual needs of preterm infants, a more diverse and intricate range of nutrients may be necessary. This paper provides a comprehensive review of the current research progress on the physical and chemical properties, biological activity, function, and structure of breast milk, as well as explores the relationship between the main components of milk globular membrane and infant growth. Additionally, compare the nutritional composition of milk from different mammals and newborn milk powder, providing a comprehensive understanding of the differences in milk composition and detailed reference for meeting daily nutritional needs during lactation.
Collapse
Affiliation(s)
- Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Xing Wu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
17
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R, Hamza MB. Gastrointestinal tolerability of organic infant formula compared to traditional infant formula: A systematic review. World J Clin Pediatr 2024; 13:88783. [PMID: 38596433 PMCID: PMC11000068 DOI: 10.5409/wjcp.v13.i1.88783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Infants' nutrition significantly influences their growth, development, and overall well-being. With the increasing demand for organic infant formula driven by the perception of health benefits and growing awareness of natural feeding options, it is crucial to conduct a comparative analysis of the gastrointestinal tolerability between organic and traditional infant formulas. AIM To provide a concise and precise analysis of the gastrointestinal tolerability of organic infant formula compared to traditional infant formula. Due to limited direct comparisons, the review synthesizes available literature on each formula type, presenting insights into their potential effects on infants' digestive health. METHODS An extensive literature search was conducted, compiling studies on organic and traditional infant formulas, their compositions, and reported effects on gastrointestinal tolerability. We searched academic databases such as PubMed and Google Scholar and specialized nutrition, paediatrics, and infant health journals using relevant keywords till October 1, 2023. . RESULTS Although specific comparative studies are scarce and formula heterogeneity is a significant limitation, this systematic review provides an in-depth understanding of organic infant formulas' composition and potential benefits. While scientific evidence directly comparing gastrointestinal tolerability is limited, organic formulas strive to use carefully selected organic ingredients to imitate breast milk composition. Potential benefits include improved lipid profiles, higher methionine content, and decreased antibiotic-resistant bacteria levels. Understanding the gastrointestinal tolerability of organic and traditional infant formulas is crucial for parents and healthcare providers to make informed decisions. CONCLUSION Despite limitations in direct comparisons, this systematic review provides insights into the composition and potential benefits of organic infant formulas. It emphasizes the need for further research to elucidate their gastrointestinal effects comprehensively.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Manama, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| | - Mohamed Basiony Hamza
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
| |
Collapse
|
18
|
Yu JW, Song MH, Lee JH, Song JH, Hahn WH, Keum YS, Kang NM. Urinary Metabolomic Differentiation of Infants Fed on Human Breastmilk and Formulated Milk. Metabolites 2024; 14:128. [PMID: 38393020 PMCID: PMC10890188 DOI: 10.3390/metabo14020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Human breastmilk is an invaluable nutritional and pharmacological resource with a highly diverse metabolite profile, which can directly affect the metabolism of infants. Application of metabolomics can discriminate the complex relationship between such nutrients and infant health. As the most common biological fluid in metabolomic study, infant urinary metabolomics may provide the physiological impacts of different nutritional resources, namely human breastmilk and formulated milk. In this study, we aimed to identify possible differences in the urine metabolome of 30 infants (1-14 days after birth) fed with breast milk (n = 15) or formulated milk (n = 15). From metabolomic analysis with gas chromatography-mass spectrometry, 163 metabolites from single mass spectrometry (GC-MS), and 383 metabolites from tandem mass spectrometry (GC-MS/MS) were confirmed in urinary samples. Various multivariate statistical analysis were performed to discriminate the differences originating from physiological/nutritional variables, including human breastmilk/formulate milk feeding, sex, and duration of feeding. Both unsupervised and supervised discriminant analyses indicated that feeding resources (human breastmilk/formulated milk) gave marginal but significant differences in urinary metabolomes, while other factors (sex, duration of feeding) did not show notable discrimination between groups. According to the biomarker analyses, several organic acid and amino acids showed statistically significant differences between different feeding resources, such as 2-hydroxyhippurate.
Collapse
Affiliation(s)
- Ji-Woo Yu
- Department of Crop Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Min-Ho Song
- Department of Crop Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ji-Ho Lee
- Department of Crop Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jun-Hwan Song
- Department of Pediatrics, Soonchunhyang University, 30, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
| | - Won-Ho Hahn
- Department of Pediatrics, Soonchunhyang University, 30, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nam Mi Kang
- Department of Nursing, Research Institute for Biomedical & Health Science, Konkuk University, Chungju-si 27478, Republic of Korea
| |
Collapse
|
19
|
Babatunde HA, Collins J, Lukman R, Saxton R, Andersen T, McDougal OM. SVR Chemometrics to Quantify β-Lactoglobulin and α-Lactalbumin in Milk Using MIR. Foods 2024; 13:166. [PMID: 38201194 PMCID: PMC10778881 DOI: 10.3390/foods13010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Protein content variation in milk can impact the quality and consistency of dairy products, necessitating access to in-line real time monitoring. Here, we present a chemometric approach for the qualitative and quantitative monitoring of β-lactoglobulin and α-lactalbumin, using mid-infrared spectroscopy (MIR). In this study, we employed Hotelling T2 and Q-residual for outlier detection, automated preprocessing using nippy, conducted wavenumber selection with genetic algorithms, and evaluated four chemometric models, including partial least squares, support vector regression (SVR), ridge, and logistic regression to accurately predict the concentrations of β-lactoglobulin and α-lactalbumin in milk. For the quantitative analysis of these two whey proteins, SVR performed the best to interpret protein concentration from 197 MIR spectra originating from 42 Cornell University samples of preserved pasteurized modified milk. The R2 values obtained for β-lactoglobulin and α-lactalbumin using leave one out cross-validation (LOOCV) are 92.8% and 92.7%, respectively, which is the highest correlation reported to date. Our approach introduced a combination of preprocessing automation, genetic algorithm-based wavenumber selection, and used Optuna to optimize the framework for tuning hyperparameters of the chemometric models, resulting in the best chemometric analysis of MIR data to quantitate β-lactoglobulin and α-lactalbumin to date.
