1
|
Liu X, Yan Y. Advances in origin, evolution, and pathogenesis of optic disc drusen: A narrative review. Indian J Ophthalmol 2025; 73:637-647. [PMID: 40272291 PMCID: PMC12121874 DOI: 10.4103/ijo.ijo_937_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/18/2024] [Accepted: 01/06/2025] [Indexed: 04/25/2025] Open
Abstract
Optic disc drusen (ODD) is acellular calcified deposits found mainly in front of the lamina cribrosa within the optic nerve. It can cause chronic or acute vision loss. There has been progress in clinical diagnosis using ophthalmic multimodal imaging in recent years. We conducted a database search on PubMed and Google Scholar (April 2023) with no restrictions on publication year or language. We used the terms: ("optic disc drusen") OR ("optic nerve head drusen") OR ("drusen of optic nerve head"). Other terms included gene, mutation, scleral canal, axonal transport, calcinosis, mitochondria, blood vessel, vasculature, visual field, vision, and optical coherence tomography to identify publications. Etiologically, ODD may stem from congenital genetic defects, aberrant axoplasmic transport, anatomical abnormalities, and mechanical factors during ocular duction. Clinically, ODD is linked to progressive visual field defects and vascular complications. Detection of deeply buried ODD can be challenging, but advances in optical coherence tomography make early identification possible. Structural changes, including retinal nerve fiber layer thinning, can be monitored. Increasing reports indicate vascular complications, including anterior ischemic optic neuropathy, in ODD patients. Currently, ODD-related visual field defects are not effectively treated, and observation remains the primary management approach. Future pathological discoveries or the establishment of animal models may provide new evidence for revealing the pathogenesis of ODD.
Collapse
Affiliation(s)
- Xiyuan Liu
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Yan
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
2
|
Sharma P, Abbey D. Alagille Syndrome: Unraveling the Complexities of Genotype-Phenotype Relationships and Exploring Avenues for Improved Diagnosis and Treatment. Cell Biol Int 2025; 49:435-471. [PMID: 40042123 DOI: 10.1002/cbin.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 04/15/2025]
Abstract
Alagille syndrome (ALGS) is a rare genetic disorder caused by mutations in the JAG1 and NOTCH2 genes, leading to a wide range of clinical manifestations. This review explores the complex genetic and clinical landscape of ALGS, emphasizing the challenges in understanding genotype-phenotype relationships due to its rarity and the lack of suitable research models. The review projects a clinical overview of the disease, emphasizing the influence of potential gene modifiers on its clinical presentation and the lack of mechanistic studies for over 100 mutations identified in the last 24 years from various populations, representing a significant gap in our current knowledge and advocating for further exploration. The review addresses the diagnostic challenges posed by the variable expressivity and overlapping symptoms of ALGS. It summarizes current treatment options and discusses emerging approaches such as antisense oligonucleotides (ASOs) and gene therapies. Further, the need for improved diagnostic tools, a deeper understanding of the underlying mechanisms, and the development of targeted therapies are emphasized using zebrafish and mice models, as well as genome editing for variant analysis and stem cell organoid models for disease modeling and drug discovery. The importance of cohort-based studies in understanding the natural history and outcomes of ALGS in diverse populations is highlighted. The review concludes by emphasizing the need for multi-disciplinary collaborative research to address the challenges in ALGS diagnosis, prognosis, and treatment, particularly for underrepresented populations.
Collapse
Affiliation(s)
- Priya Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Delhi, India
| | - Deepti Abbey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Delhi, India
| |
Collapse
|
3
|
Imran M, Elsnhory AB, Ibrahim AA, Elnaggar M, Tariq MS, Mehmood AM, Ali S, Khalil S, Khan SH, Ali M, Abuelazm M. Efficacy and Safety of Ileal Bile Acid Transport Inhibitors in Inherited Cholestatic Liver Disorders: A Meta-analysis of Randomized Controlled Trials. J Clin Exp Hepatol 2025; 15:102462. [PMID: 39802553 PMCID: PMC11720443 DOI: 10.1016/j.jceh.2024.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025] Open
Abstract
Background Inherited cholestatic liver disorders such as progressive familial intrahepatic cholestasis (PFIC) and Alagille syndrome result in significant pruritus and increased serum bile acids, necessitating liver transplantation. This study aims to evaluate the efficacy and safety of Ileal bile acid transport inhibitors (IBATIs) in children with PFIC and Alagille syndrome. Methods We conducted a comprehensive search across the databases to identify relevant randomized controlled trials (RCTs), and Covidence was used to screen eligible articles. All outcomes data were synthesized using risk ratios (RRs) or mean differences (MDs) with 95% confidence intervals (CIs) in RevMan 5.4. PROSPERO: CRD42024564270. Results Four multicenter RCTs involving 215 patients were included. IBATIs were associated with a significant reduction in Itch Observer Reported Outcome (Itch (ObsRo)) score (MD: -0.90, 95% CI [-1.17, -0.63], P < 0.01), serum bile acids (MD: -119.06, 95% CI [-152.37, -85.74], P < 0.01), total bilirubin (MD: -0.73, 95% CI [-1.32, -0.15], P = 0.01), and increased proportion of patients achieving ≥1 score reduction in Itch (ObsRo) score (RR: 2.54, 95% CI [3.83, 1.69], P < 0.01) and bile acid responders (RR: 8.76, 95% CI [2.46, 31.23], P < 0.01) compared with placebo. No differences were observed in any treatment-emergent adverse events (TEAs) (RR: 1.02, 95% CI [1.12, 0.93], P = 0.71), TEAs leading to drug discontinuation (1.03, 95% CI [5.56, 0.19], any serious TEAs, or liver-related TEAs. Conclusion IBATIs showed significant improvement in various cholestatic parameters with tolerable safety profile; however, future research on optimal dosage and long-term outcomes is needed.
