1
|
Al-Beltagi M. Human milk oligosaccharide secretion dynamics during breastfeeding and its antimicrobial role: A systematic review. World J Clin Pediatr 2025; 14:104797. [DOI: 10.5409/wjcp.v14.i2.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs) are bioactive components of breast milk with diverse health benefits, including shaping the gut microbiota, modulating the immune system, and protecting against infections. HMOs exhibit dynamic secretion patterns during lactation, influenced by maternal genetics and environmental factors. Their direct and indirect antimicrobial properties have garnered significant research interest. However, a comprehensive understanding of the secretion dynamics of HMOs and their correlation with antimicrobial efficacy remains underexplored.
AIM To synthesize current evidence on the secretion dynamics of HMOs during lactation and evaluate their antimicrobial roles against bacterial, viral, and protozoal pathogens.
METHODS A systematic search of PubMed, Scopus, Web of Science, and Cochrane Library focused on studies investigating natural and synthetic HMOs, their secretion dynamics, and antimicrobial properties. Studies involving human, animal, and in vitro models were included. Data on HMO composition, temporal secretion patterns, and mechanisms of antimicrobial action were extracted. Quality assessment was performed using validated tools appropriate for study design.
RESULTS A total of 44 studies were included, encompassing human, animal, and in vitro research. HMOs exhibited dynamic secretion patterns, with 2′-fucosyllactose (2′-FL) and lacto-N-tetraose peaking in early lactation and declining over time, while 3-fucosyllactose (3-FL) increased during later stages. HMOs demonstrated significant antimicrobial properties through pathogen adhesion inhibition, biofilm disruption, and enzymatic activity impairment. Synthetic HMOs, including bioengineered 2′-FL and 3-FL, were structurally and functionally comparable to natural HMOs, effectively inhibiting pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Campylobacter jejuni. Additionally, HMOs exhibited synergistic effects with antibiotics, enhancing their efficacy against resistant pathogens.
CONCLUSION HMOs are vital in antimicrobial defense, supporting infant health by targeting various pathogens. Both natural and synthetic HMOs hold significant potential for therapeutic applications, particularly in infant nutrition and as adjuncts to antibiotics. Further research, including clinical trials, is essential to address gaps in knowledge, validate findings, and explore the broader applicability of HMOs in improving maternal and neonatal health.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Paediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
2
|
Jiang J, Xie H, Cao S, Xu X, Zhou J, Liu Q, Ding C, Liu M. Post-stroke depression: exploring gut microbiota-mediated barrier dysfunction through immune regulation. Front Immunol 2025; 16:1547365. [PMID: 40098959 PMCID: PMC11911333 DOI: 10.3389/fimmu.2025.1547365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Post-stroke depression (PSD) is one of the most common and devastating neuropsychiatric complications in stroke patients, affecting more than one-third of survivors of ischemic stroke (IS). Despite its high incidence, PSD is often overlooked or undertreated in clinical practice, and effective preventive measures and therapeutic interventions remain limited. Although the exact mechanisms of PSD are not fully understood, emerging evidence suggests that the gut microbiota plays a key role in regulating gut-brain communication. This has sparked great interest in the relationship between the microbiota-gut-brain axis (MGBA) and PSD, especially in the context of cerebral ischemia. In addition to the gut microbiota, another important factor is the gut barrier, which acts as a frontline sensor distinguishing between beneficial and harmful microbes, regulating inflammatory responses and immunomodulation. Based on this, this paper proposes a new approach, the microbiota-immune-barrier axis, which is not only closely related to the pathophysiology of IS but may also play a critical role in the occurrence and progression of PSD. This review aims to systematically analyze how the gut microbiota affects the integrity and function of the barrier after IS through inflammatory responses and immunomodulation, leading to the production or exacerbation of depressive symptoms in the context of cerebral ischemia. In addition, we will explore existing technologies that can assess the MGBA and potential therapeutic strategies for PSD, with the hope of providing new insights for future research and clinical interventions.
Collapse
Affiliation(s)
- Jia Jiang
- The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Haihua Xie
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Sihui Cao
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xuan Xu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jingying Zhou
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qianyan Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Changsong Ding
- School of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Barbosa IG, Miranda AS, Berk M, Teixeira AL. The involvement of the microbiota-gut-brain axis in the pathophysiology of mood disorders and therapeutic implications. Expert Rev Neurother 2025; 25:85-99. [PMID: 39630000 DOI: 10.1080/14737175.2024.2438646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION There is a growing body of evidence implicating gut-brain axis dysfunction in the pathophysiology of mood disorders. Accordingly, gut microbiota has become a promising target for the development of biomarkers and novel therapeutics for bipolar and depressive disorders. AREAS COVERED We describe the observed changes in the gut microbiota of patients with mood disorders and discuss the available studies assessing microbiota-based strategies for their treatment. EXPERT OPINION Microbiota-targeted interventions, such as symbiotics, prebiotics, paraprobiotics, and fecal microbiota transplants seem to attenuate the severity of depressive symptoms. The available results must be seen as preliminary and need to be replicated and/or confirmed in larger and independent studies, also considering the pathophysiological and clinical heterogeneity of mood disorders.
Collapse
Affiliation(s)
- Izabela G Barbosa
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brasil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), MG, Brasil
| | - Aline S Miranda
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), MG, Brasil
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Michael Berk
- IMPACT- the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Antonio L Teixeira
- Neuropsychiatry Division, The Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
González A, Badiola I, Fullaondo A, Rodríguez J, Odriozola A. Personalised medicine based on host genetics and microbiota applied to colorectal cancer. ADVANCES IN GENETICS 2024; 112:411-485. [PMID: 39396842 DOI: 10.1016/bs.adgen.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | | | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
6
|
Chan CW, Chen YT, Lin BF. Renal protective and immunoregulatory effects of Lactobacillus casei strain Shirota in nephropathy-prone mice. Front Nutr 2024; 11:1438327. [PMID: 39262432 PMCID: PMC11389617 DOI: 10.3389/fnut.2024.1438327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction The incidence of severe acute kidney injury (AKI) is considerably high worldwide. A previous study showed that gut microbial dysbiosis was a hallmark of AKI in mice. Whether the probiotic Lactobacillus casei strain Shirota (LcS) plays a role in kidney disease, particularly AKI, remains unclear. Methods To investigate the effects of LcS on kidney injury, tubule-specific conditional von Hippel-Lindau gene-knockout C57BL/6 mice (Vhlhdel/del mice) were supplemented without (Ctrl) or with probiotics (LcS) in Experiment 1, and their lifespan was monitored. Additionally, the Vhlhdel/+ mice were supplemented without (Ctrl and AA) or with probiotics (LcS and LcS + AA) in Experiment 2. Probiotic LcS (1 × 109 colony-forming units) was supplemented once daily. After 4 weeks of LcS supplementation, AA and LcS + AA mice were administered aristolochic acid (AA; 4 mg/kg body weight/day)-containing purified diet for 2 weeks to induce AA nephropathy before sacrifice. Results Supplementation of LcS significantly prolonged the lifespan of Vhlhdel/del mice, suggesting a potential renal protective effect. AA induced-nephropathy increased not only the indicators of renal dysfunction and injury, including urinary protein and kidney injury molecule (KIM)-1, serum blood urea nitrogen (BUN) and creatinine, but also serum interleukin (IL)-6 levels, renal macrophage infiltrations, and pathological lesions in Vhlhdel/+ mice. LcS supplementation significantly reduced urinary protein and KIM-1 levels, serum BUN and IL-6 levels, and renal M1 macrophages, tissue lesions, and injury scores. We also found that LcS maintained gut integrity under AA induction and increased intestinal lamina propria dendritic cells. Furthermore, LcS significantly reduced pro-inflammatory IL-17A and upregulated anti-inflammatory IL-10 production by immune cells from intestinal Peyer's patches (PP) or mesenteric lymph nodes (MLN), and significantly increased IL-10 and reduced IL-6 production by splenocytes. Conclusion Prior supplementation with probiotic LcS significantly alleviated the severity of renal injury. This renal protective effect was partially associated with the enhancements of intestinal and systemic anti-inflammatory immune responses, suggesting that LcS-induced immunoregulation might contribute to its renal protective effects.
Collapse
Affiliation(s)
- Chun-Wai Chan
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Bi-Fong Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Tanwar H, Gnanasekaran JM, Allison D, Chuang LS, He X, Aimetti M, Baima G, Costalonga M, Cross RK, Sears C, Mehandru S, Cho J, Colombel JF, Raufman JP, Thumbigere-Math V. Unravelling the Oral-Gut Axis: Interconnection Between Periodontitis and Inflammatory Bowel Disease, Current Challenges, and Future Perspective. J Crohns Colitis 2024; 18:1319-1341. [PMID: 38417137 PMCID: PMC11324343 DOI: 10.1093/ecco-jcc/jjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
As the opposite ends of the orodigestive tract, the oral cavity and the intestine share anatomical, microbial, and immunological ties that have bidirectional health implications. A growing body of evidence suggests an interconnection between oral pathologies and inflammatory bowel disease [IBD], implying a shift from the traditional concept of independent diseases to a complex, reciprocal cycle. This review outlines the evidence supporting an 'oral-gut' axis, marked by a higher prevalence of periodontitis and other oral conditions in IBD patients and vice versa. We present an in-depth examination of the interconnection between oral pathologies and IBD, highlighting the shared microbiological and immunological pathways, and proposing a 'multi-hit' hypothesis in the pathogenesis of periodontitis-mediated intestinal inflammation. Furthermore, the review underscores the critical need for a collaborative approach between dentists and gastroenterologists to provide holistic oral-systemic healthcare.
