1
|
Goyal S, Tibrewal S, Ratna R, Vanita V. Genetic and environmental factors contributing to anophthalmia and microphthalmia: Current understanding and future directions. World J Clin Pediatr 2025; 14:101982. [DOI: 10.5409/wjcp.v14.i2.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/18/2025] Open
Abstract
Anophthalmia is defined as a complete absence of one eye or both the eyes, while microphthalmia represents the presence of a small eye within the orbit. The estimated birth prevalence for anophthalmia is approximately 3 per 100000 live births, and for microphthalmia, it is around 14 per 100000 live births. However, combined evidence suggests that the prevalence of these malformations could be as high as 30 per 100000 individuals. Microphthalmia is reported to occur in 3.2% to 11.2% of blind children. Anophthalmia and microphthalmia (A/M) are part of a phenotypic spectrum alongside ocular coloboma, hypothesized to share a common genetic basis. Both A/M can occur in isolation or as part of a syndrome. Their complex etiology involves chromosomal aberrations, monogenic inheritance pattern, and the contribution of environmental factors such as gestational-acquired infections, maternal vitamin A deficiency (VAD), exposure to X-rays, solvent misuse, and thalidomide exposure. A/M exhibit significant clinical and genetic heterogeneity with over 90 genes identified so far. Familial cases of A/M have a complex genetic basis, including all Mendelian modes of inheritance, i.e., autosomal dominant, recessive, and X-linked. Most cases arise sporadically due to de novo mutations. Examining gene expression during eye development and the effects of various environmental variables will help us better understand the phenotypic heterogeneity found in A/M, leading to more effective diagnosis and management strategies. The present review focuses on key genetic factors, developmental abnormalities, and environmental modifiers linked with A/M. It also emphasizes at potential research areas including multiomic methods and disease modeling with induced pluripotent stem cell technologies, which aim to create innovative treatment options.
Collapse
Affiliation(s)
- Shiwali Goyal
- Department of Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Rockville, MD 20852, United States
| | - Shailja Tibrewal
- Department of Pediatric Ophthalmology, Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, Delhi, India
- Department of Ocular Genetics (Center for Unknown and Rare Eye Diseases), Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, Delhi, India
| | - Ria Ratna
- Department of Ocular Genetics (Center for Unknown and Rare Eye Diseases), Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, Delhi, India
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
2
|
Szabó V, Varsányi B, Barboni M, Takács Á, Knézy K, Molnár MJ, Nagy ZZ, György B, Rivolta C. Insights into eye genetics and recent advances in ocular gene therapy. Mol Cell Probes 2025; 79:102008. [PMID: 39805344 DOI: 10.1016/j.mcp.2025.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
The rapid advancements in the field of genetics have significantly propelled the development of gene therapies, paving the way for innovative treatments of various hereditary disorders. This review focuses on the genetics of ophthalmologic conditions, highlighting the currently approved ophthalmic gene therapy and exploring emerging therapeutic strategies under development. Inherited retinal dystrophies represent a heterogeneous group of genetic disorders that manifest across a broad spectrum from infancy to late middle age. Key clinical features include nyctalopia (night blindness), constriction of the visual field, impairments in color perception, reduced central visual acuity, and rapid eye movements. Recent technological advancements, such as multimodal imaging, psychophysical assessments, and electrophysiological testing, have greatly enhanced our ability to understand disease progression and establish genotype-phenotype correlations. Additionally, the integration of molecular diagnostics into clinical practice is revolutionizing patient stratification and the design of targeted interventions, underscoring the transformative potential of personalized medicine in ophthalmology. The review also covers the challenges and opportunities in developing gene therapies for other ophthalmic conditions, such as age-related macular degeneration and optic neuropathies. We discuss the viral and non-viral vector systems used in ocular gene therapy, highlighting their advantages and limitations. Additionally, we explore the potential of emerging technologies like CRISPR/Cas9 in treating genetic eye diseases. We briefly address the regulatory landscape, concerns, challenges, and future directions of gene therapy in ophthalmology. We emphasize the need for long-term safety and efficacy data as these innovative treatments move from bench to bedside.
Collapse
Affiliation(s)
- Viktória Szabó
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Balázs Varsányi
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary; Ganglion Medical Center, Váradi Str. 10/A, Pécs, 7621, Hungary.
| | - Mirella Barboni
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary; Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| | - Ágnes Takács
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Krisztina Knézy
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Mária Judit Molnár
- Semmelweis University, Institute of Genomic Medicine and Rare Disorders, Gyulai Pál Str. 2, Budapest, 1085, Hungary.
| | - Zoltán Zsolt Nagy
- Semmelweis University, Department of Ophthalmology, Mária Str. 39, Budapest, 1085, Hungary.
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland; Department of Ophthalmology, University of Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Strasse 91, Basel, CH-4031, Switzerland.
| |
Collapse
|
3
|
Divaris M. Decoding Facial Dissymmetry: A Comparative Morphological Study on Human Skulls and Facial Structures. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2025; 13:e6514. [PMID: 39974771 PMCID: PMC11838159 DOI: 10.1097/gox.0000000000006514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 12/13/2024] [Indexed: 02/21/2025]
Abstract
Background This study provides a detailed examination of facial asymmetry and its relationship with skeletal structure and soft tissues, aiming to better understand the morphological variations of the face. Methods The facial characteristics of 615 patients were analyzed using morphometric measurements. To complement this analysis, 189 skulls were examined to establish a concordance between skeletal structure and soft tissues, allowing for a deeper understanding of the observed asymmetry. The data were statistically analyzed to identify patterns of asymmetry. Results The measurements revealed a prevalence of the "narrow face" on the right side, characterized by features such as a narrower orbit, a thinner lateronasal area, and a slightly higher and narrower maxillomalar block. Notable exceptions to this pattern were observed, indicating significant individual variations. Conclusions Facial asymmetry is a constant feature among individuals and is influenced by complex embryological development processes. Identifying these variations provides new insights for aesthetic procedures, emphasizing the importance of a personalized approach to facial diagnosis.
Collapse
Affiliation(s)
- Marc Divaris
- From the Maxilofacial Surgery Department, Pitié Salpêtrière University, Paris, Île-de-France, France
- Maxilofacial Surgery Department, Georges Mandel Office, Paris, France
- Musée de l'Homme, Paris-Sorbonne University, Paris, France
| |
Collapse
|
4
|
More S, Mallick S, P SS, Bose B. Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective. Cell Biol Int 2024; 48:1802-1815. [PMID: 39308152 DOI: 10.1002/cbin.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 11/15/2024]
Abstract
Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.
Collapse
Affiliation(s)
- Shubhangi More
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
5
|
Wang MH, Li GF, Zhang J. Bibliometric analysis of microphthalmos and anophthalmos over 20 years: from 2004 to 2023. Int J Ophthalmol 2024; 17:2120-2128. [PMID: 39559321 PMCID: PMC11528269 DOI: 10.18240/ijo.2024.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/16/2024] [Indexed: 11/20/2024] Open
Abstract
AIM To conduct a bibliometric analysis of studies on microphthalmos and anophthalmos (M/A), explore research hotspots, and provide information on future research interests in this field to benefit clinicians and researchers. METHODS Totally 751 publications related to M/A from the year 2004 to 2023 were collected from the Web of Science Core Collection database. These publications consist of both original and review articles, that are composed in English. The contributions of different countries, institutions, journals, and authors were analyzed, and network analysis was conducted by using Microsoft Excel 2021, VOSviewer, and R Studio to visualize research hotspots. RESULTS Among all publications included, the highest number of publications came from USA (218, 29.03%). China followed with 99 publications (13.18%), and England with 86 publications (11.45%). The publications from the USA had the highest frequency of citations, with 16 699 citations, and the highest H-index of 49. The American Journal of Medical Genetics Part A (43, 5.73%) published the largest number of papers, and the University of London had the most publications (41, 5.46%). The genetic and molecular mechanisms of M/A were still unclear and the clinical intervention for M/A had gained a lot of attention as an emerging area of interest. CONCLUSION Data have been gathered on the yearly count of published materials and citations, as well as the rise in publication trends, the efficiency of regions or countries, authors, journals, and organizations, along with the high-cited publications in M/A. The recent trend of research has shifted from genetic mechanisms to different clinical phenotypes and corresponding clinical interventions, which can give direction to future research.
Collapse
Affiliation(s)
- Ming-Hui Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Capital Medical University, Beijing 100730, China
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne 50937, Germany
| | - Gong-Fei Li
- Department of Neurology & Stroke, University of Tübingen, Tübingen 72076, Germany
| | - Ju Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Capital Medical University, Beijing 100730, China
| |
Collapse
|
6
|
Zhang C, Lin Z, Yu Y, Wu S, Huang H, Huang Y, Liu J, Mo K, Tan J, Han Z, Li M, Zhao W, Ouyang H, Chen X, Wang L. Deciphering the dynamic single-cell transcriptional landscape in the ocular surface ectoderm differentiation system. LIFE MEDICINE 2024; 3:lnae033. [PMID: 39872440 PMCID: PMC11749776 DOI: 10.1093/lifemedi/lnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 01/30/2025]
Abstract
The ocular surface ectoderm (OSE) is essential for the development of the ocular surface, yet the molecular mechanisms driving its differentiation are not fully understood. In this study, we used single-cell transcriptomic analysis to explore the dynamic cellular trajectories and regulatory networks during the in vitro differentiation of embryonic stem cells (ESCs) into the OSE lineage. We identified nine distinct cell subpopulations undergoing differentiation along three main developmental branches: neural crest, neuroectodermal, and surface ectodermal lineages. Key marker gene expression, transcription factor activity, and signaling pathway insights revealed stepwise transitions from undifferentiated ESCs to fate-specified cell types, including a PAX6 + TP63 + population indicative of OSE precursors. Comparative analysis with mouse embryonic development confirmed the model's accuracy in mimicking in vivo epiblast-to-surface ectoderm dynamics. By integrating temporal dynamics of transcription factor activation and cell-cell communication, we constructed a comprehensive molecular atlas of the differentiation pathway from ESCs to distinct ectodermal lineages. This study provides new insights into the cellular heterogeneity and regulatory mechanisms of OSE development, aiding the understanding of ocular surface biology and the design of cell-based therapies for ocular surface disorders.