Collapse
Affiliation(s)
- Muhammad Imran
- University College of Medicine and Dentistry, The University of Lahore, Lahore, Pakistan
| | | | | | | | | | | | - Shujaat Ali
- University College of Medicine and Dentistry, The University of Lahore, Lahore, Pakistan
| | - Saba Khalil
- Faculty of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Sheharyar H. Khan
- Department of Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, UK
| | - Mansab Ali
- University College of Medicine and Dentistry, The University of Lahore, Lahore, Pakistan
| | | |
Collapse
|
4
|
Ranchin B, Meaux MN, Freppel M, Ruiz M, De Mul A. Kidney and vascular involvement in Alagille syndrome. Pediatr Nephrol 2025; 40:891-899. [PMID: 39446153 PMCID: PMC11885393 DOI: 10.1007/s00467-024-06562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Alagille syndrome (ALGS) is an autosomal dominant, multisystemic disease with a high interindividual variability. The two causative genes JAG1 and NOTCH2 are expressed during kidney development, can be reactivated during adulthood kidney disease, and Notch signalling is essential for vascular morphogenesis and remodelling in mice. Liver disease is the most frequent and severe involvement; neonatal cholestasis occurs in 85% of cases, pruritus in 74%, xanthomas in 24% of cases, and the cumulative incidences of portal hypertension and liver transplantation are 66% and 50% respectively at 18 years of age. Stenosis/hypoplasia of the branch pulmonary arteries is the most frequent vascular abnormality reported in ALGS. Kidney involvement is present in 38% of patients, and can reveal the disease. Congenital anomalies of the kidney and urinary tract is reported in 22% of patients, hyperchloremic acidosis in 9%, and glomerulopathy and/or proteinuria in 6%. A decreased glomerular filtration rate is reported in 10% of patients and is more frequent after liver transplantation for ALGS than for biliary atresia. Kidney failure has been frequently reported in childhood and adulthood. Renal artery stenosis and mid aortic syndrome have also frequently been reported, often associated with hypertension and stenosis and/or aneurysm of other large arteries. ALGS patients require kidney assessment at diagnosis, long-term monitoring of kidney function and early detection of vascular complications, notably if they have undergone liver transplantation, to prevent progression of chronic kidney disease and vascular complications, which account for 15% of deaths at a median age of 2.2 years in the most recent series.
Collapse
Affiliation(s)
- Bruno Ranchin
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
| | - Marie-Noelle Meaux
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| | - Malo Freppel
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| | - Mathias Ruiz
- Service d'Hépato-gastroentérologie pédiatrique, Centre de Référence de l'atrésie des voies biliaires et des cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Aurelie De Mul
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| |
Collapse
|
5
|
Vendrig LM, Ten Hoor MAC, König BH, Lekkerkerker I, Renkema KY, Schreuder MF, van der Zanden LFM, van Eerde AM, Groen In 't Woud S, Mulder J, Westland R. Translational strategies to uncover the etiology of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2025; 40:685-699. [PMID: 39373868 PMCID: PMC11753331 DOI: 10.1007/s00467-024-06479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
While up to 50% of children requiring kidney replacement therapy have congenital anomalies of the kidney and urinary tract (CAKUT), they represent only a fraction of the total patient population with CAKUT. The extreme variability in clinical outcome underlines the fundamental need to devise personalized clinical management strategies for individuals with CAKUT. Better understanding of the pathophysiology of abnormal kidney and urinary tract development provides a framework for precise diagnoses and prognostication of patients, the identification of biomarkers and disease modifiers, and, thus, the development of personalized strategies for treatment. In this review, we provide a state-of-the-art overview of the currently known genetic causes, including rare variants in kidney and urinary tract development genes, genomic disorders, and common variants that have been attributed to CAKUT. Furthermore, we discuss the impact of environmental factors and their interactions with developmental genes in kidney and urinary tract malformations. Finally, we present multi-angle translational modalities to validate candidate genes and environmental factors and shed light on future strategies to better understand the molecular underpinnings of CAKUT.
Collapse
Affiliation(s)
- Lisanne M Vendrig
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mayke A C Ten Hoor
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benthe H König
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Lekkerkerker
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y Renkema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Sander Groen In 't Woud
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Mulder
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Division of Nephrology, Department of Pediatrics, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Evans EF, Chen G, Pavlinov I, Huang X, Linask K, Liu C, Lopez AR, Gilbert MA, Spinner NB, Rodemse S, Baumgärtele K, Chen CZ, Zou J, Zheng W. Generation of induced pluripotent stem cell lines TRNDi037-A and TRNDi038-A from two patients with Alagille syndrome carrying heterozygous JAG1 mutations. Stem Cell Res 2025; 82:103634. [PMID: 39719802 PMCID: PMC11787771 DOI: 10.1016/j.scr.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024] Open
Abstract
Human induced pluripotent stem cell (iPSC) lines TRNDi037-A and TRNDi038-A were generated from the lymphoblastoid cell lines (LCL) of two patients with different heterozygous JAG1 variants resulting in Alagille syndrome (ALGS). ALGS is a rare genetic disease of haploinsufficiency that affects the formation of the bile duct, in addition to other symptoms. These ALGS iPSC lines can be used to model ALGS and aid in the identification of therapeutics to treat patients with ALGS.
Collapse
Affiliation(s)
- Elena F Evans
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Guibin Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ivan Pavlinov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Xiuli Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kaari Linask
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Rodriguez Lopez
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steven Rodemse
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Karsten Baumgärtele
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Stark CM, Hughes BN, Schacht JP, Urbina TM. Decoding Hearts: Genetic Insights and Clinical Strategies in Congenital Heart Disease. Neoreviews 2025; 26:e73-e88. [PMID: 39889766 DOI: 10.1542/neo.26-2-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/02/2024] [Indexed: 02/03/2025]
Abstract
Structural congenital heart disease (CHD) represents a heterogeneous group of cardiac anomalies of variable embryologic and molecular origins. A basic understanding of the genetics implicated in nonsyndromic (isolated) and syndromic structural CHD can better inform management decisions and family counseling. When a fetus or neonate develops CHD as a result of a genetic cause, it can be due to a mutation or a monogenic, oligogenic, or polygenic pathogenic variant. In this review, we summarize basic cardiac embryology in the context of genetic signaling pathways and proteins that are commonly implicated in syndromic and nonsyndromic structural CHD. We also provide an overview of the basic genetic evaluation in infants with common syndromic structural CHD.
Collapse
Affiliation(s)
- Christopher M Stark
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Brian N Hughes
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - John Paul Schacht
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Theresa M Urbina
- Department of Pediatrics, Madigan Army Medical Center, Tacoma, Washington
| |
Collapse
|
8
|
Bufler P, Howard R, Quadrado L, Lacey G, Terner-Rosenthal J, Goldstein A, Vig P, Kelly D. The burden of Alagille syndrome: uncovering the potential of emerging therapeutics - a comprehensive systematic literature review. J Comp Eff Res 2025; 14:e240188. [PMID: 39807752 PMCID: PMC11773862 DOI: 10.57264/cer-2024-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Aim: Alagille syndrome (ALGS) is a rare, cholestatic multiorgan disease associated with bile duct paucity, leading to cholestasis. Clinical symptoms of cholestasis include debilitating pruritus, xanthomas, fat-soluble vitamin deficiencies, growth failure, renal disease and impaired health-related quality of life (HRQoL). The main objective was to review the current literature on the epidemiological, clinical, psychosocial and economic burden of ALGS in view of the development of ileal bile acid transporter (IBAT) inhibitors. Methods: Electronic literature databases were searched in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. Results: 330 publications were screened, 119 were relevant: 11 randomized controlled trials (RCTs), 21 non-RCTs, 10 HRQoL studies, two studies assessing cost/resource use and 77 epidemiological studies across several databases through 31 July 2024. Studies confirm that patients with ALGS experience cardiac anomalies, impaired growth, renal disease, poor HRQoL, fat-soluble vitamin deficiencies and debilitating pruritus; until the approval of IBAT inhibitors for the treatment of cholestatic pruritus in patients with ALGS, supportive management was the standard of care. Conclusion: This review confirms the substantial clinical, economic and HRQoL burden associated with ALGS and consolidates current treatment evidence. Data from recent trials in ALGS demonstrate the potential impact of IBAT inhibitors to transform lives by improving cholestatic pruritus symptoms, HRQoL and native liver survival.