Collapse
Affiliation(s)
- Himanshi Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | - Devon Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ling-shiang Chuang
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Massimo Costalonga
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Raymond K Cross
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
8
|
Zhang Y, Xiang X, Li X, Feng W, Guo Z. Early intervention in Hirschsprung's disease: effects on enterocolitis and surgical outcomes. BMC Pediatr 2024; 24:476. [PMID: 39061020 PMCID: PMC11282594 DOI: 10.1186/s12887-024-04956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The timing of surgical intervention for Hirschsprung's disease (HSCR) has been a topic of continued discussion. The objective of this study was to evaluate the significance of age at surgery in the management of HSCR by conducting a comparative analysis of the correlation between surgical age and midterm outcomes. METHODS We conducted a retrospective analysis of children with HSCR who underwent one-stage laparoscopic assisted pull-through surgery with modified Swenson technology at our hospital between 2015 and 2019. The study population was stratified into two groups based on surgical age: patients who underwent surgery within a period of less than 3 months and those who underwent surgery between 3 and 12 months. The basic conditions, complications at 3-7 years after surgery, anal function (Rintala scale) and quality of life (PedsQLTM4.0) were compared between the groups. RESULTS A total of 235 children (196 males and 39 females) were included in the study. No statistically significant differences in postoperative bowel function (P = 0.968) or quality of life (P = 0.32) were found between the two groups. However, there was a significant reduction in the incidence of Hirschsprung-associated enterocolitis (HAEC) among individuals under the age of three months prior to undergoing surgical intervention (69.1%) compared to the incidence observed postsurgery (30.9%). This difference was statistically significant (P < 0.001). CONCLUSION In the current study, the age at which surgery was performed did not exhibit a discernible inclination towards influencing mid-term anal function or quality of life. Early surgical intervention can effectively diminish the occurrence of HAEC, minimize the extent of bowel resection, and expedite the duration of the surgical procedure.
Collapse
Affiliation(s)
- Yunhan Zhang
- Department of neonatal surgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Xiang
- Department of neonatal surgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xunfeng Li
- Department of neonatal surgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Feng
- Department of neonatal surgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenhua Guo
- Department of neonatal surgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, China.
- , 20, Jinyu Road, Yubei District, Chongqing, 400025, China.
| |
Collapse
|
9
|
Bai J, Zhou Y, Xia X, Wu Z, Li X, Tong P, Yang A, Chen H. Transglutaminase-Cross-Linked Tofu Suppressed Soybean-Induced Allergic Reactions by Enhancing Intestinal Mucosa Immune Tolerance. Foods 2024; 13:1206. [PMID: 38672879 PMCID: PMC11049078 DOI: 10.3390/foods13081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, food allergies are closely related to intestinal health, and ensuring the integrity and health of intestinal mucosa could reduce the incidence of food allergies. In this study, a soybean-allergic mouse model was used to explore the mechanism of intestinal mucosa immune response induced by enzyme-cross-linked tofu. The effects of enzyme-cross-linked tofu on intestinal mucosal immunity in mice were determined by hematoxylin-eosin (HE) staining and flow cytometry. Our results reveled that the MTG-cross-linked tofu reduced the reactivity of the intestinal mucosal immune system, which mainly manifested as a decrease in the dendritic cell (DC) levels of mesenteric lymph nodes (MLNs), increasing the Th1 cells and Tregs in Peyer's patch (PP) nodes and MLNs, and inhibiting the Th2 cells. Compared with soy protein, enzyme-cross-linked tofu had less damage to the small intestinal tract of mice. Therefore, the above-mentioned results fully revealed that the enzyme-cross-linked tofu promoted the transformation of intestinal mucosal immune cells, shifted the Th1/Th2 balance toward Th1, and reduced its sensitization effect.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Yiling Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Xinlei Xia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
| | - Anshu Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China; (J.B.); (Y.Z.); (X.X.); (Z.W.); (X.L.); (P.T.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| |
Collapse
|
10
|
Cox LM, Tatematsu BK, Guo L, LeServe DS, Mayrink J, Oliveira MG, Donnelly D, Fonseca RC, Lemos L, Lanser TB, Rosa AC, Lopes JR, Schwerdtfeger LA, Ribeiro GFC, Lobo ELC, Moreira TG, Oliveira AG, Weiner HL, Rezende RM. Gamma-delta T cells suppress microbial metabolites that activate striatal neurons and induce repetitive/compulsive behavior in mice. Brain Behav Immun 2024; 117:242-254. [PMID: 38281671 DOI: 10.1016/j.bbi.2024.01.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024] Open
Abstract
Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruna K Tatematsu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Guo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle S LeServe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Mayrink
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marilia G Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dustin Donnelly
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Roberta C Fonseca
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luisa Lemos
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toby B Lanser
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana C Rosa
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luke A Schwerdtfeger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela F C Ribeiro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eduardo L C Lobo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thais G Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andre G Oliveira
- Department of Biophysics and Physiology, Biologic Institutes of Sciences, Federal University of Minas Gerais, Brazil
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Tang X, de Vos P. Structure-function effects of different pectin chemistries and its impact on the gastrointestinal immune barrier system. Crit Rev Food Sci Nutr 2023; 65:1201-1215. [PMID: 38095591 DOI: 10.1080/10408398.2023.2290230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The gastrointestinal immune system is crucial for overall health, safeguarding the human body against harmful substances and pathogens. One key player in this defense is dietary fiber pectin, which supports the gut's immune barrier and fosters beneficial gut bacteria. Pectin's composition, including degree of methylation (DM), RG-I, and neutral sugar content, influences its health benefits. This review assesses how pectin composition impacts the gastrointestinal immune barrier and what advantages specific chemistries of pectin has for metabolic, cardiovascular, and immune health. We delve into recent findings regarding pectin's interactions with the immune system, including receptors like TLRs and galectin 3. Pectin is shown to fortify mucosal and epithelial layers, but the specific effects are structure dependent. Additionally, we explore potential strategies for enhancing the gut immune barrier function. Understanding how distinct pectin chemistries affect the gastrointestinal immune system is vital for developing preventive and therapeutic solutions for conditions related to microbiota imbalances and immune issues. Ultimately, this review offers insights into strategies to boost the gut immune barrier's effectiveness, fostering better overall health by using specific pectins in the diet.
Collapse
Affiliation(s)
- X Tang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Kosenda K, Ichii O, Yamashita Y, Ohtsuka H, Fukuda S, Kon Y. Histological Characteristics of Conjunctiva-Associated Lymphoid Tissue in Young and Adult Holstein Cattle. Animals (Basel) 2023; 13:3481. [PMID: 38003099 PMCID: PMC10668845 DOI: 10.3390/ani13223481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The conjunctiva-associated lymphoid tissue (CALT) has been used as a target site for mucosal vaccinations in several animals. In this study, we compared the morphological features of CALT in the eyelid and third eyelid between Holstein calves and adult cows. In the eyelids, CALTs in the form of diffused lymphoid tissue (DLT) and lymphatic follicles (LF) were observed, where DLTs were dominant and LFs were scarce. The CALTs of cows comprised T-, B-cells, macrophages, and antigen-presenting cells (APCs). In particular, B-cells were dominant except in the eyelids of the calves. The epithelial layer covering the CALT is often discontinuous and lacks goblet cells. Cytokeratin18 is strongly expressed in the epithelial layer covering the CALT, except in the third eyelids of adult cows. IgA-positive cells were diffusely distributed in the lamina propria of the conjunctiva of the eyelids and third eyelids. The eyelid CALT area in calves was lower than that in adult cows. Furthermore, the CALT of calves had a lower cellularity of B-cells and a higher cellularity of macrophages than that of adult cows. These histological characteristics indicate that CALT plays a role in the mucosal immune-inductive and effector sites. Furthermore, lower cellularity of B-cells in the CALT of calves indicates that the function of CALT as a mucosal immune induction site is less developed in calves than in adult cows.
Collapse
Affiliation(s)
- Keigo Kosenda
- Laboratory of Farm Animal Pathophysiology, Department of Farm Animal Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-0836, Japan;
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (O.I.); (Y.K.)
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yusuke Yamashita
- Nayoro Veterinary Clinical Center, Hokkaido Agricultural Mutual Aid Association, Nayoro 096-0072, Japan;
| | - Hiromichi Ohtsuka
- Section of Large Animal Clinical Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Shigeo Fukuda
- Laboratory of Farm Animal Pathophysiology, Department of Farm Animal Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-0836, Japan;
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (O.I.); (Y.K.)
| |
Collapse
|
13
|
Mishra P, Badiyani VM, Jain S, Subramanian S, Maharaj SV, Kumar A, Singh BN. Prebiotics: Ignored player in the fight against cancer. Cancer Rep (Hoboken) 2023; 6:e1870. [PMID: 37458148 PMCID: PMC10644333 DOI: 10.1002/cnr2.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Prebiotics is a relatively neglected area in cancer research, despite evidence suggesting that it plays a key role in suppressing tumour growth and improving immune function. RECENT FINDINGS Including prebiotics in the diet has been shown to strengthen the immune system and can better slow down or prevent the growth of tumours. It has also been strongly indicated in various scientific studies that prebiotics can contribute to the sustenance of a healthy microbiome, which in turn plays an important role in increasing the effectiveness and reducing the side effects of cancer treatments. CONCLUSION In the present review article we highlight the mechanisms by which prebiotics like inulin, fructooligosaccharide (FOS), β-glucan, pectin, and xylooligosaccharide (XOS) function. Furthermore, the beneficial effect of incorporating prebiotics during cancer therapy to improvise gut health and prevent/reverse the damage caused to patients due to chemotherapy has also been elaborated.
Collapse
Affiliation(s)
- Parichita Mishra
- Department of Ageing Research, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Vidhi Manish Badiyani
- Department of Ageing Research, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Sakshi Jain
- Biotechnology and Bioinformatics AreaNIIT UniversityNeemranaRajasthanIndia
| | - Sruti Subramanian
- Biotechnology and Bioinformatics AreaNIIT UniversityNeemranaRajasthanIndia
| | | | - Ashwini Kumar
- Biotechnology and Bioinformatics AreaNIIT UniversityNeemranaRajasthanIndia
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life SciencesManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
14
|
Bahuguna A, Dubey SK. Overview of the Mechanistic Potential of Probiotics and Prebiotics in Cancer Chemoprevention. Mol Nutr Food Res 2023; 67:e2300221. [PMID: 37552810 DOI: 10.1002/mnfr.202300221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Indexed: 08/10/2023]
Abstract
Despite of strides in modern cancer therapeutic strategies, there has not been a successful cure for it until now and prognostic side effects and substantial toxicity to chemotherapy and subsequent homeostatic imbalance remains a major concern for professionals in this field. The significance of the human microbiome in the pathogenesis of cancer is being recognized, documented, and established worldwide. Probiotics and prebiotics are some of the most extensively researched approaches to modulate the microbiota for therapeutic purposes, and research on their potential to prevent and treat cancer has sparked an immense amount of interest. The characteristics of probiotics and prebiotics allow for an array of efficient applications in cancer preventive measures. Probiotics can also be administered coupled with chemotherapy and surgery to alleviate their side effects and help promote the effectiveness of chemotherapeutic drugs. Besides showing promising results they are accompanied by potential risks and controversies that may eventually result in clinical repercussions. This review emphasizes the mechanistic potential and oncosuppressive effects of probiotic and prebiotics through maintenance of intestinal barrier function, modifying innate immune system, immunomodulation, intestinal microbiota metabolism, inhibition of host cell proliferation, preventing pathogen colonization, and exerting selective cytotoxicity against tumor cells.