Collapse
Affiliation(s)
| | - Joseph Collins
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA;
| | - Rianat Lukman
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (R.L.); (R.S.)
| | - Rose Saxton
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (R.L.); (R.S.)
| | | | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (R.L.); (R.S.)
| |
Collapse
|
20
|
Maheshwari A, Mantry H, Bagga N, Frydrysiak-Brzozowska A, Badarch J, Rahman MM. Milk Fat Globules: 2024 Updates. NEWBORN (CLARKSVILLE, MD.) 2024; 3:19-37. [PMID: 39474586 PMCID: PMC11521418 DOI: 10.5005/jp-journals-11002-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Milk fat globules (MFGs) are a remarkable example of nature's ingenuity. Human milk (HM) carries contains 3-5% fat, 0.8-0.9% protein, 6.9-7.2% carbohydrate calculated as lactose, and 0.2% mineral constituents. Most of these nutrients are carried in these MFGs, which are composed of an energy-rich triacylglycerol (TAG) core surrounded by a triple membrane structure. The membrane contains polar lipids, specialized proteins, glycoproteins, and cholesterol. Each of these bioactive components serves important nutritional, immunological, neurological, and digestive functions. These MFGs are designed to release energy rapidly in the upper gastrointestinal tract and then persist for some time in the gut lumen so that the protective bioactive molecules are conveyed to the colon. These properties may shape the microbial colonization and innate immune properties of the developing gastrointestinal tract. Milk fat globules in milk from humans and ruminants may resemble in structure but there are considerable differences in size, profile, composition, and specific constituents. There are possibilities to not only enhance the nutritional composition in a goal-oriented fashion to correct specific deficiencies in the infant but also to use these fat globules as a nutraceutical in infants who require specific treatments. To mention a few, there might be possibilities in enhancing neurodevelopment, in defense against gastrointestinal and respiratory tract infections, improving insulin sensitivity, treating chronic inflammation, and altering plasma lipids. This review provides an overview of the composition, structure, and biological activities of the various components of the MFGs. We have assimilated research findings from our own laboratory with an extensive review of the literature utilizing key terms in multiple databases including PubMed, EMBASE, and Science Direct. To avoid bias in the identification of studies, keywords were short-listed a priori from anecdotal experience and PubMed's Medical Subject Heading (MeSH) thesaurus.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Department of Pediatrics, Louisiana State University, Shreveport, Louisiana, United States of America
- Global Newborn Society, Clarksville Maryland, United States of America
| | - Harshvardhan Mantry
- Department of Physics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Nitasha Bagga
- Global Newborn Society, Clarksville Maryland, United States of America
- Neonatology, Rainbow Children’s Hospital and Birthright, Hyderabad, Telangana, India
| | - Adrianna Frydrysiak-Brzozowska
- Global Newborn Society, Clarksville Maryland, United States of America
- The Mazovian University in Płock, Collegium Medicum, Faculty of Health Sciences, Płock, Poland
| | - Jargalsaikhan Badarch
- Global Newborn Society, Clarksville Maryland, United States of America
- Department of Obstetrics, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Md Mozibur Rahman
- Global Newborn Society, Clarksville Maryland, United States of America
- Neonatology, Institute of Child and Mother Health, Dhaka, Bangladesh
| |
Collapse
|
21
|
Verduci E, Tosi M, Montanari C, Gambino M, Eletti F, Bosetti A, Di Costanzo M, Carbone MT, Biasucci G, Fiori L, Zuccotti G. Are Phe-Free Protein Substitutes Available in Italy for Infants with PKU All the Same? Nutrients 2023; 16:30. [PMID: 38201860 PMCID: PMC10780432 DOI: 10.3390/nu16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Breastfeeding or standard infant formulas, alongside phenylalanine (Phe)-free protein substitutes, constitute the dietary management for infants with PKU to guarantee protein requirements are met in compliance with metabolic tolerance. This work aims to analyse the nutritional composition of Phe-free infant protein substitutes, in terms of macronutrients, micronutrients and functional components, available for PKU dietary management in Italy. A total of seven infant Phe-free protein substitutes were included in this review, six powder and one liquid. A second analysis was conducted to compare them to the composition of formulas intended for healthy infants, taking into consideration the Commission Delegated Regulation (EU) 2016/127 and Commission Delegated Regulation (EU) 2016/128 for micronutrients. The analysis revealed heterogeneity among protein substitutes suitable for infants with PKU. The energy and protein equivalents (P.Eq.) content are different; all of the substitutes contain docosahexaenoic acid (DHA) and arachidonic acid (ARA), while eicosapentaenoic acid (EPA), fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), human milk oligosaccharides (HMOs) and nucleotides are not present in all the substitutes. More attention should be paid to these infant products to ensure metabolic control of PKU, and also promote proper growth, cognitive neurodevelopment, favourable gut microbiota composition, and immune system health, while reducing the risk for non-communicable diseases (NCDs).
Collapse
Affiliation(s)
- Elvira Verduci
- Metabolic Diseases Unit, Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Martina Tosi
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Mirko Gambino
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Francesca Eletti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Alessandra Bosetti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Margherita Di Costanzo
- U.O.C. Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.D.C.); (G.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Giacomo Biasucci
- U.O.C. Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.D.C.); (G.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Laura Fiori
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (M.G.); (F.E.); (A.B.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| |
Collapse
|
22
|
Monaco MH, Wang M, Hauser J, Yan J, Dilger RN, Donovan SM. Formula supplementation with human and bovine milk oligosaccharides modulates blood IgG and T-helper cell populations, and ex vivo LPS-stimulated cytokine production in a neonatal preclinical model. Front Immunol 2023; 14:1327853. [PMID: 38179055 PMCID: PMC10765566 DOI: 10.3389/fimmu.2023.1327853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Human milk contains structurally diverse oligosaccharides (HMO), which are multifunctional modulators of neonatal immune development. Our objective was to investigate formula supplemented with fucosylated (2'FL) + neutral (lacto-N-neotetraose, LNnt) oligosaccharides and/or sialylated bovine milk oligosaccharides (BMOS) on immunological outcomes. Methods Pigs (n=46) were randomized at 48h of age to four diets: sow milk replacer formula (CON), BMOS (CON + 6.5 g/L BMOS), HMO (CON + 1.0 g/L 2'FL + 0.5 g/L LNnT), or BMOS+HMO (CON + 6.5 g/L BMOS + 1.0 g/L 2'FL + 0.5 g/L LNnT). Blood and tissues were collected on postnatal day 33 for measurement of cytokines and IgG, phenotypic identification of immune cells, and ex vivo lipopolysaccharide (LPS)-stimulation of immune cells. Results Serum IgG was significantly lower in the HMO group than BMOS+HMO but did not differ from CON or BMOS. The percentage of PBMC T-helper cells was lower in BMOS+HMO than the other groups. Splenocytes from the BMOS group secreted more IL-1β when stimulated ex vivo with LPS compared to CON or HMO groups. For PBMCs, a statistical interaction of BMOS*HMO was observed for IL-10 secretion (p=0.037), with BMOS+HMO and HMO groups differing at p=0.1. Discussion The addition of a mix of fucosylated and sialylated oligosaccharides to infant formula provides specific activities in the immune system that differ from formulations supplemented with one oligosaccharide structure.