Collapse
Affiliation(s)
- Canwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Yankun Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Department of Pathology, The First Affiliated Hospital of Shihezi University, Shihezi 832002, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Wei Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| |
Collapse
|
7
|
Alhubaishi F, Almedfaa A, Andacheh M. A Case of Congenital Bilateral Anophthalmia. CURRENT HEALTH SCIENCES JOURNAL 2024; 50:328-331. [PMID: 39371063 PMCID: PMC11447493 DOI: 10.12865/chsj.50.02.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/25/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Anophthalmia and microphthalmia are orbito-facial developmental disorders characterized by deficient growth and impaired visual capability [1]. These rare disorders may be unilateral or bilateral. Congenital anophthalmia is the complete absence of the eye [2, 3]. The prevalence of both conditions is estimated at 0.2-3 per 10,000 births [4]. We report a case of congenital bilateral anophthalmia that was undetected during follow-up but diagnosed after birth. CASE DESCRIPTION 24-year-old Bahraini female, who is not a known case of any medical illnesses, primigravida at 39+6 weeks of gestation gave birth to a live male baby via vacuum extraction delivery due to recurrent variable decelerations and poor maternal effort. On physical examination, bilateral anophthalmia was immediately observed. No other anomalies were detected. The investigations ordered were MRI brain and orbit, which showed: Absence of bilateral eye globes-features of bilateral anophthalmia. We advised the parents the baby will need socket expansion/ conformer placement to maintain facial symmetry and cosmetic outcome with neurocognitive and development assessment every 2 months as well as speech and language evaluation. CONCLUSION Although many probable factors leading to anophthalmia are suggested, many cases arise idiopathically. Due to the nature of the defect, oftentimes prenatal diagnosis with routine scans is challenging. Therefore, more research into probable causes will prompt the healthcare professional to use more sensitive studies to detect the anomaly prenatally to potentially reduce the psychological and financial impact on the parents.
Collapse
Affiliation(s)
| | - Aysha Almedfaa
- King Hamad American Mission Hospital, A'ali 732, Bahrain
| | | |
Collapse
|
8
|
Aygun B, Biswas A, Taranath A, Yildiz H, Gore S, Mankad K. Neuroimaging of Ocular Abnormalities in Children. Neuroimaging Clin N Am 2023; 33:623-641. [PMID: 37741662 DOI: 10.1016/j.nic.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
In this article, we will discuss the essential MR imaging protocol required for the assessment of ocular abnormalities including malignancies. Then we will describe relevant anatomy, ocular embryogenesis, and genetics to establish a profound understanding of pathophysiology of the congenital ocular malformations. Finally, we will discuss pediatric ocular malignancies, benign mimics, and the most common congenital ocular malformations with case examples and illustrations and give tips on how to distinguish these entities on neuroimaging.
Collapse
Affiliation(s)
- Berna Aygun
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK; Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Asthik Biswas
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ajay Taranath
- Department of Medical Imaging, Women's and Children's Hospital, South Australia Medical Imaging, University of Adelaide, South Australia, Australia
| | - Harun Yildiz
- Department of Radiology, Bursa Dortcelik Children's Hospital, Bursa, Turkey
| | - Sri Gore
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; UCL GOS Institute of Child Health
| |
Collapse
|
9
|
Zhang X, Leavey P, Appel H, Makrides N, Blackshaw S. Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification. Trends Genet 2023; 39:736-757. [PMID: 37423870 PMCID: PMC10529299 DOI: 10.1016/j.tig.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
This review covers recent advances in understanding the molecular mechanisms controlling neurogenesis and specification of the developing retina, with a focus on insights obtained from comparative single cell multiomic analysis. We discuss recent advances in understanding the mechanisms by which extrinsic factors trigger transcriptional changes that spatially pattern the optic cup (OC) and control the initiation and progression of retinal neurogenesis. We also discuss progress in unraveling the core evolutionarily conserved gene regulatory networks (GRNs) that specify early- and late-state retinal progenitor cells (RPCs) and neurogenic progenitors and that control the final steps in determining cell identity. Finally, we discuss findings that provide insight into regulation of species-specific aspects of retinal patterning and neurogenesis, including consideration of key outstanding questions in the field.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University School of Medicine, New York, NY, USA.
| | - Patrick Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Piryaei F, Pakmanesh R, Salehirad M, Akbari S, Edizadeh M, Khodadadi H. ALDH1A3-related congenital microphthalmia-8 due to a novel frameshift variant. Eur J Med Genet 2023:104801. [PMID: 37339696 DOI: 10.1016/j.ejmg.2023.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
Microphthalmia (MCOP) is a group of rare developmental malformations of eye with often reduced size of the eyeball, leading to blindness. Affecting about 1 in 7000 live births, MCOP can occur due to either environmental or genetic factors. Isolated microphthalmia-8 (MCOP8) has been proved to be caused by autosomal recessive mutations of the ALDH1A3 gene (MIM*600463) encoding aldehyde dehydrogenase 1 family, member A3. Herein, we report an 8-year-old boy with vision problems since birth from a first-cousin consanguineous parents. The main symptoms of the patient included severe bilateral microphthalmia, cyst in the left eye and blindness. The child developed behavioral disorders at the age of 7. It should be noted that there is no family history of the disease. To identify the genetic factor underlying the pathogenesis in this case Whole Exome Sequencing (WES) was performed and followed by Sanger sequencing. A novel pathogenic variant, c.1441delA (p.M482Cfs*8), in the ALDH1A3 gene was detected by WES in the proband. Further prenatal diagnosis is highly suggested to the family for the future pregnancies.
Collapse
Affiliation(s)
- Fahimeh Piryaei
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Pakmanesh
- Department of Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran; MADAR Genetics Laboratory, Khorramabad, Lorestan, Iran
| | - Maryam Salehirad
- Department of Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran; MADAR Genetics Laboratory, Khorramabad, Lorestan, Iran
| | - Soheila Akbari
- Department of Obstetrics and Gynecology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran
| | - Masoud Edizadeh
- Department of Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran; MADAR Genetics Laboratory, Khorramabad, Lorestan, Iran
| | - Hamidreza Khodadadi
- Department of Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran; Hepatitis Research Center, Department of Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Lorestan, Iran.
| |
Collapse
|
11
|
Patasova K, Haarman AEG, Musolf AM, Mahroo OA, Rahi JS, Falchi M, Verhoeven VJM, Bailey-Wilson JE, Klaver CCW, Duggal P, Klein A, Guggenheim JA, Hammond CJ, Hysi PG. Association analyses of rare variants identify two genes associated with refractive error. PLoS One 2022; 17:e0272379. [PMID: 36137074 PMCID: PMC9499304 DOI: 10.1371/journal.pone.0272379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Genetic variants identified through population-based genome-wide studies are generally of high frequency, exerting their action in the central part of the refractive error spectrum. However, the power to identify associations with variants of lower minor allele frequency is greatly reduced, requiring considerable sample sizes. Here we aim to assess the impact of rare variants on genetic variation of refractive errors in a very large general population cohort. METHODS Genetic association analyses of non-cyclopaedic autorefraction calculated as mean spherical equivalent (SPHE) used whole-exome sequence genotypic information from 50,893 unrelated participants in the UK Biobank of European ancestry. Gene-based analyses tested for association with SPHE using an optimised SNP-set kernel association test (SKAT-O) restricted to rare variants (minor allele frequency < 1%) within protein-coding regions of the genome. All models were adjusted for age, sex and common lead variants within the same locus reported by previous genome-wide association studies. Potentially causal markers driving association at significant loci were elucidated using sensitivity analyses by sequentially dropping the most associated variants from gene-based analyses. RESULTS We found strong statistical evidence for association of SPHE with the SIX6 (p-value = 2.15 x 10-10, or Bonferroni-Corrected p = 4.41x10-06) and the CRX gene (p-value = 6.65 x 10-08, or Bonferroni-Corrected p = 0.001). The SIX6 gene codes for a transcription factor believed to be critical to the eye, retina and optic disc development and morphology, while CRX regulates photoreceptor specification and expression of over 700 genes in the retina. These novel associations suggest an important role of genes involved in eye morphogenesis in refractive error. CONCLUSION The results of our study support previous research highlighting the importance of rare variants to the genetic risk of refractive error. We explain some of the origins of the genetic signals seen in GWAS but also report for the first time a completely novel association with the CRX gene.