Collapse
Affiliation(s)
- Ananya Bahuguna
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Shiv Kumar Dubey
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| |
Collapse
|
15
|
Dissanayake WMN, Chandanee MR, Lee SM, Heo JM, Yi YJ. Change in intestinal alkaline phosphatase activity is a hallmark of antibiotic-induced intestinal dysbiosis. Anim Biosci 2023; 36:1403-1413. [PMID: 37170509 PMCID: PMC10472154 DOI: 10.5713/ab.23.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE Intestinal alkaline phosphatase (IAP) maintains intestinal homeostasis by detoxifying bacterial endotoxins and regulating gut microbiota, and lipid absorption. Antibiotics administered to animals can cause gut dysbiosis and barrier disruption affecting animal health. Therefore, the present study sought to investigate the role of IAP in the intestinal environment in dysbiosis. METHODS Young male mice aged 9 weeks were administered a high dose of antibiotics to induce dysbiosis. They were then sacrificed after 4 weeks to collect the serum and intestinal organs. The IAP activity in the ileum and the level of cytokines in the serum samples were measured. Quantitative real-time polymerase chain reaction analysis of RNA from the intestinal samples was performed using primers for tight junction proteins (TJPs) and proinflammatory cytokines. The relative intensity of IAP and toll-like receptor 4 (TLR4) in intestinal samples was evaluated by western blotting. RESULTS The IAP activity was significantly lower in the ileum samples of the dysbiosisinduced group compared to the control. The interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha concentrations were significantly higher in the ileum samples of the dysbiosis-induced group. The RNA expression levels of TJP2, claudin-3, and claudin-11 showed significantly lower values in the intestinal samples from the dysbiosis-induced mice. Results from western blotting revealed that the intensity of IAP expression was significantly lower in the ileum samples of the dysbiosis-induced group, while the intensity of TLR4 expression was significantly higher compared to that of the control group without dysbiosis. CONCLUSION The IAP activity and relative mRNA expression of the TJPs decreased, while the levels of proinflammatory cytokines increased, which can affect intestinal integrity and the function of the intestinal epithelial cells. This suggests that IAP is involved in mediating the intestinal environment in dysbiosis induced by antibiotics and is an enzyme that can potentially be used to maintain the intestinal environment in animal health care.
Collapse
Affiliation(s)
| | - Malavige Romesha Chandanee
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922,
Korea
| | - Sang-Myeong Lee
- Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644,
Korea
| | - Jung Min Heo
- College of Agriculture and Life Sciences, Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Young-Joo Yi
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922,
Korea
| |
Collapse
|
16
|
Hernandez-Cazares F, Maqueda-Alfaro RA, Lopez-Saucedo C, Martinez-Barnetche J, Yam-Puc JC, Estrada-Parra S, Flores-Romo L, Estrada-Garcia T. Elevated levels of enteric IgA in an unimmunised mouse model of Hyper IgM syndrome derived from gut-associated secondary lymph organs even in the absence of germinal centres. Front Cell Infect Microbiol 2023; 13:1172021. [PMID: 37457961 PMCID: PMC10339347 DOI: 10.3389/fcimb.2023.1172021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Patients with Human Hyper IgM syndromes (HIGM) developed pulmonary and gastrointestinal infections since infancy and most patients have mutations in the CD40 ligand (CD40L) gene. Most HIGM patients compared to healthy subjects have higher/similar IgM and lower IgG, and IgA serum concentrations but gut antibody concentrations are unknown. CD40L on activated T-cells interacts with CD40 on B-cells, essential for the formation of germinal centres (GCs) inside secondary lymphoid organs (SLOs), where high-affinity antibodies, long-lived antibody-secreting plasma cells, and memory B-cells, are produced. C57BL6-CD40 ligand deficient mice (C57BL6-cd40l -/-), are a model of HIGM, because serum immunoglobulin concentrations parallel levels observed in HIGM patients and have higher faecal IgA concentrations. In mice, TGFβ and other cytokines induce IgA production. Aims To compare and evaluate B-cell populations and IgA-producing plasma cells in peritoneal lavage, non-gut-associated SLOs, spleen/inguinal lymph nodes (ILN), and gut-associated SLOs, mesenteric lymph nodes (MLN)/Peyer´s patches (PP) of unimmunised C57BL6-cd40l -/- and C57BL6-wild-type (WT) mice. Material and methods Peritoneal lavages, spleens, ILN, MLN, and PP from 8-10 weeks old C57BL6-cd40l -/- and WT mice, were obtained. Organ cryosections were analysed by immunofluorescence and B-cell populations and IgA-positive plasma cell suspensions by flow cytometry. Results In unimmunised WT mice, GCs were only observed in the gut-associated SLOs, but GCs were absent in all C57BL6-cd40l -/- SLOs. PP and MLN of C57BL6-cd40l -/- mice exhibited a significantly higher number of IgA-producing cells than WT mice. In the spleen and ILN of C57BL6-cd40l- /- mice IgA-producing cells significantly decreased, while IgM-positive plasma cells increased. C57BL6-cd40l -/- B-1 cells were more abundant in all analysed SLOs, whereas in WT mice most B-1 cells were contained within the peritoneal cavity. C57BL6-cd40l -/- B-cells in MLN expressed a higher TGFβ receptor-1 than WT mice. Mouse strains small intestine microvilli (MV), have a similar frequency of IgA-positive cells. Discussion Together our results confirm the role of PP and MLN as gut inductive sites, whose characteristic features are to initiate an IgA preferential immune response production in these anatomical sites even in the absence of GCs. IgA antibodies play a pivotal role in neutralising, eliminating, and regulating potential pathogens and microorganisms in the gut.
Collapse
Affiliation(s)
| | | | | | - Jesus Martinez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | | |
Collapse
|
17
|
Singh NK, Beckett JM, Kalpurath K, Ishaq M, Ahmad T, Eri RD. Synbiotics as Supplemental Therapy for the Alleviation of Chemotherapy-Associated Symptoms in Patients with Solid Tumours. Nutrients 2023; 15:nu15071759. [PMID: 37049599 PMCID: PMC10096799 DOI: 10.3390/nu15071759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Chemotherapy is still the first line of treatment for most cancer patients. Patients receiving chemotherapy are generally prone to infections, which result in complications, such as sepsis, mucositis, colitis, and diarrhoea. Several nutritional approaches have been trialled to counter the chemotherapy-associated side effects in cancer patients, but none have yet been approved for routine clinical use. One of the approaches to reduce or avoid chemotherapy-associated complications is to restore the gut microbiota. Gut microbiota is essential for the healthy functioning of the immune system, metabolism, and the regulation of other molecular responses in the body. Chemotherapy erodes the mucosal layer of the gastrointestinal tract and results in the loss of gut microbiota. One of the ways to restore the gut microbiota is through the use of probiotics. Probiotics are the ‘good’ bacteria that may provide health benefits if consumed in appropriate amounts. Some studies have highlighted that the consumption of probiotics in combination with prebiotics, known as synbiotics, may provide better health benefits when compared to probiotics alone. This review discusses the different nutritional approaches that have been studied in an attempt to combat chemotherapy-associated side effects in cancer patients with a particular focus on the use of pre-, pro- and synbiotics.
Collapse
Affiliation(s)
- Neeraj K. Singh
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Jeffrey M. Beckett
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Krishnakumar Kalpurath
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
- Mersey Community Hospital, Latrobe 7307, Australia
| | - Muhammad Ishaq
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Tauseef Ahmad
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
| | - Rajaraman D. Eri
- School of Health Sciences, University of Tasmania, Newnham, Launceston 7248, Australia
- School of Science, STEM College, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
18
|
Jawad I, Bin Tawseen H, Irfan M, Ahmad W, Hassan M, Sattar F, Awan FR, Khaliq S, Akhtar N, Akhtar K, Anwar MA, Munawar N. Dietary Supplementation of Microbial Dextran and Inulin Exerts Hypocholesterolemic Effects and Modulates Gut Microbiota in BALB/c Mice Models. Int J Mol Sci 2023; 24:ijms24065314. [PMID: 36982388 PMCID: PMC10049499 DOI: 10.3390/ijms24065314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Microbial exopolysaccharides (EPSs), having great structural diversity, have gained tremendous interest for their prebiotic effects. In the present study, mice models were used to investigate if microbial dextran and inulin-type EPSs could also play role in the modulation of microbiomics and metabolomics by improving certain biochemical parameters, such as blood cholesterol and glucose levels and weight gain. Feeding the mice for 21 days on EPS-supplemented feed resulted in only 7.6 ± 0.8% weight gain in the inulin-fed mice group, while the dextran-fed group also showed a low weight gain trend as compared to the control group. Blood glucose levels of the dextran- and inulin-fed groups did not change significantly in comparison with the control where it increased by 22 ± 5%. Moreover, the dextran and inulin exerted pronounced hypocholesterolemic effects by reducing the serum cholesterol levels by 23% and 13%, respectively. The control group was found to be mainly populated with Enterococcus faecalis, Staphylococcus gallinarum, Mammaliicoccus lentus and Klebsiella aerogenes. The colonization of E. faecalis was inhibited by 59–65% while the intestinal release of Escherichia fergusonii was increased by 85–95% in the EPS-supplemented groups, respectively, along with the complete inhibition of growth of other enteropathogens. Additionally, higher populations of lactic acid bacteria were detected in the intestine of EPS-fed mice as compared to controls.
Collapse
Affiliation(s)
- Iqra Jawad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Husam Bin Tawseen
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Waqar Ahmad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad 22020, Pakistan
| | - Mujtaba Hassan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Fazal Sattar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Nasrin Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Munir Ahmad Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
- Correspondence: or (M.A.A.); (N.M.); Tel.: +92-41-920-1316 (M.A.A.); +971-3-713-6168 (N.M.); Fax: +92-41-920-1322 (M.A.A.)