Collapse
Affiliation(s)
- Marcia H. Monaco
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Jonas Hauser
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Jian Yan
- Nestlé Product Technology Center Nutrition, Vevey, Switzerland
| | - Ryan N. Dilger
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, United States
| |
Collapse
|
23
|
Albertos I, Romero J, Piqueras‐Picón A, García S, López M, Jiménez JM, Alija MJC. Market research of infant formula milks in Spain. Food Sci Nutr 2023; 11:7957-7966. [PMID: 38107113 PMCID: PMC10724587 DOI: 10.1002/fsn3.3712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023] Open
Abstract
There are circumstances in which breastfeeding is not possible and formula milk feeding has to be resorted to. In these cases, it is difficult to choose among the multitude of brands on the market for infant feeding. Although the composition of formula milk is largely regulated by legislation, there are certain nutrients whose presence in breast milk is beneficial. This circumstance will help us to establish some criteria to choose formula milk for a healthy infant. Among all the formula milks which can be found in different shops (pharmacies, supermarkets, etc.), market research has been carried out based on the nutritional criteria: the lipid and protein profile, certain carbohydrates, amino acids, and vitamins, as well as the presence of nucleotides, prebiotics, and probiotics. Based on these results, it can be established which formula milk we would give to a healthy infant. Thus, within the analyzed formula milks, it has been concluded that the most complete milk in this would be formula milk D and the least formula milk J. Although more studies are needed to confirm this, it is foreseeable that, as the scientific evidence is greater, the legislation will be updated and considering these nutrients for a correct formula milk.
Collapse
Affiliation(s)
- Irene Albertos
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| | - Janira Romero
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| | | | - Sara García
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| | - María López
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| | - José María Jiménez
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| | - María José Castro Alija
- Recognized Research Group: Assessment and Multidisciplinary Intervention in Health Care and Sustainable Lifestyles of the University of ValladolidValladolidSpain
| |
Collapse
|
24
|
Zhu L, Li H, Luo T, Deng Z, Li J, Zheng L, Zhang B. Human Milk Oligosaccharides: A Critical Review on Structure, Preparation, Their Potential as a Food Bioactive Component, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15908-15925. [PMID: 37851533 DOI: 10.1021/acs.jafc.3c04412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Human milk is the gold standard for infant feeding. Human milk oligosaccharides (HMOs) are a unique group of oligosaccharides in human milk. Great interest in HMOs has grown in recent years due to their positive effects on various aspects of infant health. HMOs provide various physiologic functions, including establishing a balanced infant's gut microbiota, strengthening the gastrointestinal barrier, preventing infections, and potential support to the immune system. However, the clinical application of HMOs is challenging due to their specificity to human milk and the difficulties and high costs associated with their isolation and synthesis. Here, the differences in oligosaccharides in human and other mammalian milk are compared, and the synthetic strategies to access HMOs are summarized. Additionally, the potential use and molecular mechanisms of HMOs as a new food bioactive component in different diseases, such as infection, necrotizing enterocolitis, diabetes, and allergy, are critically reviewed. Finally, the current challenges and prospects of HMOs in basic research and application are discussed.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
25
|
Urrutia-Baca VH, Chuck-Hernández C, Gutiérrez-Uribe J, Ramos-Parra PA, Licona-Cassani C. Development and validation of a versatile analytical method for absolute quantification of seven oligosaccharides in human, bovine, and goat milk. Heliyon 2023; 9:e22475. [PMID: 38028015 PMCID: PMC10679482 DOI: 10.1016/j.heliyon.2023.e22475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Oligosaccharides are significant in mammalian milk, where they serve as prebiotics that promote the growth of beneficial gut bacteria in infants. Comprehensive research of milk oligosaccharides requires precise and validated analytical methods for compositional studies. To address this need, the focus of our study was to develop and validate an analytical method using UPLC-MS/MS to quantify seven specific oligosaccharides found in mammalian milk. The developed and optimized method has adequate linearity, accuracy, and precision parameters. The detection (LOD) and quantification (LOQ) limits for the seven compounds ranged from 0.0018 to 0.0030 μg/mL and 0.0054-0.0063 μg/mL, respectively. The sample preparation method yielded recovery rates above 90.5 %. Furthermore, no significant matrix effect was observed. The validated method was successfully applied to human, goat, and bovine milk samples, demonstrating its proficiency in identifying variances in the concentration of oligosaccharides across different mammals. This versatile method will allow future research about factors affecting oligosaccharide composition.
Collapse
Affiliation(s)
- Víctor H. Urrutia-Baca
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Cristina Chuck-Hernández
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Janet Gutiérrez-Uribe
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Perla A. Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Cuauhtemoc Licona-Cassani
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| |
Collapse
|
26
|
Mohapatra I, Samantaray SR. Breastfeeding and Environmental Consciousness: A Narrative Review of Environmental Implications and Potential Contributions to Reduce Waste and Energy Consumption. Cureus 2023; 15:e45878. [PMID: 37885540 PMCID: PMC10599186 DOI: 10.7759/cureus.45878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Breastfeeding is a natural and essential process that not only confers numerous health benefits to infants and mothers but also plays an important role in environmental sustainability. This narrative review explores the environmental implications of breastfeeding in comparison to formula feeding and examines the potential contributions of breastfeeding to reduce waste, energy consumption, and carbon footprint. By exploring the existing literature and research findings, this review sheds light on how breastfeeding aligns with environmental conservation efforts and reinforces the importance of promoting breastfeeding practices for a more sustainable and environment-friendly future.
Collapse
Affiliation(s)
- Ipsita Mohapatra
- Obstetrics and Gynecology, All India Institute of Medical Sciences, Kalyani, Kalyani, IND
| | - Subha R Samantaray
- Obstetrics and Gynecology, All India Institute of Medical Sciences, Kalyani, Kalyani, IND
| |
Collapse
|
27
|
Zhao C, Chen N, Ashaolu TJ. Prebiotic and modulatory evidence of lactoferrin on gut health and function. J Funct Foods 2023; 108:105741. [DOI: 10.1016/j.jff.2023.105741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
28
|
Oosting A, Harvey L, Ringler S, van Dijk G, Schipper L. Beyond ingredients: Supramolecular structure of lipid droplets in infant formula affects metabolic and brain function in mouse models. PLoS One 2023; 18:e0282816. [PMID: 37531323 PMCID: PMC10395839 DOI: 10.1371/journal.pone.0282816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Human milk beneficially affects infant growth and brain development. The supramolecular structure of lipid globules in human milk i.e., large lipid globules covered by the milk fat globule membrane, is believed to contribute to this effect, in addition to the supply of functional ingredients. Three preclinical (mouse) experiments were performed to study the effects of infant formula mimicking the supramolecular structure of human milk lipid globules on brain and metabolic health outcomes. From postnatal day 16 to 42, mouse offspring were exposed to a diet containing infant formula with large, phospholipid-coated lipid droplets (structure, STR) or infant formula with the same ingredients but lacking the unique structural properties as observed in human milk (ingredient, ING). Subsequently, in Study 1, the fatty acid composition in liver and brain membranes was measured, and expression of hippocampal molecular markers were analyzed. In Study 2 and 3 adult (Western-style diet-induced) body fat accumulation and cognitive function were evaluated. Animals exposed to STR compared to ING showed improved omega-3 fatty acid accumulation in liver and brain, and higher expression of brain myelin-associated glycoprotein. Early exposure to STR reduced fat mass accumulation in adulthood; the effect was more pronounced in animals exposed to a Western-style diet. Additionally, mice exposed to STR demonstrated better memory performance later in life. In conclusion, early life exposure to infant formula containing large, phospholipid-coated lipid droplets, that are closer to the supramolecular structure of lipid globules in human milk, positively affects adult brain and metabolic health outcomes in pre-clinical animal models.