Collapse
Affiliation(s)
- Karina Patasova
- Department of Ophthalmology, King’s College London, London, United Kingdom
- Department of Twins Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Anthony M. Musolf
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Omar A. Mahroo
- Department of Ophthalmology, King’s College London, London, United Kingdom
- Department of Twins Research and Genetic Epidemiology, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and the UCL Institute of Ophthalmology, London, United Kingdom
- Department of Ophthalmology, St Thomas’ Hospital, Guys and St ’Thomas’ NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Jugnoo S. Rahi
- UCL Great Ormond Street Hospital Institute of Child Health, London, United Kingdom
- Ulverscroft Vision Research Group, University College London, London, United Kingdom
| | - Mario Falchi
- Department of Twins Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Alison Klein
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jeremy A. Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Chris J. Hammond
- Department of Ophthalmology, King’s College London, London, United Kingdom
- Department of Twins Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Pirro G. Hysi
- Department of Ophthalmology, King’s College London, London, United Kingdom
- Department of Twins Research and Genetic Epidemiology, King’s College London, London, United Kingdom
- UCL Great Ormond Street Hospital Institute of Child Health, London, United Kingdom
| | | |
Collapse
|
12
|
Bian F, Daghsni M, Lu F, Liu S, Gross JM, Aldiri I. Functional analysis of the Vsx2 super-enhancer uncovers distinct cis-regulatory circuits controlling Vsx2 expression during retinogenesis. Development 2022; 149:dev200642. [PMID: 35831950 PMCID: PMC9440754 DOI: 10.1242/dev.200642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Vsx2 is a transcription factor essential for retinal proliferation and bipolar cell differentiation, but the molecular mechanisms underlying its developmental roles are unclear. Here, we have profiled VSX2 genomic occupancy during mouse retinogenesis, revealing extensive retinal genetic programs associated with VSX2 during development. VSX2 binds and transactivates its enhancer in association with the transcription factor PAX6. Mice harboring deletions in the Vsx2 regulatory landscape exhibit specific abnormalities in retinal proliferation and in bipolar cell differentiation. In one of those deletions, a complete loss of bipolar cells is associated with a bias towards photoreceptor production. VSX2 occupies cis-regulatory elements nearby genes associated with photoreceptor differentiation and homeostasis in the adult mouse and human retina, including a conserved region nearby Prdm1, a factor implicated in the specification of rod photoreceptors and suppression of bipolar cell fate. VSX2 interacts with the transcription factor OTX2 and can act to suppress OTX2-dependent enhancer transactivation of the Prdm1 enhancer. Taken together, our analyses indicate that Vsx2 expression can be temporally and spatially uncoupled at the enhancer level, and they illuminate important mechanistic insights into how VSX2 is engaged with gene regulatory networks that are essential for retinal proliferation and cell fate acquisition.
Collapse
Affiliation(s)
- Fuyun Bian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marwa Daghsni
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Issam Aldiri
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Wang Z, Wiggs JL, Aung T, Khawaja AP, Khor CC. The genetic basis for adult onset glaucoma: Recent advances and future directions. Prog Retin Eye Res 2022; 90:101066. [PMID: 35589495 DOI: 10.1016/j.preteyeres.2022.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
Abstract
Glaucoma, a diverse group of eye disorders that results in the degeneration of retinal ganglion cells, is the world's leading cause of irreversible blindness. Apart from age and ancestry, the major risk factor for glaucoma is increased intraocular pressure (IOP). In primary open-angle glaucoma (POAG), the anterior chamber angle is open but there is resistance to aqueous outflow. In primary angle-closure glaucoma (PACG), crowding of the anterior chamber angle due to anatomical alterations impede aqueous drainage through the angle. In exfoliation syndrome and exfoliation glaucoma, deposition of white flaky material throughout the anterior chamber directly interfere with aqueous outflow. Observational studies have established that there is a strong hereditable component for glaucoma onset and progression. Indeed, a succession of genome wide association studies (GWAS) that were centered upon single nucleotide polymorphisms (SNP) have yielded more than a hundred genetic markers associated with glaucoma risk. However, a shortcoming of GWAS studies is the difficulty in identifying the actual effector genes responsible for disease pathogenesis. Building on the foundation laid by GWAS studies, research groups have recently begun to perform whole exome-sequencing to evaluate the contribution of protein-changing, coding sequence genetic variants to glaucoma risk. The adoption of this technology in both large population-based studies as well as family studies are revealing the presence of novel, protein-changing genetic variants that could enrich our understanding of the pathogenesis of glaucoma. This review will cover recent advances in the genetics of primary open-angle glaucoma, primary angle-closure glaucoma and exfoliation glaucoma, which collectively make up the vast majority of all glaucoma cases in the world today. We will discuss how recent advances in research methodology have uncovered new risk genes, and how follow up biological investigations could be undertaken in order to define how the risk encoded by a genetic sequence variant comes into play in patients. We will also hypothesise how data arising from characterising these genetic variants could be utilized to predict glaucoma risk and the manner in which new therapeutic strategies might be informed.
Collapse
Affiliation(s)
- Zhenxun Wang
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Chiea Chuen Khor
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| |
Collapse
|
14
|
Gholami Yarahmadi S, Sarlaki F, Morovvati S. Novel mutation in TENM3 gene in an Iranian patient with colobomatous microphthalmia. Clin Case Rep 2022; 10:e05532. [PMID: 35280100 PMCID: PMC8905136 DOI: 10.1002/ccr3.5532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
This investigation revealed a homozygous c.5069-1G>C variation in TENM3 gene although has not been reported for its pathogenicity and can be considered as a novel mutation. The present finding can be used for genetic diagnosis and detection of carriers in the family and other patients with similar disease manifestations.
Collapse
Affiliation(s)
| | | | - Saeid Morovvati
- School of Advanced Sciences and TechnologyIslamic Azad University‐Tehran Medical SciencesTehranIran
| |
Collapse
|
15
|
Rafati M, Mohamadhashem F, Jalilian K, Hoseininasab F, Fakhri L, Hoseini A, Amiri H, Barati Z, Darzi Ramandi S, Mostofinezhad N, Mahmoudi AH, Ghaffari SR. Identification of a novel de novo variant in OTX2 in a patient with congenital microphthalmia using targeted next-generation sequencing followed by prenatal diagnosis. Ophthalmic Genet 2021; 43:262-267. [PMID: 34791963 DOI: 10.1080/13816810.2021.2002915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Next-generation sequencing has been proven to be a reliable method for the detection of genetic causes in heterogeneous ocular disorders. In this report an NGS-based diagnostic approach was taken to uncover the genetic etiology in a patient with coloboma and microphthalmia, a highly heterogeneous disease with intrafamilial phenotypic variability. MATERIALS AND METHODS Next generation sequencing using a targeted panel of 316 genes, was carried out in the proband. Prioritized variants were then identified and confirmed using Sanger sequencing. Prenatal diagnosis of the detected variant was then performed in the family. RESULTS A novel de novo frameshift variant c.157_164delTTCACTCG (p.Phe53fs) in OTX2, leading to a truncated protein, was identified. Prenatal diagnosis identified the same variant in the fetus. CONCLUSIONS This report demonstrates the importance of genetic counseling and underscores the efficiency and effectiveness of targeted NGS as a means of detecting variants in inherited eye disorders.
Collapse
Affiliation(s)
- Maryam Rafati
- Comprehensive Genetic Center, Hope Generation Foundation, Tehran, Iran.,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Department of Genomics Gene Clinic, Tehran, Iran
| | - Faezeh Mohamadhashem
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Koosha Jalilian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Fatemeh Hoseininasab
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Laya Fakhri
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Azadeh Hoseini
- Comprehensive Genetic Center, Hope Generation Foundation, Tehran, Iran
| | - Hosna Amiri
- Comprehensive Genetic Center, Hope Generation Foundation, Tehran, Iran
| | - Zeinab Barati
- Comprehensive Genetic Center, Hope Generation Foundation, Tehran, Iran
| | | | | | | | - Saeed Reza Ghaffari
- Comprehensive Genetic Center, Hope Generation Foundation, Tehran, Iran.,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Department of Genomics Gene Clinic, Tehran, Iran
| |
Collapse
|
16
|
Daghsni M, Aldiri I. Building a Mammalian Retina: An Eye on Chromatin Structure. Front Genet 2021; 12:775205. [PMID: 34764989 PMCID: PMC8576187 DOI: 10.3389/fgene.2021.775205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression by chromatin structure has been under intensive investigation, establishing nuclear organization and genome architecture as a potent and effective means of regulating developmental processes. The substantial growth in our knowledge of the molecular mechanisms underlying retinogenesis has been powered by several genome-wide based tools that mapped chromatin organization at multiple cellular and biochemical levels. Studies profiling the retinal epigenome and transcriptome have allowed the systematic annotation of putative cis-regulatory elements associated with transcriptional programs that drive retinal neural differentiation, laying the groundwork to understand spatiotemporal retinal gene regulation at a mechanistic level. In this review, we outline recent advances in our understanding of the chromatin architecture in the mammalian retina during development and disease. We focus on the emerging roles of non-coding regulatory elements in controlling retinal cell-type specific transcriptional programs, and discuss potential implications in untangling the etiology of eye-related disorders.
Collapse
Affiliation(s)
- Marwa Daghsni
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Issam Aldiri
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Ji Y, Yan T, Zhu S, Wu R, Zhu M, Zhang Y, Guo C, Yao K. The Integrative Analysis of Competitive Endogenous RNA Regulatory Networks in Coronary Artery Disease. Front Cardiovasc Med 2021; 8:647953. [PMID: 34631806 PMCID: PMC8492936 DOI: 10.3389/fcvm.2021.647953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Coronary artery disease (CAD) is the leading cause of cardiovascular death. The competitive endogenous RNAs (ceRNAs) hypothesis is a new theory that explains the relationship between lncRNAs and miRNAs. The mechanism of ceRNAs in the pathological process of CAD has not been fully elucidated. The objective of this study was to explore the ceRNA mechanism in CAD using the integrative bioinformatics analysis and provide new research ideas for the occurrence and development of CAD. Methods: The GSE113079 dataset was downloaded, and differentially expressed lncRNAs (DElncRNAs) and genes (DEGs) were identified using the limma package in the R language. Weighted gene correlation network analysis (WGCNA) was performed on DElncRNAs and DEGs to explore lncRNAs and genes associated with CAD. Functional enrichment analysis was performed on hub genes in the significant module identified via WGCNA. Four online databases, including TargetScan, miRDB, miRTarBase, and Starbase, combined with an online tool, miRWalk, were used to construct ceRNA regulatory networks. Results: DEGs were clustered into ten co-expression modules with different colors using WGCNA. The brown module was identified as the key module with the highest correlation coefficient. 188 hub genes were identified in the brown module for functional enrichment analysis. DElncRNAs were clustered into sixteen modules, including seven modules related to CAD with the correlation coefficient more than 0.5. Three ceRNA networks were identified, including OIP5-AS1-miR-204-5p/miR-211-5p-SMOC1, OIP5-AS1-miR-92b-3p-DKK3, and OIP5-AS1-miR-25-3p-TMEM184B. Conclusion: Three ceRNA regulatory networks identified in this study may play crucial roles in the occurrence and development of CAD, which provide novel insights into the ceRNA mechanism in CAD.