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates
- Correspondence: or (M.A.A.); (N.M.); Tel.: +92-41-920-1316 (M.A.A.); +971-3-713-6168 (N.M.); Fax: +92-41-920-1322 (M.A.A.)
| |
Collapse
|
19
|
Mazzotta V, Scorzolini L, Falasca L, Lionetti R, Aguglia C, Kontogiannis D, Colombo D, Colavita F, De Palo MG, Carletti F, Mondi A, Pinnetti C, Maffongelli G, Garbuglia AR, Baldini F, Corpolongo A, Maggi F, D'Offizi G, Girardi E, Vaia F, Nicastri E, Del Nonno F, Antinori A. Lymphofollicular lesions associated with monkeypox (Mpox) virus proctitis. Int J Infect Dis 2023; 130:48-51. [PMID: 36858309 PMCID: PMC10013572 DOI: 10.1016/j.ijid.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
In the recent 2022 monkeypox (Mpox) global outbreak, cases have been mostly documented among men who have sex with men. Proctitis was reported in almost 14% of cases. In this study, four Mpox-confirmed cases requiring hospitalizations for severe proctitis were characterized by clinical, virological, microbiological, endoscopic, and histological aspects. The study showed the presence of lymphofollicular lesions associated with Mpox virus rectal infection for the first time.
Collapse
Affiliation(s)
- Valentina Mazzotta
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Laura Scorzolini
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Laura Falasca
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy.
| | - Raffaella Lionetti
- Infectious Diseases Hepatology Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Camilla Aguglia
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Dimitra Kontogiannis
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Daniele Colombo
- Pathology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Maria Grazia De Palo
- Infectious Diseases Hepatology Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Fabrizio Carletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Annalisa Mondi
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Carmela Pinnetti
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Gaetano Maffongelli
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Francesco Baldini
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Angela Corpolongo
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Gianpiero D'Offizi
- Infectious Diseases Hepatology Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Francesco Vaia
- General Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Andrea Antinori
- Clinical and Research Infectious Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
20
|
Chuluunbaatar T, Ichii O, Masum MA, Namba T, Kon Y. Morphological Characteristics of Genital Organ-Associated Lymphoid Tissue in the Vaginal Vestibule of Goats and Pigs. Vet Sci 2023; 10:51. [PMID: 36669052 PMCID: PMC9864709 DOI: 10.3390/vetsci10010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Mucosa-associated lymphoid tissue (MALT) is a specialized form of peripheral lymphoid tissue (LT), which is found on mucosal surfaces exposed to the environment. However, morphological data of these tissues in farm animals are scarce. This study investigated the gross anatomical and histological features of genital organ-associated lymphoid tissues (GOALTs) in the vaginal vestibule (VV) of healthy, non-pregnant, adult goats and pigs. Their VVs were composed of stratified squamous, non-keratinized epithelium, and various-sized dark-blue hematoxylin-positive spots were observed in whole-mount specimens, which were diffusely distributed throughout the mucosal surfaces. These spots were histologically identified as LTs and consisted of lymphatic nodules (LNs) or diffuse lymphoid tissue (DLTs). Both LNs and DLTs contained B cells, T cells, macrophages, dendritic cells, plasma cells, and high endothelial venules. Only the numbers of B cells were significantly higher in both the LNs and DLTs of pigs compared to goats. Furthermore, the surface of the VV epithelium covering the LTs was partially disrupted with a large intercellular space containing abundant connective tissue fibers with numerous lymphocytes. In conclusion, GOALTs in the VV appear to be common local immunological barriers in both examined animals. This knowledge is crucial for understanding the structures and disorders of female reproductive organs in farm animals.
Collapse
Affiliation(s)
- Tsolmon Chuluunbaatar
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
- Department of Basic Science of Veterinary Medicine, School of Veterinary Medicine, Mongolian University of Life Science, Ulaanbaatar 17024, Mongolia
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Md. Abdul Masum
- Department of Anatomy, Histology, and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| |
Collapse
|
21
|
Influence of Heat Stress on Intestinal Epithelial Barrier Function, Tight Junction Protein, and Immune and Reproductive Physiology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8547379. [PMID: 36093404 PMCID: PMC9458360 DOI: 10.1155/2022/8547379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/30/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
The potential threat of global warming in the 21st century is on the ecosystem through many aspects, including the negative impact of rising global temperature on the health of humans and animals, especially domestic animals. The damage caused by heat stress to animals has been more and more significant as the worldwide climate continues to rise, along with the breeding industry's expanding scale and stocking density, and it has become the most important stress-causing factor in southern China. In this review, we described the effects of heat stress on animal immune organs and immune system. The much-debated topic is how hyperthermia affects the tight junction barrier. Heat stress also induces inflammation in the body of animals causing low body weight and loss of appetite. This review also discussed that heat stress leads to hepatic disorder, and it also damages the intestine. The small intestine experiences ischemia, and the permeability of the intestine increases. Furthermore, the oxidative stress and mitogen-activated protein kinase (MAPK) pathways have a significant role in stress-induced cellular and organ injury. The study has shown that MAPK activity in the small intestine was increased by heat stress. Heat stress caused extreme small intestine damage, enhanced oxidative stress, and activated MAPK signaling pathways.
Collapse
|
22
|
Bosheva M, Tokodi I, Krasnow A, Pedersen HK, Lukjancenko O, Eklund AC, Grathwohl D, Sprenger N, Berger B, Cercamondi CI. Infant Formula With a Specific Blend of Five Human Milk Oligosaccharides Drives the Gut Microbiota Development and Improves Gut Maturation Markers: A Randomized Controlled Trial. Front Nutr 2022; 9:920362. [PMID: 35873420 PMCID: PMC9298649 DOI: 10.3389/fnut.2022.920362] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background Human milk oligosaccharides (HMOs) have important biological functions for a healthy development in early life. Objective This study aimed to investigate gut maturation effects of an infant formula containing five HMOs (2′-fucosyllactose, 2′,3-di-fucosyllactose, lacto-N-tetraose, 3′-sialyllactose, and 6′-sialyllactose). Methods In a multicenter study, healthy infants (7–21 days old) were randomly assigned to a standard cow’s milk-based infant formula (control group, CG); the same formula with 1.5 g/L HMOs (test group 1, TG1); or with 2.5 g/L HMOs (test group 2, TG2). A human milk-fed group (HMG) was enrolled as a reference. Fecal samples collected at baseline (n∼150/formula group; HMG n = 60), age 3 (n∼140/formula group; HMG n = 65) and 6 (n∼115/formula group; HMG n = 60) months were analyzed for microbiome (shotgun metagenomics), metabolism, and biomarkers. Results At both post-baseline visits, weighted UniFrac analysis indicated different microbiota compositions in the two test groups (TGs) compared to CG (P < 0.01) with coordinates closer to that of HMG. The relative abundance of Bifidobacterium longum subsp. infantis (B. infantis) was higher in TGs vs. CG (P < 0.05; except at 6 months: TG2 vs. CG P = 0.083). Bifidobacterium abundance was higher by ∼45% in TGs vs. CG at 6-month approaching HMG. At both post-baseline visits, toxigenic Clostridioides difficile abundance was 75–85% lower in TGs vs. CG (P < 0.05) and comparable with HMG. Fecal pH was significantly lower in TGs vs. CG, and the overall organic acid profile was different in TGs vs. CG, approaching HMG. At 3 months, TGs (vs. CG) had higher secretory immunoglobulin A (sIgA) and lower alpha-1-antitrypsin (P < 0.05). At 6 months, sIgA in TG2 vs. CG remained higher (P < 0.05), and calprotectin was lower in TG1 (P < 0.05) vs. CG. Conclusion Infant formula with a specific blend of five HMOs supports the development of the intestinal immune system and gut barrier function and shifts the gut microbiome closer to that of breastfed infants with higher bifidobacteria, particularly B. infantis, and lower toxigenic Clostridioides difficile. Clinical Trial Registration [https://clinicaltrials.gov/ct2/show/], identifier [NCT03722550].
Collapse
Affiliation(s)
- Miroslava Bosheva
- University Multiprofile Hospital for Active Treatment, St. George Medical University, Plovdiv, Bulgaria
| | - Istvan Tokodi
- Infant and Children’s Department, St. George’s Hospital, Székesfehérvár, Hungary
| | | | | | | | | | | | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Bernard Berger
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
- *Correspondence: Bernard Berger,
| | - Colin I. Cercamondi
- Nestlé Product Technology Center – Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| | - 5 HMO Study Investigator ConsortiumBauerViktorArciszewskaMalgorzataTarnevaMariaPopovaIrinaDosevSvilenDimitrovaSirmaNikolovaOlgaNowakMarzenaSzuflinska-SidorowiczMagdalenaKorczowskiBartoszKarcheva-BeloevaRositsaBanovStefanCimoszkoBoguslawaOlechowskiWieslawSimkoRobertTengelyiZsuzsannaKorbalPiotrZolnowskaMartaBilevAntonVasilopoulosGeorgiosKorzynskaSylwiaLakiIstvánKoleva-SyarovaMargaritaGrigorovToniKraevaSteliyanaKovácsÉvaMarkovaRadaJasieniak-PinisGrazynaFisterKatalinStoevaTatyanaDr. Kenessey Albert Hospital and Clinic, Balassagyarmat, Hungary; Polyclinic of Gynecology and Obstetrics Arciszewscy, Bialystok, Poland; University Multiprofile Hospital for Active Treatment Deva Mariya—Neonatology, Burgas, Bulgaria; Medical Center Prolet—Pediatrics department, Ruse, Bulgaria; Medical Center Excelsior, Sofia, Bulgaria; Multiprofile Hospital for Active Treatment Sveti Ivan Rilski, Kozloduy, Bulgaria; Medical Center PROMED, Krakow, Poland; Medical Center Pratia Warszawa, Warszawa, Poland; College of Medical Sciences, University of Rzeszów, Rzeszów, Poland; Medical Center-1, Sevlievo, Bulgaria; Individual Practice for Specialized Medical Assistance, Stara Zagora, Bulgaria; Primary Health Care Clinic Clinical Vitae, Gdansk, Poland; ALERGO-MED Specialist Medical Clinic, Tarnow, Poland; Futurenest Clinical Research, Miskolc, Hungary; Medical Center Clinexpert, Budapest, Hungary; Dr. Jan Biziel’s University Hospital No. 2, Bydgoszcz, Poland; Plejady Medical Center, Krakow, Poland; Medical Center Sveti Ivan Rilski Chudotvorets, Blagoevgrad, Bulgaria; Center of Innovative Therapies, Piaseczno, Poland; Medical Center Pratia Ostroleka, Ostroleka, Poland; Kanizsai Dorottya Hospital, Nagykanizsa, Hungary; Diagnostic Consultative Center Ritam, Stara Zagora, Bulgaria; Multiprofile Hospital for Active Treatment Sveti Georgi, Montana, Bulgaria; Alitera Medical Centre, Sofia, Bulgaria; Family Pediatric Surgery/Babadoki Ltd., Szeged, Hungary; Policlinic Bulgaria—Department of pediatrics; Sofia, Bulgaria; Non-public Health Care Institution Specialist Clinics ATOPIA, Krakow, Poland; Bugát Pál Hospital—Department of Pediatrics, Gyöngyös, Hungary; Medical Center—Izgrev Ltd., Sofia, Bulgaria.