Collapse
Affiliation(s)
| | | | | | - Gertjan van Dijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Lidewij Schipper
- Danone Nutricia Research, Utrecht, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
29
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
30
|
Effects of dietary oat supplementation on carcass traits, muscle metabolites, amino acid profiles, and its association with meat quality of Small-tail Han sheep. Food Chem 2023; 411:135456. [PMID: 36669340 DOI: 10.1016/j.foodchem.2023.135456] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/04/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Oat supplementation of the ruminant diet can improve growth performance and meat quality traits, but the role of muscle metabolites has not been evaluated. This study aimed to establish whether oat grass supplementation (OS) of Small-tail Han sheep improved growth performance and muscle tissue metabolites that are associated with better meat quality and flavor. After 90-day, OS fed sheep had higher live-weight and carcass-weight, and lower carcass fat. Muscle metabolomics analysis showed that OS fed sheep had higher levels of taurine, l-carnitine, inosine-5'-monophospgate, cholic acid, and taurocholic acid, which are primarily involved in taurine and hypotaurine metabolism, purine metabolism, and bile acid biosynthesis and secretion, decreased fat accumulation and they promote functional or flavor metabolites. OS also increased muscle levels of amino acids that are attributed to better quality and flavorsome mutton. These findings provided further evidence for supplementing sheep with oat grass to improve growth performance and meat quality.
Collapse
|
31
|
Morissette R, Mihalov J, Carlson SJ, Kaneko KJ. Trends in ingredients added to infant formula: FDA's experiences in the GRAS notification program. Food Chem Toxicol 2023:113876. [PMID: 37286029 DOI: 10.1016/j.fct.2023.113876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
While human milk is considered the optimal source of nutrition for infants for the first six and twelve months of age, with continued benefit of breastfeeding with complementary foods, a safe alternative, nutritionally adequate to support infant growth and development, is necessary. In the United States, the Food and Drug Administration (FDA) establishes the requirements necessary to demonstrate the safety of infant formula within the framework of the Federal Food, Drug, and Cosmetic Act. FDA's Center for Food Safety and Applied Nutrition/Office of Food Additive Safety evaluates the safety and lawfulness of individual ingredients used in infant formula, whereas the Office of Nutrition and Food Labeling oversees the safety of infant formula. Most infant formula ingredients are either from sources with history of safe consumption by infants or are like components in human milk. Information demonstrating the regulatory status of all ingredients is required in submissions for new infant formulas, and ingredient manufacturers often use the Generally Recognized as Safe (GRAS) Notification program to establish ingredient regulatory status. We provide an overview of ingredients used in infant formula evaluated through the GRAS Notification program to highlight trends and discuss the data and information used to reach these GRAS conclusions.
Collapse
Affiliation(s)
- Rachel Morissette
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Jeremy Mihalov
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Susan J Carlson
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA
| | - Kotaro J Kaneko
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, USA.
| |
Collapse
|
32
|
Decsi T, Marosvölgyi T, Szabó É. Docosahexaenoic Acid in Formulas for Term Infants: The Way from Pioneer Idea to Mandatory Dietary Recommendation. Life (Basel) 2023; 13:1326. [PMID: 37374109 DOI: 10.3390/life13061326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a novel mandatory constituent of breast-milk-substitute infant formula in Europe. The aim of the present narrative review was to summarize available data in connection with the background of the novel European mandatory dietary recommendation to add at least 20 mg/100 kcal (4.8 mg/100 kJ) DHA to infant formula. The literature search with the expression "docosahexaenoic acid with (infant or human milk or formula)" revealed nearly 2000 papers, including more than 400 randomized controlled trials (RCTs). DHA is a persistent constituent of human milk (HM) with a worldwide mean level of 0.37% (standard deviation: 0.11%) of all fatty acids in HM. RCTs on supplementing DHA to lactating women showed some indications, though no direct evidence of the beneficial effect of enhanced HM DHA on the development of breastfed infants. The most-recent Cochrane review of RCTs investigating the effect of DHA supplementation to infant formula for full-term infants reported no evidence for recommending supplementation. The controversy between the Cochrane view and the actual recommendation may be related to the numerous hurdles in organizing high-quality studies in this field. On the basis of the official food composition recommendation, today in Europe, DHA should be considered as a fatty acid essential for infants.
Collapse
Affiliation(s)
- Tamás Decsi
- Department of Pediatrics, Medical School and Clinical Centre, University of Pécs, 7623 Pécs, Hungary
- Cochrane Hungary, Clinical Centre, University of Pécs, 7623 Pécs, Hungary
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
33
|
Douglass MS, Kaplowitz MR, Zhang Y, Fike CD. Impact of l-citrulline on nitric oxide signaling and arginase activity in hypoxic human pulmonary artery endothelial cells. Pulm Circ 2023; 13:e12221. [PMID: 37063746 PMCID: PMC10091859 DOI: 10.1002/pul2.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Impaired nitric oxide (NO) signaling contributes to the development of pulmonary hypertension (PH). The l-arginine precursor, l-citrulline, improves NO signaling and has therapeutic potential in PH. However, there is evidence that l-citrulline might increase arginase activity, which in turn, has been shown to contribute to PH. Our major purpose was to determine if l-citrulline increases arginase activity in hypoxic human pulmonary artery endothelial cells (PAECs). In addition, to avoid potential adverse effects from high dose l-citrulline monotherapy, we evaluated whether the effect on NO signaling is greater using co-treatment with l-citrulline and another agent that improves NO signaling, folic acid, than either alone. Arginase activity was measured in human PAECs cultured under hypoxic conditions in the presence of l-citrulline (0-1 mM). NO production and endothelial nitric oxide synthase (eNOS) coupling, as assessed by eNOS dimer-to-monomer ratios, were measured in PAECs treated with l-citrulline and/or folic acid (0.2 μM). Arginase activity increased in hypoxic PAECs treated with 1 mM but not with either 0.05 or 0.1 mM l-citrulline. Co-treatment with folic acid and 0.1 mM l-citrulline increased NO production and eNOS dimer-to-monomer ratios more than treatment with either alone. The potential to increase arginase activity suggests that there might be plasma l-citrulline concentrations that should not be exceeded when using l-citrulline to treat PH. Rather than progressively increasing the dose of l-citrulline as a monotherapy, co-therapy with l-citrulline and folic acid merits consideration, due to the possibility of achieving efficacy at lower doses and minimizing side effects.