Collapse
Affiliation(s)
- Yuyao Ji
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Tao Yan
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijie Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Runda Wu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Miao Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kang Yao
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| |
Collapse
|
18
|
A Fetus with Congenital Microcephaly, Microphthalmia and Cataract Was Detected with Biallelic Variants in the OCLN Gene: A Case Report. Diagnostics (Basel) 2021; 11:diagnostics11091576. [PMID: 34573918 PMCID: PMC8472215 DOI: 10.3390/diagnostics11091576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Microcephaly and microphthalmia are both rare congenital abnormalities, while concurrently, these two are even rarer. The underlying etiology would be complex interplaying between heterogeneous genetic background and the environmental pathogens, particularly during critical periods of early tissue development. Here, we reported a prenatal case with microcephaly, microphthalmia, and bilateral cataracts detected by ultrasonography and confirmed by autopsy. Various routine infection-related tests and invasive genetic testing were negative. Whole genome sequencing of fetus and parents revealed OCLN gene defects may be associated with these multiple congenital abnormalities.
Collapse
|
19
|
Kera J, Watal P, Ali SA. Anophthalmia, Global Developmental Delay, and Severe Dysphagia in a Young Girl With 14q22q23 Microdeletion Syndrome. Cureus 2021; 13:e16395. [PMID: 34408948 PMCID: PMC8362864 DOI: 10.7759/cureus.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
14q22q23 microdeletion syndrome, also called Frias syndrome, is an extremely rare partial deletion of the long arm of chromosome 14 characterized by the anomalies of the pituitary gland, eyes, and hand/foot. Intellectual disability and facial dysmorphism are other common manifestations. Haploinsufficiency of the genes bone morphogenetic protein 4 (BMP4) and orthodenticle homeobox 2 (OTX2) accounts for most of the phenotypic abnormalities seen in these patients. There are only a few cases reported with Frias syndrome in the literature, and there are multiple variations present, which are not well recognized due to different set of genes involved. This case report presents the case of a young child with a deletion in 14q22.2q23.1 region containing both BMP4 and OTX2 genes as well as sineoculis homeobox homolog 1 (SIX1) and sineoculis homeobox homolog 6 (SIX6) genes. The case report illustrates the wide phenotypic findings associated with these genes along with additional unique findings that previously have not been commonly reported.
Collapse
Affiliation(s)
- Jeslin Kera
- Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Pankaj Watal
- Radiology, Nemours Children's Hospital, Orlando, USA
| | - Syed A Ali
- Inpatient Pediatrics, Nemours Children's Hospital, Orlando, USA
| |
Collapse
|
20
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
21
|
Lee AY. Skin Pigmentation Abnormalities and Their Possible Relationship with Skin Aging. Int J Mol Sci 2021; 22:ijms22073727. [PMID: 33918445 PMCID: PMC8038212 DOI: 10.3390/ijms22073727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Skin disorders showing abnormal pigmentation are often difficult to manage because of their uncertain etiology or pathogenesis. Abnormal pigmentation is a common symptom accompanying aging skin. The association between skin aging and skin pigmentation abnormalities can be attributed to certain inherited disorders characterized by premature aging and abnormal pigmentation in the skin and some therapeutic modalities effective for both. Several molecular mechanisms, including oxidative stress, mitochondrial DNA mutations, DNA damage, telomere shortening, hormonal changes, and autophagy impairment, have been identified as involved in skin aging. Although each of these skin aging-related mechanisms are interconnected, this review examined the role of each mechanism in skin hyperpigmentation or hypopigmentation to propose the possible association between skin aging and pigmentation abnormalities.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, College of Medicine, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 410-773, Gyeonggi-do, Korea
| |
Collapse
|
22
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
23
|
Taha Najim R, Topa A, Jugård Y, Casslén B, Odersjö M, Andersson Grönlund M. Children and young adults with anophthalmia and microphthalmia: Diagnosis and Management. Acta Ophthalmol 2020; 98:848-858. [PMID: 32436650 DOI: 10.1111/aos.14427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Congenital anophthalmia (A) and microphthalmia (M) are rare developmental defects, which could be isolated or syndromic. Our objective was to describe a cohort of children and young adults with A/M treated with ocular prosthesis, emphasizing clinical features, diagnosis, treatment, and follow-up. METHODS Eighteen individuals (10 female) with unilateral A (n = 3) and M (n = 15) with a mean age of 9.5 years (range 0.8-31.8) and treated with ocular prosthesis were included. Data on medical history, clinical examinations and management of ocular prosthesis were collected. Genetic screening with microarray and whole-exome sequencing targeting 121 A/M-related genes was performed. RESULTS A/M appeared isolated (seven cases) or as part of a syndromic condition (11 cases). In 4/16 patients, mutations were detected in TFAP2A, CHD7, FOXE3 and BCOR-genes. In one patient, a possibly causal microdeletion 10q11 was shown. Associated ocular anomalies such as cataract and cysts were found in 16 (89%) of the A/M eyes, and in nine (50%) ophthalmological findings were found in the fellow eyes. The median ages at which the conformer and ocular prosthesis first were initiated were 7.8 months and 1.5 years. 16/17 patients fulfilled satisfactory orbital growth and cosmetic results when treated with ocular prosthesis from an early age. CONCLUSION Based upon our findings, a multidisciplinary approach, including genetic assessment, is necessary to cover all aspects of A/M. Imaging, ultrasound and visual evoked potentials should be included. Early management is crucial for the outcome, in terms of non-ocular findings, vision in the fellow eye, and for facial cosmetic development.
Collapse
Affiliation(s)
- Rezhna Taha Najim
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Alexandra Topa
- Region Västra Götaland Department of Clinical Genetics and Genomics Sahlgrenska University Hospital Gothenburg Sweden
- Department of Laboratory Medicine Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Ylva Jugård
- Region Västra Götaland Department of Ophthalmology Hospital of Södra Älvsborg Borås Sweden
| | - Beatrice Casslén
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Marie Odersjö
- Region Västra Götaland Department of Otolaryngology Sahlgrenska University Hospital Gothenburg Sweden
| | - Marita Andersson Grönlund
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Region Västra Götaland Department of Ophthalmology Sahlgrenska University Hospital Mölndal Sweden
| |
Collapse
|
24
|
Casslén B, Jugård Y, Taha Najim R, Odersjö M, Topa A, Andersson Grönlund M. Visual function and quality of life in children and adolescents with anophthalmia and microphthalmia treated with ocular prosthesis. Acta Ophthalmol 2020; 98:662-670. [PMID: 32356375 DOI: 10.1111/aos.14424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate health-related quality of life (HR-QoL), vision-related (VR-)QoL and perceptual visual dysfunction (PVD) among individuals with anophthalmia (A) and microphthalmia (M) treated with ocular prosthesis. METHODS The study comprised 15 individuals (mean age 6.6 years; range 1.7-14.1) with unilateral A or M. Three validated instruments measuring HR-QoL and VR-QoL were used: The Pediatric QoL Inventory (PedsQL), consisting of physical and psychosocial self-report and parent-proxy report (2-18 years); Children's Visual Function Questionnaire (CVFQ); and Effects of Youngsters' Eyesight on Quality of Life (EYE-Q). Perceptual visual dysfunctions (PVDs) were assessed by history taking according to a specific protocol. RESULTS A/M children and their parents showed low HR-QoL scores (PedsQL total score: 66.3; 69.6) compared with controls (83.0; 87.61) (p = 0.0035 and <0.0001, respectively, unpaired t-test). No differences were found between A/M children and parents, but parents tended to underestimate their children's emotional state. A/M children with subnormal visual acuity (VA) for age scored lower in physical health compared with A/M children with normal VA (p = 0.03, Mann-Whitney U-test). No significant VR-QoL differences between A/M children and references or between A/M children with subnormal or normal VA for age were found. More A/M children than controls exhibited PVDs in ≥1 area (7/11 versus 4/118; p < 0.0001, Fisher's exact test). CONCLUSION A/M individuals show poor HR-QoL and increased PVDs. No difference in QoL was found between children and parents, though the children tended to score lower in emotional well-being. A/M children with subnormal VA showed lower physical health score. These problems indicate the necessity of a thorough multidisciplinary assessment and follow-up of children with A/M.
Collapse
Affiliation(s)
- Beatrice Casslén
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Ylva Jugård
- Department of Ophthalmology Södra Älvsborg Hospital Region Västra Götaland Borås Sweden
| | - Rezhna Taha Najim
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Marie Odersjö
- Department of Otolaryngology Sahlgrenska University Hospital Region Västra Götaland Gothenburg Sweden
| | - Alexandra Topa
- Department of Clinical Genetics and Genomics Sahlgrenska University Hospital Region Västra Götaland Gothenburg Sweden
- Department of Laboratory Medicine Institute of Biomedicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Marita Andersson Grönlund
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Ophthalmology Sahlgrenska University Hospital Region Västra Götaland Mölndal Sweden
| |
Collapse
|
25
|
Yoon KH, Fox SC, Dicipulo R, Lehmann OJ, Waskiewicz AJ. Ocular coloboma: Genetic variants reveal a dynamic model of eye development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:590-610. [PMID: 32852110 DOI: 10.1002/ajmg.c.31831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Ocular coloboma is a congenital disorder of the eye where a gap exists in the inferior retina, lens, iris, or optic nerve tissue. With a prevalence of 2-19 per 100,000 live births, coloboma, and microphthalmia, an associated ocular disorder, represent up to 10% of childhood blindness. It manifests due to the failure of choroid fissure closure during eye development, and it is a part of a spectrum of ocular disorders that include microphthalmia and anophthalmia. Use of genetic approaches from classical pedigree analyses to next generation sequencing has identified more than 40 loci that are associated with the causality of ocular coloboma. As we have expanded studies to include singleton cases, hereditability has been very challenging to prove. As such, researchers over the past 20 years, have unraveled the complex interrelationship amongst these 40 genes using vertebrate model organisms. Such research has greatly increased our understanding of eye development. These genes function to regulate initial specification of the eye field, migration of retinal precursors, patterning of the retina, neural crest cell biology, and activity of head mesoderm. This review will discuss the discovery of loci using patient data, their investigations in animal models, and the recent advances stemming from animal models that shed new light in patient diagnosis.