Collapse
Affiliation(s)
- Philip Bufler
- Department of Pediatric Gastroenterology, Nephrology & Metabolic Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Child & Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
| | - Robin Howard
- Mirum Pharmaceuticals, Inc., Foster City, CA, USA
| | | | - Guy Lacey
- Mirum Pharmaceuticals, Inc., Foster City, CA, USA
| | | | | | - Pamela Vig
- Mirum Pharmaceuticals, Inc., Foster City, CA, USA
| | - Deirdre Kelly
- Guy's & St Thomas' NHS Foundation Trust, London, UK
- Evelina London Women's & Children's Clinical Group, Evelina London Children's Hospital, London, UK
| |
Collapse
|
9
|
Ogawa Y, Yamamoto A, Yamazawa S, Ikemura M, Hirata Y, Inuzuka R. Decreased smooth muscle cells and fibrous thickening of the tunica media in peripheral pulmonary artery stenosis in Alagille syndrome. Cardiovasc Pathol 2025; 74:107677. [PMID: 39069193 DOI: 10.1016/j.carpath.2024.107677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
Alagille syndrome is caused by mutations in genes involved in NOTCH signaling, specifically JAG1 and NOTCH2, and is associated with a high rate of peripheral pulmonary artery stenosis. In this study, we report the case of an infant with Alagille syndrome caused by a JAG1 mutation, who succumbed to acute exacerbation of right heart failure due to severe peripheral pulmonary artery stenosis. The autopsy revealed that the peripheral pulmonary arteries were significantly stenosed, exhibiting hypoplasia and thickened vessel walls. Histological examination of the pulmonary artery walls showed a decrease in smooth muscle cells in the tunica media and an increase in collagen and elastic fibers, although the intrapulmonary arteries were intact. These findings are important for understanding the pathogenesis of Alagille syndrome and developing treatment strategies for peripheral pulmonary artery stenosis.
Collapse
Affiliation(s)
- Yosuke Ogawa
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan
| | - Amane Yamamoto
- Department of Pathology, The University of Tokyo Hospital, Tokyo, Japan
| | - Sho Yamazawa
- Department of Pathology, The University of Tokyo Hospital, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yasutaka Hirata
- Department of Cardiac Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryo Inuzuka
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
10
|
Chen L, Chen J, Lou J, Yu J. Clinical and genetic characteristics of patients with Alagille syndrome in China: identification of six novel JAG1 and NOTCH2 mutations. Transl Pediatr 2024; 13:2144-2154. [PMID: 39823011 PMCID: PMC11732638 DOI: 10.21037/tp-24-301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Background Alagille syndrome (ALGS) is a rare disease. The variable clinical manifestations make the diagnosis of ALGS difficult. This study aimed to provide a basis for the early diagnosis of ALGS patients whose clinical identification is difficult and to enrich the spectrum of genetic variants implicated in Chinese children with ALGS. Methods From August 2016 to August 2022, 14 children with ALGS were enrolled in this retrospective study. Clinical and related data were obtained from medical records. Results Among the 14 patients, 11 were males and 3 were females. The age of first manifestation of liver disease mean (Q1, Q3) was 0.4 (0.1, 37.0) months, and the age of diagnosis mean (Q1, Q3) was 5.6 (2.4, 48.5) months. Cholestasis was seen in 14 patients, cardiac defects in eight, characteristic facial features in 11, skeletal abnormalities in six, and renal abnormality in one. Among eight patients who underwent ophthalmological examination, posterior embryotoxon was seen in two. We identified 12 different JAG1 gene mutations and two different NOTCH2 gene variations. Among the mutations detected, six were novel, including c.2849_2850del (p.S950*), c.35_45delGCCCCCTAAGC (p.R12Pfs*57), c.1860delC (p.F621Sfs*122), and c.1293_1294insTAGTAGACA (p.A432*) in JAG1, and c.6040_6041 del (p.L2014Vfs*10) and c.1915+1G>T (splicing) in NOTCH2. The follow-up time mean (Q1, Q3) was 48.5 (11.5, 69.0) months; four patients had delayed growth, eight had pruritus, two had xanthomas, seven had elevated bilirubin, and 13 had elevated transaminase. All patients were stable after medical treatment. Conclusions ALGS presents a variety of clinical manifestations. Some patients may be misdiagnosed with biliary atresia due to bile duct proliferation in liver biopsies along with biochemical abnormalities. Genetic testing is helpful for early diagnosis. JAG1 and NOTCH2 gene mutant spectra are abundant and there are many novel mutations in Chinese children with ALGS.
Collapse
Affiliation(s)
- Lingli Chen
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Chen
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingan Lou
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jindan Yu
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
11
|
Keefer-Jacques E, Valente N, Jacko AM, Matwijec G, Reese A, Tekriwal A, Loomes KM, Spinner NB, Gilbert MA. Investigation of cryptic JAG1 splice variants as a cause of Alagille syndrome and performance evaluation of splice predictor tools. HGG ADVANCES 2024; 5:100351. [PMID: 39244638 PMCID: PMC11440345 DOI: 10.1016/j.xhgg.2024.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Haploinsufficiency of JAG1 is the primary cause of Alagille syndrome (ALGS), a rare, multisystem disorder. The identification of JAG1 intronic variants outside of the canonical splice region as well as missense variants, both of which lead to uncertain associations with disease, confuses diagnostics. Strategies to determine whether these variants affect splicing include the study of patient RNA or minigene constructs, which are not always available or can be laborious to design, as well as the utilization of computational splice prediction tools. These tools, including SpliceAI and Pangolin, use algorithms to calculate the probability that a variant results in a splice alteration, expressed as a Δ score, with higher Δ scores (>0.2 on a 0-1 scale) positively correlated with aberrant splicing. We studied the consequence of 10 putative splice variants in ALGS patient samples through RNA analysis and compared this to SpliceAI and Pangolin predictions. We identified eight variants with aberrant splicing, seven of which had not been previously validated. Combining these data with non-canonical and missense splice variants reported in the literature, we identified a predictive threshold for SpliceAI and Pangolin with high sensitivity (Δ score >0.6). Moreover, we showed reduced specificity for variants with low Δ scores (<0.2), highlighting a limitation of these tools that results in the misidentification of true splice variants. These results improve genomic diagnostics for ALGS by confirming splice effects for seven variants and suggest that the integration of splice prediction tools with RNA analysis is important to ensure accurate clinical variant classifications.