Collapse
Affiliation(s)
| | | | - Yongmei Zhang
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Candice D. Fike
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
34
|
Xi Y, Zhao T, Liu R, Song F, Deng J, Ai N. Assessing Sensory Attributes and Properties of Infant Formula Milk Powder Driving Consumers' Preference. Foods 2023; 12:foods12050997. [PMID: 36900514 PMCID: PMC10000600 DOI: 10.3390/foods12050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Infant formula milk powder (IFMP) is an excellent substitute for breast milk. It is known that the composition of maternal food during pregnancy and lactation and exposure level to food during infancy highly influence taste development in early infancy. However, little is known about the sensory aspects of infant formula. Herein, the sensory characteristics of 14 brands of infant formula segment 1 marketed in China were evaluated, and differences in preferences for IFMPs were determined. Descriptive sensory analysis was performed by well-trained panelists to determine the sensory characteristics of evaluated IFMPs. The brands S1 and S3 had significantly lower astringency and fishy flavor compared to the other brands. Moreover, it was found that S6, S7 and S12 had lower milk flavor scores but higher butter scores. Furthermore, internal preference mapping revealed that the attributes fatty flavor, aftertaste, saltiness, astringency, fishy flavor and sourness negatively contributed to consumer preference in all three clusters. Considering that the majority of consumers prefer milk powders rich in aroma, sweet and steamed flavors, these attributes could be considered for enhancement by the food industry.
Collapse
Affiliation(s)
- Yanmei Xi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Tong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Ruirui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Fuhang Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (J.D.); (N.A.)
| | - Nasi Ai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology & Business University, Beijing 100048, China
- Correspondence: (J.D.); (N.A.)
| |
Collapse
|
35
|
Señoráns M, Gallo V, Calvo MV, Fontecha J. Lipidomic and Proteomic Profiling of the Milk Fat Globule Membrane from Different Industrial By-Products of the Butter and Butter Oil Manufacturing Process. Foods 2023; 12:foods12040750. [PMID: 36832824 PMCID: PMC9956092 DOI: 10.3390/foods12040750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Recent studies have demonstrated the positive effects of regular intake of milk fat globule membranes (MFGMs) on neural and cognitive development, as well as immune and gastrointestinal health in infants and elders. Dairy products and by-products generated from the butter and butter oil manufacturing process are valuable sources of MFGM. Thus, in view of the growing need to reduce by-products and waste, it is crucial to foster research aimed at the valorization of dairy by-products rich in MFGM. For this purpose, all the by-products coming from butter and butter oil production (from raw milk to the related by-products) were used to study the MFGM isolated fractions, followed by their characterization through a combined lipidomic and proteomic approach. The patterns of polar lipids and proteins indicated that buttermilk (BM), butterserum (BS), and their mix (BM-BS blend) are the most suitable by-products to be employed as starting material for the isolation and purification of MFGMs, thus obtaining MFGM-enriched ingredients for the manufacture of products with high biological activity.
Collapse
|
36
|
Belyaeva IA, Bombardirova EP, Turti TV. New Strategies for Enhancement of Infant Milk Formulas Composition. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i6.2468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article covers the issues of remodeling breast milk’s protective properties during creating infant milk formulas. First of all, this concerns the conditions for normal intestinal microbiota development in growing organism. Its quantitative and qualitative features are the trigger of either sanogenetic, or pathological immune and metabolic reactions, and also determine gut-brain axis functioning. The protective significance of prebiotic composition diversity of mammalian milk and the inductive role of breast milk oligosaccharides are shown. The modern concept of synbiotics role in gastrointestinal tract and other systems functioning, as well as the use of modern synbiotics in the creation of infant formulas (available Russian formula included) are presented.
Collapse
Affiliation(s)
- I. A. Belyaeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Morozovskaya Children’s City Hospital
| | - E. P. Bombardirova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - T. V. Turti
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Research Institute for Healthcare Organization and Medical Management
| |
Collapse
|
37
|
Belyaeva IA, Namazova-Baranova LS, Bombardirova EP, Turti TV. World Trends in Infant Formulas Composition Enhancement. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i6.2479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This article provides the overview of the major strategies for infant formulas composition enhancement via modern technologies and trends in minimizing technology-related loads on the environment. Potential modifications of quantitative and qualitative characteristics of milk formulas nutrients have been determined. We also covered product contents changing over age, as well as the perspectives of using animal milk in formulas. The relevance of adding biologically active substances and living microorganisms (probiotics), their safety, and efficacy are discussed.
Collapse
Affiliation(s)
- Irina A. Belyaeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Morozovskaya Children’s City Hospital
| | - Leyla S. Namazova-Baranova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| | - Elena P. Bombardirova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Tatiana V. Turti
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Research Institute for Healthcare Organization and Medical Management
| |
Collapse
|
38
|
Einerhand AWC, van Loo-Bouwman CA, Weiss GA, Wang C, Ba G, Fan Q, He B, Smit G. Can Lactoferrin, a Natural Mammalian Milk Protein, Assist in the Battle against COVID-19? Nutrients 2022; 14:nu14245274. [PMID: 36558432 PMCID: PMC9782828 DOI: 10.3390/nu14245274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Notwithstanding mass vaccination against specific SARS-CoV-2 variants, there is still a demand for complementary nutritional intervention strategies to fight COVID-19. The bovine milk protein lactoferrin (LF) has attracted interest of nutraceutical, food and dairy industries for its numerous properties-ranging from anti-viral and anti-microbial to immunological-making it a potential functional ingredient in a wide variety of food applications to maintain health. Importantly, bovine LF was found to exert anti-viral activities against several types of viruses, including certain SARS-CoV-2 variants. LF's potential effect on COVID-19 patients has seen a rapid increase of in vitro and in vivo studies published, resulting in a model on how LF might play a role during different phases of SARS-CoV-2 infection. Aim of this narrative review is two-fold: (1) to highlight the most relevant findings concerning LF's anti-viral, anti-microbial, iron-binding, immunomodulatory, microbiota-modulatory and intestinal barrier properties that support health of the two most affected organs in COVID-19 patients (lungs and gut), and (2) to explore the possible underlying mechanisms governing its mode of action. Thanks to its potential effects on health, bovine LF can be considered a good candidate for nutritional interventions counteracting SARS-CoV-2 infection and related COVID-19 pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Caiyun Wang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
| | - Genna Ba
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Qicheng Fan
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Baoping He
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Gerrit Smit
- Yili Innovation Center Europe, 6708 WH Wageningen, The Netherlands
| |
Collapse
|
39
|
Strzalkowski AJ, Järvinen KM, Schmidt B, Young BE. Protein and carbohydrate content of infant formula purchased in the United States. Clin Exp Allergy 2022; 52:1291-1301. [PMID: 36129802 DOI: 10.1111/cea.14232] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The protein and carbohydrate composition of formula fed infants' diets in the United States (US) has not been described. The aims of this study were to characterize these dietary exposures in infant formula purchased in the US and to estimate the proportion of formula purchased which is hypoallergenic or lactose-reduced formula. METHODS Powdered infant formula purchase data from all major physical stores in the US prior to the COVID-19 pandemic, between 2017 and 2019, were obtained from Information Resources, Inc. Protein and carbohydrate composition and scoop sizes for each formula were obtained from manufacturers. Ready to feed liquid products, products for premature infants and products for over 1 year old were not included. RESULTS Total volumes of term formula purchased were 216 million kg of formula powder (equivalent to 1.65 billion litres) over 3 years. Intact protein formula was 67.9% of formula purchased, 26.6% was partially hydrolysed and 5.5% was hypoallergenic (5.2% extensively hydrolysed protein; 0.3% amino acid based). Soy protein formula represented 5.1% of formula purchased. Carbohydrate content overall was 52.7% lactose, 42.3% glucose polymers and 5.0% sucrose. 23.7% of formula purchased included sucrose as a carbohydrate. Of all formula purchased, 59.0% was lactose reduced, containing a non-lactose carbohydrate. Of 'standard' formula, defined as intact protein, non-thickened, cow's milk formula, 32.3% was lactose reduced. The proportion of hypoallergenic formula purchased significantly exceeded the prevalence of cow's milk protein allergy and increased over the 3-year study period from 4.9% to 7.6% of all formula sold. CONCLUSIONS US infants are exposed to unnecessarily high levels of non-lactose carbohydrates and hypoallergenic formula, and this may represent a significant nutritional health risk.