| |
Collapse
|
23
|
Wang L, Guo H, Li J, He S, Yang G, Li E. Adenovirus is prevalent in juvenile polyps and correlates with low vitamin D receptor expression. Pediatr Res 2022; 91:1703-1708. [PMID: 34400787 PMCID: PMC8365564 DOI: 10.1038/s41390-021-01697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The objective of this study was to assess human adenovirus (HAdV) infection in juvenile polyps (JPs) and to preliminarily establish a correlation to vitamin D receptor (VDR) expression. METHODS The study includes 76 patients of 5.2 ± 2.8 years old. Seventy-eight JP specimens and 24 parapolyp tissues from polypectomy were used. PCR was used to detect HAdV DNA and quantitative reverse transcription-PCR for viral and host gene expression. The PCR products were sequenced for virus typing. The correlation between VDR expression and HAdV infection was established using nonparametric Spearman's analysis. RESULTS Seventy-four children (97.4%) had a single polyp and two had two polyps. The histopathological characteristics of the polyps were in line with JP. Thirty-three samples had HAdV DNA (43.4%), including 32 subgroup C and 1 subgroup B HAdV; no enteric HAdV was detected. HAdV messenger RNA was detected in 5 of the 33 samples (15.2%). The samples had increased interleukin-1β (IL-1β), IL-6, and calprotectin expression, and reduced E-cadherin and VDR expression. JP samples with low VDR expression were more prevalent of HAdV DNA (r = 1.261, 95% confidence interval, 1.017-1.563), while VDR expression positively correlated with E-cadherin and negatively with inflammation gene expression. CONCLUSIONS HAdV latent infection was prevalent among JP tissues. The presence of HAdV correlated positively to low VDR expression. IMPACT The HAdVs infect the upper airways and gastrointestinal system and is found to persist in lymphoid tissues. The prevalence of HAdV and the status of the infection is unknown. The study investigated the prevalence of HAdV from polypectomy specimens of JP patients and found that HAdV was prevalent and was in a persistent state. HAdV infection was more prevalent in samples with low VDR expression. Whether HAdV infection and reactivation is a contributing factor to JPs is unknown. Factors such as proinflammation and bacterial metabolites that are known to promote HAdV reactivation warrant further investigation.
Collapse
Affiliation(s)
- Lingling Wang
- SKL of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Hongmei Guo
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | - Jingwen Li
- Changzhou #2 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Susu He
- SKL of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Guang Yang
- Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China.
| | - Erguang Li
- SKL of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
24
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7:135. [PMID: 35461318 PMCID: PMC9034083 DOI: 10.1038/s41392-022-00974-4] [Citation(s) in RCA: 1038] [Impact Index Per Article: 346.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
The role of microbiota in health and diseases is being highlighted by numerous studies since its discovery. Depending on the localized regions, microbiota can be classified into gut, oral, respiratory, and skin microbiota. The microbial communities are in symbiosis with the host, contributing to homeostasis and regulating immune function. However, microbiota dysbiosis can lead to dysregulation of bodily functions and diseases including cardiovascular diseases (CVDs), cancers, respiratory diseases, etc. In this review, we discuss the current knowledge of how microbiota links to host health or pathogenesis. We first summarize the research of microbiota in healthy conditions, including the gut-brain axis, colonization resistance and immune modulation. Then, we highlight the pathogenesis of microbiota dysbiosis in disease development and progression, primarily associated with dysregulation of community composition, modulation of host immune response, and induction of chronic inflammation. Finally, we introduce the clinical approaches that utilize microbiota for disease treatment, such as microbiota modulation and fecal microbial transplantation.
Collapse
Affiliation(s)
- Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xuan-Yu Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Dongya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd, Guangzhou, 510535, China
| | - Chuanxing Xiao
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Jagadish B Koya
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Jilin Li
- Department of Cardiovascular, The Second Affiliated Hospital of Medical College of Shantou University, Shantou, Guangdong, 515000, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| |
Collapse
|
25
|
Genital organ-associated lymphoid tissues arranged in a ring in the mucosa of cow vaginal vestibules. Res Vet Sci 2022; 145:147-158. [DOI: 10.1016/j.rvsc.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/19/2022]
|
26
|
Su FJ, Chen MM. Protective Efficacy of Novel Oral Biofilm Vaccines against Photobacterium damselae subsp. damselae Infection in Giant Grouper, Epinephelus lanceolatus. Vaccines (Basel) 2022; 10:vaccines10020207. [PMID: 35214666 PMCID: PMC8877220 DOI: 10.3390/vaccines10020207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
Photobacterium damselae subsp. damselae is a pathogen that mainly infects a variety of fish species. There are many antibiotic-resistant strains of Photobacterium damselae subsp. damselae. In a previously published article, we described the production method for a novel oral biofilm vaccine. In the study reported herein, we confirmed the protective effect of the oral biofilm vaccine against Photobacterium damselae subsp. damselae. Twenty-eight days after vaccination, phagocytosis increased by 256% relative to the control group. The mean albumin–globulin ratios of the vaccine groups were significantly lower than the mean albumin–globulin ratios of the control group. There were no significant intergroup differences in lysozyme activity. Mean IgM titers were significantly higher in the vaccine group than in the control group. There was a significant upregulation of the TLR 3, IL-1β, and IL-8 genes in the spleen 28 days after vaccination. The cumulative mortality of the control fish was 84% after challenging fish with the Photobacterium damselae subsp. damselae, while the cumulative mortality of the oral biofilm vaccine (PBV) group was 32%, which was significantly higher than those of the whole-cell vaccine (PWV) and chitosan particle (CP) groups. There is minimal published research on the prevention and treatment of Photobacterium damselae subsp. damselae infection; therefore, this oral biofilm vaccine may represent a new method to fill this gap.
Collapse
|
27
|
Center SA, Randolph JF, Warner KL, McDonough SP, Lucy JM, Sapa KC. Bacterial culture and immunohistochemical detection of bacteria and endotoxin in cats with suppurative cholangitis-cholangiohepatitis syndrome. J Am Vet Med Assoc 2021; 260:194-211. [PMID: 34936576 DOI: 10.2460/javma.20.10.0552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To characterize the frequency and type of bacterial infection by culture- and immunohistochemical (IHC)-based methods and determine the impact of infection on clinical features and survival time in cats with suppurative cholangitis-cholangiohepatitis syndrome (S-CCHS). ANIMALS 168 client-owned cats with S-CCHS (cases). PROCEDURES Clinical features, bacterial culture results, culture-inoculate sources, and survival details were recorded. Cases were subcategorized by comorbidity (extrahepatic bile duct obstruction, cholelithiasis, cholecystitis, ductal plate malformation, biopsy-confirmed inflammatory bowel disease, and biopsy-confirmed pancreatitis) or treatment by cholecystectomy or cholecystoenterostomy. Culture results, bacterial isolates, Gram-stain characteristics, and IHC staining were compared among comorbidities. Lipoteichoic acid IHC staining detected gram-positive bacterial cell wall components, and toll-like receptor expression IHC reflected pathologic endotoxin (gram-negative bacteria) exposure. RESULTS Clinical features were similar among cases except for more frequent abdominal pain and lethargy in cats with positive culture results and pyrexia, abdominal pain, and hepatomegaly for cats with polymicrobial infections. Bacteria were cultured in 93 of 135 (69%) cats, with common isolates including Enterococcus spp and Escherichia coli. IHC staining was positive in 142 of 151 (94%) cats (lipoteichoic acid, 107/142 [75%]; toll-like receptor 4, 99/142 [70%]). With in-parallel interpretation of culture and IHC-based bacterial detection, 154 of 166 (93%) cats had bacterial infections (gram-positive, 118/154 [77%]; gram-negative, 111/154 [72%]; polymicrobial, 79/154 [51%]). Greater frequency of bacterial isolation occurred with combined tissue, bile, and crushed cholelith inoculates. Infection and gram-positive bacterial isolates were associated with significantly shorter long-term survival times. CLINICAL RELEVANCE S-CCHS was associated with bacterial infection, pathologic endotoxin exposure, and frequent polymicrobial infection in cats. Combined tissue inoculates improved culture detection of associated bacteria.
Collapse
Affiliation(s)
- Sharon A Center
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - John F Randolph
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Karen L Warner
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Sean P McDonough
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | | | - Kirk C Sapa
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
28
|
Cai G, Wusiman A, Gu P, Mao N, Xu S, Zhu T, He J, Liu Z, Wang D. Supplementation of Alhagi honey polysaccharides contributes to the improvement of the intestinal immunity regulating the structure of intestinal flora in mice. Food Funct 2021; 12:9693-9707. [PMID: 34664596 DOI: 10.1039/d1fo01860d] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alhagi honey polysaccharides (AH), a main active component of Alhagi honey, are known to possess excellent pharmacological activities and have been widely used as dietary supplements in traditional Chinese medicine for thousands of years. This study is aimed to investigate the heath effect of AH on murine intestinal mucosal immune function and composition of the gut microbiome. ICR mice received daily intragastric administration of AH (three dosages, 200 mg kg-1, 400 mg kg-1, and 800 mg kg-1) or saline for 7 consecutive days. Results indicated an improvement in the intestinal barrier function through increases in secretory immunoglobulin A (sIgA) and β-defensins. Simultaneously, AH also significantly stimulated IL-2, IL-4, IL-6, IL-10, IL-17, IFN-γ, and TNF-α cytokine secretion as compared to the control samples. Moreover, hematoxylin and eosin staining showed that AH enhanced the number of intraepithelial lymphocytes (IELs) in the small intestine. An obvious increase in the ratio of IgA+ cells of AH-treatment samples in the lamina propria was also detected by immunohistochemical staining. In addition, the CD3+, CD4+ and CD8+ T-cell ratio in mesenteric lymph nodes and Peyer's patches in the AH-treatment was significantly higher than that in the control group. Furthermore, 16S rDNA gene sequencing was used to monitor the dynamic changes in the gut microbiota. The result revealed that AH significantly increased the indexes of Shannon and obviously decreased the indexes of Simpson, suggesting the enhancement of the diversity and richness of the intestinal microbiome. Moreover, AH modulated the gut microbiome via increasing the abundance of probiotics and decreasing the levels of pathogenic bacteria. In summary, these results indicated that AH could be used as a prebiotic to enhance murine intestinal mucosal immunity and to modulate the gut microbiome.