Collapse
Affiliation(s)
- Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Sabrina C Fox
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Renée Dicipulo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Ordan J Lehmann
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
26
|
Eintracht J, Corton M, FitzPatrick D, Moosajee M. CUGC for syndromic microphthalmia including next-generation sequencing-based approaches. Eur J Hum Genet 2020; 28:679-690. [PMID: 31896778 PMCID: PMC7171178 DOI: 10.1038/s41431-019-0565-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 01/29/2023] Open
Affiliation(s)
| | - Marta Corton
- Department of Genetics, IIS-University Hospital Fundación Jiménez Díaz-CIBERER, Madrid, Spain
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
27
|
Harding P, Brooks BP, FitzPatrick D, Moosajee M. Anophthalmia including next-generation sequencing-based approaches. Eur J Hum Genet 2020; 28:388-398. [PMID: 31358957 PMCID: PMC7029013 DOI: 10.1038/s41431-019-0479-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/06/2019] [Accepted: 07/16/2019] [Indexed: 11/09/2022] Open
Abstract
Name of the disease (synonyms) See Table 1, Column 1-"Name of disease" and Column 2-"Alternative names". OMIM# of the disease See Table 1, Column 3-"OMIM# of the disease". Name of the analysed genes or DNA/chromosome segments and OMIM# of the gene(s) Core genes (irrespective of being tested by Sanger sequencing or next-generation sequencing): See Table 1, Column 4-"Cytogenetic location", Column 5-"Associated gene(s)" and Column 6-"OMIM# of associated gene(s)". Additional genes (if tested by next-generation sequencing, including Whole exome/genome sequencing and panel sequencing): See Table 2, Column 1-"Gene", Column 2-"Alternative names", Column 3-"OMIM# of gene" and Column 4-"Cytogenetic location". Review of the analytical and clinical validity as well as of the clinical utility of DNA-based testing for mutations in the gene(s) in diagnostic, predictive and prenatal settings, and for risk assessment in relatives.
Collapse
Affiliation(s)
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, Bethesda, MD, USA
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK. .,Moorfields Eye Hospital NHS Foundation Trust, London, UK. .,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
28
|
Ansar M, Chung H, Waryah YM, Makrythanasis P, Falconnet E, Rao AR, Guipponi M, Narsani AK, Fingerhut R, Santoni FA, Ranza E, Waryah AM, Bellen HJ, Antonarakis SE. Visual impairment and progressive phthisis bulbi caused by recessive pathogenic variant in MARK3. Hum Mol Genet 2019; 27:2703-2711. [PMID: 29771303 DOI: 10.1093/hmg/ddy180] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022] Open
Abstract
Developmental eye defects often severely reduce vision. Despite extensive efforts, for a substantial fraction of these cases the molecular causes are unknown. Recessive eye disorders are frequent in consanguineous populations and such large families with multiple affected individuals provide an opportunity to identify recessive causative genes. We studied a Pakistani consanguineous family with three affected individuals with congenital vision loss and progressive eye degeneration. The family was analyzed by exome sequencing of one affected individual and genotyping of all family members. We have identified a non-synonymous homozygous variant (NM_001128918.2: c.1708C > G: p.Arg570Gly) in the MARK3 gene as the likely cause of the phenotype. Given that MARK3 is highly conserved in flies (I: 55%; S: 67%) we knocked down the MARK3 homologue, par-1, in the eye during development. This leads to a significant reduction in eye size, a severe loss of photoreceptors and loss of vision based on electroretinogram (ERG) recordings. Expression of the par-1 p.Arg792Gly mutation (equivalent to the MARK3 variant found in patients) in developing fly eyes also induces loss of eye tissue and reduces the ERG signals. The data in flies and human indicate that the MARK3 variant corresponds to a loss of function. We conclude that the identified mutation in MARK3 establishes a new gene-disease link, since it likely causes structural abnormalities during eye development and visual impairment in humans, and that the function of MARK3/par-1 is evolutionarily conserved in eye development.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Hyunglok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Yar M Waryah
- Molecular Biology and Genetics Department, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ali Raza Rao
- Molecular Biology and Genetics Department, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Ashok K Narsani
- Institute of Ophthalmology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ralph Fingerhut
- Swiss Newborn Screening Laboratory, University Children's Hospital, Zurich, Switzerland
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Ali M Waryah
- Molecular Biology and Genetics Department, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Zhang J, Li Y, Fan Y, Wu D, Xu J. Compound heterozygous mutations in SMO associated with anterior segment dysgenesis and morning glory syndrome. Gene 2019; 713:143973. [DOI: 10.1016/j.gene.2019.143973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
|
30
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
31
|
Ju YT, Pan YT, Tu CF, Hsiao J, Lin YH, Yu PJ, Yu PH, Chi CH, Liu IL. Growth and Behavior of Congenitally Anophthalmic Lee-Sung Pigs. Comp Med 2019; 69:212-220. [PMID: 31171049 DOI: 10.30802/aalas-cm-18-000095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Circadian rhythm is usually regulated by the environmental light-dark cycle. Congenitally anophthalmic miniature pigs provide a valuable model for the study of factors affecting circadian rhythms in the absence of visual exposure to the light-dark cycle. This study investigated the growth and daily behavior patterns of Lee-Sung pigs with congenital anophthalmia. Growth in 5 Lee-Sung pigs (LSP) with congenital anophthalmia (LSP-A) and 10 normally developed pigs (LSP-N) was assessed when they were 1 through 6 mo old. Behavioral studies using digital video recording were completed in 6 sexually mature LSP (3 LSP-A and 3 LSP-N). MRI showed that LSP-A lose their vision because of a lack of retinal input and optic chiasm development. LSP-N and LSP-A did not differ in body weight or size at 2, 4, and 6 mo of age. Behavior and activity pattern studies showed that both LSP-A and LSP-N were active mainly during daylight, but LSP-A spent significantly more time exploring their environment during the day (28%) and night (10%) than did LSP-N. This study revealed that growth performance was similar between LSP-A and normal pigs, but their behavior and activity patterns differed. LSP-A showed circadian rhythm abnormalities similar to those in blind humans. This study provides basic data on LSP-A as a model for studying compensatory cross-modal brain plasticity and hormone regulation in the absence of retinal input is deficient and for understanding the role of circadian rhythm regulation.
Collapse
Affiliation(s)
- Yu-Ten Ju
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Pan
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | | | - Jan Hsiao
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pei-Ju Yu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pin-Huan Yu
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chau-Hwa Chi
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Li Liu
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
32
|
Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 2019; 138:799-830. [PMID: 30762128 DOI: 10.1007/s00439-019-01977-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
Collapse
|
33
|
Blackburn PR, Chacon-Camacho OF, Ortiz-González XR, Reyes M, Lopez-Uriarte GA, Zarei S, Bhoj EJ, Perez-Solorzano S, Vaubel RA, Murphree MI, Nava J, Cortes-Gonzalez V, Parisi JE, Villanueva-Mendoza C, Tirado-Torres IG, Li D, Klee EW, Pichurin PN, Zenteno JC. Extension of the mutational and clinical spectrum of SOX2 related disorders: Description of six new cases and a novel association with suprasellar teratoma. Am J Med Genet A 2018; 176:2710-2719. [PMID: 30450772 DOI: 10.1002/ajmg.a.40644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/26/2018] [Accepted: 09/04/2018] [Indexed: 01/05/2023]
Abstract
SOX2 is a transcription factor that is essential for maintenance of pluripotency and has several conserved roles in early embryonic development. Heterozygous loss-of-function variants in SOX2 are identified in approximately 40% of all cases of bilateral anophthalmia/micropthalmia (A/M). Increasingly SOX2 mutation-positive patients without major eye findings, but with a range of other developmental disorders including autism, mild to moderate intellectual disability with or without structural brain changes, esophageal atresia, urogenital anomalies, and endocrinopathy are being reported, suggesting that the clinical phenotype associated with SOX2 loss is much broader than previously appreciated. In this report we describe six new cases, four of which carry novel pathogenic SOX2 variants. Four cases presented with bilateral anophthalmia in addition to extraocular involvement. Another individual presented with only unilateral anophthalmia. One individual did not have any eye findings but presented with a suprasellar teratoma in infancy and was found to have the recurrent c.70del20 mutation in SOX2 (c.70_89del, p.Asn24Argfs*65). This is this first time this tumor type has been reported in the context of a de novo SOX2 mutation. Notably, individuals with hypothalamic hamartomas and slow-growing hypothalamo-pituitary tumors have been reported previously, but it is still unclear how SOX2 loss contributes to their formation.