Collapse
Affiliation(s)
- Ernest Keefer-Jacques
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicolette Valente
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anastasia M Jacko
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Grace Matwijec
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Apsara Reese
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aarna Tekriwal
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathleen M Loomes
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Law C, Pattathil N, Simpson H, Ward MJ, Lampen S, Kamath B, Aleman TS. Intraretinal hemorrhages and detailed retinal phenotype of three patients with Alagille syndrome. Ophthalmic Genet 2024; 45:522-531. [PMID: 38956866 DOI: 10.1080/13816810.2024.2362214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 04/01/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE To explore patterns of disease expression in Alagille syndrome (ALGS). METHODS Patients underwent ophthalmic examination, optical coherence tomography (OCT) imaging, fundus intravenous fluorescein angiography (IVFA), perimetry and full-field electroretinograms (ffERGs). An adult ALGS patient had multimodal imaging and specialized perimetry. RESULTS The proband (P1) had a heterozygous pathogenic variant in JAG1; (p.Gln410Ter) and was incidentally diagnosed at age 7 with a superficial retinal hemorrhage, vascular tortuosity, and midperipheral pigmentary changes. The hemorrhage recurred 15 months later. Her monozygotic twin sister (P2) had a retinal hemorrhage at the same location at age 11. Visual acuities for both patients were 20/30 in each eye. IVFA was normal. OCT showed thinning of the outer nuclear in the peripapillary retina. A ffERG showed normal cone-mediated responses in P1 (rod-mediated ERGs not documented), normal ffERGs in P2. Coagulation and liver function were normal. An unrelated 42-year-old woman with a de-novo pathogenic variant (p. Gly386Arg) in JAG1 showed a similar pigmentary retinopathy and hepatic vascular anomalies; rod and cone function was normal across large expanses of structurally normal retina that sharply transitioned to a blind atrophic peripheral retina. CONCLUSION Nearly identical recurrent intraretinal hemorrhages in monozygotic twins with ALGS suggest a shared subclinical microvascular abnormality. We hypothesize that the presence of large areas of functionally and structurally intact retina surrounded by severe chorioretinal degeneration, is against a predominant involvement of JAG1 in the function of the neurosensory retina, and that instead, primary abnormalities of chorioretinal vascular development and/or homeostasis may drive the peculiar phenotypes.
Collapse
Affiliation(s)
- Christine Law
- Queen's University School of Medicine, Kingston, Ontario, Canada
- Department of Ophthalmology, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | | | - Hailey Simpson
- Department of Ophthalmology, Queen's University and Kingston Health Sciences Centre, Kingston, Canada
| | - Michael J Ward
- Division of Ophthalmology, Department of Surgery, Chester County Hospital and Chester County Eye Care Associates, West Chester, Pennsylvania, USA
| | - Shaun Lampen
- Queen's University School of Medicine, Kingston, Ontario, Canada
| | - Binita Kamath
- Division of Gastroenterology, Hepatology and Nutrition, Sick Kids Hospital, Toronto, Ontario, Canada
| | - Tomas S Aleman
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Dofash L, Lyengar K, Pereira N, Parmar J, Folland C, Laing N, Kang PB, Cairns A, Lynch M, Davis M, Ravenscroft G. Three novel missense variants in two families with JAG2-associated limb-girdle muscular dystrophy. Neuromuscul Disord 2024; 42:36-42. [PMID: 39121631 DOI: 10.1016/j.nmd.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 08/12/2024]
Abstract
Limb-girdle muscular dystrophy recessive 27 is associated with biallelic variants in JAG2, encoding the JAG2 notch ligand. Twenty-four affected individuals from multiple families have been described in two reports. We present two Australian families with three novel JAG2 missense variants: (c.1021G>T, p.(Gly341Cys)) homozygous in two siblings of Pakistani origin, and compound heterozygous variants (c.703T>C, p.(Trp235Arg); c.2350C>T, p.(Arg784Cys)) in a proband of European ancestry. Patients presented with childhood-onset limb-girdle-like myopathy with difficulty or inability walking. MRI revealed widespread torso and limb muscle involvement. Muscle pathology showed myopathic changes with fatty infiltration. Muscle RNA sequencing revealed significant downregulation of myogenesis genes PAX7, MYF5, and MEGF10 similar to previous JAG2-related muscular dystrophy cases or Jag2-knockdown cells. In absence of functional assays to characterise JAG2 variants, clinical, MRI and transcriptomic profiling collectively may help discern JAG2-related muscular dystrophy, diagnosis of which is essential for patients and families given the severity of disease and reoccurrence risk.
Collapse
Affiliation(s)
- Lein Dofash
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Krishnan Lyengar
- Department of Anatomical Pathology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Nolette Pereira
- Department of Medical Imaging and Nuclear Medicine, Queensland Childrens Hospital, Brisbane, Queensland, Australia
| | - Jevin Parmar
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Nigel Laing
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia
| | - Peter B Kang
- Greg Marzolf Jr. Muscular Dystrophy Center and Department of Neurology, University of Minnesota Medical School, Minneapolis, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, USA
| | - Anita Cairns
- Neurosciences Department, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Matthew Lynch
- Neurosciences Department, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Mark Davis
- Diagnostic Genomics, PathWest, Nedlands, WA, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands WA, Australia.
| |
Collapse
|
14
|
Reis LM, Seese SE, Costakos D, Semina EV. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms. Prog Retin Eye Res 2024; 102:101288. [PMID: 39097141 PMCID: PMC11392650 DOI: 10.1016/j.preteyeres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in FOXC1, CYP1B1, and PITX2 associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Sarah E Seese
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Elena V Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
15
|
Farina R, Garofalo A, Valerio Foti P, Inì C, Motta C, Galioto S, Clemenza M, Ilardi A, Gavazzi L, Grippaldi D, D'Urso M, Basile A. Alagille syndrome with unusual common bile duct hypoplasia and gallbladder dysmorphism: Lesson based on a case report. Radiol Case Rep 2024; 19:4082-4086. [PMID: 39104448 PMCID: PMC11298873 DOI: 10.1016/j.radcr.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 08/07/2024] Open
Abstract
Alagille syndrome is an autosomal dominant and multisystemic disease that generally manifests itself with intrahepatic bile ducts paucity, chronic cholestasis, xanthomas and with other less frequent clinical manifestations such as congenital heart disease, skeletal abnomalies, ophthalmic, vascular, renal and growth failure. Symptoms can be subclinical or very severe. Is caused by various genetic mutations and the majority of patients have a detectable mutation in JAG1 (90%), the remainder have mutations in NOTCH2. The diagnosis is molecular and the incidence is approximately 1 in 30,000 - 50.000. Patient management can be very complex and treatment depends on the district affected and on the symptoms. In more serious cases, with terminal liver disease, liver transplantation is used. We describe a case with main bile duct hypoplasia, intrahepatic bile ducts paucity, cholestasis and gallbladder dimorphism associated with renal malrotation and butterfly vertebrae.
