1
|
Zhao Y, Cheng L, Xu M, Zhao C. Ultra-sensitive detection of microRNAs using an electrochemical biosensor based on a PNA-DNA 2 three-way junction nanostructure and dual cascade isothermal amplification. Anal Chim Acta 2025; 1345:343755. [PMID: 40015791 DOI: 10.1016/j.aca.2025.343755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND MiRNA expression profiles may serve as valuable biomarkers for early cancer diagnosis. However, the detection of miRNA remains greatly challenging due to its shorter length and lower abundance in cells. Electrochemical biosensors based on DNA nanostructures have attracted significant attention due to their improved capture efficiency, high sensitivity, and ease of miniaturization, but the complex construction process, non-specific interactions among DNA probes, and their low stability continue to severely restrict their widespread application in clinical diagnostics. Therefore, developing robust and sensitive methods for miRNA analysis is still of great value. RESULTS We describe an ultra-sensitive electrochemical biosensor for miRNA by integrating the PNA-DNA2 three-way junction (3WJ) nanostructure with target-recycling catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) dual cascade isothermal amplification. The target miRNA triggers CHA amplification, resulting in the generation of substantial quantities of double-stranded DNA (dsDNA) products. These dsDNA are subsequently captured by PNA probes immobilized on the electrode surface, leading to the formation of a densely packed layer of PNA-DNA2 3WJ nanostructure. Subsequently, the single-stranded termini of the two branches extending from 3WJ function as promoters to initiate the HCR, resulting in the formation of a layer of intricately intertwined branched long dsDNA molecules, which could adsorb substantial quantities of [Ru(NH3)6]3+, thereby significantly amplifying the electrochemical signal. This electrochemical biosensor exhibits exceptional sensitivity towards miRNA-21, achieving a detection limit as low as 2.9 aM while effectively discriminating single base mutations. SIGNIFICANCE This represents the first electrochemical system for miRNA detection by integrating the PNA-DNA2 3WJ with CHA-HCR dual cascade isothermal amplification. The robust, specific and ultrasensitive feature makes cancer cell miRNA monitoring possible, suggesting its great application prospect as a promising sensing platform for monitoring various miRNA biomarkers in cancer diagnostics.
Collapse
Affiliation(s)
- Yang Zhao
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, 315300, PR China
| | - Li Cheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, PR China
| | - Mengjia Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chao Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
2
|
Shamsad A, Gautam T, Singh R, Banerjee M. Genetic and epigenetic alterations associated with gestational diabetes mellitus and adverse neonatal outcomes. World J Clin Pediatr 2025; 14:99231. [DOI: 10.5409/wjcp.v14.i1.99231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder, recognised during 24-28 weeks of pregnancy. GDM is linked with adverse newborn outcomes such as macrosomia, premature delivery, metabolic disorder, cardiovascular, and neurological disorders. Recent investigations have focused on the correlation of genetic factors such as β-cell function and insulin secretary genes (transcription factor 7 like 2, potassium voltage-gated channel subfamily q member 1, adiponectin etc.) on maternal metabolism during gestation leading to GDM. Epigenetic alterations like DNA methylation, histone modification, and miRNA expression can influence gene expression and play a dominant role in feto-maternal metabolic pathways. Interactions between genes and environment, resulting in differential gene expression patterns may lead to GDM. Researchers suggested that GDM women are more susceptible to insulin resistance, which alters intrauterine surroundings, resulting hyperglycemia and hyperinsulinemia. Epigenetic modifications in genes affecting neuroendocrine activities, and metabolism, increase the risk of obesity and type 2 diabetes in offspring. There is currently no treatment or effective preventive method for GDM, since the molecular processes of insulin resistance are not well understood. The present review was undertaken to understand the pathophysiology of GDM and its effects on adverse neonatal outcomes. In addition, the study of genetic and epigenetic alterations will provide lead to researchers in the search for predictive molecular biomarkers.
Collapse
Affiliation(s)
- Amreen Shamsad
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Tanu Gautam
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Renu Singh
- Department of Obstetrics and Gynecology, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
3
|
Feghahati FS, Ghafouri-Fard S. A comprehensive outline of the role of non-coding RNAs in vitiligo. Biochem Biophys Rep 2025; 41:101916. [PMID: 39881955 PMCID: PMC11774809 DOI: 10.1016/j.bbrep.2025.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
Vitiligo is a common skin depigmentation condition caused by selective destruction of melanocytes. It is regarded as a polygenic disorder. In addition to protein-coding loci, non-coding regions of the genome contribute to the pathogenesis of vitiligo. A bulk of evidence highlights contribution of different classes of non-coding RNAs in this condition. Expression profile of different non-coding RNAs has been evaluated in the plasma, serum, blood cells and skin samples of patients with vitiligo. Notably, these transcripts not only partake the pathogenesis of vitiligo, but also are regarded as putative targets for prospective treatment strategies for this disorder. The current review focuses on depicting the role of miRNAs, long non-coding RNAs and circular RNAs in the etiology of vitiligo. Moreover, we discuss the shared functions of these transcripts in the pathogenesis of vitiligo and melanoma.
Collapse
Affiliation(s)
- Fateme Sadat Feghahati
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Priya S, Kma L. Identification of novel microRNAs: Biomarkers for pathogenesis of hepatocellular carcinoma in mice model. Biochem Biophys Rep 2025; 41:101896. [PMID: 39881957 PMCID: PMC11774814 DOI: 10.1016/j.bbrep.2024.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most fatal cancer that has affected both male and female populations globally. With poor diagnosis and patient survival rates, it has become a global need for scientists to come to the aid. The main objective of the study was to profile the miRNAs in the serum of Control and DEN-treated mice at different time intervals (4 Weeks, 8 Weeks, 12 Weeks, and 16 Weeks) and identify HCC-associated miRNA as putative early biomarkers along with the miRNA regulated candidate gene which may be involved in HCC. Our study group involves 4,8,12, & 16 weeks 16-week-old treated male mice. Each group was sacrificed and analyzed for the stages of HCC. We employed in silico techniques for the small RNA-Seq and bioinformatics pipeline for further analysis. Our analysis revealed over 400 differentially expressed miRNAs in each treated sample and 10 novel miRNAs. The downstream analysis of these differentially expressed miRNAs, and their target genes opened an arena of different biological processes and pathways that these miRNAs affect during the development of HCC. The work has a promising role as the miRNAs predicted through this study can be used as biomarkers for early detection of HCC.
Collapse
Affiliation(s)
- Shivani Priya
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences & Research, Sharda University, Noida, UP, India
| | - Lakhon Kma
- Department of Biochemistry, North Eastern Hill University, Shillong, India
| |
Collapse
|
5
|
Kaur V, Sunkaria A. Unlocking the therapeutic promise of miRNAs in promoting amyloid-β clearance for Alzheimer's disease. Behav Brain Res 2025; 484:115505. [PMID: 40010509 DOI: 10.1016/j.bbr.2025.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects cognition and behavior, accounting for 60-70 % of dementia cases. Its mechanisms involve amyloid aggregates, hyperphosphorylated tau tangles, and loss of neural connections. Current treatments have limited efficacy due to a lack of specific targets. Recently, microRNAs (miRNAs) have emerged as key modulators in AD, regulating gene expression through interactions with mRNA. Dysregulation of specific miRNAs contributes to disease progression by disrupting clearance pathways. Antisense oligonucleotide (ASO)-based therapies show promise for AD treatment, particularly when combined with miRNA mimics or antagonists, targeting complex regulatory networks. However, miRNAs can interact with each other, complicating cellular processes and potentially leading to side effects. Our review emphasizes the role of miRNAs in regulating amyloid-beta (Aβ) clearance and highlights their potential as therapeutic targets and early biomarkers for AD, underscoring the need for further research to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Vajinder Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
6
|
Asif S, Gulzar MW. A narrative review on MicroRNA's role in diagnosis and therapy of equine endometritis. J Reprod Immunol 2025; 169:104459. [PMID: 39987676 DOI: 10.1016/j.jri.2025.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Endometritis is a significant cause of infertility in mare. Some infectious agents disrupt the endometrium's innate immune system, resulting in a prolonged systemic inflammatory response that circulates via the blood or cellular degeneration, which ultimately leads to endometritis from bacterial endotoxins. Numerous biological processes use various small, non-coding RNA molecules called MicroRNAs. MicroRNAs (miRNAs) regulate gene expression after transcription by blocking transcription and translation. This manuscript examines patho-morphological discoveries in equine endometritis, the expression and effects of eca-miR-17, eca-miR-223, eca-miR-200a, eca-miR-155, and eca-miR-205, and the therapeutic function of miRNA in endometritis. MiRNAs play a crucial role in controlling inflammatory disorders by modulating cytokine signaling pathways. This review emphasizes the demand for cutting-edge genetic technologies and the development of novel pharmaceutical preparations to improve our understanding of the genes encoding by these miRNAs. It also focuses on the efficacy of miRNAs for control, early diagnosis, and prevention of endometritis.
Collapse
Affiliation(s)
- Sana Asif
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | | |
Collapse
|
7
|
Kosten TR, Koirala A, Nielsen DA, Domingo CB, Thomas YT, Gunaratne PH, Coarfa C. Plasma microRNAs to Select Optimal Patients for Antibody Production from Anti-Addiction Vaccines. Vaccines (Basel) 2025; 13:181. [PMID: 40006728 PMCID: PMC11860428 DOI: 10.3390/vaccines13020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cocaine and illicit amphetamines (disguised as "Adderall") are being laced with fentanyl and producing accidental and intentional fatal overdoses. Vaccines can prevent these overdoses, but 33% of humans generate insufficient anti-drug antibody (AB) levels. Plasma microRNAs (miRs) can be used to predict non-responders. We have plasma stored from 152 cocaine vaccine trial participants following three vaccinations over 9 weeks and examined miRs as potential response biomarkers. Methods: We compared 2517 miRs before anti-cocaine vaccination in participants with the highest (n = 25) to the lowest (n = 23) antibody levels. False Discovery Rates (FDRs) were applied to identify differentially expressed (DE) miRs. We used miR target prediction pipelines to identify the miR-regulated genes. Results: Using a DE-FDR < 0.05 and a >3-fold difference between high- and low-AB responders yielded 12 miRs down and 3 miRs up compared to low-AB patients. Furthermore, 11 among 1673 genes were targeted by 3 or more of the 12 down DE-miRs. Conclusions: A significant DE-miR for identifying optimal antibody responders replicated previous vaccine study predictors (miR-150), and several more miRs appear to be strong candidates for future consideration in replications based upon significance of individual DE-miRs and upon multiple miRs converging on individual genes.
Collapse
Affiliation(s)
- Thomas R. Kosten
- Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, Department of Neuroscience, Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amrit Koirala
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA;
| | - David A. Nielsen
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA; (D.A.N.); (C.B.D.)
| | - Coreen B. Domingo
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA; (D.A.N.); (C.B.D.)
| | - Ynhi T. Thomas
- Henry J.N. Taub Hospital Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Michael E. DeBakey VA Medical Center, Center for Innovations in Quality, Effectiveness, and Safety, Houston, TX 77030, USA
| | - Preethi H. Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Cristian Coarfa
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
8
|
Aripova A, Kussainova A, Ibragimova M, Bulgakova O, Bersimbaev R. The role of exosomal hsa-miR-125b-5p and hsa-miR-320c as non-invasive biomarkers in high-radon areas of Kazakhstan. Biomarkers 2025:1-8. [PMID: 39819391 DOI: 10.1080/1354750x.2025.2456007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/12/2025] [Indexed: 01/19/2025]
Abstract
BACKGROUND Radon, a radioactive gas, is a significant risk factor for lung cancer, especially in non-smokers. This study examines the expression of exosomal microRNAs (miRNAs) as potential biomarkers for radon-induced effects. METHODS A total of 109 participants from high- and low-radon areas in Kazakhstan were included. Exosomal hsa-miR-125b-5p and hsa-miR-320c levels were quantified using real-time PCR. RESULTS Results revealed a 25.4-fold increase in hsa-miR-125b-5p and a 12.5-fold decrease in hsa-miR-320c in participants exposed to high-radon levels compared to controls. Bioinformatic analysis identified key target genes, such as PRDM1 and IRF4, which are implicated in cancer development. CONCLUSION These findings suggest that exosomal miRNAs could serve as non-invasive biomarkers for radon exposure, offering potential for early diagnosis and monitoring of radon-induced lung cancer. The study underscores the need for further research to validate these miRNAs as reliable diagnostic tools.