Collapse
Affiliation(s)
- Alexander J Strzalkowski
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Kirsi M Järvinen
- Department of Pediatrics Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Brianne Schmidt
- Department of Pediatrics Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Bridget E Young
- Department of Pediatrics Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
40
|
Martínez-Vacas A, Di Pierdomenico J, Gallego-Ortega A, Valiente-Soriano FJ, Vidal-Sanz M, Picaud S, Villegas-Pérez MP, García-Ayuso D. Systemic taurine treatment affords functional and morphological neuroprotection of photoreceptors and restores retinal pigment epithelium function in RCS rats. Redox Biol 2022; 57:102506. [PMID: 36270186 PMCID: PMC9583577 DOI: 10.1016/j.redox.2022.102506] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of our work was to study whether taurine administration has neuroprotective effects in dystrophic Royal College of Surgeons (RCS) rats, suffering retinal degeneration secondary to impaired retinal pigment epithelium phagocytosis caused by a MERTK mutation. Dystrophic RCS-p + female rats (n = 36) were divided into a non-treated group (n = 16) and a treated group (n = 20) that received taurine (0.2 M) in drinking water from postnatal day (P)21 to P45, when they were processed. Retinal function was assessed with electroretinogram. Retinal morphology was assessed in cross-sections using immunohistochemical techniques to label photoreceptors, retinal microglial and macroglial cells, active zones of conventional and ribbon synaptic connections, and oxidative stress. Retinal pigment epithelium function was examined using intraocular fluorogold injections. Our results document that taurine treatment increases taurine plasma levels and photoreceptor survival in dystrophic rats. The number of photoreceptor nuclei rows at P45 was 3-5 and 6-11 in untreated and treated animals, respectively. Electroretinograms showed increases of 70% in the rod response, 400% in the a-wave amplitude, 30% in the b-wave amplitude and 75% in the photopic b-wave response in treated animals. Treated animals also showed decreased numbers of microglial cells in the outer retinal layers, decreased glial fibrillary acidic protein (GFAP) expression in Müller cells, decreased oxidative stress in the outer and inner nuclear layers and improved maintenance of synaptic connections. Treated animals showed increased FG phagocytosis in the retinal pigment epithelium cells. In conclusion, systemic taurine treatment decreases photoreceptor degeneration and increases electroretinographic responses in dystrophic RCS rats and these effects may be mediated through various neuroprotective mechanisms.
Collapse
Affiliation(s)
- Ana Martínez-Vacas
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Francisco J Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Serge Picaud
- Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain.
| |
Collapse
|
41
|
Peptidomics as a tool to analyze endogenous peptides in milk and milk-related peptides. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
42
|
de Almeida CC, Baião DDS, Rodrigues PDA, Saint’Pierre TD, Hauser-Davis RA, Leandro KC, Paschoalin VMF, da Costa MP, Conte-Junior CA. Toxic Metals and Metalloids in Infant Formulas Marketed in Brazil, and Child Health Risks According to the Target Hazard Quotients and Target Cancer Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11178. [PMID: 36141460 PMCID: PMC9517614 DOI: 10.3390/ijerph191811178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Children are highly vulnerable to chemical exposure. Thus, metal and metalloid in infant formulas are a concern, although studies in this regard are still relatively scarce. Thus, the presence of aluminum, arsenic, cadmium, tin, mercury, lead, and uranium was investigated in infant formulas marketed in Brazil by inductively coupled plasma mass spectrometry, and the Target Hazard Quotients (THQ) and Target Cancer Risk (TCR) were calculated in to assess the potential risk of toxicity for children who consume these products continuously. Aluminum ranging from 0.432 ± 0.049 to 1.241 ± 0.113 mg·kg-1, arsenic from 0.012 ± 0.009 to 0.034 ± 0.006 mg·kg-1, and tin from 0.007 ± 0.003 to 0.095 ± 0.024 mg·kg-1 were the major elements, while cadmium and uranium were present at the lowest concentrations. According to the THQ, arsenic contents in infant formulas showed a THQ > 1, indicating potential health risk concerns for newborns or children. Minimal carcinogenic risks were observed for the elements considered carcinogenic. Metabolic and nutritional interactions are also discussed. This study indicates the need to improve infant formula surveillance concerning contamination by potentially toxic and carcinogenic elements.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Paloma de Almeida Rodrigues
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Tatiana Dillenburg Saint’Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Rio de Janeiro 22541-041, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratory for Environmental Health Assessment and Promotion, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Katia Christina Leandro
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Marion Pereira da Costa
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador 40170-110, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
43
|
Kocsis R, Süle J, Nagy P, Gál J, Tardy E, Császár G, Rácz B. Annual and seasonal trends in cow's milk quality determined by FT-MIR spectroscopy in Hungary between 2011 and 2020. Acta Vet Hung 2022; 70:207-214. [PMID: 36037047 DOI: 10.1556/004.2022.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
We analysed and monitored the major chemical composition of cow's bulk milk by Fourier transform mid-infrared (FT-MIR) spectroscopy over a 10-year period in the whole territory of Hungary. In addition, the two most important key parameters for milk quality assessment, total bacterial count (TBC) and somatic cell count (SCC) were also followed. Production parameters showed significant seasonal and yearly changes. The overall mean fat, protein, lactose and solids-non-fat (SNF) contents of cow's milk were 3.81%, 3.32%, 4.74% and 8.76%, respectively. A circannual variation was observed in the chemical composition and yield of milk components of samples examined between 2011 and 2020. Concerning milk fat, milk protein and SNF, the values were the lowest in summer and the highest in winter. In the case of lactose, the minimum values were measured in autumn and the maximum values in spring. An obvious trend of long-term elevation of lactose and SNF was found in the raw cow milk samples over the observed period. The overall mean TBC and SCC of cow's milk were 52 × 103 CFU ml-1 and 270 × 103 cells/ml, respectively. Although there were differences in the monthly average values, no seasonal cyclicality was observed.