Collapse
Affiliation(s)
- Renato Farina
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| | - Alfredo Garofalo
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| | - Corrado Inì
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| | - Claudia Motta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| | - Sebastiano Galioto
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| | - Mariangela Clemenza
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| | - Adriana Ilardi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| | - Livio Gavazzi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| | - Daniele Grippaldi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| | - Mattia D'Urso
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| | - Antonio Basile
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”. University of Catania, Italy
| |
Collapse
|
16
|
Susorov D, Echeverria D, Khvorova A, Korostelev A. mRNA-specific readthrough of nonsense codons by antisense oligonucleotides (R-ASOs). Nucleic Acids Res 2024; 52:8687-8701. [PMID: 39011883 PMCID: PMC11347175 DOI: 10.1093/nar/gkae624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Nonsense mutations account for >10% of human genetic disorders, including cystic fibrosis, Alagille syndrome, and Duchenne muscular dystrophy. A nonsense mutation results in the expression of a truncated protein, and therapeutic strategies aim to restore full-length protein expression. Most strategies under development, including small-molecule aminoglycosides, suppressor tRNAs, or the targeted degradation of termination factors, lack mRNA target selectivity and may poorly differentiate between nonsense and normal stop codons, resulting in off-target translation errors. Here, we demonstrate that antisense oligonucleotides can stimulate readthrough of disease-causing nonsense codons, resulting in high yields of full-length protein in mammalian cellular lysate. Readthrough efficiency depends on the sequence context near the stop codon and on the precise targeting position of an oligonucleotide, whose interaction with mRNA inhibits peptide release to promote readthrough. Readthrough-inducing antisense oligonucleotides (R-ASOs) enhance the potency of non-specific readthrough agents, including aminoglycoside G418 and suppressor tRNA, enabling a path toward target-specific readthrough of nonsense mutations in CFTR, JAG1, DMD, BRCA1 and other mutant genes. Finally, through systematic chemical engineering, we identify heavily modified fully functional R-ASO variants, enabling future therapeutic development.
Collapse
Affiliation(s)
- Denis Susorov
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
17
|
Yan J, Huang Y, Cao L, Dong Y, Xu Z, Wang F, Gao Y, Feng D, Zhang M. Clinical, pathological and genetic characteristics of 17 unrelated children with Alagille Syndrome. BMC Pediatr 2024; 24:532. [PMID: 39164659 PMCID: PMC11334458 DOI: 10.1186/s12887-024-04973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Alagille syndrome (ALGS) is a multisystem genetic disorder frequently characterized by hepatic manifestations. This study analyzed the clinical, pathological, and molecular genetic features of ALGS to improve the efficiency of clinical diagnosis. METHODS We retrospectively analyzed the clinical manifestations, pathological examination findings, and genetic testing results of 17 children diagnosed with ALGS based on the revised criteria and hospitalized at our center from January 2012 to January 2022. RESULTS The clinical manifestations are as follows: Cholestasis (16/17, 94%), characteristic facies (15/17, 88%), heart disease (12/16, 75%), butterfly vertebrae (12/17, 71%) and posterior embryotoxon (7/12, 58%). Among the 15 patients who underwent liver pathology examination, 13 (87%) were found to have varying degrees of bile duct paucity. Genetic testing was performed on 15 children, and pathogenic variants of the jagged canonical Notch ligand 1 (JAG1) gene were identified in 13 individuals, including 4 novel variants. No pathogenic variant in the notch homolog 2 (NOTCH2) gene were identified, and 2 children exhibited none of the aforementioned gene pathogenic variants. The median follow-up duration was 7 years. Of the remaining 15 patients (excluding 2 lost to follow-up), 11 remained stable, 4 deteriorated, and no patient died during the follow-up period. CONCLUSIONS Among children diagnosed with ALGS, cholestasis stands as the most common feature. To minimize the risk of misdiagnosis, genetic testing should be performed on children exhibiting cholestasis, followed by the application of the revised diagnostic criteria for ALGS. While pharmacological therapy has shown effectiveness for ALGS patients, liver transplantation may be considered in instances of severe pruritus.
Collapse
Affiliation(s)
- Jianguo Yan
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanzhi Huang
- Peking University 302 Clinical Medical School, 38 Xueyuan Road, 100191, Beijing, China
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lili Cao
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Dong
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Xu
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fuchuan Wang
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yinjie Gao
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Danni Feng
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Zhang
- Peking University 302 Clinical Medical School, 38 Xueyuan Road, 100191, Beijing, China.
- Senior Department of Liver Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
18
|
Gilbert MA, Keefer-Jacques E, Jadhav T, Antfolk D, Ming Q, Valente N, Shaw GTW, Sottolano CJ, Matwijec G, Luca VC, Loomes KM, Rajagopalan R, Hayeck TJ, Spinner NB. Functional characterization of 2,832 JAG1 variants supports reclassification for Alagille syndrome and improves guidance for clinical variant interpretation. Am J Hum Genet 2024; 111:1656-1672. [PMID: 39043182 PMCID: PMC11339624 DOI: 10.1016/j.ajhg.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Pathogenic variants in the JAG1 gene are a primary cause of the multi-system disorder Alagille syndrome. Although variant detection rates are high for this disease, there is uncertainty associated with the classification of missense variants that leads to reduced diagnostic yield. Consequently, up to 85% of reported JAG1 missense variants have uncertain or conflicting classifications. We generated a library of 2,832 JAG1 nucleotide variants within exons 1-7, a region with a high number of reported missense variants, and designed a high-throughput assay to measure JAG1 membrane expression, a requirement for normal function. After calibration using a set of 175 known or predicted pathogenic and benign variants included within the variant library, 486 variants were characterized as functionally abnormal (n = 277 abnormal and n = 209 likely abnormal), of which 439 (90.3%) were missense. We identified divergent membrane expression occurring at specific residues, indicating that loss of the wild-type residue itself does not drive pathogenicity, a finding supported by structural modeling data and with broad implications for clinical variant classification both for Alagille syndrome and globally across other disease genes. Of 144 uncertain variants reported in patients undergoing clinical or research testing, 27 had functionally abnormal membrane expression, and inclusion of our data resulted in the reclassification of 26 to likely pathogenic. Functional evidence augments the classification of genomic variants, reducing uncertainty and improving diagnostics. Inclusion of this repository of functional evidence during JAG1 variant reclassification will significantly affect resolution of variant pathogenicity, making a critical impact on the molecular diagnosis of Alagille syndrome.