Collapse
Affiliation(s)
- Gaofeng Cai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shuwen Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
29
|
Estorninos E, Lawenko RB, Palestroque E, Sprenger N, Benyacoub J, Kortman GAM, Boekhorst J, Bettler J, Cercamondi CI, Berger B. Term infant formula supplemented with milk-derived oligosaccharides shifts the gut microbiota closer to that of human milk-fed infants and improves intestinal immune defense: a randomized controlled trial. Am J Clin Nutr 2021; 115:142-153. [PMID: 34617558 PMCID: PMC8755036 DOI: 10.1093/ajcn/nqab336] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bovine milk-derived oligosaccharides (MOS) containing primarily galacto-oligosaccharides with inherent concentrations of sialylated oligosaccharides can be added to infant formula to enhance the oligosaccharide profile. OBJECTIVE To investigate the effects of an MOS-supplemented infant formula on gut microbiota and intestinal immunity. METHODS In a double-blind, randomized, controlled trial, healthy term formula-fed infants aged 21-26 d either received an intact protein cow milk-based formula (control group, CG, n = 112) or the same formula containing 7.2 g MOS/L (experimental group, EG, n = 114) until the age of 6 mo. Exclusively human milk-fed infants (HFI, n = 70) from an observational study served as the reference. Fecal samples collected at baseline, and the ages of 2.5 and 4 mo were assessed for microbiota (16S ribosomal RNA-based approaches), metabolites, and biomarkers of gut health and immune response. RESULTS Aged 2.5 and 4 mo, redundancy analysis (P = 0.002) and average phylogenetic distance (P < 0.05) showed that the overall microbiota composition in EG was different from CG and closer to that of HFI. Similarly, EG caesarean-born infants were different from CG caesarean- or vaginally born infants and approaching HFI vaginally born infants. Relative bifidobacteria abundance was higher in EG compared with CG (P < 0.05) approaching HFI. At the age of 4 mo, counts of Clostridioides difficile and Clostridium perfringens were ∼90% (P < 0.001) and ∼65% (P < 0.01) lower in EG compared with CG, respectively. Geometric LS mean (95% CI) fecal secretory IgA in EG was twice that of CG [70 (57, 85) compared with 34 (28, 42) mg/g, P < 0.001] and closer to HFI. Fecal oral polio vaccine-specific IgA was ∼50% higher in EG compared with CG (P = 0.065). Compared with CG, EG and HFI had lower fecal calcium excretion (by ∼30%, P < 0.005) and fecal pH (P < 0.001), and higher lactate concentration (P < 0.001). CONCLUSIONS Infant formula with MOS shifts the gut microbiota and metabolic signature closer to that of HFI, has a strong bifidogenic effect, reduces fecal pathogens, and improves the intestinal immune response.
Collapse
Affiliation(s)
| | | | | | - Norbert Sprenger
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | | | | | | | - Jodi Bettler
- Nestlé Product Technology Center—Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| | | | - Bernard Berger
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
30
|
Zhou D, Wang Q, Liu H. Coronavirus disease-19 and the gut-lung axis. Int J Infect Dis 2021; 113:300-307. [PMID: 34517046 PMCID: PMC8431834 DOI: 10.1016/j.ijid.2021.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
Gastrointestinal and respiratory tract diseases often occur together. There are many overlapping pathologies, leading to the concept of the ‘gut–lung axis’ in which stimulation on one side triggers a response on the other side. This axis appears to be implicated in infections involving severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has triggered the global coronavirus disease 2019 (COVID-19) pandemic, in which respiratory symptoms of fever, cough and dyspnoea often occur together with gastrointestinal symptoms such as nausea, vomiting, abdominal pain and diarrhoea. Besides the gut–lung axis, it should be noted that the gut participates in numerous axes which may affect lung function, and consequently the severity of COVID-19, through several pathways. This article focuses on the latest evidence and the mechanisms that drive the operation of the gut–lung axis, and discusses the interaction between the gut–lung axis and its possible involvement in COVID-19 from the perspective of microbiota, microbiota metabolites, microbial dysbiosis, common mucosal immunity and angiotensin-converting enzyme II, raising hypotheses and providing methods to guide future research on this new disease and its treatments.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Qiu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education.
| |
Collapse
|
31
|
Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY) 2021; 13:19920-19941. [PMID: 34382946 PMCID: PMC8386533 DOI: 10.18632/aging.203405] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and clear senescent cells (SnCs) and cancerous cells, an increased autoimmune responses leading to tissue damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular senescence and immunosenescence have been studied extensively and implicated in various pathologies, their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the aged immune system.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Thomas C Foster
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
32
|
Su FJ, Chen MM. Protective Efficacy of Novel Oral Biofilm Vaccines against Lactococcus garvieae Infection in Mullet, Mugil cephalus. Vaccines (Basel) 2021; 9:vaccines9080844. [PMID: 34451969 PMCID: PMC8402525 DOI: 10.3390/vaccines9080844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Lactococcus garvieae (L. garvieae) is an important pathogen that causes enormous economic losses in both marine and freshwater aquaculture. At present, antibiotics are the only option for farmers to reduce the losses caused by L. garvieae. However, the usage of antibiotics leads to environmental pollution and the production of drug-resistant strains of bacteria. Therefore, vaccination is preferred as an alternative method to prevent infectious diseases. In this study, we describe an effective approach to the production of an oral biofilm vaccine, using bacteria grown on chitosan particles to form biofilms, and thus providing an inactive pathogen that enhances the immune response in fish. We observed the formation of a biofilm on chitosan particles and administered the novel oral biofilm vaccine to fish. We analyzed the immune responses, including antibody production, phagocytic ability, albumin/globulin ratio and immune-related genes, of vaccinated and control groups of black mullet. Our results show that the phagocytic ability of the biofilm vaccine group was 84%, which is significantly higher than that of the control group, and the antibody production in this group was significantly higher compared with the other group. The mRNA expression levels of immune-related genes (TLR2, IL-1β, TNF-α) were significantly upregulated in the spleen after vaccination. In challenge experiments, the relative percent survival (RPS) was 77% in the biofilm vaccine group, 18% in the whole-cell vaccine group, and 0% in the chitosan particle group at 32 days post-vaccination. In addition, we also found that the relative percent survival (RPS) at 1 day post-vaccination was 74% in the biofilm vaccine group, 42% in the whole-cell vaccine group, and 26% in the chitosan particle group. In both long-term and short-term challenge experiments, the viability of the biofilm vaccine group was significantly higher than that of the whole-cell, chitosan particle and PBS groups. We conclude that based on its protective effect, the L. garvieae biofilm vaccine is better than the whole-cell vaccine when challenged several weeks after vaccination. In addition, the biofilm vaccine also has a greater protective effect than the whole-cell vaccine when challenged immediately after vaccination. Therefore, the biofilm vaccine might represent a novel method for the prevention and treatment of L. garvieae infection.
Collapse
|
33
|
Abdul Rahman R, Lamarca A, Hubner RA, Valle JW, McNamara MG. The Microbiome as a Potential Target for Therapeutic Manipulation in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13153779. [PMID: 34359684 PMCID: PMC8345056 DOI: 10.3390/cancers13153779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most lethal cancers. It is a difficult cancer to treat, and the complexity surrounding the pancreatic tumour is one of the contributing factors. The microbiome is the collection of microorganisms within an environment and its genetic material. They reside on body surfaces and most abundantly within the human gut in symbiotic balance with their human host. Disturbance in the balance can lead to many diseases, including cancers. Significant advances have been made in cancer treatment since the introduction of immunotherapy, and the microbiome may play a part in the outcome and survival of patients with cancer, especially those treated with immunotherapy. Immunotherapy use in pancreatic cancer remains challenging. This review will focus on the potential interaction of the microbiome with pancreas cancer and how this could be manipulated. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and is projected to be the second most common cause of cancer-related death by 2030, with an overall 5-year survival rate between 7% and 9%. Despite recent advances in surgical, chemotherapy, and radiotherapy techniques, the outcome for patients with PDAC remains poor. Poor prognosis is multifactorial, including the likelihood of sub-clinical metastatic disease at presentation, late-stage at presentation, absence of early and reliable diagnostic biomarkers, and complex biology surrounding the extensive desmoplastic PDAC tumour micro-environment. Microbiota refers to all the microorganisms found in an environment, whereas microbiome is the collection of microbiota and their genome within an environment. These organisms reside on body surfaces and within mucosal layers, but are most abundantly found within the gut. The commensal microbiome resides in symbiosis in healthy individuals and contributes to nutritive, metabolic and immune-modulation to maintain normal health. Dysbiosis is the perturbation of the microbiome that can lead to a diseased state, including inflammatory bowel conditions and aetiology of cancer, such as colorectal and PDAC. Microbes have been linked to approximately 10% to 20% of human cancers, and they can induce carcinogenesis by affecting a number of the cancer hallmarks, such as promoting inflammation, avoiding immune destruction, and microbial metabolites can deregulate host genome stability preceding cancer development. Significant advances have been made in cancer treatment since the advent of immunotherapy. The microbiome signature has been linked to response to immunotherapy and survival in many solid tumours. However, progress with immunotherapy in PDAC has been challenging. Therefore, this review will focus on the available published evidence of the microbiome association with PDAC and explore its potential as a target for therapeutic manipulation.
Collapse
Affiliation(s)
- Rozana Abdul Rahman
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; (A.L.); (R.A.H.)
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust/Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK; (A.L.); (R.A.H.)
| | - Juan W. Valle
- Division of Cancer Sciences, University of Manchester/Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Mairéad G. McNamara
- Division of Cancer Sciences, University of Manchester/Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
- Correspondence:
| |
Collapse
|
34
|
Probiotics, Prebiotics, Synbiotics and Dental Caries. New Perspectives, Suggestions, and Patient Coaching Approach for a Cavity-Free Mouth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Probiotic therapy forms a new strategy for dental caries prevention. Probiotic microorganisms possess the ability to displace cariogenic microorganisms and colonize the oral cavity. They can produce various antimicrobial substances such as bacteriocins, bacteriocin-like peptides, lactic acid, and hydrogen peroxide. Dairy products may be ideal for probiotic administration in dental patients. Many other means have been proposed, primarily for those allergic to dairy components, such as capsules, liquid form, tablets, drops, lozenges, sweetened cakes, and ice creams. The last two forms can be used in a coaching approach for children and elderly patients who find it difficult to avoid sugary beverages in their daily routine and benefit from the suggestion of easy, cheap, and common forms of delicacies. In caries prevention, the concept of the effector strain is already considered an integral part of the contemporary caries cure or prevention strategy in adults. Adults, though, seem not to be favored as much as children at early ages by using probiotics primarily due to their oral microbiome’s stability. In this non-systematic review we describe the modes of action of probiotics, their use in the cariology field, their clinical potential, and propose options to prevent caries through a patient coaching approach for the daily dental practice.