Collapse
Affiliation(s)
- Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| |
Collapse
|
9
|
Ramaswamy P, S V A, Misra P, Chauhan VS, Adhvaryu A, Gupta A, G A, M K S. Circulating microRNA profiling identifies microRNAs linked to prediabetes associated with alcohol dependence syndrome. Alcohol 2025; 122:101-109. [PMID: 38266790 DOI: 10.1016/j.alcohol.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND MicroRNAs are abundant in serum and have emerged as important regulators of gene expression, implicating them in a wide range of diseases. The purpose of this study was to discover and validate serum miRNAs in prediabetes associated with alcohol dependence syndrome (ADS). METHOD Serum samples from ADS patients with or without prediabetes and normoglycemic controls were subjected to microarray. Validation of identified candidate miRNAs was performed by RT-qPCR. Additionally, GO and KEGG pathway analyses were carried out to uncover target genes anticipated to be controlled by the candidate miRNAs. RESULTS Notably, 198, and 172 miRNAs were differentially expressed in ADS-patients with or without prediabetes compared to healthy controls, and 7 miRNAs in ADS-patients with prediabetes compared to ADS-normoglycemic patients, respectively. Furthermore, hsa-miR-320b and hsa-miR-3135b were differentially expressed exclusively in ADS-patients with prediabetes, and this was further validated. Interestingly, GO and KEGG pathway analysis revealed that genes predicted to be modulated by the candidates were considerably enriched in numerous diabetes-related biological processes and pathways. CONCLUSION Our findings revealed that ADS-patients with or without prediabetes have different sets of miRNAs compared to normoglycemic healthy subjects. We propose serum hsa-miR-320b and hsa-miR-3135b as potential biomarkers for the diagnosis of prediabetes in ADS-patients.
Collapse
Affiliation(s)
| | - Athira S V
- Department of Biochemistry, Armed Forces Medical College, Pune, India, 411040
| | - Pratibha Misra
- Department of Biochemistry, Armed Forces Medical College, Pune, India, 411040
| | - V S Chauhan
- Department of Psychiatry, Armed Forces Medical College, Pune, India, 411040
| | - Arka Adhvaryu
- Department of Psychiatry, Armed Forces Medical College, Pune, India, 411040
| | - Anurodh Gupta
- Department of Biochemistry, Armed Forces Medical College, Pune, India, 411040
| | - Ankita G
- Multi Disciplinary Research Unit, Armed Forces Medical College, Pune, India, 411040
| | - Sibin M K
- Department of Biochemistry, Armed Forces Medical College, Pune, India, 411040.
| |
Collapse
|
10
|
Meng L, Cai Q, Zhang H, Gao Z, Yang L. hsa‑miR‑1‑3p and hsa‑miR‑361‑3p as potential biomarkers for onychomycosis: A pilot study. Biomed Rep 2025; 22:20. [PMID: 39651406 PMCID: PMC11621917 DOI: 10.3892/br.2024.1898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Non-coding small molecule RNAs are associated with a variety of diseases, including infectious diseases. However, small RNA-related studies in onychomycosis have not been reported. The aim of the present study was to conduct an initial investigation of small RNA in onychomycosis. The present study collected a total of 33 affected nail samples from patients with onychomycosis and 18 normal nail samples from healthy people. Through RNA sequencing, 37 differentially expressed microRNAs (miRNAs or miRs), including 15 upregulated and 22 downregulated miRNAs, were identified in 3 patients with onychomycosis compared with 3 healthy controls. Moreover, three differentially expressed miRNAs were analyzed for further verification by RT-qPCR in other 30 affected nail and 15 healthy nail samples. Among the three verified miRNAs, a significant difference between the downregulated hsa-miR-1-3p and hsa-miR-361-3p was observed (P<0.05). A total of 14,511 target genes of 37 differentially expressed miRNAs were predicted by the miRanda and RNAhybrid databases, while the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analysis showed that these target genes were enriched in multiple signaling pathways. The present study indicated that hsa-miR-1-3p and hsa-miR-361-3p may be potential biomarkers for onychomycosis. Furthermore, the findings of the present study can be used in future research on RNA in onychomycosis.
Collapse
Affiliation(s)
- Li Meng
- Department of Dermatological Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, P.R. China
| | - Qing Cai
- Department of Dermatological Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, P.R. China
| | - Huaijian Zhang
- Department of Dermatological Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, P.R. China
| | - Zhiqin Gao
- Department of Dermatological Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, P.R. China
| | - Lianjuan Yang
- Department of Dermatological Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, P.R. China
| |
Collapse
|
11
|
Sung SE, Seo MS, Park WT, Lim YJ, Park S, Lee GW. Extracellular vesicles: their challenges and benefits as potential biomarkers for musculoskeletal disorders. J Int Med Res 2025; 53:3000605251317476. [PMID: 39973226 PMCID: PMC11840854 DOI: 10.1177/03000605251317476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
Early diagnosis and timely management are critical for determining disease outcomes and prognoses. To date, certain methods for developing disease-specific biomarkers have been reported; however, strategies for musculoskeletal disease-specific biomarker development have rarely been studied. Recent studies have highlighted the potential application of extracellular vesicles (EVs) as disease-specific biomarkers. EVs encapsulate proteins, lipids, messenger RNAs, and microRNAs derived from their cellular origin; these constituents remain stable within the EVs and can traverse the blood-brain barrier. Because of these distinctive characteristics, EVs have been actively investigated as diagnostic tools for various conditions, including cancer, inflammatory diseases, and musculoskeletal disorders. Although EVs have many advantages for biomarker development, they have not yet been fully researched in the context of musculoskeletal pathologies. The current review aimed to highlight the potential of EVs in the development of disease-specific biomarkers, summarize the processes of EV biomarkers, and discuss current limitations and future perspectives of EVs as biomarkers.
Collapse
Affiliation(s)
- Soo-Eun Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Min-Soo Seo
- Department of Veterinary Tissue Engineering, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Young-Ju Lim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Sangbum Park
- Department of Cell and Molecular Biology, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
- Department of Cell and Molecular Biology, The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Akai M, Maeda Y, Kawami M, Yumoto R, Takano M, Uchida Y. miR-PAIR: microRNA-protein analysis of integrative relationship for the identification of significantly working miRNAs. Biochim Biophys Acta Gen Subj 2025; 1869:130746. [PMID: 39706375 DOI: 10.1016/j.bbagen.2024.130746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
MicroRNAs (miRNAs), which are small non-coding RNAs, are recognized as important significant endogenous bio-molecules that regulate the post-transcriptional processes of target genes. However, predictive methods for significantly working miRNAs are poorly understood. The present study aimed to establish a novel method, miRNA protein analysis of integrative relationship (miR-PAIR), for the identification of effectively working miRNAs involved in physiological or pathological events. To establish the miR-PAIR, comprehensive expression data of miRNAs and proteins were obtained using small RNA-sequence and quantitative proteomics approach in the alveolar epithelial cell line, A549 treated with bleomycin (BLM) and methotrexate (MTX) as pulmonary toxic drugs. Differentially expressed miRNAs and proteins were integrated using TargetScan, a freely available web tool for predicting the target gene of miRNAs. Next, the enrichment of the integrated miRNA-protein pairs was analyzed, followed by the determination of significantly working miRNAs in BLM- and MTX-induced protein expression changes. The miR-PAIR method identified 22 downregulated and 9 upregulated miRNAs. Among them, miR-493-5p (p = 1.71E-05), an upregulated miRNA, suppressed approximately 70 % of the target proteins, and miR-598-3p (p = 1.1E-03), a downregulated miRNA, canceled 50 % of the target protein expression changes induced by BLM and MTX. Thus, a miR-PAIR could be an effective method to identify significantly working miRNAs associated with biological events such as drug-induced lung injury.
Collapse
Affiliation(s)
- Mizuki Akai
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yuki Maeda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Masashi Kawami
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| | - Ryoko Yumoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | | | - Yasuo Uchida
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
13
|
Tomasini S, Vigo P, Margiotta F, Scheele US, Panella R, Kauppinen S. The Role of microRNA-22 in Metabolism. Int J Mol Sci 2025; 26:782. [PMID: 39859495 PMCID: PMC11766054 DOI: 10.3390/ijms26020782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
microRNA-22 (miR-22) plays a pivotal role in the regulation of metabolic processes and has emerged as a therapeutic target in metabolic disorders, including obesity, type 2 diabetes, and metabolic-associated liver diseases. While miR-22 exhibits context-dependent effects, promoting or inhibiting metabolic pathways depending on tissue and condition, current research highlights its therapeutic potential, particularly through inhibition strategies using chemically modified antisense oligonucleotides. This review examines the dual regulatory functions of miR-22 across key metabolic pathways, offering perspectives on its integration into next-generation diagnostic and therapeutic approaches while acknowledging the complexities of its roles in metabolic homeostasis.
Collapse
Affiliation(s)
- Simone Tomasini
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Paolo Vigo
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
| | - Francesco Margiotta
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
| | - Ulrik Søberg Scheele
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Riccardo Panella
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125 Salerno, Italy
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| |
Collapse
|
14
|
Karimi Darabi M, Rafeeinia A, Pezeshki SP, Nazeri Z, Kheirollah A, Cheraghzadeh M. Therapeutic potential of mesenchymal stem cells on cholesterol homeostasis-associated genes in AD-like rats. FASEB J 2025; 39:e70289. [PMID: 39751793 DOI: 10.1096/fj.202401167rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/24/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD. The present study aims is to investigate a new approach concerning AD by MSCs with particular reference to the cholesterol homeostasis pathway and its regulatory miRNAs in an AD-like rat model. Three groups of 24 male Wistar rats have been divided: healthy rats (control), Alzheimer's rats (AD), and Alzheimer's rats that received MSCs (AD + MSC). Cholesterol level was measured using the GC-mass technique. The mRNA and expression levels of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), apolipoprotein E (APOE), ATP-binding cassette transporter A1 (ABCA1), and CYP46A1 genes, as well as their regulating miRNAs, were assessed using real-time polymerase chain reaction (RT-PCR) and western blotting techniques, respectively. Intraventricular transplantation of MSCs improved behavioral disorders and decreased the count of Aβ plaques in brain tissue. Transplantation of these cells also led to a significant decrease in cholesterol levels and HMGCR, ApoE, and ABCA1 and a remarkable increase in CYP46A1 mRNAs and protein expression. These cells considerably changed the expression of microRNAs regulating these genes. These results indicated that the examined miRNAs could be used as promising biomarkers for AD management. Additionally, the potential therapeutic role of MSCs in improving cholesterol levels the expression levels of the targeted miRNAs and their related genes in the cholesterol homeostasis pathway was established.