Collapse
Affiliation(s)
- Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Ernest Keefer-Jacques
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tanaya Jadhav
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Antfolk
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Qianqian Ming
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Nicolette Valente
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Grace Tzun-Wen Shaw
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher J Sottolano
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Matwijec
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Vincent C Luca
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kathleen M Loomes
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tristan J Hayeck
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Ferrandino M, Cardiero G, Di Dato F, Cerrato Y, Vitagliano L, Mandato C, Morisco F, Spagnuolo MI, Iorio R, Di Taranto MD, Fortunato G. Association of Very Rare NOTCH2 Variants with Clinical Features of Alagille Syndrome. Genes (Basel) 2024; 15:1034. [PMID: 39202394 PMCID: PMC11353882 DOI: 10.3390/genes15081034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Alagille syndrome (ALGS) is a rare autosomal dominant genetic disease caused by pathogenic variants in two genes: Jagged Canonical Notch Ligand 1 (JAG1) and Notch Receptor 2 (NOTCH2). It is characterized by phenotypic variability and incomplete penetrance with multiorgan clinical signs. METHODS Using Next Generation Sequencing (NGS), we analyzed a panel of liver-disease-related genes in a population of 230 patients with cholestasis and hepatopathies. For the rare variants, bioinformatics predictions and pathogenicity classification were performed. RESULTS We identified eleven rare NOTCH2 variants in 10 patients, two variants being present in the same patient. Ten variants had never been described before in the literature. It was possible to classify only two null variants as pathogenic, whereas the most of variants were missense (8 out of 11) and were classified as uncertain significance variants (USVs). Among patients with ALGS suspicion, two carried null variants, two carried variants predicted to be pathogenic by bioinformatics, one carried a synonymous variant and variants in glycosylation-related genes, and two carried variants predicted as benign in the PEST domain. CONCLUSIONS Our results increased the knowledge about NOTCH2 variants and the related phenotype, allowing us to improve the genetic diagnosis of ALGS.
Collapse
Affiliation(s)
- Martina Ferrandino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Giovanna Cardiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Fabiola Di Dato
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Ylenia Cerrato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, 80145 Naples, Italy
| | - Claudia Mandato
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, 84081 Baronissi, Italy
| | - Filomena Morisco
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Maria Immacolata Spagnuolo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Raffaele Iorio
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| |
Collapse
|
20
|
Hatim O, Xu M, Pavlinov I, Linask K, Beers J, Zou J, Liu C, Rodems S, Baumgärtel K, Gilbert MA, Spinner NB, Chen C, Zheng W. Generation of an Alagille Syndrome (ALGS) patient-derived induced pluripotent stem cell line (TRNDi036-A) carrying a heterozygous mutation (p.Cys693*) in the JAG1 gene. Stem Cell Res 2024; 77:103429. [PMID: 38703666 PMCID: PMC11144073 DOI: 10.1016/j.scr.2024.103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024] Open
Abstract
Alagille syndrome (ALGS) is an autosomal dominant, multisystemic disorder due to haploinsufficiency in JAG1 or less frequently, mutations in NOTCH2. The disease has been difficult to diagnose and treat due to variable expression. The generation of this iPSC line (TRNDi036-A) carrying a heterozygous mutation (p.Cys693*) in the JAG1 gene provides a means of studying the disease and developing novel therapeutics towards patient treatment.
Collapse
Affiliation(s)
- Omer Hatim
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ivan Pavlinov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kaari Linask
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeanette Beers
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven Rodems
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Karsten Baumgärtel
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Melissa A Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy B Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Catherine Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
22
|
Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L, Peng X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int J Mol Sci 2024; 25:5943. [PMID: 38892128 PMCID: PMC11172925 DOI: 10.3390/ijms25115943] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.
Collapse
|
23
|
N A, Jose JM, Nair SB, N PS, S P. Two unrelated Alagille syndrome cases of South Indian origin: Showing multi-exonic deletion and a novel mutation in JAG1 gene. Genes Dis 2024; 11:100998. [PMID: 38274370 PMCID: PMC10806263 DOI: 10.1016/j.gendis.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/08/2023] [Indexed: 01/27/2024] Open
Affiliation(s)
- Aswathi N
- Department of Medical Genetics, Lifeline Super Specialty Hospital, Pathanamthitta, Kerala 691523, India
| | - Jincy M. Jose
- Department of Medical Genetics, Lifeline Super Specialty Hospital, Pathanamthitta, Kerala 691523, India
| | - Sreelata B. Nair
- Department of Medical Genetics, Lifeline Super Specialty Hospital, Pathanamthitta, Kerala 691523, India
| | - Prabha S. N
- Department of Medical Genetics, Lifeline Super Specialty Hospital, Pathanamthitta, Kerala 691523, India
| | - Pappachan S
- Lifeline Super Specialty Hospital, Pathanamthitta, Kerala 691523, India
| |
Collapse
|
24
|
Wakabayashi N, Yagishita Y, Joshi T, Kensler TW. Dual Deletion of Keap1 and Rbpjκ Genes in Liver Leads to Hepatomegaly and Hypercholesterolemia. Int J Mol Sci 2024; 25:4712. [PMID: 38731931 PMCID: PMC11083431 DOI: 10.3390/ijms25094712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The hepatic deletion of Rbpjκ (RbpjF/F::AlbCre) in the mouse leads to exhibition of the Alagille syndrome phenotype during early postnatal liver development with hyperlipidemia and cholestasis due to attenuated disruption of NOTCH signaling. Given the roles of NRF2 signaling in the regulation of lipid metabolism and bile ductal formation, it was anticipated that these symptoms could be alleviated by enhancing NRF2 signaling in the RbpjF/F::AlbCre mouse by hepatic deletion of Keap1 in compound Keap1F/F::RbpjF/F::AlbCre mice. Unexpectedly, these mice developed higher hepatic and plasma cholesterol levels with more severe cholestatic liver damage during the pre-weaning period than in the RbpjF/F::AlbCre mice. In addition, hypercholesterolemia and hepatic damage were sustained throughout the growth period unlike in the RbpjF/F::AlbCre mouse. These enhanced abnormalities in lipid metabolism appear to be due to NRF2-dependent changes in gene expression related to cholesterol synthetic and subsequent bile acid production pathways. Notably, the hepatic expression of Cyp1A7 and Abcb11 genes involved in bile acid homeostasis was significantly reduced in Keap1F/F::RbpjF/F::AlbCre compared to RbpjF/F::AlbCre mice. The accumulation of liver cholesterol and the weakened capacity for bile excretion during the 3 pre-weaning weeks in the Keap1F/F::RbpjF/F::AlbCre mice may aggravate hepatocellular damage level caused by both excessive cholesterol and residual bile acid toxicity in hepatocytes. These results indicate that a tuned balance of NOTCH and NRF2 signaling is of biological importance for early liver development after birth.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| | - Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
- Division of Endocrinology, Columbia University, New York, NY 10032, USA
| | - Tanvi Joshi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (N.W.); (T.J.)