Collapse
Affiliation(s)
- Patrick R Blackburn
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Health Sciences Research, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Oscar F Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Xilma R Ortiz-González
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariana Reyes
- Department of Genetics, Hospital "Dr. Luis Sánchez Bulnes", Asociación para Evitar la Ceguera en México, Mexico City, Mexico
| | - Graciela A Lopez-Uriarte
- Genetics Department, University Hospital "Dr. José Eleuterio González" and Medical School, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Shabnam Zarei
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth J Bhoj
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sofia Perez-Solorzano
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Rachael A Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Jessica Nava
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Vianney Cortes-Gonzalez
- Department of Genetics, Hospital "Dr. Luis Sánchez Bulnes", Asociación para Evitar la Ceguera en México, Mexico City, Mexico
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Cristina Villanueva-Mendoza
- Department of Genetics, Hospital "Dr. Luis Sánchez Bulnes", Asociación para Evitar la Ceguera en México, Mexico City, Mexico
| | - Iris G Tirado-Torres
- Genetics Department, University Hospital "Dr. José Eleuterio González" and Medical School, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Health Sciences Research, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Pavel N Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
34
|
Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia-microphthalmia. Hum Genet 2018; 138:831-846. [PMID: 30374660 DOI: 10.1007/s00439-018-1949-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
As new genes for A/M are identified in the genomic era, the number of syndromes associated with A/M has greatly expanded. In this review, we provide a brief synopsis of the clinical presentation and molecular genetic etiology of previously characterized pathways involved in A/M, including the Sex-determining region Y-box 2 (SOX2), Orthodenticle Homeobox 2 (OTX2) and Paired box protein-6 (PAX6) genes, and the Stimulated by retinoic acid gene 6 homolog (STRA6), Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3), and RA Receptor Beta (RARβ) genes that are involved in retinoic acid synthesis. Less common genetic causes of A/M, including genes involved in BMP signaling [Bone Morphogenetic Protein 4 (BMP4), Bone Morphogenetic Protein 7 (BMP7) and SPARC-related modular calcium-binding protein 1 (SMOC1)], genes involved in the mitochondrial respiratory chain complex [Holocytochrome c-type synthase (HCCS), Cytochrome C Oxidase Subunit 7B (COX7B), and NADH:Ubiquinone Oxidoreductase subunit B11 (NDUFB11)], the BCL-6 corepressor gene (BCOR), Yes-Associated Protein 1 (YAP1) and Transcription Factor AP-2 Alpha (TFAP2α), are more briefly discussed. We also review several recently described genes and pathways associated with A/M, including Smoothened (SMO) that is involved in Sonic hedgehog (SHH) signaling, Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) and Solute carrier family 25 member 24 (SLC25A24), emphasizing phenotype-genotype correlations and shared pathways where relevant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California, San Francisco Room RH384C, 1550 4th St, San Francisco, CA, 94143-2711, USA.
| |
Collapse
|
35
|
Matías-Pérez D, García-Montaño LA, Cruz-Aguilar M, García-Montalvo IA, Nava-Valdéz J, Barragán-Arevalo T, Villanueva-Mendoza C, Villarroel CE, Guadarrama-Vallejo C, la Cruz RVD, Chacón-Camacho O, Zenteno JC. Identification of novel pathogenic variants and novel gene-phenotype correlations in Mexican subjects with microphthalmia and/or anophthalmia by next-generation sequencing. J Hum Genet 2018; 63:1169-1180. [PMID: 30181649 DOI: 10.1038/s10038-018-0504-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/21/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
Severe congenital eye malformations, particularly microphthalmia and anophthalmia, are one of the main causes of visual handicap worldwide. They can arise from multifactorial, chromosomal, or monogenic factors and can be associated with extensive clinical variability. Genetic analysis of individuals with these defects has allowed the recognition of dozens of genes whose mutations lead to disruption of normal ocular embryonic development. Recent application of next generation sequencing (NGS) techniques for genetic screening of patients with congenital eye defects has greatly improved the recognition of monogenic cases. In this study, we applied clinical exome NGS to a group of 14 Mexican patients (including 7 familial and 7 sporadic cases) with microphthalmia and/or anophthalmia. Causal or likely causal pathogenic variants were demonstrated in ~60% (8 out of 14 patients) individuals. Seven out of 8 different identified mutations occurred in well-known microphthalmia/anophthalmia genes (OTX2, VSX2, MFRP, VSX1) or in genes associated with syndromes that include ocular defects (CHD7, COL4A1) (including two instances of CHD7 pathogenic variants). A single pathogenic variant was identified in PIEZO2, a gene that was not previously associated with isolated ocular defects. NGS efficiently identified the genetic etiology of microphthalmia/anophthalmia in ~60% of cases included in this cohort, the first from Mexican origin analyzed to date. The molecular defects identified through clinical exome sequencing in this study expands the phenotypic spectra of CHD7-associated disorders and implicate PIEZO2 as a candidate gene for major eye developmental defects.
Collapse
Affiliation(s)
| | - Leopoldo A García-Montaño
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Marisa Cruz-Aguilar
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Jessica Nava-Valdéz
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Tania Barragán-Arevalo
- Department of Human Genetics, National Institute of Pediatrics of Mexico, Mexico City, Mexico
| | - Cristina Villanueva-Mendoza
- Department of Genetics, Hospital "Dr. Luis Sanchez Bulnes", Asociación Para Evitar la Ceguera en México, Mexico City, Mexico
| | - Camilo E Villarroel
- Department of Human Genetics, National Institute of Pediatrics of Mexico, Mexico City, Mexico
| | - Clavel Guadarrama-Vallejo
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Rocío Villafuerte-de la Cruz
- Ciencias Basicas, Escuela de Medicina, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, NL, Mexico
| | - Oscar Chacón-Camacho
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan C Zenteno
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico. .,Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico.
| |
Collapse
|
36
|
Cavodeassi F, Creuzet S, Etchevers HC. The hedgehog pathway and ocular developmental anomalies. Hum Genet 2018; 138:917-936. [PMID: 30073412 PMCID: PMC6710239 DOI: 10.1007/s00439-018-1918-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute for Medical and Biomedical Education, St. George´s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sophie Creuzet
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Heather C Etchevers
- Aix-Marseille Univ, Marseille Medical Genetics (MMG), INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
37
|
Nanophthalmos: A Review of the Clinical Spectrum and Genetics. J Ophthalmol 2018; 2018:2735465. [PMID: 29862063 PMCID: PMC5971257 DOI: 10.1155/2018/2735465] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/20/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022] Open
Abstract
Nanophthalmos is a clinical spectrum of disorders with a phenotypically small but structurally normal eye. These disorders present significant clinical challenges to ophthalmologists due to a high rate of secondary angle-closure glaucoma, spontaneous choroidal effusions, and perioperative complications with cataract and retinal surgeries. Nanophthalmos may present as a sporadic or familial disorder, with autosomal-dominant or recessive inheritance. To date, five genes (i.e., MFRP, TMEM98, PRSS56, BEST1, and CRB1) and two loci have been implicated in familial forms of nanophthalmos. Here, we review the definition of nanophthalmos, the clinical and pathogenic features of the condition, and the genetics of this disorder.
Collapse
|
38
|
Patel N, Khan AO, Alsahli S, Abdel-Salam G, Nowilaty SR, Mansour AM, Nabil A, Al-Owain M, Sogati S, Salih MA, Kamal AM, Alsharif H, Alsaif HS, Alzahrani SS, Abdulwahab F, Ibrahim N, Hashem M, Faquih T, Shah ZA, Abouelhoda M, Monies D, Dasouki M, Shaheen R, Wakil SM, Aldahmesh MA, Alkuraya FS. Genetic investigation of 93 families with microphthalmia or posterior microphthalmos. Clin Genet 2018; 93:1210-1222. [PMID: 29450879 DOI: 10.1111/cge.13239] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 01/24/2023]
Abstract
Microphthalmia is a developmental eye defect that is highly variable in severity and in its potential for systemic association. Despite the discovery of many disease genes in microphthalmia, at least 50% of patients remain undiagnosed genetically. Here, we describe a cohort of 147 patients (93 families) from our highly consanguineous population with various forms of microphthalmia (including the distinct entity of posterior microphthalmos) that were investigated using a next-generation sequencing multi-gene panel (i-panel) as well as whole exome sequencing and molecular karyotyping. A potentially causal mutation was identified in the majority of the cohort with microphthalmia (61%) and posterior microphthalmos (82%). The identified mutations (55 point mutations, 15 of which are novel) spanned 24 known disease genes, some of which have not or only very rarely been linked to microphthalmia (PAX6, SLC18A2, DSC3 and CNKSR1). Our study has also identified interesting candidate variants in 2 genes that have not been linked to human diseases (MYO10 and ZNF219), which we present here as novel candidates for microphthalmia. In addition to revealing novel phenotypic aspects of microphthalmia, this study expands its allelic and locus heterogeneity and highlights the need for expanded testing of patients with this condition.
Collapse
Affiliation(s)
- N Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - A O Khan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - S Alsahli
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | | | - S R Nowilaty
- Vitreo-retinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - A M Mansour
- Department of Ophthalmology, American University of Beirut, Beirut, Lebanon
| | - A Nabil
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - S Sogati
- Department of Medical Genetics, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - M A Salih
- Division of Pediatrics Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - A M Kamal
- Department of Ophthalmology, Cairo University, Cairo, Egypt
| | - H Alsharif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - H S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - S S Alzahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - F Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - N Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - M Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - T Faquih
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Z A Shah
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - M Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - D Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - M Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - R Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - S M Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - M A Aldahmesh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - F S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Ceroni F, Aguilera-Garcia D, Chassaing N, Bax DA, Blanco-Kelly F, Ramos P, Tarilonte M, Villaverde C, da Silva LRJ, Ballesta-Martínez MJ, Sanchez-Soler MJ, Holt RJ, Cooper-Charles L, Bruty J, Wallis Y, McMullan D, Hoffman J, Bunyan D, Stewart A, Stewart H, Lachlan K, Fryer A, McKay V, Roume J, Dureau P, Saggar A, Griffiths M, Calvas P, Ayuso C, Corton M, Ragge NK. New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies. Hum Genet 2018; 138:1027-1042. [PMID: 29464339 DOI: 10.1007/s00439-018-1875-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
Abstract
GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting that Gja8 may play a role in both lens development and ocular growth. Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known [p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), and p.(Gly94Arg)] and two novel [p.(Phe70Leu) and p.(Val97Gly)] likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical significance were also identified. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular and/or extraocular findings. However, the exact genotype-phenotype correlation of these structural variants remains to be established. Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the importance of this gene in early eye development.