Collapse
Affiliation(s)
- Mehrnaz Karimi Darabi
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Seyedeh Pardis Pezeshki
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Nazeri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Surgery Department, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Maryam Cheraghzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Aman RA, Pratama MG, Satriawan RR, Ardiansyah IR, Suanjaya IKA. Diagnostic and Prognostic Values of miRNAs in High-Grade Gliomas: A Systematic Review. F1000Res 2025; 13:796. [PMID: 39959433 PMCID: PMC11826073 DOI: 10.12688/f1000research.151350.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/18/2025] Open
Abstract
Background Gliomas, particularly glioblastomas, have grim prognoses, necessitating early diagnostic and prognostic indicators. MicroRNAs (miRNAs), influential in cancer research, show potential as glioma biomarkers. This systematic review aimed to examine the efficacy of miRNAs in the diagnosis and prognosis of high-grade glioma. Methods A comprehensive search was conducted of PubMed, EMBASE, Cochrane Library, and Web of Science for studies published from 2013 to 2023. The eligibility criteria included high-grade glioma, histopathological confirmation, miRNA samples from cerebrospinal fluid or plasma, and relevant outcome data. Studies were excluded if they were experimental or reviews and not in English. Results Of the 1120 initial results, 8 studies involving 660 subjects met the inclusion criteria. Several studies have assessed miRNA expression and its association with diagnosis and prognosis of high-grade gliomas. Overexpression of miR-221, miR-222, miR-210, miR-21, miR-125b, and miR-223 and under-expression of miR-15b and miR-124-3p showed significant potential in differentiating high-grade glioma patients from controls. Additionally, miRNAs are associated with distinct tumorigenic pathways. Conclusion Elevated or depressed expression levels of specific circulating miRNAs hold significant promise as noninvasive biomarkers for the diagnosis and prognosis of high-grade glioma. These miRNAs offer valuable insights into disease progression and patient outcome. Further validation through extensive clinical trials and in-depth mechanistic studies is essential to realize their full clinical utility.
Collapse
Affiliation(s)
- Renindra Ananda Aman
- Department of Neurosurgery, Faculty of Medicine, University of Indonesia, Jakarta, DKI Jakarta, Indonesia
| | - Mohammad Galih Pratama
- Department of Neurosurgery, Faculty of Medicine, University of Indonesia, Jakarta, DKI Jakarta, Indonesia
| | - Ricky Rusydi Satriawan
- Department of Neurosurgery, Faculty of Medicine, University of Indonesia, Jakarta, DKI Jakarta, Indonesia
| | - Irfani Ryan Ardiansyah
- Department of Neurosurgery, Faculty of Medicine, University of Indonesia, Jakarta, DKI Jakarta, Indonesia
| | - I Ketut Agus Suanjaya
- Department of Neurosurgery, Faculty of Medicine, University of Indonesia, Jakarta, DKI Jakarta, Indonesia
| |
Collapse
|
16
|
Devara D, Sharma B, Goyal G, Rodarte D, Kulkarni A, Tinu N, Pai A, Kumar S. MiRNA-501-3p and MiRNA-502-3p: A Promising Biomarker Panel for Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632227. [PMID: 39868112 PMCID: PMC11761422 DOI: 10.1101/2025.01.09.632227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) lacks a less invasive and early detectable biomarker. Here, we investigated the biomarker potential of miR-501-3p and miR-502-3p using different AD sources. METHODS MiR-501-3p and miR-502-3p expressions were evaluated in AD CSF exosomes, serum exosomes, familial and sporadic AD fibroblasts and B-lymphocytes by qRT-PCR analysis. Further, miR-501-3p and miR-502-3p expressions were analyzed in APP, Tau cells and media exosomes. RESULTS MiR-501-3p and miR-502-3p expressions were significantly upregulated in AD CSF exosomes relative to controls. MiRNA levels were high in accordance with amyloid plaque and NFT density in multiple brain regions. Similarly, both miRNAs were elevated in AD and MCI serum exosomes compared to controls. MiR-502-3p expression was high in fAD and sAD B-lymphocytes. Finally, miR-501-3p and miR-502-3p expression were elevated intracellularly and secreted extracellularly in response to APP and Tau pathology. DISCUSSION These results suggest that miR-501-3p and miR-502-3p could be promising biomarkers for AD.
Collapse
|
17
|
Sreepada A, Khasanov R, Elkrewi EZ, de la Torre C, Felcht J, Al Abdulqader AA, Martel R, Hoyos-Celis NA, Boettcher M, Wessel LM, Schäfer KH, Tapia-Laliena MÁ. Urine miRNA signature as potential non-invasive diagnostic biomarker for Hirschsprung's disease. Front Mol Neurosci 2025; 17:1504424. [PMID: 39872605 PMCID: PMC11770682 DOI: 10.3389/fnmol.2024.1504424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
Hirschsprung's disease (HSCR) is characterized by congenital absence of ganglion cells in the gastrointestinal tract, which leads to impaired defecation, constipation and intestinal obstruction. The current diagnosis of HSCR is based on Rectal Suction Biopsies (RSBs), which could be complex in newborns. Occasionally, there is a delay in diagnosis that can increase the risk of clinical complications. Consequently, there is room for new non-invasive diagnostic methods that are objective, more logistically feasible and also deliver a far earlier base for a potential surgical intervention. In recent years, microRNA (miRNA) has come into the focus as a relevant early marker that could provide more insights into the etiology and progression of diseases. Therefore, in the search of a non-invasive HSCR biomarker, we analyzed miRNA expression in urine samples of HSCR patients. Results from 5 HSCR patients using microarrays, revealed hsa-miR-378 h, hsa-miR-210-5p, hsa-miR-6876-3p, hsa-miR-634 and hsa-miR-6883-3p as the most upregulated miRNAs; while hsa-miR-4443, hsa-miR-22-3p, hsa-miR-4732-5p, hsa-miR-3187-5p, and hsa-miR-371b-5p where the most downregulated miRNAs. Further search in miRNAwalk and miRDB databases showed that certainly most of these dysregulated miRNAs identified target HSCR associated genes, such as RET, GDNF, BDNF, EDN3, EDNRB, ERBB, NRG1, SOX10; and other genes implied in neuronal migration and neurogenesis. Finally, we could also validate some of these miRNA changes in HSCR urine by RT-qPCR. Altogether, our analyzed HSCR cohort presents a dysregulated miRNA expression presents that can be detected in urine. Our findings open the possibility of using specific urine miRNA signatures as non-invasive HSCR diagnosis method in the future.
Collapse
Affiliation(s)
- Abhijit Sreepada
- Translational Medical Research/International Master in Innovative Medicine Master Program, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rasul Khasanov
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Enas Zoheer Elkrewi
- Translational Medical Research/International Master in Innovative Medicine Master Program, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Judith Felcht
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ahmad A. Al Abdulqader
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Surgery, College of Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Richard Martel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicolás Andrés Hoyos-Celis
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Campus Zweibrücken, Kaiserslautern, Germany
| | | |
Collapse
|
18
|
Garabet L, Rangberg A, Eriksson AM, Jonassen CM, Teruel-Montoya R, Lozano ML, Martinez C, Pettersen HH, Mathisen ÅB, Tjønnfjord E, Tran H, Brodin E, Tsykunova G, Gebhart J, Bussel J, Ghanima W. MicroRNA-199a-5p may be a diagnostic biomarker of primary ITP. Br J Haematol 2025. [PMID: 39776057 DOI: 10.1111/bjh.19987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
There is no diagnostic test for primary immune thrombocytopenia (ITP). Certain microRNAs have shown to have diagnostic potential in ITP. We validated 12 microRNAs identified from two previous studies to find a diagnostic biomarker. The study included two ITP cohorts (n = 61) and healthy controls (n = 28). The first ITP cohort involved 24 patients from the Prolong study, patients with newly diagnosed/persistent ITP (<1 year) treated with corticosteroids ± IVIG but relapsed/failed to respond. The second cohort comprised 37 patients from ITP biobank, Østfold Hospital, Norway, patients had different disease stages and therapies. Twelve microRNAs were measured: miR-199a-5p, miR-33a-5p, miR-195-5p, miR-130a-3p, miR-144-3p, miR-146a-5p, miR-222-3p, miR-374b-5p, miR-486-5p, miR-1341-5p, miR-766-3p and miR-409-3p. miR-199a-5p, miR-33a-5p, miR-374b-5p, miR-146a-5p and miR-409-3p were expressed differentially in the entire ITP cohort compared to controls; of those only miR-199a-5p showed good discriminative ability between ITP and controls with area under the curve (AUC) of 0.718 (95% CI: 0.599-0.836). In the Prolong cohort (ITP < 1 year), miR-199a-5p and miR-374b-5p showed very good discriminative ability between ITP and controls with AUC of 0.824 (0.708-0.940) and 0.806 (0.688-0.924) respectively. This study confirmed that miR-199a-5p has good discriminative ability between primary ITP and healthy controls, thus may be a diagnostic biomarker of ITP.
Collapse
Affiliation(s)
- Lamya Garabet
- Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway
- Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, Lørenskog, Norway
| | - Anbjørg Rangberg
- Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway
| | | | - Christine Monceyron Jonassen
- Center for Laboratory Medicine, Østfold Hospital, Grålum, Norway
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Raul Teruel-Montoya
- Servicio de Hematología, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | - Maria Luisa Lozano
- Servicio de Hematología, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | - Constantino Martinez
- Servicio de Hematología, Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, IMIB-Pascual Parrilla, CIBERER-ISCIII, Universidad de Murcia, Murcia, Spain
| | | | | | | | - Hoa Tran
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Ellen Brodin
- Department of Haematology, Akershus University Hospital, Lørenskog, Norway
| | - Galina Tsykunova
- Department of Haematology, Haukeland University Hospital, Bergen, Norway
| | - Johanna Gebhart
- Department of Medicine, Medical University of Vienna, Vianna, Austria
| | - James Bussel
- Department of Pediatrics, Division of Hematology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Waleed Ghanima
- Department of Research, Østfold Hospital Trust, Grålum, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Kim OH, Jeon TJ, Kang H, Chang ES, Hong SA, Kim MK, Lee HJ. hsa-mir-483-3p modulates delayed breast cancer recurrence. Sci Rep 2025; 15:693. [PMID: 39753688 PMCID: PMC11698896 DOI: 10.1038/s41598-024-84437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Patients with estrogen receptor-positive breast cancer undergoing continuous adjuvant hormone therapy often experience delayed recurrence with tamoxifen use, potentially causing adverse effects. However, the lack of biomarkers hampers patient selection for extended endocrine therapy. This study aimed to elucidate the molecular mechanisms underlying delayed recurrence and identify biomarkers. When miRNA expression was assessed in luminal breast cancer tissues with and without delayed recurrence using NanoString, a significant increase in the expression of miR483-3p was observed in samples from patients with delayed recurrence compared with those without. miR483-3p expression was elevated in tamoxifen resistant (TAMR) EFM19 cells than in non-resistant EFM19 cells. Notably, genes associated with cancer metastasis (AMOTL2, ANKRD1, CTGF, and VEGF) were upregulated in TAMR EFM19 cells, although cell motility and proliferation were reduced. Transfection of miR483-3p mimics into both non-resistant EFM19 and MCF7 cells resulted in increased expression of cancer metastasis-related genes, but decreased proliferation and migration. Given that miR483-3p can bind to the 3'UTR region of O-GlcNAc transferase (OGT) and potentially affect its protein expression, we examined OGT protein levels and found that transfection with miR483-3p mimics selectively reduced OGT expression. Overall, breast cancer cells subjected to long-term hormone therapy displayed elevated miR483-3p expression, reducing motility and dormancy induction via decreased OGT expression. These findings suggest that miR483-3p is a potential biomarker for long-term endocrine therapy.
Collapse
Affiliation(s)
- Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Tae Jin Jeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, South Korea
| | - Hana Kang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, South Korea
| | - Eun Seo Chang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, South Korea
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Min Kyoon Kim
- Department of Surgery, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea.