| |
Collapse
|
25
|
Joshi D, Nayagam J, Clay L, Yerlett J, Claridge L, Day J, Ferguson J, Mckie P, Vara R, Pargeter H, Lockyer R, Jones R, Heneghan M, Samyn M. UK guideline on the transition and management of childhood liver diseases in adulthood. Aliment Pharmacol Ther 2024; 59:812-842. [PMID: 38385884 DOI: 10.1111/apt.17904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION Improved outcomes of liver disease in childhood and young adulthood have resulted in an increasing number of young adults (YA) entering adult liver services. The adult hepatologist therefore requires a working knowledge in diseases that arise almost exclusively in children and their complications in adulthood. AIMS To provide adult hepatologists with succinct guidelines on aspects of transitional care in YA relevant to key disease aetiologies encountered in clinical practice. METHODS A systematic literature search was undertaken using the Pubmed, Medline, Web of Knowledge and Cochrane database from 1980 to 2023. MeSH search terms relating to liver diseases ('cholestatic liver diseases', 'biliary atresia', 'metabolic', 'paediatric liver diseases', 'autoimmune liver diseases'), transition to adult care ('transition services', 'young adult services') and adolescent care were used. The quality of evidence and the grading of recommendations were appraised using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. RESULTS These guidelines deal with the transition of YA and address key aetiologies for the adult hepatologist under the following headings: (1) Models and provision of care; (2) screening and management of mental health disorders; (3) aetiologies; (4) timing and role of liver transplantation; and (5) sexual health and fertility. CONCLUSIONS These are the first nationally developed guidelines on the transition and management of childhood liver diseases in adulthood. They provide a framework upon which to base clinical care, which we envisage will lead to improved outcomes for YA with chronic liver disease.
Collapse
Affiliation(s)
- Deepak Joshi
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Jeremy Nayagam
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Lisa Clay
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| | - Jenny Yerlett
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| | - Lee Claridge
- Leeds Liver Unit, St James's University Hospital, Leeds, UK
| | - Jemma Day
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James Ferguson
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Paul Mckie
- Department of Social Work, King's College Hospital NHS Foundation Trust, London, UK
| | - Roshni Vara
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
- Evelina London Children's Hospital, London, UK
| | | | | | - Rebecca Jones
- Leeds Liver Unit, St James's University Hospital, Leeds, UK
| | - Michael Heneghan
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Marianne Samyn
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
26
|
Li M, Wang X, Wang F, Wang F, Zhao D, Liu S. JAG1 Variants Confer Genetic Susceptibility to Thyroid Dysgenesis and Thyroid Dyshormonogenesis in 813 Congenital Hypothyroidism in China. Int J Gen Med 2024; 17:885-894. [PMID: 38468821 PMCID: PMC10926855 DOI: 10.2147/ijgm.s445557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Background and Objective Congenital hypothyroidism (CH) is indeed a prevalent neonatal endocrine disorder, affecting approximately 1 in 2000-3000 newborns worldwide, and 1 in 2400 newborns in China. Despite its high incidence, the genetic causes of CH, particularly those related to thyroid dysgenesis (TD), are still not well understood. However, previous studies have suggested that JAG1 may be a potential susceptibility gene for congenital thyroid defects. To explore the association between JAG1 and CH, we screened JAG1 variants in a large cohort of 813 CH patients. Methods We performed genetic analysis of JAG1 using next-generation sequencing in 813 CH cases. The pathogenicity of the variants was assessed by bioinformatics softwares, protein sequence conservation analysis, and hydrophobic analysis. Further genetic analysis was conducted targeting 20 CH-related genes in these 25 JAG1 variant carriers. Results We identified 10 pathogenic missense mutations (p.V45L, p.V272I, p.P552L, p.G610E, p.G852D, p.A891T, p.E1030K, p.R1060W, p.A1131T, p.P1174L) carried by 25 patients, the mutation rate of JAG1 in CH was 3.08%. Among these 25 patients, 16 with 1 variant, 6 with 2 variants, and the other 3 with 3 variants. Our findings indicated that JAG1 variants confer genetic susceptibility to both TD and DH, but with different inheritance models. JAG1 variants lead to TD mainly through monogenic model, while for DH cases, both monogenic mechanisms and oligogenic mechanisms play a pivotal role. Oligogenicity may contribute to the disease severity of DH. Conclusion JAG1 is a shared genetic factor in TD and DH, with a detection rate of 3.08% in Chinese individuals with CH. A comparison between the oligogenic and monogenic groups suggests a gene dosage effect in CH. Patients with the same JAG1 mutation exhibit diverse clinical phenotypes, indicating complex mechanisms underlying phenotypic heterogeneity.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoyu Wang
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Fang Wang
- Endocrinology Department, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Fengqi Wang
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Dehua Zhao
- Neonatal Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shiguo Liu
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
27
|
Umemura K, Fujita K, Kamei M. THREE-YEAR FOLLOW-UP OF PROGRESSIVE CHORIORETINAL ATROPHY IN ATYPICAL ALAGILLE SYNDROME: A CASE REPORT. Retin Cases Brief Rep 2024; 18:247-250. [PMID: 36730824 PMCID: PMC10898537 DOI: 10.1097/icb.0000000000001368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/25/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE To report a case of atypical Alagille syndrome with progressive chorioretinal atrophy. METHODS Case Report. RESULTS A 42-year-old Japanese man presented with atypical Alagille syndrome. At the first visit, funduscopy revealed anterior circumferential chorioretinal atrophy in the peripheral retina and peripapillary region with posterior pole sparing in both eyes. Fundus autofluorescence showed hypoautofluorescence in the peripheral and peripapillary regions, but normal findings in the macular region. After follow-up for 3 years, hypopigmented area with well visualized large choroidal vessels extended to mid-peripheral region. On Fundus autofluorescence images, hypoautofluorescence newly appeared in macular region in both eyes. Perivascular hypoautofluorescence and granular hyperautofluorescence scattering within the posterior pole were also observed. BCVA deteriorated and concentric visual field contraction worsened progressively. CONCLUSION Alagille syndrome is known to have many ophthalmic manifestations, most of which are stable with minimal threat to vision. In the present case, chorioretinal atrophy progressed during 3-year follow-up, suggesting that progression of chorioretinal atrophy with vision loss may occur over time in Alagille syndrome.