Collapse
Affiliation(s)
- Fabiola Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Domingo Aguilera-Garcia
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
- UMR 1056 Inserm, Université de Toulouse, Toulouse, France
| | - Dorine Arjanne Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Fiona Blanco-Kelly
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Patricia Ramos
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Maria Tarilonte
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Cristina Villaverde
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Luciana Rodrigues Jacy da Silva
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | | | | | - Richard James Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Lisa Cooper-Charles
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jonathan Bruty
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Yvonne Wallis
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Dominic McMullan
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jonathan Hoffman
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TG, UK
| | - David Bunyan
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Alison Stewart
- Sheffield Clinical Genetics Department, Northern General Hospital, Sheffield, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Human Genetics and Genomic Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Alan Fryer
- Cheshire and Merseyside Genetics Service, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Victoria McKay
- Cheshire and Merseyside Genetics Service, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Joëlle Roume
- Department of Clinical Genetics, Centre de Référence "AnDDI Rares", Poissy Hospital GHU PIFO, Poissy, France
| | - Pascal Dureau
- Fondation Ophtalmologique Adolphe-de-Rothschild, Paris, France
| | - Anand Saggar
- Clinical Genetics Unit, St Georges University of London, London, UK
| | - Michael Griffiths
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
- UMR 1056 Inserm, Université de Toulouse, Toulouse, France
| | - Carmen Ayuso
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Marta Corton
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nicola K Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TG, UK.
| |
Collapse
|
40
|
Zhou Y, Wojcik A, Sanders VR, Rahmani B, Kurup SP. Ocular findings in a patient with oculofaciocardiodental (OFCD) syndrome and a novel BCOR pathogenic variant. Int Ophthalmol 2017; 38:2677-2682. [PMID: 29058245 DOI: 10.1007/s10792-017-0754-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023]
Abstract
PURPOSE To report a case of OFCD associated with a de novo BCOR pathogenic variant and highlight the ocular findings and possible mechanisms. METHODS A retrospective chart review of the patient's ocular and systemic findings was performed. The patient underwent diagnostic whole exome sequencing (WES). RESULTS The patient had a comprehensive eye exam in infancy demonstrating bilateral congenital cataracts consisting of posterior lenticonus with a posterior cortical opacity. She also had blepharoptosis with a hooded appearance and retinal pigment hypertrophy of the inferior retina bilaterally. Systemic findings include atrial septal defect, patent ductus arteriosus, congenital clubfoot, syndactyly, tethered cord, and laryngeal cleft. WES identified a de novo heterozygous R1136X pathogenic variant in the BCOR gene. CONCLUSION The typical ocular manifestation of OFCD syndrome is congenital cataracts, which can have a significant impact on visual development and so should be considered in patients with multiple medical issues that may fit the diagnosis. A comprehensive eye exam in these patients is thus warranted.
Collapse
Affiliation(s)
- Yujia Zhou
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 70, Chicago, IL, 60611, USA.,Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Antonina Wojcik
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 70, Chicago, IL, 60611, USA.,Division of Genetics Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Victoria R Sanders
- Division of Genetics Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Bahram Rahmani
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 70, Chicago, IL, 60611, USA.,Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sudhi P Kurup
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 70, Chicago, IL, 60611, USA. .,Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
41
|
Brossaud J, Pallet V, Corcuff JB. Vitamin A, endocrine tissues and hormones: interplay and interactions. Endocr Connect 2017; 6:R121-R130. [PMID: 28720593 PMCID: PMC5551430 DOI: 10.1530/ec-17-0101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Vitamin A (retinol) is a micronutrient critical for cell proliferation and differentiation. In adults, vitamin A and metabolites such as retinoic acid (RA) play major roles in vision, immune and brain functions, and tissue remodelling and metabolism. This review presents the physiological interactions of retinoids and endocrine tissues and hormonal systems. Two endocrine systems have been particularly studied. In the pituitary, retinoids targets the corticotrophs with a possible therapeutic use in corticotropinomas. In the thyroid, retinoids interfere with iodine metabolism and vitamin A deficiency aggravates thyroid dysfunction caused by iodine-deficient diets. Retinoids use in thyroid cancer appears less promising than expected. Recent and still controversial studies investigated the relations between retinoids and metabolic syndrome. Indeed, retinoids contribute to pancreatic development and modify fat and glucose metabolism. However, more detailed studies are needed before planning any therapeutic use. Finally, retinoids probably play more minor roles in adrenal and gonads development and function apart from their major effects on spermatogenesis.
Collapse
Affiliation(s)
- Julie Brossaud
- J Brossaud, Nuclear Medicine, University hospital of Bordeaux, Pessac, France
| | - Veronique Pallet
- V Pallet, NutriNeurO-INRA 1286 - Université Bdx 2, University of Bordeaux, Bordeaux, 33076 BORDEAUX , France
| | - Jean-Benoit Corcuff
- J Corcuff, Nuclear Medicine, University hospital of Bordeaux, Pessac, 33604, France
| |
Collapse
|
42
|
Unraveling the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis: expanding the phenotypic variability of RAX mutations. Sci Rep 2017; 7:9064. [PMID: 28831107 PMCID: PMC5567291 DOI: 10.1038/s41598-017-09276-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/25/2017] [Indexed: 01/08/2023] Open
Abstract
Ocular coloboma is a common eye malformation arising from incomplete closure of the human optic fissure during development. Multiple genetic mutations contribute to the disease process, showing extensive genetic heterogeneity and complexity of coloboma spectrum diseases. In this study, we aimed to unravel the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis. The subjects were recruited and underwent specialized ophthalmologic clinical examination. A combination of whole exome sequencing (WES), homozygosity mapping, and comprehensive variant analyses was performed to uncover the causative mutation. Only one homozygous mutation (c.113 T > C, p.I38T) in RAX gene survived our strict variant filtering process, consistent with an autosomal recessive inheritance pattern. This mutation segregated perfectly in the family and is located in a highly conserved functional domain. Crystal structure modeling indicated that I38T affected the protein structure. We describe a patient from a consanguineous Chinese family with unusual coloboma, proven to harbor a novel RAX mutation (c.113 T > C, p.I38T, homozygous), expanding the phenotypic variability of ocular coloboma and RAX mutations.
Collapse
|
43
|
Riera M, Wert A, Nieto I, Pomares E. Panel-based whole exome sequencing identifies novel mutations in microphthalmia and anophthalmia patients showing complex Mendelian inheritance patterns. Mol Genet Genomic Med 2017; 5:709-719. [PMID: 29178648 PMCID: PMC5702572 DOI: 10.1002/mgg3.329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 12/15/2022] Open
Abstract
Background Microphthalmia and anophthalmia (MA) are congenital eye abnormalities that show an extremely high clinical and genetic complexity. In this study, we evaluated the implementation of whole exome sequencing (WES) for the genetic analysis of MA patients. This approach was used to investigate three unrelated families in which previous single‐gene analyses failed to identify the molecular cause. Methods A total of 47 genes previously associated with nonsyndromic MA were included in our panel. WES was performed in one affected patient from each family using the AmpliSeqTM Exome technology and the Ion ProtonTM platform. Results A novel heterozygous OTX2 missense mutation was identified in a patient showing bilateral anophthalmia who inherited the variant from a parent who was a carrier, but showed no sign of the condition. We also describe a new PAX6 missense variant in an autosomal‐dominant pedigree affected by mild bilateral microphthalmia showing high intrafamiliar variability, with germline mosaicism determined to be the most plausible molecular cause of the disease. Finally, a heterozygous missense mutation in RBP4 was found to be responsible in an isolated case of bilateral complex microphthalmia. Conclusion This study highlights that panel‐based WES is a reliable and effective strategy for the genetic diagnosis of MA. Furthermore, using this technique, the mutational spectrum of these diseases was broadened, with novel variants identified in each of the OTX2,PAX6, and RBP4 genes. Moreover, we report new cases of reduced penetrance, mosaicism, and variable phenotypic expressivity associated with MA, further demonstrating the heterogeneity of such disorders.
Collapse
Affiliation(s)
- Marina Riera
- Departament de Genètica, Institut de Microcirurgia Ocular (IMO), Barcelona, Spain
| | - Ana Wert
- Departament d'Oftalmologia Pediàtrica, Estrabisme i Neuroftalmologia, Institut de Microcirurgia Ocular (IMO), Barcelona, Spain
| | - Isabel Nieto
- Departament de Còrnia, Cataracta i Cirurgia Refractiva, Institut de Microcirurgia Ocular (IMO), Barcelona, Spain
| | - Esther Pomares
- Departament de Genètica, Institut de Microcirurgia Ocular (IMO), Barcelona, Spain
| |
Collapse
|
44
|
Teotia P, Van Hook MJ, Wichman CS, Allingham RR, Hauser MA, Ahmad I. Modeling Glaucoma: Retinal Ganglion Cells Generated from Induced Pluripotent Stem Cells of Patients with SIX6 Risk Allele Show Developmental Abnormalities. Stem Cells 2017; 35:2239-2252. [PMID: 28792678 DOI: 10.1002/stem.2675] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023]
Abstract
Glaucoma represents a group of multifactorial diseases with a unifying pathology of progressive retinal ganglion cell (RGC) degeneration, causing irreversible vision loss. To test the hypothesis that RGCs are intrinsically vulnerable in glaucoma, we have developed an in vitro model using the SIX6 risk allele carrying glaucoma patient-specific induced pluripotent stem cells (iPSCs) for generating functional RGCs. Here, we demonstrate that the efficiency of RGC generation by SIX6 risk allele iPSCs is significantly lower than iPSCs-derived from healthy, age- and sex-matched controls. The decrease in the number of RGC generation is accompanied by repressed developmental expression of RGC regulatory genes. The SIX6 risk allele RGCs display short and simple neurites, reduced expression of guidance molecules, and immature electrophysiological signature. In addition, these cells have higher expression of glaucoma-associated genes, CDKN2A and CDKN2B, suggesting an early onset of the disease phenotype. Consistent with the developmental abnormalities, the SIX6 risk allele RGCs display global dysregulation of genes which map on developmentally relevant biological processes for RGC differentiation and signaling pathways such as mammalian target of rapamycin that integrate diverse functions for differentiation, metabolism, and survival. The results suggest that SIX6 influences different stages of RGC differentiation and their survival; therefore, alteration in SIX6 function due to the risk allele may lead to cellular and molecular abnormalities. These abnormalities, if carried into adulthood, may make RGCs vulnerable in glaucoma. Stem Cells 2017;35:2239-2252.