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
20
|
Abbasifard M, Ostad Ebrahimi H, Taghipur Khajeh Sharifi G, Bahrehmand F, Bagheri-Hosseinabadi Z. Investigation of the circulatory microRNAs and their involvement in regulation of inflammation in patients with COVID-19. Hum Immunol 2025; 86:111208. [PMID: 39667207 DOI: 10.1016/j.humimm.2024.111208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Dysregulated levels of cytokines may lead to cytokine storm, which has been implicated in the immunopathogenesis of coronavirus disease 2019 (COVID-19). Here in the current study, the role of microRNA (miR)-155-5p, miR-146a, and miR-221-3p in the regulation of the immune responses and inflammatory state in patients with COVID-19 was investigated. METHODS In this case-control study, peripheral blood samples were obtained from 75 COVID-19 subjects and 100 healthy controls. From the plasma samples, RNA was extracted and cDNA was synthesized, and subsequently the transcript level of miRNAs was measured by Real-time PCR. The plasma levels of interleukin (IL)-4 and interferon (IFN)-γ were determined using ELISA. RESULTS miR-155-5p (fold change = 1.87, P = 0.020) and miR-221-3p (fold change = 2.26, P = 0.008), but not miR-146a, was upregulated in the plasma sample of COVID-19 cases compared to controls. The level of IFN-γ (but not IL-4) was significantly higher in the plasma samples of COVID-19 patients compared to control group. The expression level of miR-155-5p (r = 0.35, corrected P = 0.066) and miR-221-3p (r = 0.25, corrected P = 0.066) had positive correlation with the plasma levels of IFN-γ. CONCLUSIONS IFN-γ pathway in involved in the pathogenesis of COVID-19 that is regulated through miR-155-5p and miR-221-3p. These miRNAs showed potential utility as biomarkers for predicting the severity of COVID-19.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Ostad Ebrahimi
- Department of Paediatrics, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Fatemeh Bahrehmand
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Bagheri-Hosseinabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
21
|
Cochrane ALK, Murphy MP, Ozanne SE, Giussani DA. Pregnancy in obese women and mechanisms of increased cardiovascular risk in offspring. Eur Heart J 2024; 45:5127-5145. [PMID: 39508438 DOI: 10.1093/eurheartj/ehae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/12/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
Pregnancy complicated by maternal obesity contributes to an increased cardiovascular risk in offspring, which is increasingly concerning as the rates of obesity and cardiovascular disease are higher than ever before and still growing. There has been much research in humans and preclinical animal models to understand the impact of maternal obesity on offspring health. This review summarizes what is known about the offspring cardiovascular phenotype, describing a mechanistic role for oxidative stress, metabolic inflexibility, and mitochondrial dysfunction in mediating these impairments. It also discusses the impact of secondary postnatal insults, which may reveal latent cardiovascular deficits that originated in utero. Finally, current interventional efforts and gaps of knowledge to limit the developmental origins of cardiovascular dysfunction in offspring of obese pregnancy are highlighted.
Collapse
Affiliation(s)
- Anna L K Cochrane
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael P Murphy
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- British Heart Foundation, Cambridge Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- British Heart Foundation, Cambridge Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Zali M, Sadat Larijani M, Bavand A, Moradi L, Ashrafian F, Ramezani A. Circulatory microRNAs as potential biomarkers for different aspects of COVID-19. Arch Virol 2024; 170:8. [PMID: 39666114 DOI: 10.1007/s00705-024-06184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/03/2024] [Indexed: 12/13/2024]
Abstract
The coronavirus disease of 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can alter the expression levels of host microRNAs (miRNAs). Increasing evidence suggests that circulating miRNAs can potentially play an important role in the diagnosis and prognosis of respiratory infectious diseases, especially COVID-19, and might serve as sensitive indicators of disease before the emergence of clinical symptoms. Here, we review the potential of circulatory microRNAs as novel biomarkers for different aspects of COVID-19. Recent studies have suggested that they can be useful not only for COVID-19 prognosis but also for prediction of disease severity and mortality among intensive care unit (ICU) and ward patients. Moreover, extracellular vesicle (EV) miRNAs can be associated with antibody titer after COVID-19 vaccination. This review provides an overview of miRNA-based biomarkers.
Collapse
Affiliation(s)
- Mahsan Zali
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Ladan Moradi
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran.
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran.
| |
Collapse
|
23
|
Kalligosfyri PM, Cimmino W, Normanno N, Cinti S. Enzyme-Assisted Electrochemical Point-of-Care Test for miRNA Detection in Liquid Biopsy. Anal Chem 2024; 96:19202-19206. [PMID: 39602323 DOI: 10.1021/acs.analchem.4c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In the personalized medicine era, affordable and portable devices for quicker cancer monitoring, even in remote areas, are crucial. To address this need, we have developed an enzyme-assisted electrochemical point-of-care (POC) test for application toward liquid biopsy. In particular, miR-200a-5p has been taken into account as the model target due to its correlation for triple negative breast cancer (TNBC) prognosis. The proposed platform has been conceived as signal-ON, and the detection architecture is based on the presence of a duplex-specific nuclease (DSN) that is selective for DNA-RNA heteroduplexes. When the miRNA is recognized by an ad-hoc designed DNA probe, the DSN enzyme enables for the isothermal target recycling and signal enhancement, which is essential for detecting the miRNA trace in biofluids. Introducing a methylene blue (MB) modification on the DNA probe, a single miRNA strand is capable of triggering multiple DSN cleavage circles, increasing the free MB and thus the electrochemical signal recorded. All the optimization studies have been carried out using a screen-printed strip, resulting in a dynamic range comprised between 0.1 pM and 100 nM and a detection limit down to the fM level. A satisfactory selectivity was highlighted by interrogating the system toward random miRNA target mixtures, and the platform was also tested in spiked commercial serum samples.
Collapse
Affiliation(s)
| | - Wanda Cimmino
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Nicola Normanno
- IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori", 47014 Meldola, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
24
|
Jeon J, Jang S, Park KS, Kim HG, Lee J, Hwang TS, Koh JS, Kim J. Identification of differentially expressed miRNAs involved in vascular aging reveals pathways associated with the endocrine hormone regulation. Biogerontology 2024; 26:23. [PMID: 39644339 PMCID: PMC11625078 DOI: 10.1007/s10522-024-10167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Vascular aging refers to a series of processes where the elasticity of blood vessels diminishes, leading to stiffening, and deposition of fat components on the vessel walls, causing inflammation. Cardiovascular diseases, such as stroke and hypertension, play significant roles in morbidity and mortality rates among the elderly population. In this study, the Reactive Hyperemia Index (RHI) was measured to assess vascular endothelial function and aging-induced pathogenesis of vascular diseases in Korean subjects. We aimed to identify extracellular vesicle microRNAs (EV-miRNAs) with differential abundance between groups of individuals at the ends of a continuum in vascular aging acceleration, revealing miRNAs regulating genes in endocrine hormone regulation and tumor-related pathways. We also discovered that the principal component characterizing the global miRNA expression profile is significantly associated with clinical traits including cholesterol levels. Together, these data provide a foundation for understanding the role of miRNAs as modulators of longevity and for developing age-specific epigenetic biomarkers.
Collapse
Affiliation(s)
- Jeongwon Jeon
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Subin Jang
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki-Soo Park
- Department of Preventive Medicine, College of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
- Center for Farmer's Safety and Health, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Han-Gyul Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jongan Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Tae-Sung Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jin-Sin Koh
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea.
| | - Jaemin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea.
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
25
|
Hromadnikova I, Kotlabova K, Krofta L. Abnormal microRNA expression profile at early stages of gestation in pregnancies destined to develop placenta previa. Front Med (Lausanne) 2024; 11:1469855. [PMID: 39691371 PMCID: PMC11650449 DOI: 10.3389/fmed.2024.1469855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
Background Placenta previa is the abnormal implantation of the placenta into the lower segment of the uterus, is associated with adverse maternal and fetal outcomes such as placenta accreta spectrum disorders, antepartum and postpartum hemorrhage, fetal growth restriction, prematurity, stillbirth and neonatal death, thrombophlebitis, and septicemia. The aim of the study was to assess retrospectively how the later onset of placenta previa affects the microRNA expression profile in the whole peripheral blood during the first trimester of gestation. Methods Regarding the occurrence of the association between aberrant microRNA expression profiles at early stages of gestation and later onset of various pregnancy-related complications, we selected for the study pregnancies developing placenta previa as the only pregnancy-related disorder. In total, 24 singleton pregnancies diagnosed with placenta previa that underwent first-trimester prenatal screening and delivered on-site within the period November 2012-May 2018 were included in the study. Overall, 80 normal pregnancies that delivered appropriate-for-gestational age newborns after completing 37 weeks of gestation were selected as the control group based on the equality of the length of biological sample storage. Results Downregulation of multiple microRNAs (miR-20b-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-103a-3p, miR-130b-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-210-3p, miR-342-3p, and miR-574-3p) was observed in pregnancies destined to develop placenta previa. The combination of seven microRNAs (miR-130b-3p, miR-145-5p, miR-155-5p, miR-181a-5p, miR-210-3p, miR-342-3p, and miR-574-3p) showed the highest accuracy (AUC 0.937, p < 0.001, 100.0% sensitivity, 83.75% specificity) to differentiate, at early stages of gestation, between pregnancies with a normal course of gestation and those with placenta previa diagnosed in the second half of pregnancy. Overall, 75% of pregnancies destined to develop placenta previa were correctly identified at 10.0% FPR. Conclusion Consecutive large-scale analyses must be performed to verify the reliability of the proposed novel early predictive model for placenta previa occurring as the only pregnancy-related disorder.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
26
|
Pokharel DR, Maskey A, Kafle R, Batajoo A, Dahal P, Raut R, Adhikari S, Manandhar B, Manandhar KD. Evaluation of circulating plasma miR-9, miR-29a, miR-192, and miR-375 as potential biomarkers for predicting prediabetes and type 2 diabetes in Nepali adult population. Noncoding RNA Res 2024; 9:1324-1332. [PMID: 39104712 PMCID: PMC11298881 DOI: 10.1016/j.ncrna.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Circulating plasma miRNAs have emerged as potential early predictors of glucometabolic disorders. However, their biomarker potential remains unvalidated in populations with diverse genetic backgrounds, races, and ethnicities. This study aims to validate the biomarker potential of plasma miR-9, miR-29a, miR-192, and miR-375 for early detection of prediabetes and type 2 diabetes mellitus (T2DM) in Nepali populations that represent distinct genetic backgrounds, races, and ethnicities. A total of 46 adults, categorized into healthy controls (n = 25), prediabetes (n = 9), and T2DM (n = 12) groups, were enrolled. Baseline sociodemographic, anthropometric, and clinical characteristics were collected. Fold change in plasma expression of all four miRNAs was quantified using RT-qPCR against the RNU6B reference gene. Their biomarker potential was determined by receiver operating characteristic (ROC) curve analysis. Multivariate discriminant function and hierarchical cluster analyses were used to evaluate the effectiveness of the miRNA panel in reclassifying study participants who were initially categorized according to their glucose tolerance status. Plasma expression of all four miRNAs was significantly upregulated in T2DM patients compared to normoglycemic controls. Furthermore, the expression of only miR-29a and miR-375 was upregulated in T2DM patients than in prediabetic individuals. Notably, only miR-192 expression was significantly upregulated in prediabetic individuals than in the normoglycemic controls. The miRNA expression profiles had the potential of reclassifying the participants into three original groups with an accuracy of 69.6 %. ROC curve analysis identified miR-192 as the predictor for both prediabetes and T2DM, while miR-9, miR-29a, miR-192, and miR-375 were predictive only for T2DM. The specific set of miRNA combinations significantly improved their predictive accuracy. This study validates the early predictive biomarker potential of plasma miR-9, miR-29a, miR-192, and miR-375 also in the Nepali population and paves the way for future translational studies to validate their utility in clinical laboratories.