Collapse
Affiliation(s)
- Róbert Kocsis
- 1 Hungarian Dairy Research Institute Ltd., Mosonmagyaróvár, Hungary
| | - Judit Süle
- 1 Hungarian Dairy Research Institute Ltd., Mosonmagyaróvár, Hungary
| | - Péter Nagy
- 2 Emirates Industry for Camel Milk and Products, Farm and Veterinary Department, Dubai, United Arab Emirates
| | - Judit Gál
- 1 Hungarian Dairy Research Institute Ltd., Mosonmagyaróvár, Hungary
| | - Emília Tardy
- 1 Hungarian Dairy Research Institute Ltd., Mosonmagyaróvár, Hungary
| | - Gábor Császár
- 1 Hungarian Dairy Research Institute Ltd., Mosonmagyaróvár, Hungary
| | - Bence Rácz
- 3 Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
44
|
Tao X, Zhang Z, Yang Z, Rao B. The effects of taurine supplementation on diabetes mellitus in humans: A systematic review and meta-analysis. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100106. [PMID: 35769396 PMCID: PMC9235038 DOI: 10.1016/j.fochms.2022.100106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 12/27/2022]
Abstract
The first meta-analysis to comprehensively evaluate the effects of taurine supplementation on diabetic patients. Statistical significance in HbA1C, Fasting Blood Sugar, HOMA-IR after oral supplemental of taurine by diabetic patients than that of placebo. Taurine is expected to be a new option for the management of diabetes. Objective The ameliorative effect of taurine on diabetes has received extensive attention in recent years. Despite promising data from animal studies, the efficacy of taurine supplementation in human studies has been inconsistent. We thus did a meta-analysis of randomized controlled trials to assess the effect of taurine supplement on glycemic indices, serum lipids, blood pressure, body composition in patients with diabetes. Methods We systematically searched PubMed, Embase, Cochrane, Web of Science, FDA.gov, and ClinicalTrials.gov for randomized controlled trials (published from inception to January 15, 2022; no language restrictions) about the effect of taurine supplement on diabetes. Values of Standardized Mean Differences (SMD) were determined for continuous outcomes. Results Of 2206 identified studies, 5 randomized controlled trials were eligible and were included in our analysis (N = 209 participants). Compared with the control group, taurine could significantly reduce HbA1c (SMD −0.41[95% CI: −0.74, −0.09], p = 0.01), Fasting Blood Sugar (SMD − 1.28[95% CI: −2.42, −0.14], p = 0.03) and HOMA-IR (SMD − 0.64[95% CI: −1.22, −0.06], p = 0.03). In addition, taurine also reduced Insulin (SMD −0.48 [95% CI: −0.99, 0.03], p = 0.06) and TG (SMD −0.26 [95% CI: −0.55, 0.02], p = 0.07), but did not reach statistical significance. Conclusions Taurine supplementation is beneficial in reducing glycemic indices, such as HbA1c, Fasting Blood Sugar, HOMA-IR in diabetic patients, but has no significant effect on serum lipids, blood pressure and body composition in diabetic patients. Taurine emerges as a new option for the management of patients with diabetes. Further studies are needed to understand the potential effect of taurine in diabetic patients.
Collapse
Affiliation(s)
- Xiaomei Tao
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Zhanzhi Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Zhenpeng Yang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Benqiang Rao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| |
Collapse
|
45
|
Su Y, Mao Y, Tian F, Cai X, Chen R, Li N, Qian C, Li X, Zhao Y, Wang Y. Profile of Folate in Breast Milk from Chinese Women over 1-400 Days Postpartum. Nutrients 2022; 14:nu14142962. [PMID: 35889919 PMCID: PMC9319857 DOI: 10.3390/nu14142962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Folate is an essential nutrient for growth in early life. This study aimed to determine the levels and compositions of folate in Chinese breast milk samples. This study was part of the Maternal Nutrition and Infant Investigation (MUAI) study. A total of 205 healthy mothers were randomly recruited in Chengdu over 1−400 days postpartum. Five different species of folate, including tetrahydrofolate (THF), 5-methyl-THF, 5,10-methenyl-THF,5-formyl-THF and unmetabolized folic acid (UMFA), were measured for liquid chromatography−tandem mass spectrometry (LC-MS). The median levels of total folate ranged from 12.86 to 56.77 ng/mL in the breast milk of mothers at 1−400 days postpartum, gradually increasing throughout the lactating periods. The median levels of 5-methyl-THF, minor reduced folate (the sum of THF, 5,10-methenyl-THF and 5-formyl-THF) and UMFA were in the ranges of 8.52−40.65 ng/mL, 3.48−16.15 ng/mL and 0.00−1.24 ng/mL during 1−400 days postpartum, respectively. 5-Methyl-THF accounted for more than 65% of the total folate in all breast milk samples. The levels of UMFA in mature breast milk samples were higher in supplement users than nonusers, but not for colostrum and transitional milk samples (p < 0.05). In conclusion, the level of total folate in the breast milk changed along with the prolonged lactating periods, but 5-methyl-THF remains the dominant species of folate in the breast milk of Chinese populations across all entire lactating periods.
Collapse
Affiliation(s)
- Yanyan Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.S.); (R.C.); (N.L.); (C.Q.)
| | - Yingyi Mao
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.M.); (F.T.); (X.C.); (X.L.)
| | - Fang Tian
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.M.); (F.T.); (X.C.); (X.L.)
| | - Xiaokun Cai
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.M.); (F.T.); (X.C.); (X.L.)
| | - Ruidi Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.S.); (R.C.); (N.L.); (C.Q.)
| | - Na Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.S.); (R.C.); (N.L.); (C.Q.)
| | - Changli Qian
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.S.); (R.C.); (N.L.); (C.Q.)
| | - Xiang Li
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.M.); (F.T.); (X.C.); (X.L.)
| | - Yanrong Zhao
- Abbott Nutrition Research & Development Center, Abbott Ltd., Shanghai 200233, China; (Y.M.); (F.T.); (X.C.); (X.L.)
- Correspondence: (Y.Z.); (Y.W.)
| | - Yu Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.S.); (R.C.); (N.L.); (C.Q.)