Collapse
Affiliation(s)
- Pooja Teotia
- Department of Ophthalmology and Visual Sciences, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christopher S Wichman
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - R Rand Allingham
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael A Hauser
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Sciences, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
45
|
Ullah E, Wu D, Madireddy L, Lao R, Ling-Fung Tang P, Wan E, Bardakjian T, Kopinsky S, Kwok PY, Schneider A, Baranzini S, Ansar M, Slavotinek A. Two missense mutations in SALL4 in a patient with microphthalmia, coloboma, and optic nerve hypoplasia. Ophthalmic Genet 2017; 38:371-375. [PMID: 27661448 PMCID: PMC6238016 DOI: 10.1080/13816810.2016.1217550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022]
Abstract
To investigate the genetic etiology of anophthalmia and microphthalmia, we used exome sequencing in a Caucasian female with unilateral microphthalmia and coloboma, bilateral optic nerve hypoplasia, ventricular and atrial septal defects, and growth delays. We found two sequence variants in SALL4 - c.[575C>A], predicting p.(Ala192Glu), that was paternally inherited, and c.[2053G>C], predicting p.(Asp685His), that was maternally inherited. Haploinsufficiency for SALL4 due to nonsense or frameshift mutations has been associated with acro-renal ocular syndrome that is characterized by eye defects including Duane anomaly and coloboma, in addition to radial ray malformations and renal abnormalities. Our report is the first description of structural eye defects associated with two missense variants in SALL4 inherited in trans; the absence of reported findings in both parents suggests that both sequence variants are hypomorphic mutations and that both are needed for the ocular phenotype. SALL4 is expressed in the developing lens and regulates BMP4, leading us to speculate that altered BMP4 expression was responsible for the eye defects, but we could not demonstrate altered BMP4 expression in vitro after using small interfering RNAs (siRNAs) to reduce SALL4 expression. We conclude that SALL4 hypomorphic variants may influence eye development.
Collapse
Affiliation(s)
- E Ullah
- a Department of Pediatrics , University of California, San Francisco , San Francisco , California , USA
- b Department of Biochemistry, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - D Wu
- a Department of Pediatrics , University of California, San Francisco , San Francisco , California , USA
| | - L Madireddy
- c Department of Neurology , University of California, San Francisco , San Francisco , California , USA
| | - R Lao
- d Cardiovascular Research Institute , University of California, San Francisco , San Francisco , California , USA
| | - P Ling-Fung Tang
- d Cardiovascular Research Institute , University of California, San Francisco , San Francisco , California , USA
| | - E Wan
- d Cardiovascular Research Institute , University of California, San Francisco , San Francisco , California , USA
| | - T Bardakjian
- e Division of Medical Genetics , Einstein Healthcare Network , Philadelphia , Pennsylvania , USA
| | - S Kopinsky
- e Division of Medical Genetics , Einstein Healthcare Network , Philadelphia , Pennsylvania , USA
| | - P-Y Kwok
- d Cardiovascular Research Institute , University of California, San Francisco , San Francisco , California , USA
| | - A Schneider
- e Division of Medical Genetics , Einstein Healthcare Network , Philadelphia , Pennsylvania , USA
| | - S Baranzini
- c Department of Neurology , University of California, San Francisco , San Francisco , California , USA
| | - M Ansar
- b Department of Biochemistry, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - A Slavotinek
- a Department of Pediatrics , University of California, San Francisco , San Francisco , California , USA
| |
Collapse
|
46
|
Bardakjian T, Krall M, Wu D, Lao R, Tang PLF, Wan E, Kopinsky S, Schneider A, Kwok PY, Slavotinek A. A recurrent, non-penetrant sequence variant, p.Arg266Cys in Growth/Differentiation Factor 3 ( GDF3) in a female with unilateral anophthalmia and skeletal anomalies. Am J Ophthalmol Case Rep 2017; 7:102-106. [PMID: 29260090 PMCID: PMC5722175 DOI: 10.1016/j.ajoc.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 01/08/2023] Open
Abstract
Purpose The genetic causes of anophthalmia, microphthalmia and coloboma remain poorly understood. Missense mutations in Growth/Differentiation Factor 3 (GDF3) gene have previously been reported in patients with microphthalmia, iridial and retinal colobomas, Klippel-Feil anomaly with vertebral fusion, scoliosis, rudimentary 12th ribs and an anomalous right temporal bone. We used whole exome sequencing with a trio approach to study a female with unilateral anophthalmia, kyphoscoliosis and additional skeletal anomalies. Observations Exome sequencing revealed that the proposita was heterozygous for c.796C > T, predicting p.Arg266Cys, in GDF3. Sanger sequencing confirmed the mutation and showed that the unaffected mother was heterozygous for the same missense substitution. Conclusions and importance Although transfection studies with the p.Arg266Cys mutation have shown that this amino acid substitution is likely to impair function, non-penetrance for the ocular defects was apparent in this family and has been observed in other families with sequence variants in GDF3. We conclude p.Arg266Cys and other GDF3 mutations can be non-penetrant, making pathogenicity more difficult to establish when sequence variants in this gene are present in patients with structural eye defects.
Collapse
Affiliation(s)
- Tanya Bardakjian
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Max Krall
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Di Wu
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Richard Lao
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Paul Ling-Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eunice Wan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Sarina Kopinsky
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Adele Schneider
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anne Slavotinek
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
47
|
Dehghani M, Dehghan Tezerjani M, Metanat Z, Vahidi Mehrjardi MY. A Novel Missense Mutation in the ALDH13 Gene Causes Anophthalmia in Two Unrelated Iranian Consanguineous Families. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2017; 6:131-134. [PMID: 28890889 PMCID: PMC5581554 DOI: 10.22088/acadpub.bums.6.2.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/18/2017] [Indexed: 11/05/2022]
Abstract
Anophthalmia or microphthalmia (A/M) is a rare group of congenital/developmental ocular malformations, characterized by absent or small eye within the orbit affecting one or both eyes. It has complex etiology with chromosomal, monogenic with high heterogeneity, and environmental causes. We performed genome SNP-array analysis followed by autozygosity mapping and sequencing in the members of two families in which three individuals are suffering from severe bilateral anophthalmia. The genetic analysis revealed a novel missense c.709G>A mutation in exon 7 of ALDH1A3 (aldehyde dehydrogenase 1 family member A3), causing a substitution of glycine (Gly) to arginine (Arg) at residue 237. This study consolidates the importance of ALDH1A3 gene screening in autosomal recessive anophthalmia. This variation may also be suggestive of a founder effect in the southeastern area of Iran.
Collapse
Affiliation(s)
- Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Dehghan Tezerjani
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Metanat
- Provincial Clinical Genetic Counseling Center, Zahedan University of Medical Sciences Zahedan, Iran
| | - Mohammad Yahya Vahidi Mehrjardi
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
48
|
Ergun SG, Akay GG, Ergun MA, Perçin EF. LRP5- linked osteoporosis-pseudoglioma syndrome mimicking isolated microphthalmia. Eur J Med Genet 2017; 60:200-204. [DOI: 10.1016/j.ejmg.2017.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
49
|
Dyson JM, Conduit SE, Feeney SJ, Hakim S, DiTommaso T, Fulcher AJ, Sriratana A, Ramm G, Horan KA, Gurung R, Wicking C, Smyth I, Mitchell CA. INPP5E regulates phosphoinositide-dependent cilia transition zone function. J Cell Biol 2016; 216:247-263. [PMID: 27998989 PMCID: PMC5223597 DOI: 10.1083/jcb.201511055] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 09/19/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Dyson et al. demonstrate that the inositol polyphosphate 5-phosphatase INPP5E is essential for Hedgehog-dependent embryonic development. By regulating PI(4,5)P2 and PI(3,4,5)P3 signals at cilia, INPP5E contributes to cilia transition zone function and thereby Smoothened accumulation at cilia. Human ciliopathies, including Joubert syndrome (JBTS), arise from cilia dysfunction. The inositol polyphosphate 5-phosphatase INPP5E localizes to cilia and is mutated in JBTS. Murine Inpp5e ablation is embryonically lethal and recapitulates JBTS, including neural tube defects and polydactyly; however, the underlying defects in cilia signaling and the function of INPP5E at cilia are still emerging. We report Inpp5e−/− embryos exhibit aberrant Hedgehog-dependent patterning with reduced Hedgehog signaling. Using mouse genetics, we show increasing Hedgehog signaling via Smoothened M2 expression rescues some Inpp5e−/− ciliopathy phenotypes and “normalizes” Hedgehog signaling. INPP5E’s phosphoinositide substrates PI(4,5)P2 and PI(3,4,5)P3 accumulated at the transition zone (TZ) in Hedgehog-stimulated Inpp5e−/− cells, which was associated with reduced recruitment of TZ scaffolding proteins and reduced Smoothened levels at cilia. Expression of wild-type, but not 5-phosphatase-dead, INPP5E restored TZ molecular organization and Smoothened accumulation at cilia. Therefore, we identify INPP5E as an essential point of convergence between Hedgehog and phosphoinositide signaling at cilia that maintains TZ function and Hedgehog-dependent embryonic development.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sandra J Feeney
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sandra Hakim
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Tia DiTommaso
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Absorn Sriratana
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Georg Ramm
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Kristy A Horan
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ian Smyth
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
50
|
Moulton MJ, Letsou A. Modeling congenital disease and inborn errors of development in Drosophila melanogaster. Dis Model Mech 2016; 9:253-69. [PMID: 26935104 PMCID: PMC4826979 DOI: 10.1242/dmm.023564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|