Collapse
Affiliation(s)
- Daya Ram Pokharel
- Department of Biochemistry, Manipal College of Medical Sciences, Pokhara-16, Kaski, Nepal
| | - Abhishek Maskey
- Department of Medicine, Manipal Teaching Hospital, Pokhara-11, Kaski, Nepal
| | - Ramchandra Kafle
- Department of Medicine, Manipal Teaching Hospital, Pokhara-11, Kaski, Nepal
| | - Ashim Batajoo
- Department of Medicine, Manipal Teaching Hospital, Pokhara-11, Kaski, Nepal
| | - Prajwal Dahal
- Department of Medicine, Manipal Teaching Hospital, Pokhara-11, Kaski, Nepal
| | - Roji Raut
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Shailesh Adhikari
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Binod Manandhar
- Department of Mathematical Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Krishna Das Manandhar
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
27
|
Song G, Zhang Y, Jiang Y, Zhang H, Gu W, Xu X, Yao J, Chen Z. Circular RNA PIP5K1A Promotes Glucose and Lipid Metabolism Disorders and Inflammation in Type 2 Diabetes Mellitus. Mol Biotechnol 2024; 66:3549-3558. [PMID: 37966664 DOI: 10.1007/s12033-023-00954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Disorders of glucose and lipid metabolism are an important cause of type 2 diabetes mellitus (T2DM). Identifying the molecular mechanism of metabolic disorders is key to the treatment of T2DM. The study was to investigate the effect of circRNA PIP5K1A (circPIP5K1A) on glucose and lipid metabolism and inflammation in T2DM rats. A T2DM rat model was established, and then the T2DM rats were injected with lentiviral vectors that interfere with circPIP5K1A, miR-552-3p, or ENO1 expression. Fasting blood glucose (FBG) and fasting insulin (FINS) levels of rats were detected by an automatic analyzer and insulin detection kit, and HOMA-IR was calculated. Lipid metabolism was assessed by measuring serum levels of TG, TC, LDL-C, leptin, and resistin. Serum levels of inflammatory factors (TNF-α and IL-6) were detected by ELISA. The pathological conditions of pancreatic tissue were observed by HE staining. circPIP5K1A, miR-552-3p and ENO1 levels were recorded. The experimental results showed that circPIP5K1A and ENO1 were up-regulated, and miR-552-3p was down-regulated in T2DM rats. Down-regulating circPIP5K1A or up-regulating miR-552-3p reduced blood glucose and lipid levels, inhibited inflammation, and improved pancreatic histopathological changes in T2DM rats. In addition, up-regulating ENO1 rescued the ameliorating effects of down-regulated circPIP5K1A on T2DM rats. In general, downregulating circPIP5K1A improves insulin resistance and lipid metabolism disorders and inhibits inflammation by targeting miR-552-3p to mediate ENO1 expression.
Collapse
Affiliation(s)
- Ge Song
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - YiQian Zhang
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - YiHua Jiang
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Huan Zhang
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Wen Gu
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Xiu Xu
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - Jing Yao
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China
| | - ZhengFang Chen
- Department of Endocrinology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, No. 1 College Street, Suzhou City, Jiangsu Province, 215500, China.
| |
Collapse
|
28
|
Nahas G, Chen Y, Ningundi A, Tercyak S, Preciado D. Middle Ear microRNAs Drive Mucin Gene Response. Laryngoscope 2024. [PMID: 39569770 DOI: 10.1002/lary.31912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVE(S) To investigate the role of microRNA-378 (miR-378) in the regulation of mucin gene expression and inflammatory response in human middle ear epithelial cells (HMEEC) during bacterial infection by non-typeable Haemophilus influenzae (NTHi). METHODS Human middle ear epithelial cells (HMEEC) were cultured and transfected with miR-378 or control miRNA. Post-transfection, cells were exposed to NTHi lysates. mRNA levels of MUC5B, MUC5AC, and IL-8 were quantified using RT-qPCR, and promoter activity was measured via luciferase assays. The effects of miR-378 on mucin and cytokine gene expression were analyzed. RESULTS Transfection with miR-378 significantly increased the expression of MUC5B (3.6 fold, p < 0.01), MUC5AC (19.1 fold, p < 0.01), and IL-8 (2.01 fold, p < 0.05) in HMEEC. NTHi exposure reduced MUC5B (1.385 fold, p < 0.05) and MUC5AC (1.61 fold, p < 0.05) gene expression in miR-378 transfected cells but significantly increased IL-8 levels (1.32 fold, p < 0.05). Luciferase assays showed that miR-378 upregulated the promoter activity of MUC5B (1.4 fold, p < 0.01) and MUC5AC (1.6 fold, p < 0.01) genes, indicating its role in transcriptional regulation. CONCLUSION miR-378 plays a crucial role in promoting mucin overproduction and an inflammatory response in the middle ear epithelium during OM. Targeting miR-378 could offer a novel therapeutic strategy for preventing the progression from AOM to COM. LEVEL OF EVIDENCE na Laryngoscope, 2024.
Collapse
Affiliation(s)
- Gabriel Nahas
- Division of Otolaryngology, Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
| | - Yajun Chen
- Division of Otolaryngology, Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
| | - Apurva Ningundi
- Division of Otolaryngology, Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
| | - Samuel Tercyak
- Division of Otolaryngology, Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
| | - Diego Preciado
- Division of Otolaryngology, Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
29
|
Capewell P, Lowe A, Athanasiadou S, Wilson D, Hanks E, Coultous R, Hutchings M, Palarea‐Albaladejo J. Towards a microRNA-based Johne's disease diagnostic predictive system: Preliminary results. Vet Rec 2024; 195:e4798. [PMID: 39562518 PMCID: PMC11605997 DOI: 10.1002/vetr.4798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a chronic enteritis that adversely affects welfare and productivity in cattle. Screening and subsequent removal of affected animals is a common approach for disease management, but efforts are hindered by low diagnostic sensitivity. Expression levels of small non-coding RNA molecules involved in gene regulation (microRNAs), which may be altered during mycobacterial infection, may present an alternative diagnostic method. METHODS The expression levels of 24 microRNAs affected by mycobacterial infection were measured in sera from MAP-positive (n = 66) and MAP-negative cattle (n = 65). They were then used within a machine learning approach to build an optimal classifier for MAP diagnosis. RESULTS The method provided 72% accuracy, 73% sensitivity and 71% specificity on average, with an area under the curve of 78%. LIMITATIONS Although control samples were collected from farms nominally MAP-free, the low sensitivity of current diagnostics means some animals may have been misclassified. CONCLUSION MicroRNA profiling combined with advanced predictive modelling enables rapid and accurate diagnosis of Johne's disease in cattle.
Collapse
Affiliation(s)
- Paul Capewell
- School of Molecular Biosciences, College of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sharma R, Tiwari A, Kho AT, Wang AL, Srivastava U, Piparia S, Desai B, Wong R, Celedón JC, Peters SP, Smith LJ, Irvin CG, Castro M, Weiss ST, Tantisira KG, McGeachie MJ. Circulating microRNAs associated with bronchodilator response in childhood asthma. BMC Pulm Med 2024; 24:553. [PMID: 39497092 PMCID: PMC11536898 DOI: 10.1186/s12890-024-03372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Bronchodilator response (BDR) is a measure of improvement in airway smooth muscle tone, inhibition of liquid accumulation and mucus section into the lumen in response to short-acting beta-2 agonists that varies among asthmatic patients. MicroRNAs (miRNAs) are well-known post-translational regulators. Identifying miRNAs associated with BDR could lead to a better understanding of the underlying complex pathophysiology. OBJECTIVE The purpose of this study is to identify circulating miRNAs associated with bronchodilator response in asthma and decipher possible mechanism of bronchodilator response variation. METHODS We used available small RNA sequencing on blood serum from 1,134 asthmatic children aged 6 to 14 years who participated in the Genetics of Asthma in Costa Rica Study (GACRS). We filtered the participants into the highest and lowest bronchodilator response (BDR) quartiles and used DeSeq2 to identify miRNAs with differential expression (DE) in high (N = 277) vs. low (N = 278) BDR group. Replication was carried out in the Leukotriene modifier Or Corticosteroids or Corticosteroid-Salmeterol trial (LOCCS), an adult asthma cohort. The putative target genes of DE miRNAs were identified, and pathway enrichment analysis was performed. RESULTS We identified 10 down-regulated miRNAs having odds ratios (OR) between 0.37 and 0.76 for a doubling of miRNA counts and one up-regulated miRNA (OR = 2.26) between high and low BDR group. These were assessed for replication in the LOCCS cohort, where two miRNAs (miR-200b-3p and miR-1246) were associated. Further, functional annotation of 11 DE miRNAs were performed as well as of two replicated miRs. Target genes of these miRs were enriched in regulation of cholesterol biosynthesis by SREBPs, ESR-mediated signaling, G1/S transition, RHO GTPase cycle, and signaling by TGFB family pathways. CONCLUSION MiRNAs miR-1246 and miR-200b-3p are associated with both childhood and adult asthma BDR. Our findings add to the growing body of evidence that miRNAs play a significant role in the difference of asthma treatment response among patients as it points to genomic regulatory machinery underlying difference in bronchodilator response among patients. TRIAL REGISTRATION LOCCS cohort [ClinicalTrials.gov number NCT00156819, Registration date 20050912], GACRS cohort [ClinicalTrials.gov number NCT00021840].
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Alberta L Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Upasna Srivastava
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
- Department of MEDCSC Neurodevelopment (Child Study Center), Yale University School of Medicine, New Haven, CT, USA
| | - Shraddha Piparia
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Brinda Desai
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Richard Wong
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen P Peters
- Department of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Lewis J Smith
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Charles G Irvin
- Pulmonary and Critical Care Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Mario Castro
- University of Kansas School of Medicine, Kansas City, KS, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelan G Tantisira
- Division of Pediatric Respiratory Medicine, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Senyigit A, Durmus S, Oruc A, Gelisgen R, Uzun H, Tabak O. Dysfunction of PTEN-Associated MicroRNA Regulation: Exploring Potential Pathological Links in Type 1 Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1744. [PMID: 39596932 PMCID: PMC11595949 DOI: 10.3390/medicina60111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Type 1 Diabetes Mellitus (T1DM) is an autoimmune disease with T cell-mediated pathogenesis of pancreatic β-cell destruction, leading to insulin deficiency. MicroRNAs such as miR-223 and miR-106b, along with PTEN, have been reported to participate in the pathophysiology of diabetes and its complications. The current study has explored the expression of miR-223, miR-106b, and PTEN and their association with various clinical and biochemical parameters in subjects diagnosed with T1DM. Materials and Methods: Sixty T1DM patients (two groups as uncomplicated/ with microalbuminuria) and fifty healthy volunteers, age- and sex-matched, were enrolled in this study. The fasting venous blood samples were collected, and PTEN and miRNAs (miR-223 and miR-106b) levels were measured by ELISA and real-time PCR, respectively. Results: The PTEN levels of patients with microalbuminuria were significantly lower than those of patients without microalbuminuria, while those of miR-223 and miR-106b were significantly increased in the T1DM group compared with the healthy control group (p < 0.001). ROC analysis indicated that PTEN, miR-223, and miR-106b could be potential biomarkers for diagnosing T1DM with high specificity but with variable sensitivities. Also, PTEN and miR-223 were negatively correlated with r =-0.398 and p < 0.0001, indicating that they were interrelated in their role within the T1DM pathophysiology. Conclusions: In the current study, it has been shown that the circulating levels of PTEN, miR-223, and miR-106b are significantly changed in T1DM patients and may back their potential to be used as non-invasive biomarkers for the diagnosis and monitoring of T1DM. Low PTEN protein expression was related to high miR-223 expression, indicating involvement of these miRNA in the regulation of PTEN. Further studies should be performed to clarify the exact mechanisms and possible clinical applications of these molecules.