- Correspondence: (Y.Z.); (Y.W.)
| |
Collapse
|
46
|
Almeida CC, Baião DDS, Rodrigues PDA, Saint'Pierre TD, Hauser-Davis RA, Leandro KC, Paschoalin VMF, da Costa MP, Conte-Junior CA. Macrominerals and Trace Minerals in Commercial Infant Formulas Marketed in Brazil: Compliance With Established Minimum and Maximum Requirements, Label Statements, and Estimated Daily Intake. Front Nutr 2022; 9:857698. [PMID: 35571960 PMCID: PMC9096439 DOI: 10.3389/fnut.2022.857698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Infant formulas are the main nutritional source for infants when breastfeeding is not possible or recommended. The daily need for specific nutrients, such as essential minerals, in early stages of a child's life is high because of rapid infant growth and development, which impose metabolic flux increases on these pathways to support growth, physical activity, and defense against infections. In this context, this research aimed to determine macromineral and trace mineral contents in starting (phase 1) and follow-up (phase 2) infant formulas marketed in Brazil (n = 30) by inductively coupled plasma-mass spectrometry, calculate estimated daily intakes, and compare them to reference values regarding adequate intake and tolerable upper intake levels. The highest concentrations of macrominerals were observed in Ca, K, P, and Na, and trace minerals in Fe, Zn, Mn, and Cu. Certain homogeneity only to trace mineral contents was observed when analyzing inter-batch values from same manufacturers. In general, all phase 1 and phase 2 infant formula brands and batches met or exceeded Fe, Zn, Cu, Mo, and Se contents when compared to maximum limits established by Codex Alimentarius. In addition, Zn contents in eight phase 1 and in four phase 2 infant formulas were above the contents established by the tolerable upper intake level for children aged 0–6 and/or 7–12 months, respectively. These findings highlight the need to expand regular infant formula inspection concerning nutritional quality, as some composition aspects of these foods must be improved to follow international guidelines, since ideal requirements for infant formula composition, quality, and safety interfere in child development and adult health.
Collapse
Affiliation(s)
- Cristine Couto Almeida
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Paloma de Almeida Rodrigues
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Rachel Ann Hauser-Davis
- Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Katia Christina Leandro
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marion Pereira da Costa
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Carlos Adam Conte-Junior
| |
Collapse
|
47
|
Tochitani S. Taurine: A Maternally Derived Nutrient Linking Mother and Offspring. Metabolites 2022; 12:metabo12030228. [PMID: 35323671 PMCID: PMC8954275 DOI: 10.3390/metabo12030228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Mammals can obtain taurine from food and synthesize it from sulfur-containing amino acids. Mammalian fetuses and infants have little ability to synthesize taurine. Therefore, they are dependent on taurine given from mothers either via the placenta or via breast milk. Many lines of evidence demonstrate that maternally derived taurine is essential for offspring development, shaping various traits in adults. Various environmental factors, including maternal obesity, preeclampsia, and undernutrition, can affect the efficacy of taurine transfer via either the placenta or breast milk. Thus, maternally derived taurine during the perinatal period can influence the offspring’s development and even determine health and disease later in life. In this review, I will discuss the biological function of taurine during development and the regulatory mechanisms of taurine transport from mother to offspring. I also refer to the possible environmental factors affecting taurine functions in mother-offspring bonding during perinatal periods. The possible functions of taurine as a determinant of gut microbiota and in the context of the Developmental Origins of Health and Disease (DOHaD) hypothesis will also be discussed.
Collapse
Affiliation(s)
- Shiro Tochitani
- Division of Health Science, Graduate School of Health Science, Suzuka University of Medical Science, Suzuka 513-8670, Japan; ; Tel.: +81-59-373-7069
- Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science, Suzuka 513-8670, Japan
- Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
48
|
Lee H, Li Z, Christensen B, Peng Y, Li X, Hernell O, Lönnerdal B, Slupsky CM. Metabolic Phenotype and Microbiome of Infants Fed Formula Containing Lactobacillus paracasei Strain F-19. Front Pediatr 2022; 10:856951. [PMID: 35558362 PMCID: PMC9087039 DOI: 10.3389/fped.2022.856951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Early childhood nutrition drives the development of the gut microbiota. In contrast to breastfeeding, feeding infant formula has been shown to impact both the gut microbiota and the serum metabolome toward a more unfavorable state. It is thought that probiotics may alter the gut microbiota and hence create a more favorable metabolic outcome. To investigate the impact of supplementation with Lactobacillus paracasei spp. paracasei strain F-19 on the intestinal microbiota and the serum metabolome, infants were fed a formula containing L. paracasei F19 (F19) and compared to a cohort of infants fed the same standard formula without the probiotic (SF) and a breast-fed reference group (BF). The microbiome, as well as serum metabolome, were compared amongst groups. Consumption of L. paracasei F19 resulted in lower community diversity of the gut microbiome relative to the SF group that made it more similar to the BF group at the end of the intervention (4 months). It also significantly increased lactobacilli and tended to increase bifidobacteria, also making it more similar to the BF group. The dominant genus in the microbiome of all infants was Bifidobacterium throughout the intervention, which was maintained at 12 months. Although the serum metabolome of the F19 group was more similar to the group receiving the SF than the BF group, increases in serum TCA cycle intermediates and decreases in several amino acids in the metabolome of the F19 group were observed, which resulted in a metabolome that trended toward the BF group. Overall, L. paracasei F19 supplementation did not override the impact of formula-feeding but did impact the microbiome and the serum metabolome in a way that may mitigate some unfavorable metabolic impacts of formula-feeding.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Zailing Li
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | | | - Yongmei Peng
- Department of Child Health Care, Children's Hospital, Fudan University, Shanghai, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
49
|
Evaluation of 2'-Fucosyllactose and Bifidobacterium longum Subspecies infantis on Growth, Organ Weights, and Intestinal Development of Piglets. Nutrients 2021; 14:nu14010199. [PMID: 35011074 PMCID: PMC8747721 DOI: 10.3390/nu14010199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Human milk is rich in oligosaccharides that influence intestinal development and serve as prebiotics for the infant gut microbiota. Probiotics and 2’-fucosyllactose (2’-FL) added individually to infant formula have been shown to influence infant development, but less is known about the effects of their synbiotic administration. Herein, the impact of formula supplementation with 2’-fucosyllactose (2’-FL) and Bifidobacterium longum subsp. infantis Bi-26 (Bi-26), or 2’-FL + Bi-26 on weight gain, organ weights, and intestinal development in piglets was investigated. Two-day-old piglets (n = 53) were randomized in a 2 × 2 design to be fed a commercial milk replacer ad libitum without (CON) or with 1.0 g/L 2’-FL. Piglets in each diet were further randomized to receive either glycerol stock alone or Bi-26 (109 CFU) orally once daily. Body weights and food intake were monitored from postnatal day (PND) 2 to 33/34. On PND 34/35, animals were euthanized and intestine, liver and brain weights were assessed. Intestinal samples were collected for morphological analyses and measurement of disaccharidase activity. Dry matter of cecum and colon contents and Bifidobacterium longum subsp. infantis abundance by RT-PCR were also measured. All diets were well tolerated, and formula intake did not differ among the treatment groups. Daily body weights were affected by 2’-FL, Bi-26, and day, but no interaction was observed. There was a trend (p = 0.075) for greater total body weight gain in CON versus all other groups. Jejunal and ascending colon histomorphology were unaffected by treatment; however, there were main effects of 2’-FL to increase (p = 0.040) and Bi-26 to decrease (p = 0.001) ileal crypt depth. The addition of 2’-FL and/or Bi-26 to milk replacer supported piglet growth with no detrimental effects on body and organ weights, or intestinal structure and function.
Collapse
|
50
|
How far is it from infant formula to human milk? A look at the human milk oligosaccharides. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|