Collapse
|
35
|
Cavalheiro CP, Ruiz-Capillas C, Herrero AM, Pintado T. Dry-fermented sausages inoculated with Enterococcus faecium CECT 410 as free cells or in alginate beads. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Zhou H, Wang L, Liu F. Immunological Impact of Intestinal T Cells on Metabolic Diseases. Front Immunol 2021; 12:639902. [PMID: 33679800 PMCID: PMC7930072 DOI: 10.3389/fimmu.2021.639902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence accumulated over the past several years has uncovered intestinal CD4+ T cells as an essential mediator in modulating intestinal immunity in health and diseases. It has also been increasingly recognized that dietary and microbiota-derived factors play key roles in shaping the intestinal CD4+ T-cell compartment. This review aims to discuss the current understanding on how the intestinal T cell immune responses are disturbed by obesity and metabolic stress. In addition, we review how these changes influence systemic metabolic homeostasis and the T-cell-mediated crosstalk between gut and liver or brain in the progression of obesity and its related diseases. Lastly, we highlight the potential roles of some drugs that target intestinal T cells as a therapeutic treatment for metabolic diseases. A better understanding of the interaction among metabolites, bacterial signals, and T cell immune responses in the gut and their roles in systemic inflammation in metabolic tissues should shed new light on the development of effective treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Haiyan Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liwen Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
37
|
Ellrichmann M, Bethge J, Boesenkoetter J, Conrad C, Noth R, Bahmer T, Nikolaus S, Aden K, Zeissig S, Schreiber S. Subclinical Pulmonary Involvement in Active IBD Responds to Biologic Therapy. J Crohns Colitis 2021; 15:1339-1345. [PMID: 33544122 PMCID: PMC8521732 DOI: 10.1093/ecco-jcc/jjab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Increased mortality from respiratory diseases was observed in epidemiological studies of patients with ulcerative colitis [UC] as a potentially underestimated extraintestinal manifestation. We therefore investigated the presence of pulmonary manifestations of inflammatory bowel disease [IBD] and the potential effect of tumour necrosis factor alpha [TNF-α] inhibitors on pulmonary function tests [PFT] in a prospective, longitudinal study. METHODS In all, 92 consecutive patients with IBD (49 Crohn´s disease [CD], 43 UC) and 20 healthy controls were recruited. Fifty patients with IBD were in remission, and 42 had active disease with 22 of these being examined before and 6 weeks after initiating anti-TNF therapy. Pulmonary function tests [PFT] were evaluated using the Medical Research Council [MRC] dyspnoea index and a standardized body plethysmography. IBD activity was assessed using Harvey-Bradshaw index for CD and partial Mayo score for UC. Data are presented as mean ± standard error of the mean [SEM]. RESULTS Patients with active IBD showed significant reduction of PFT. Forced expiration [Tiffeneau index] values [FEV1%] were significantly reduced in IBD patients with active disease [78.8 ± 1.1] compared with remission [86.1 ± 0.9; p = 0.0002] and with controls [87.3 ± 1.3; p = 0.001]. Treatment with anti-TNF induced a significant relief in obstruction [p = 0.003 for FEV1% in comparison with baseline levels]. The level of pulmonary obstruction significantly correlated with clinical inflammation scores [HBI or Mayo]. CONCLUSIONS: PATIENTS with active IBD present with significant obstructive abnormalities in their PFTs. Obstruction is related to inflammatory activity, with anti-TNF improving PFTs. Pulmonary obstruction and possibly chronic bronchopulmonary inflammation is an overlooked problem in active IBD that is probably obscured by intestinal symptoms.
Collapse
Affiliation(s)
- M Ellrichmann
- Medical Department I, University Medical Center Schleswig Holstein, Kiel, Germany,Corresponding author: Mark Ellrichmann, MD, PhD, , Medical Department I, Arnold-Heller-Str. 3, Haus C, 24105 Kiel, Germany. Tel.: +49-431-500-22220; fax: +49-431-500-22378;
| | - J Bethge
- Medical Department I, University Medical Center Schleswig Holstein, Kiel, Germany
| | - J Boesenkoetter
- Medical Department I, University Medical Center Schleswig Holstein, Kiel, Germany
| | - C Conrad
- Medical Department I, University Medical Center Schleswig Holstein, Kiel, Germany
| | - R Noth
- Medical Department I, University Medical Center Schleswig Holstein, Kiel, Germany
| | - T Bahmer
- Medical Department I, University Medical Center Schleswig Holstein, Kiel, Germany
| | - S Nikolaus
- Medical Department I, University Medical Center Schleswig Holstein, Kiel, Germany
| | - K Aden
- Medical Department I, University Medical Center Schleswig Holstein, Kiel, Germany
| | - S Zeissig
- Department of Medicine I, University Medical Center Dresden, and Center for Regenerative Therapies Dresden [CRTD], Dresden, Germany
| | - S Schreiber
- Medical Department I, University Medical Center Schleswig Holstein, Kiel, Germany
| |
Collapse
|
38
|
Heinzinger LR, Johnson A, Wurster JI, Nilson R, Penumutchu S, Belenky P. Oxygen and Metabolism: Digesting Determinants of Antibiotic Susceptibility in the Gut. iScience 2020; 23:101875. [PMID: 33354661 PMCID: PMC7744946 DOI: 10.1016/j.isci.2020.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Microbial metabolism is a major determinant of antibiotic susceptibility. Environmental conditions that modify metabolism, notably oxygen availability and redox potential, can directly fine-tune susceptibility to antibiotics. Despite this, relatively few studies have discussed these modifications within the gastrointestinal tract and their implication on in vivo drug activity and the off-target effects of antibiotics in the gut. In this review, we discuss the environmental and biogeographical complexity of the gastrointestinal tract in regard to oxygen availability and redox potential, addressing how the heterogeneity of gut microhabitats may modify antibiotic activity in vivo. We contextualize the current literature surrounding oxygen availability and antibiotic efficacy and discuss empirical treatments. We end by discussing predicted patterns of antibiotic activity in prominent microbiome taxa, given gut heterogeneity, oxygen availability, and polymicrobial interactions. We also propose additional work required to fully elucidate the role of oxygen metabolism on antibiotic susceptibility in the context of the gut.
Collapse
Affiliation(s)
- Lauren R. Heinzinger
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Angus Johnson
- Department of Biological Science, Binghamton University, Binghamton, NY 13902, USA
| | - Jenna I. Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
39
|
Sachdeva V, Roy A, Bharadvaja N. Current Prospects of Nutraceuticals: A Review. Curr Pharm Biotechnol 2020; 21:884-896. [PMID: 32000642 DOI: 10.2174/1389201021666200130113441] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
Nutraceuticals are dietary supplements, utilized to ameliorate health, delay senescence, prevent diseases, and support the proper functioning of the human body. Currently, nutraceuticals are gaining substantial attention due to nutrition and therapeutic potentials. Based on their sources, they are categorized as dietary supplements and herbal bioactive compounds. The global market for nutraceutical is huge i.e. approximately USD 117 billion. Herbal nutraceutical helps in maintaining health and promoting optimal health, longevity, and quality of life. Studies have shown promising results of nutraceuticals to treat several diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases, etc. In the present review, an overview of various bioactive ingredients that act as nutraceuticals (carbohydrates, lipids, edible flowers, alkaloids, medicinal plants, etc.) and their role in health benefits, has been discussed. Further application of nutraceuticals in the prevention of various diseases has also been discussed.
Collapse
Affiliation(s)
- Vedant Sachdeva
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Arpita Roy
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
40
|
Abd El-Aziz AH, El-Kasrawy NI, Abd El-Hack ME, Kamel SZ, Mahrous UE, El-Deeb EM, Atta MS, Amer MS, Naiel MAE, Khafaga AF, Metwally AE, Abo Ghanima MM. Growth, immunity, relative gene expression, carcass traits and economic efficiency of two rabbit breeds fed prebiotic supplemented diets. Anim Biotechnol 2020; 33:417-428. [PMID: 32734820 DOI: 10.1080/10495398.2020.1800485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current study designed to evaluate the effect of oligosaccharide supplemented diets on growth performance, histomorphometric changes, economic efficiency and genetic expression of some growth and immunity-relative genes. One hundred and twenty weaned male rabbits, six weeks of age of two breeds (NZW and APPRI) were randomly allocated into six equal groups; the first supplemented with 0.3% Mannan-oligosaccharide (MOS), the second supplemented with 0.05% Isomalto-oligosaccharide (IMO) and the third considered a control group. Each group contained ten equal replicates. The highest Final body weight and feed consumption were recorded in MOS and IMO groups compared with control. Fortified feed diet with IMO significantly increased duodenal villi area and length than MOS and control groups. At the same time, Spleen white bulb area and length were significantly higher in MOS and IMO than control. Supplementation of MOS and IMO significantly improved carcass traits, economic efficiency and induced certain modifications in some major key genes involved in the regulation of nutrients metabolism, immunity and growth in different tissues. In conclusion, dietary supplementation of MOS and IMO had a desirable positive impact on productive and economic efficiency in the rabbit.
Collapse
Affiliation(s)
- Ayman H Abd El-Aziz
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nagwa I El-Kasrawy
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Sherif Z Kamel
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Usama E Mahrous
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Eman M El-Deeb
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mostafa S Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud S Amer
- Laser Application in Biotechnology Department, National Institute of Laser Enhanced Science, Cairo University, Cairo, Egypt
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Abdallah E Metwally
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud M Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
41
|
Navarro-Tapia E, Sebastiani G, Sailer S, Toledano LA, Serra-Delgado M, García-Algar Ó, Andreu-Fernández V. Probiotic Supplementation During the Perinatal and Infant Period: Effects on Gut Dysbiosis and Disease. Nutrients 2020; 12:E2243. [PMID: 32727119 PMCID: PMC7468726 DOI: 10.3390/nu12082243] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The perinatal period is crucial to the establishment of lifelong gut microbiota. The abundance and composition of microbiota can be altered by several factors such as preterm delivery, formula feeding, infections, antibiotic treatment, and lifestyle during pregnancy. Gut dysbiosis affects the development of innate and adaptive immune responses and resistance to pathogens, promoting atopic diseases, food sensitization, and infections such as necrotizing enterocolitis (NEC). Recent studies have indicated that the gut microbiota imbalance can be restored after a single or multi-strain probiotic supplementation, especially mixtures of Lactobacillus and Bifidobacterium strains. Following the systematic search methodology, the current review addresses the importance of probiotics as a preventive or therapeutic tool for dysbiosis produced during the perinatal and infant period. We also discuss the safety of the use of probiotics in pregnant women, preterm neonates, or infants for the treatment of atopic diseases and infections.