Collapse
Affiliation(s)
- Abdulhalim Senyigit
- Department of Internal Medicine, Faculty of Medicine, Istanbul Atlas University, Istanbul 34403, Türkiye;
| | - Sinem Durmus
- Department of Medical Biochemistry, Faculty of Medicine, İzmir Kâtip Celebi University, Izmir 35620, Türkiye;
| | - Aykut Oruc
- Department of Physiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye;
| | - Remise Gelisgen
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye;
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul 34403, Türkiye
| | - Omur Tabak
- Department of Internal Medicine, Kanuni Sultan Suleyman Training and Research Hospital, Health Sciences University, Istanbul 34668, Türkiye
| |
Collapse
|
32
|
Pal JK, Sur S, Mittal SPK, Dey S, Mahale MP, Mukherjee A. Clinical implications of miRNAs in erythropoiesis, anemia, and other hematological disorders. Mol Biol Rep 2024; 51:1064. [PMID: 39422834 DOI: 10.1007/s11033-024-09981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Erythropoiesis is regulated by the differential expression of many genes. Besides being transcriptionally regulated, these genes are also with the oath of epigenetic regulation by the microRNAs (miRNAs), in particular. Various miRNAs appear to be very important for the normal process of erythropoiesis and various hematological abnormalities in humans. Therefore, the review aims to summarize the significance of miRNAs in erythropoiesis and different hematological diseases with clinical importance. Our analysis indicates that specific miRNAs regulate erythropoiesis in a stage-specific manner from hematopoietic stem cells to differentiated erythrocytes. Further, many miRNAs have been reported to be linked with various hematological diseases. The importance of miRNAs as biomarkers or therapeutic drug targets for various hematological disorders like anemia, β-thalassemia, and leukemia has been revealed through various clinical studies and clinical trials. The miR-34a mimic and miR-155 inhibitor demonstrate promising therapeutic effects in various hematological malignancies. Additionally, miR-34a, miR-538e, miR-193e, and miR-198 exhibit diagnostic potential in acute myeloid leukemia, while miR-451, miR-151-5p, and miR-1290 show diagnostic potential in B-cell acute lymphoblastic leukemia. Thus, this review encompasses the latest observations and implications of specific miRNAs in erythropoiesis and various hematological disorders. However, challenges persist in developing safe and efficient delivery strategies to target miRNAs specifically, minimizing off-target effects and enhancing therapeutic outcomes. Future mechanistic pre-clinical and clinical research would contribute to overcoming these challenges.
Collapse
Affiliation(s)
- Jayanta Kumar Pal
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, 87-88, Mumbai-Bangalore Express Highway, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India.
| | - Subhayan Sur
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, 87-88, Mumbai-Bangalore Express Highway, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India.
| | - Smriti P K Mittal
- Departmnt of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India.
| | - Saurabh Dey
- Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, 87-88, Mumbai-Bangalore Express Highway, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411033, India
| | | | - Arijit Mukherjee
- Departmnt of Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
33
|
Li Y, Baumert BO, Stratakis N, Goodrich JA, Wu H, Liu SH, Wang H, Beglarian E, Bartell SM, Eckel SP, Walker D, Valvi D, La Merrill MA, Inge TH, Jenkins T, Ryder JR, Sisley S, Kohli R, Xanthakos SA, Vafeiadi M, Margetaki A, Roumeliotaki T, Aung M, McConnell R, Baccarelli A, Conti D, Chatzi L. Exposure to per- and polyfluoroalkyl substances and alterations in plasma microRNA profiles in children. ENVIRONMENTAL RESEARCH 2024; 259:119496. [PMID: 38936497 PMCID: PMC11847561 DOI: 10.1016/j.envres.2024.119496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that persist in the environment and can accumulate in humans, leading to adverse health effects. MicroRNAs (miRNAs) are emerging biomarkers that can advance the understanding of the mechanisms of PFAS effects on human health. However, little is known about the associations between PFAS exposures and miRNA alterations in humans. OBJECTIVE To investigate associations between PFAS concentrations and miRNA levels in children. METHODS Data from two distinct cohorts were utilized: 176 participants (average age 17.1 years; 75.6% female) from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort in the United States, and 64 participants (average age 6.5 years, 39.1% female) from the Rhea study, a mother-child cohort in Greece. PFAS concentrations and miRNA levels were assessed in plasma samples from both studies. Associations between individual PFAS and plasma miRNA levels were examined after adjusting for covariates. Additionally, the cumulative effects of PFAS mixtures were evaluated using an exposure burden score. Ingenuity Pathways Analysis was employed to identify potential disease functions of PFAS-associated miRNAs. RESULTS Plasma PFAS concentrations were associated with alterations in 475 miRNAs in the Teen-LABs study and 5 miRNAs in the Rhea study (FDR p < 0.1). Specifically, plasma PFAS concentrations were consistently associated with decreased levels of miR-148b-3p and miR-29a-3p in both cohorts. Pathway analysis indicated that PFAS-related miRNAs were linked to numerous chronic disease pathways, including cardiovascular diseases, inflammatory conditions, and carcinogenesis. CONCLUSION Through miRNA screenings in two independent cohorts, this study identified both known and novel miRNAs associated with PFAS exposure in children. Pathway analysis revealed the involvement of these miRNAs in several cancer and inflammation-related pathways. Further studies are warranted to enhance our understanding of the relationships between PFAS exposure and disease risks, with miRNA emerging as potential biomarkers and/or mediators in these complex pathways.
Collapse
Affiliation(s)
- Yijie Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Shelley H Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily Beglarian
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Scott M Bartell
- Department of Environmental and Occupational Health and Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Sandrah Proctor Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Douglas Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, 1518 Clifton Road, NE, Atlanta, GA, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Thomas H Inge
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Todd Jenkins
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Justin R Ryder
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Stephanie Sisley
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Rohit Kohli
- Division of Gastroenterology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Stavra A Xanthakos
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Social Medicine, School of Medicine, University of Crete, Greece
| | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrea Baccarelli
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - David Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Ali M, Hasan E, Barman SC, Hedhili MN, Alshareef HN, Alsulaiman D. Peptide nucleic acid-clicked Ti 3C 2T x MXene for ultrasensitive enzyme-free electrochemical detection of microRNA biomarkers. MATERIALS HORIZONS 2024; 11:5045-5057. [PMID: 39102217 DOI: 10.1039/d4mh00714j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
We report the engineering and synthesis of peptide nucleic acid-functionalized Ti3C2Tx MXene nanosheets as a novel transducing material for amplification-free, nanoparticle-free, and isothermal electrochemical detection of microRNA biomarkers. Through bio-orthogonal copper-free click chemistry, azido-modified MXene nanosheets are covalently functionalized with clickable peptide nucleic acid probes targeting prostate cancer biomarker hsa-miR-141. The platform demonstrates a wide dynamic range, single-nucleotide specificity, and 40 aM detection limit outperforming more complex, amplification-based methods. Its versatility, analytical performance, and stability under serum exposure highlight the immense potential of this first example of click-conjugated MXene in the next generation of amplification-free biosensors.
Collapse
Affiliation(s)
- Muhsin Ali
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Erol Hasan
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Sharat Chandra Barman
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Mohamed Nejib Hedhili
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Dana Alsulaiman
- Material Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
35
|
de Mello AS, Ferguson BS, Shebs-Maurine EL, Giotto FM. MicroRNA Biogenesis, Gene Regulation Mechanisms, and Availability in Foods. Noncoding RNA 2024; 10:52. [PMID: 39452838 PMCID: PMC11510440 DOI: 10.3390/ncrna10050052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that control gene expression by degrading or repressing mRNA translation into proteins. Research recently suggested that food-derived miRNAs are bioavailable and may be absorbed in the gastrointestinal tract (GIT). Since these small RNAs may reach the circulation and organs, possible interactions with host genes will lead to epigenetic effects that alter metabolism. Therefore, from a precision nutrition standpoint, exogenous miRNAs may be essential in modulating health status. This review summarizes the process of miRNA biogenesis, the post-translational mechanisms of gene regulation, and their bioavailability in animal- and plant-derived foods.
Collapse
Affiliation(s)
- Amilton S. de Mello
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno 1664 N. Virginia St. Mail Stop 202, Reno, NV 89557, USA; (E.L.S.-M.); (F.M.G.)
| | - Bradley S. Ferguson
- Department of Nutrition, University of Nevada, 1664 N. Virginia St. Mail Stop 202, Reno, NV 89557, USA;
| | - Erica L. Shebs-Maurine
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno 1664 N. Virginia St. Mail Stop 202, Reno, NV 89557, USA; (E.L.S.-M.); (F.M.G.)
| | - Francine M. Giotto
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno 1664 N. Virginia St. Mail Stop 202, Reno, NV 89557, USA; (E.L.S.-M.); (F.M.G.)
- Department of Animal and Range Sciences, New Mexico State University, Knox Hall 220, MSC 3-I, Las Cruces, NM 88003, USA
| |
Collapse
|
36
|
Lu Z, Wang S, Li P, Yang H, Han S, Zhang S, Ma L. An ultra-sensitive suboptimal protospacer adjacent motif enhanced rolling circle amplification assay based on CRISPR/Cas12a for detection of miR-183. Front Bioeng Biotechnol 2024; 12:1444908. [PMID: 39359259 PMCID: PMC11445046 DOI: 10.3389/fbioe.2024.1444908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction MicroRNAs (miRNAs) have been recognized as promising diagnostic biomarkers for Diabetic Retinopathy (DR) due to their notable upregulation in individuals with the condition. However, the development of highly sensitive miRNAs assays for the rapid diagnosis of DR in clinical settings remains a challenging task. Methods In this study, we introduce an enhanced CRISPR/Cas12a assay, leveraging suboptimal PAM (sPAM)-mediated Cas12a trans-cleavage in conjunction with rolling circle amplification (RCA). sPAM was found to perform better than canonical PAM (cPAM) in the detection of Cas12a-mediated ssDNA detection at low concentrations and was used instead of canonical PAM (cPAM) to mediate the detection. The parameters of reactions have also been optimized. Results and discussion In comparison with cPAM, sPAM has higher sensitivity in the detection of ssDNA at concentrations lower than 10 pM by Cas12a. By replacing cPAM with sPAM in the padlock template of RCA, ultra-high sensitivity for miR-183 detection is achieved, with a detection limit of 0.40 aM. within 25 min and a linear range spanning from 1 aM. to 1 pM. Our assay also exhibits exceptional specificity in detecting miR-183 from other miRNAs. Furthermore, the applicability of our assay for the sensitive detection of miR-183 in clinical serum samples is also validated. This study introduces a groundbreaking assay with excellent performance through a simple modification, which not only addresses existing diagnostic challenges, but also opens exciting new avenues for clinical diagnosis in the realm of DR.
Collapse
Affiliation(s)
- Zhiquan Lu
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, University Town of Shenzhen, Shenzhen, China
| | - Shijing Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Ping Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Lan Ma
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, University Town of Shenzhen, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
37
|
Dewey HM, Lamb A, Budhathoki-Uprety J. Recent advances on applications of single-walled carbon nanotubes as cutting-edge optical nanosensors for biosensing technologies. NANOSCALE 2024; 16:16344-16375. [PMID: 39157856 DOI: 10.1039/d4nr01892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) possess outstanding photophysical properties which has garnered interest towards utilizing these materials for biosensing and imaging applications. The near-infrared (NIR) fluorescence within the tissue transparent region along with their photostability and sizes in the nanoscale make SWCNTs valued candidates for the development of optical sensors. In this review, we discuss recent advances in the development and the applications of SWCNT-based nano-biosensors. An overview of SWCNT's structural and photophysical properties, sensor development, and sensing mechanisms are described. Examples of SWCNT-based optical nanosensors for detection of disease biomarkers, pathogens (bacteria and viruses), plant stressors, and environmental contaminants including heavy metals and disinfectants are provided. Molecular detection in biofluids, in vitro, and in vivo (small animal models and plants) are highlighted, and sensor integration into portable substrates for implantable and wearable sensing devices has been discussed. Recent advancements, which include high throughput assays and the use of machine learning models to predict more sensitive and robust sensing outcomes are discussed. Current limitations and future perspectives on translation of SWCNT optical probes into clinical practices have been provided.