Collapse
Affiliation(s)
- Elisabet Navarro-Tapia
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Valencian International University (VIU), 46002 Valencia, Spain
| | - Giorgia Sebastiani
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain
| | - Sebastian Sailer
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain
| | - Laura Almeida Toledano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, 08950 Barcelona, Spain
| | - Mariona Serra-Delgado
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- BCNatal, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, 08950 Barcelona, Spain
| | - Óscar García-Algar
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Valencian International University (VIU), 46002 Valencia, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain
| |
Collapse
|
42
|
Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020; 39:4925-4943. [PMID: 32514151 PMCID: PMC7314664 DOI: 10.1038/s41388-020-1341-1] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Research about the role of gut microbiome in colorectal cancer (CRC) is a newly emerging field of study. Gut microbiota modulation, with the aim to reverse established microbial dysbiosis, is a novel strategy for prevention and treatment of CRC. Different strategies including probiotics, prebiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT) have been employed. Although these strategies show promising results, mechanistically by correcting microbiota composition, modulating innate immune system, enhancing gut barrier function, preventing pathogen colonization and exerting selective cytotoxicity against tumor cells, it should be noted that they are accompanied by risks and controversies that can potentially introduce clinical complications. During bench-to-bedside translation, evaluation of risk-and-benefit ratio, as well as patient selection, should be carefully performed. In view of the individualized host response to gut microbiome intervention, developing personalized microbiome therapy may be the key to successful clinical treatment.
Collapse
|
43
|
Hu X, Yu Q, Hou K, Ding X, Chen Y, Xie J, Nie S, Xie M. Regulatory effects of Ganoderma atrum polysaccharides on LPS-induced inflammatory macrophages model and intestinal-like Caco-2/macrophages co-culture inflammation model. Food Chem Toxicol 2020; 140:111321. [DOI: 10.1016/j.fct.2020.111321] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 01/20/2023]
|
44
|
|
45
|
Barszcz M, Taciak M, Tuśnio A, Święch E, Skomiał J. Dose-dependent effects of two inulin types differing in chain length on the small intestinal morphology, contractility and proinflammatory cytokine gene expression in piglets. Arch Anim Nutr 2019; 74:107-120. [PMID: 31852279 DOI: 10.1080/1745039x.2019.1697140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Inulin is a linear fructose polymer which may affect small intestinal physiology. The effects of dietary level of two inulin types on morphology, contractility and proinflammatory cytokine gene expression in the small intestine of piglets were investigated. Fifty six piglets were divided into seven groups fed diets without inulin addition or with 1%, 2% or 3% of inulin with an average degree of polymerisation of 10 (IN10) or 23 (IN23). All diets were offered from day 10 of life for 40 d. Feeding IN10 diets did not affect villous height to crypt depth ratio in the duodenum, while in the jejunum the 2% IN10 diet increased it as compared to other groups. Jejunal muscle contractions induced by electrical field stimulation were impaired by the 2% and 3% IN10 diets. The ileal expression of interleukin-12p40 was decreased by the 2% IN10 diet. There was no effect of IN23 level on villous height to crypt depth ratio in any segment of the small intestine as well as on jejunal motility. The 2% and 3% IN23 diets decreased the jejunal expression of tumour necrosis factor-α. In conclusion, IN10 is more active in the small intestine than IN23. At the 2% dietary level, it increases absorptive area in the jejunum, but may slightly impair smooth muscle contractions.
Collapse
Affiliation(s)
- Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Marcin Taciak
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Anna Tuśnio
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Ewa Święch
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Jacek Skomiał
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| |
Collapse
|
46
|
Mechanisms Underlying Bone Loss Associated with Gut Inflammation. Int J Mol Sci 2019; 20:ijms20246323. [PMID: 31847438 PMCID: PMC6940820 DOI: 10.3390/ijms20246323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with gastrointestinal diseases frequently suffer from skeletal abnormality, characterized by reduced bone mineral density, increased fracture risk, and/or joint inflammation. This pathological process is characterized by altered immune cell activity and elevated inflammatory cytokines in the bone marrow microenvironment due to disrupted gut immune response. Gastrointestinal disease is recognized as an immune malfunction driven by multiple factors, including cytokines and signaling molecules. However, the mechanism by which intestinal inflammation magnified by gut-residing actors stimulates bone loss remains to be elucidated. In this article, we discuss the main risk factors potentially contributing to intestinal disease-associated bone loss, and summarize current animal models, illustrating gut-bone axis to bridge the gap between intestinal inflammation and skeletal disease.
Collapse
|
47
|
Risks associated with enterococci as probiotics. Food Res Int 2019; 129:108788. [PMID: 32036912 DOI: 10.1016/j.foodres.2019.108788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
Probiotics are naturally occurring microorganisms that confer health benefits by altering host commensal microbiota, modulating immunity, enhancing intestinal barrier function, or altering pain perception. Enterococci are human and animal intestinal commensals that are used as probiotics and in food production. These microorganisms, however, express many virulence traits including cytolysin, proteases, aggregation substance, capsular polysaccharide, enterococcal surface protein, biofilm formation, extracellular superoxide, intestinal translocation, and resistance to innate immunity that can lead to serious hospital-acquired infections. In addition, enterococci are facile in acquiring antibiotic resistance genes to many clinically important antibiotics encoded on a wide variety of conjugative plasmids, transposons, and bacteriophages. The pathogenicity and disease burden caused by enterococci render them poor choices as probiotics. No large, randomized, placebo-controlled clinical trials have demonstrated the safety and efficacy of any enterococcal probiotic. As a result, no enterococcal probiotic has been approved by the United States Food and Drug Administration for the treatment, cure, or amelioration of human disease. In 2007, the European Food Safety Authority concluded that enterococci do not meet the standard for "Qualified Presumption of Safety". Enterococcal strains used or proposed for use as probiotics should be carefully screened for efficacy and safety.
Collapse
|
48
|
Dobrange E, Peshev D, Loedolff B, Van den Ende W. Fructans as Immunomodulatory and Antiviral Agents: The Case of Echinacea. Biomolecules 2019; 9:E615. [PMID: 31623122 PMCID: PMC6843407 DOI: 10.3390/biom9100615] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Throughout history, medicinal purposes of plants have been studied, documented, and acknowledged as an integral part of human healthcare systems. The development of modern medicine still relies largely on this historical knowledge of the use and preparation of plants and their extracts. Further research into the human microbiome highlights the interaction between immunomodulatory responses and plant-derived, prebiotic compounds. One such group of compounds includes the inulin-type fructans (ITFs), which may also act as signaling molecules and antioxidants. These multifunctional compounds occur in a small proportion of plants, many of which have recognized medicinal properties. Echinacea is a well-known medicinal plant and products derived from it are sold globally for its cold- and flu-preventative and general health-promoting properties. Despite the well-documented phytochemical profile of Echinacea plants and products, little research has looked into the possible role of ITFs in these products. This review aims to highlight the occurrence of ITFs in Echinacea derived formulations and the potential role they play in immunomodulation.
Collapse
Affiliation(s)
- Erin Dobrange
- Laboratory of Molecular Plant Biology, KU Leuven, 3001 Leuven, Belgium.
| | - Darin Peshev
- Laboratory of Molecular Plant Biology, KU Leuven, 3001 Leuven, Belgium.
| | - Bianke Loedolff
- Institute for Plant Biotechnology, Department of Genetics, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
49
|
Grases-Pintó B, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Burleigh S, Fåk Hållenius F, Prykhodko O, Pérez-Cano FJ, Franch À. Influence of Leptin and Adiponectin Supplementation on Intraepithelial Lymphocyte and Microbiota Composition in Suckling Rats. Front Immunol 2019; 10:2369. [PMID: 31708912 PMCID: PMC6795087 DOI: 10.3389/fimmu.2019.02369] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Dietary components in early life play a role in both microbiota and intestinal immune system maturation in mammalian species. Adipokines, as endogenously produced hormones from breast milk, may have an impact on this process. The aim of the present study was to establish the influence of leptin and adiponectin supplementation during suckling on the intraepithelial lymphocyte composition, intestinal barrier function, intestinal gene expression, and gut microbiota in rat. For this purpose, newborn Wistar rats were supplemented daily with leptin, adiponectin, or whey protein concentrate during the first 21 days of life. Lymphocyte composition was established by immunofluorescence staining and flow cytometry analysis; intestinal gene expression by real-time PCR and cecal microbiota were analyzed through 16S rRNA gene sequencing. Although leptin and adiponectin were able to increase the Tc TCRαβ+ and NKT cell proportion, they decreased the NK cell percentage in IEL. Moreover, adipokine supplementation differentially modified CD8+ IEL. While the supplementation of leptin increased the proportion of CD8αα+ IEL (associated to a more intestinal phenotype), adiponectin enhanced that of CD8αβ+ (related to a peripheral phenotype). Furthermore, both adipokines enhanced the gene expression of TNF-α, MUC-2, and MUC-3, and decreased that of FcRn. In addition, the adipokine supplementations decreased the abundance of the Proteobacteria phylum and the presence of Blautia. Moreover, leptin-supplemented animals had lower relative abundance of Sutterella and a higher proportion of Clostridium genus, among others. However, supplementation with adiponectin resulted in lower abundance of the Roseburia genus and a higher proportion of the Enterococcus genus. In conclusion, the supplementation with leptin and adiponectin throughout the suckling period had an impact on both the IEL composition and the gut microbiota pattern, suggesting a modulatory role of these adipokines on the development of intestinal functionality.
Collapse
Affiliation(s)
- Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Mar Abril-Gil
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Maria J Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Stephen Burleigh
- Food for Health Science Centre, Lund University, Lund, Sweden.,Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Frida Fåk Hållenius
- Food for Health Science Centre, Lund University, Lund, Sweden.,Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Olena Prykhodko
- Food for Health Science Centre, Lund University, Lund, Sweden.,Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
50
|
|