Collapse
Affiliation(s)
- Hannah M Dewey
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Ashley Lamb
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Januka Budhathoki-Uprety
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
38
|
Adamova P, Powell AK, Dykes IM. Assessment of NanoString technology as a tool for profiling circulating miRNA in maternal blood during pregnancy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:471-496. [PMID: 39697629 PMCID: PMC11648433 DOI: 10.20517/evcna.2024.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/24/2024] [Indexed: 12/20/2024]
Abstract
Aim Circulating maternal MicroRNA (miRNA) is a promising source of biomarkers for antenatal diagnostics. NanoString nCounter is a popular global screening tool due to its simplicity and ease of use, but there is a lack of standardisation in analysis methods. We examined the effect of user-defined variables upon reported changes in maternal blood miRNA during pregnancy. Methods Total RNA was prepared from the maternal blood of pregnant and control rats. miRNA expression was profiled using Nanostring nCounter. Raw count data were processed using nSolver using different combinations of normalisation and background correction methods as well as various background thresholds. A panel of 14 candidates in which changes were supported by multiple analysis workflows was selected for validation by RT-qPCR. We then reverse-engineered the nSolver analysis to gain further insight. Results Thirty-one putative differentially expressed miRNAs were identified by nSolver. However, each analysis workflow produced a different set of reported biomarkers and none of them was common to all analysis methods. Four miRNAs with known roles in pregnancy (miR-183, miR-196c, miR-431, miR-450a) were validated. No single nSolver analysis workflow could successfully identify all four validated changes. Reverse engineering revealed errors in nSolver data processing which compound the inherent problems associated with background correction and normalisation. Conclusion Our results suggest that user-defined variables greatly influence the output of the assay. This highlights the need for standardised nSolver data analysis methods and detailed reporting of these methods. We suggest that investigators in the future should not rely on a single analysis method to identify changes and should always validate screening results.
Collapse
Affiliation(s)
- Petra Adamova
- Department of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- Liverpool Centre for Cardiovascular Science, Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Andrew K. Powell
- Department of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- Liverpool Centre for Cardiovascular Science, Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Iain M. Dykes
- Department of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- Liverpool Centre for Cardiovascular Science, Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
39
|
Hromadnikova I, Kotlabova K, Krofta L. First-trimester predictive models for adverse pregnancy outcomes-a base for implementation of strategies to prevent cardiovascular disease development. Front Cell Dev Biol 2024; 12:1461547. [PMID: 39296937 PMCID: PMC11409004 DOI: 10.3389/fcell.2024.1461547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction This study aimed to establish efficient, cost-effective, and early predictive models for adverse pregnancy outcomes based on the combinations of a minimum number of miRNA biomarkers, whose altered expression was observed in specific pregnancy-related complications and selected maternal clinical characteristics. Methods This retrospective study included singleton pregnancies with gestational hypertension (GH, n = 83), preeclampsia (PE, n = 66), HELLP syndrome (n = 14), fetal growth restriction (FGR, n = 82), small for gestational age (SGA, n = 37), gestational diabetes mellitus (GDM, n = 121), preterm birth in the absence of other complications (n = 106), late miscarriage (n = 34), stillbirth (n = 24), and 80 normal term pregnancies. MiRNA gene expression profiling was performed on the whole peripheral venous blood samples collected between 10 and 13 weeks of gestation using real-time reverse transcription polymerase chain reaction (RT-PCR). Results Most pregnancies with adverse outcomes were identified using the proposed approach (the combinations of selected miRNAs and appropriate maternal clinical characteristics) (GH, 69.88%; PE, 83.33%; HELLP, 92.86%; FGR, 73.17%; SGA, 81.08%; GDM on therapy, 89.47%; and late miscarriage, 84.85%). In the case of stillbirth, no addition of maternal clinical characteristics to the predictive model was necessary because a high detection rate was achieved by a combination of miRNA biomarkers only [91.67% cases at 10.0% false positive rate (FPR)]. Conclusion The proposed models based on the combinations of selected cardiovascular disease-associated miRNAs and maternal clinical variables have a high predictive potential for identifying women at increased risk of adverse pregnancy outcomes; this can be incorporated into routine first-trimester screening programs. Preventive programs can be initiated based on these models to lower cardiovascular risk and prevent the development of metabolic/cardiovascular/cerebrovascular diseases because timely implementation of beneficial lifestyle strategies may reverse the dysregulation of miRNAs maintaining and controlling the cardiovascular system.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
40
|
Hegde S, Wagh K, Narayana SM, Abikar A, Nambiar S, Ananthamurthy S, Narayana NH, Reddihalli PV, Chandraiah S, Ranganathan P. microRNA profile of endometrial cancer from Indian patients-identification of potential biomarkers for prognosis. Biochem Biophys Rep 2024; 39:101812. [PMID: 39282095 PMCID: PMC11395764 DOI: 10.1016/j.bbrep.2024.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Endometrial cancer is one of the major cancers in women throughout the world. If diagnosed early, these cancers are treatable and the prognosis is usually good. However, one major problem in treating endometrial cancer is accurate diagnosis and staging. Till date, the choice method for diagnosis and staging is histopathology. Although there are few molecular markers identified, they are not always sufficient in making accurate diagnosis and deciding on therapeutic strategy. As a result, very often patients are under treated or over treated. In this study, our group has profiled microRNAs from Indian patients using NGS-based approach. We have identified 212 differentially expressed microRNAs in endometrial cancer. Among these, there are 17 novel miRNAs. Since this data represents only Indian cohort and also lacks survival data, validation across other populations is necessary before being considered as biomarkers. As one approach towards this, these microRNAs have also been compared to data from TCGA, which represent other populations and also correlated to relevance in overall survival. Using in-silico approaches, mRNA targets of the miRNAs have been predicted. After comparing with TCGA, we have identified 16 miRNA-mRNA pairs which could be potential prognostic biomarkers for endometrial cancer. This is the first miRNA profiling report from Indian cohort and one of the very few studies which have identified potential biomarkers of prognosis in endometrial cancer.
Collapse
Affiliation(s)
| | | | | | - Apoorva Abikar
- Centre for Human Genetics, Bengaluru, India
- Manipal Academy for Higher Education, Manipal, India
| | | | | | | | | | - Savitha Chandraiah
- Vani Vilas Hospital, Bangalore Medical College and Research Institute, Bengaluru, India
| | - Prathibha Ranganathan
- Centre for Human Genetics, Bengaluru, India
- Manipal Academy for Higher Education, Manipal, India
| |
Collapse
|
41
|
Gileles-Hillel A, Bhattacharjee R, Gorelik M, Narang I. Advances in Sleep-Disordered Breathing in Children. Clin Chest Med 2024; 45:651-662. [PMID: 39069328 DOI: 10.1016/j.ccm.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Pediatric sleep-disordered breathing disorders are a group of common conditions, from habitual snoring to obstructive sleep apnea (OSA) syndrome, affecting a significant proportion of children. The present article summarizes the current knowledge on diagnosis and treatment of pediatric OSA focusing on therapeutic and surgical advancements in the field in recent years. Advancements in OSA such as biomarkers, improving continuous pressure therapy adherence, novel pharmacotherapies, and advanced surgeries are discussed.
Collapse
Affiliation(s)
- Alex Gileles-Hillel
- Neonatal Pulmonology Service, Pediatric Pulmonary and Sleep Unit; Pediatric Division, Hadassah Medical Center, Jerusalem 911111, Israel; The Faculty of Medicine, Hebrew University of Jerusalem; The Wohl Translational Research Institute, Hadassah Medical Center, Kiryat Hadassah, Ein Kerem, Jerusalem 911111, Israel.
| | - Rakesh Bhattacharjee
- Division of Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital, UCSD, San Diego, CA 92123, USA
| | - Michael Gorelik
- Division of Pediatric Otolaryngology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Indra Narang
- Division of Respiratory Medicine, Faculty Development and EDI, Department of Paediatrics, Translational Medicine, Research Institute, Hospital for Sick Children; Department of Paediatrics, University of Toronto, 51 Banff Road, Toronto M4S2V6, Canada
| |
Collapse
|
42
|
Umashankar B, Eliasson L, Ooi CY, Kim KW, Shaw JAM, Waters SA. Beyond insulin: Unraveling the complex interplay of ER stress, oxidative damage, and CFTR modulation in CFRD. J Cyst Fibros 2024; 23:842-852. [PMID: 38897882 DOI: 10.1016/j.jcf.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
CF-related diabetes (CFRD) is a prevalent comorbidity in people with Cystic Fibrosis (CF), significantly impacting morbidity and mortality rates. This review article critically evaluates the current understanding of CFRD molecular mechanisms, including the role of CFTR protein, oxidative stress, unfolded protein response (UPR) and intracellular communication. CFRD manifests from a complex interplay between exocrine pancreatic damage and intrinsic endocrine dysfunction, further complicated by the deleterious effects of misfolded CFTR protein on insulin secretion and action. Studies indicate that ER stress and subsequent UPR activation play critical roles in both exocrine and endocrine pancreatic cell dysfunction, contributing to β-cell loss and insulin insufficiency. Additionally, oxidative stress and altered calcium flux, exacerbated by CFTR dysfunction, impair β-cell survival and function, highlighting the significance of antioxidant pathways in CFRD pathogenesis. Emerging evidence underscores the importance of exosomal microRNAs (miRNAs) in mediating inflammatory and stress responses, offering novel insights into CFRD's molecular landscape. Despite insulin therapy remaining the cornerstone of CFRD management, the variability in response to CFTR modulators underscores the need for personalized treatment approaches. The review advocates for further research into non-CFTR therapeutic targets, emphasizing the need to address the multifaceted pathophysiology of CFRD. Understanding the intricate mechanisms underlying CFRD will pave the way for innovative treatments, moving beyond insulin therapy to target the disease's root causes and improve the quality of life for individuals with CF.
Collapse
Affiliation(s)
- Bala Umashankar
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Lena Eliasson
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Scania University Hospital, Malmö, Scania, Sweden
| | - Chee Y Ooi
- Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Department of Gastroenterology, Sydney Children's Hospital Randwick, NSW, Australia
| | - Ki Wook Kim
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Virology and Serology Division (SaViD), New South Wales Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - James A M Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shafagh A Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
43
|
Juli MSB, Boe-Hansen GB, Raza A, Forutan M, Ong CT, Siddle HV, Tabor AE. A systematic review of predictive, diagnostic, and prognostic biomarkers for detecting reproductive diseases in cattle using traditional and omics approaches. J Reprod Immunol 2024; 165:104315. [PMID: 39154625 DOI: 10.1016/j.jri.2024.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Reproductive diseases and illnesses pose significant challenges in cattle farming, affecting fertility, milk production, and overall herd health. In recent years, the integration of various omics approaches, including transcriptomics, proteomics, metagenomics, miRNAomics, and metabolomics, has revolutionized the study of these conditions. This systematic review summarised the findings from studies that investigated reproductive disease biomarkers in both male and female cattle. After extracting 6137 studies according to exclusion and inclusion criteria, a total of 60 studies were included in this review. All studies identified were associated with female cattle and none were related to reproductive diseases in bulls. The analysis highlights specific biomarkers, metabolic pathways, and microbial compositions associated with bovine reproductive disease conditions, providing valuable insights into the underlying molecular mechanisms of disease. Pro-inflammatory cytokines such as IL-1β, IL-8, IL-4, IL-6, TNFα and acute-phase response proteins such as SAA and HP have been identified as promising biomarkers for bovine reproductive diseases. However, further research is needed to validate these markers clinically and to explore potential strategies for improving cow reproductive health. The role of bulls as carriers of venereal diseases has been underestimated in the current literature and therefore needs more attention to understand their impact on infectious reproductive diseases of female cattle.
Collapse
Affiliation(s)
- Mst Sogra Banu Juli
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Gry B Boe-Hansen
- The University of Queensland, School of Veterinary Science, Gatton, Queensland 4343, Australia.
| | - Ali Raza
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Mehrnush Forutan
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Chian Teng Ong
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Hannah V Siddle
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia.
| | - Ala E Tabor
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), St Lucia, Queensland 4067, Australia; The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
44
|
Zhao F, Zhang N, Zhang Y. A New Strategy for Ultrasensitive Detection Based on Target microRNA-Triggered Rolling Circle Amplification in the Early Diagnosis of Alzheimer's Disease. Int J Mol Sci 2024; 25:9490. [PMID: 39273436 PMCID: PMC11394956 DOI: 10.3390/ijms25179490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need to accurately quantify microRNA (miRNA)-based Alzheimer's disease (AD) biomarkers, which have emerged as promising diagnostic biomarkers. In this study, we present a rapid and universal approach to establishing a target miRNA-triggered rolling circle amplification (RCA) detection strategy, which achieves ultrasensitive detection of several targets, including miR-let7a-5p, miR-34a-5p, miR-206-3p, miR-9-5p, miR-132-3p, miR-146a-5p, and miR-21-5p. Herein, the padlock probe contains three repeated signal strand binding regions and a target miRNA-specific region. The target miRNA-specific region captures miRNA, and then the padlock probe is circularized with the addition of T4 DNA ligase. Subsequently, an RCA reaction is triggered, and RCA products containing multiple signal strand binding regions are generated to trap abundant fluorescein-labeled signal strands. The addition of exonuclease III (Exo III) causes signal strand digestion and leads to RCA product recycling and liberation of fluorescein. Ultimately, graphene oxide (GO) does not absorb the liberated fluorescein because of poor mutual interaction. This method exhibited high specificity, sensitivity, repeatability, and stability toward let-7a, with a detection limit of 19.35 fM and a linear range of 50 fM to 5 nM. Moreover, it showed excellent applicability for recovering miRNAs in normal human serum. Our strategy was applied to detect miRNAs in the plasma of APP/PS1 mice, demonstrating its potential in the diagnosis of miRNA-associated disease and biochemical research.
Collapse
Affiliation(s)
- Fei Zhao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Na Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yi Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
45
|
Zhang M, Zheng Z, Wang S, Liu R, Zhang M, Guo Z, Wang H, Tan W. The role of circRNAs and miRNAs in drug resistance and targeted therapy responses in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:30. [PMID: 39267922 PMCID: PMC11391347 DOI: 10.20517/cdr.2024.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs comprising 19-24 nucleotides that indirectly control gene expression. In contrast to other non-coding RNAs (ncRNAs), circular RNAs (circRNAs) are defined by their covalently closed loops, forming covalent bonds between the 3' and 5' ends. circRNAs regulate gene expression by interacting with miRNAs at transcriptional or post-transcriptional levels. Accordingly, circRNAs and miRNAs control many biological events related to cancer, including cell proliferation, metabolism, cell cycle, and apoptosis. Both circRNAs and miRNAs are involved in the pathogenesis of diseases, such as breast cancer. This review focuses on the latest discoveries on dysregulated circRNAs and miRNAs related to breast cancer, highlighting their potential as biomarkers for clinical diagnosis, prognosis, and chemotherapy response.
Collapse
Affiliation(s)
- Meilan Zhang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, Guangdong, China
| | - Zhaokuan Zheng
- Department of Orthopedics, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of HuaduDistrict), Guangzhou 510810, Guangdong, China
| | - Shouliang Wang
- Department of Breast Surgery, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Ruihan Liu
- Department of Breast Surgery, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Mengli Zhang
- Department of Breast Surgery, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Zhiyun Guo
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, Guangdong, China
| | - Hao Wang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, Guangdong, China
| | - Weige Tan
- Department of Breast Surgery, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| |
Collapse
|
46
|
Wang L, Wang J, Xu A, Wei L, Pei M, Shen T, Xian X, Yang K, Fei L, Pan Y, Yang H, Wang X. Future embracing: exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J Nanobiotechnology 2024; 22:472. [PMID: 39118155 PMCID: PMC11312222 DOI: 10.1186/s12951-024-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Tuwei Shen
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xian Xian
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450099, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China.
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
47
|
Mohd ON, Heng YJ, Wang L, Thavamani A, Massicott ES, Wulf GM, Slack FJ, Doyle PS. Sensitive Multiplexed MicroRNA Spatial Profiling and Data Classification Framework Applied to Murine Breast Tumors. Anal Chem 2024; 96:12729-12738. [PMID: 39044395 DOI: 10.1021/acs.analchem.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
MicroRNAs (miRNAs) are small RNAs that are often dysregulated in many diseases, including cancers. They are highly tissue-specific and stable, thus, making them particularly useful as biomarkers. As the spatial transcriptomics field advances, protocols that enable highly sensitive and spatially resolved detection become necessary to maximize the information gained from samples. This is especially true of miRNAs where the location their expression within tissue can provide prognostic value with regard to patient outcome. Equally as important as detection are ways to assess and visualize the miRNA's spatial information in order to leverage the power of spatial transcriptomics over that of traditional nonspatial bulk assays. We present a highly sensitive methodology that simultaneously quantitates and spatially detects seven miRNAs in situ on formalin-fixed paraffin-embedded tissue sections. This method utilizes rolling circle amplification (RCA) in conjunction with a dual scanning approach in nanoliter well arrays with embedded hydrogel posts. The hydrogel posts are functionalized with DNA probes that enable the detection of miRNAs across a large dynamic range (4 orders of magnitude) and a limit of detection of 0.17 zeptomoles (1.7 × 10-4 attomoles). We applied our methodology coupled with a data analysis pipeline to K14-Cre Brca1f/fTp53f/f murine breast tumors to showcase the information gained from this approach.
Collapse
Affiliation(s)
- Omar N Mohd
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yujing J Heng
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Lin Wang
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Abhishek Thavamani
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Erica S Massicott
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Gerburg M Wulf
- Departments of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Frank J Slack
- Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Patrick S Doyle
- Harvard Medical School Initiative for RNA Medicine, Departments of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
48
|
Zhang J, Yan C, Liu G. Visual detection of microRNAs using gold nanorod-based lateral flow nucleic acid biosensor and exonuclease III-assisted signal amplification. Mikrochim Acta 2024; 191:491. [PMID: 39066913 DOI: 10.1007/s00604-024-06557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
An ultrasensitive method for the visual detection of microRNAs (miRNAs) in cell lysates using a gold nanorod-based lateral flow nucleic acid biosensor (GN-LFNAB) and exonuclease III (Exo III)-assisted signal amplification. The Exo III-catalyzed target recycling strategy is employed to generate a large number of single-strand DNA products, which can be detected by GN-LFNAB visually. With the implementation of a unique recycling strategy, we have demonstrated that the miRNA in the concentration as low as 0.5 pM can be detected without the need for instrumentation, providing a detection limit that surpasses previous reports. The new biosensor is ultrasensitive and can be applied to the reliable monitoring of miRNAs in cell lysates with high accuracy. The approach offers a simple and rapid tool for cancer diagnosis and clinical biomedicine, thanks to its flexibility, simplicity, cost-effectiveness, and convenience. This new method has the potential to significantly improve the detection and monitoring of cancer biomarkers, ultimately contributing to more effective cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei, 230601, China
| | - Guodong Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| |
Collapse
|
49
|
Wang F, Zeng L, Chi Y, Yao S, Zheng Z, Peng S, Wang X, Chen K. Adipose-Derived exosome from Diet-Induced-Obese mouse attenuates LPS-Induced acute lung injury by inhibiting inflammation and Apoptosis: In vivo and in silico insight. Int Immunopharmacol 2024; 139:112679. [PMID: 39013217 DOI: 10.1016/j.intimp.2024.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe clinical condition in the intensive care units, and obesity is a high risk of ALI. Paradoxically, obese ALI patients had better prognosis than non-obese patients, and the mechanism remains largely unknown. METHODS Mouse models of ALI and diet-induced-obesity (DIO) were used to investigate the effect of exosomes derived from adipose tissue. The adipose-derived exosomes (ADEs) were isolated by ultracentrifugation, and the role of exosomal miRNAs in the ALI was studied. RESULTS Compared with ADEs of control mice (C-Exo), ADEs of DIO mice (D-Exo) increased survival rate and mitigated pulmonary lesions of ALI mice. GO and KEGG analyses showed that the target genes of 40 differentially expressed miRNAs between D-Exo and C-Exo were mainly involved with inflammation, apoptosis and cell cycle. Furthermore, the D-Exo treatment significantly decreased Ly6G+ cell infiltration, down-regulated levels of pro-inflammatory cytokines (IL-6, IL-12, TNF-α, MCP-1) and chemokines (IL-8 and MIP-2), reduced pulmonary apoptosis and arrest at G0G1 phase (P < 0.01). And the protective effects of D-Exo were better than those of C-Exo (P < 0.05). Compared with the C-Exo mice, the levels of miR-16-5p and miR-335-3p in the D-Exo mice were significantly up-regulated (P < 0.05), and the expressions of IKBKB and TNFSF10, respective target of miR-16-5p and miR-335-3p by bioinformatic analysis, were significantly down-regulated in the D-Exo mice (P < 0.05). CONCLUSIONS Exosomes derived from adipose tissue of DIO mice are potent to attenuate LPS-induced ALI, which could be contributed by exosome-carried miRNAs. Our data shed light on the interaction between obesity and ALI.
Collapse
Affiliation(s)
- Fengyuan Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan 610041, PR China
| | - Lei Zeng
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Yanqi Chi
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Surui Yao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Zihan Zheng
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Shiyu Peng
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Xiangning Wang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan 610500, PR China.
| |
Collapse
|
50
|
Bang S, Choi D, Shin J, Kim J, Choi Y, Lee SE, Hong S. Automated System for Attomolar-Level Detection of MiRNA as a Biomarker for Influenza A Virus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33897-33906. [PMID: 38902962 DOI: 10.1021/acsami.4c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We have developed an automated sensing system for the repeated detection of a specific microRNA (miRNA) of the influenza A (H1N1) virus. In this work, magnetic particles functionalized with DNAs, target miRNAs, and alkaline phosphate (ALP) enzymes formed sandwich structures. These particles were trapped on nickel (Ni) patterns of our sensor chip by an external magnetic field. Then, additional electrical signals from electrochemical markers generated by ALP enzymes were measured using the sensor, enabling the highly sensitive detection of target miRNA. The magnetic particles used on the sensor were easily removed by applying the opposite direction of external magnetic fields, which allowed us to repeat sensing measurements. As a proof of concept, we demonstrated the detection of miRNA-1254, one of the biomarkers for the H1N1 virus, with a high sensitivity down to 1 aM in real time. Moreover, our sensor could selectively detect the target from other miRNA samples. Importantly, our sensor chip showed reliable electrical signals even after six repeated miRNA sensing measurements. Furthermore, we achieved technical advances to utilize our sensor platform as part of an automated sensing system. In this regard, our reusable sensing platform could be utilized for versatile applications in the field of miRNA detection and basic research.
Collapse
Affiliation(s)
- Sunwoo Bang
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Danmin Choi
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Junghyun Shin
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Jeongsu Kim
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Sang-Eun Lee
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|