Collapse
Affiliation(s)
- Kyohei Umemura
- Department of Ophthalmology, Aichi Medical University, Nagakuteshi, Aichi, Japan
| | - Kyoko Fujita
- Department of Ophthalmology, Aichi Medical University, Nagakuteshi, Aichi, Japan
| | - Motohiro Kamei
- Department of Ophthalmology, Aichi Medical University, Nagakuteshi, Aichi, Japan
| |
Collapse
|
28
|
Mašek J, Andersson ER. Jagged-mediated development and disease: Mechanistic insights and therapeutic implications for Alagille syndrome. Curr Opin Cell Biol 2024; 86:102302. [PMID: 38194749 DOI: 10.1016/j.ceb.2023.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024]
Abstract
Notch signaling controls multiple aspects of embryonic development and adult homeostasis. Alagille syndrome is usually caused by a single mutation in the jagged canonical Notch ligand 1 (JAG1), and manifests with liver disease and cardiovascular symptoms that are a direct consequence of JAG1 haploinsufficiency. Recent insights into Jag1/Notch-controlled developmental and homeostatic processes explain how pathology develops in the hepatic and cardiovascular systems and, together with recent elucidation of mechanisms modulating liver regeneration, provide a basis for therapeutic efforts. Importantly, disease presentation can be regulated by genetic modifiers, that may also be therapeutically leverageable. Here, we summarize recent insights into how Jag1 controls processes of relevance to Alagille syndrome, focused on Jag1/Notch functions in hepatic and cardiovascular development and homeostasis.
Collapse
Affiliation(s)
- Jan Mašek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic. https://twitter.com/JanMasekLab
| | - Emma R Andersson
- Dept of Cell and Molecular Biology, Karolinska Institutet, Sweden.
| |
Collapse
|
29
|
Sutton H, Karpen SJ, Kamath BM. Pediatric Cholestatic Diseases: Common and Unique Pathogenic Mechanisms. ANNUAL REVIEW OF PATHOLOGY 2024; 19:319-344. [PMID: 38265882 DOI: 10.1146/annurev-pathmechdis-031521-025623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Cholestasis is the predominate feature of many pediatric hepatobiliary diseases. The physiologic flow of bile requires multiple complex processes working in concert. Bile acid (BA) synthesis and excretion, the formation and flow of bile, and the enterohepatic reuptake of BAs all function to maintain the circulation of BAs, a key molecule in lipid digestion, metabolic and cellular signaling, and, as discussed in the review, a crucial mediator in the pathogenesis of cholestasis. Disruption of one or several of these steps can result in the accumulation of toxic BAs in bile ducts and hepatocytes leading to inflammation, fibrosis, and, over time, biliary and hepatic cirrhosis. Biliary atresia, progressive familial intrahepatic cholestasis, primary sclerosing cholangitis, and Alagille syndrome are four of the most common pediatric cholestatic conditions. Through understanding the commonalities and differences in these diseases, the important cellular mechanistic underpinnings of cholestasis can be greater appreciated.
Collapse
Affiliation(s)
- Harry Sutton
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada;
| | - Saul J Karpen
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Binita M Kamath
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
30
|
Feng X, Ping J, Gao S, Han D, Song W, Li X, Tao Y, Wang L. Novel JAG1 variants leading to Alagille syndrome in two Chinese cases. Sci Rep 2024; 14:1812. [PMID: 38245625 PMCID: PMC10799942 DOI: 10.1038/s41598-024-52357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Alagille Syndrome (ALGS) is a complex genetic disorder characterized by cholestasis, congenital cardiac anomalies, and butterfly vertebrae. The variable phenotypic expression of ALGS can lead to challenges in accurately diagnosing affected infants, potentially resulting in misdiagnoses or underdiagnoses. This study highlights novel JAG1 gene mutations in two cases of ALGS. The first case with a novel p.Pro325Leufs*87 variant was diagnosed at 2 months of age and exhibited a favorable prognosis and an unexpected manifestation of congenital hypothyroidism. Before the age of 2, the second patient was incorrectly diagnosed with liver structural abnormalities, necessitating extensive treatment. In addition, he exhibited delays in language acquisition that may have been a result of SNAP25 haploinsufficiency. The identification of ALGS remains challenging, highlighting the importance of early detection and genetic testing for effective patient management. The variant p.Pro325Leufs*87 is distinct from reported variants linked to congenital hypothyroidism in ALGS patients, thereby further confirming the clinical and genetic complexity of ALGS. This emphasizes the critical need for individualized and innovative approaches to diagnosis and medical interventions, uniquely intended to address the complexity of this syndrome.
Collapse
Affiliation(s)
- Xiufang Feng
- Department of Pediatrics, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Jiangyuan Ping
- Department of Pediatrics, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Shan Gao
- Department of Pediatrics, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Dong Han
- Medical Genetic Center, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Wenxia Song
- Obstetrics Department, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Xiaoze Li
- Medical Genetic Center, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China
| | - Yilun Tao
- Medical Genetic Center, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China.
- Precision Medicine Research Division, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China.
| | - Lihong Wang
- Department of Pediatrics, Changzhi Maternal and Child Health Care Hospital, Changzhi, Shanxi, China.
| |
Collapse
|
31
|
Hassan IE, Okudo G, Hajinicolaou C. Presentation and outcome of Alagille syndrome in paediatric patients at State Academic Hospital in South Africa. Sudan J Paediatr 2024; 24:133-140. [PMID: 39867274 PMCID: PMC11757690 DOI: 10.24911/sjp.106-1720958990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025]
Abstract
Alagille syndrome (ALGS) is a multisystem autosomal dominant disorder in which patients may have characteristic facial features and involvement of the liver, heart, vessels, bones, eyes, kidneys and central nervous system. As there is little published data on ALGS in Africa, our aim was to describe the presentation and outcomes of ALGS in South Africa. The study constitutes a retrospective analysis of 25 patient medical records diagnosed as ALGS at Chris Hani Baragwanath Academic Hospital Pediatric Gastroenterology clinic between January 1992 and January 2020. Twenty-five patients met the diagnostic criteria for ALGS over the period investigated. Eighteen (72%) patients were less than 1 year old at first presentation. Seven patients (28%) had all five main clinical manifestations of ALGS, and the rest had an equal proportion of four and three main clinical manifestations. Cholestasis, one of the main clinical manifestations, was present in 72%; 80.0% had the typical Alagille facial features; 64% had cardiovascular disease, 36% had ocular abnormalities and 40% had skeletal abnormalities. Of the 16 patients, (64%) who presented with cardiovascular disease, seven patients presented with more than one cardiac lesion. As of January 2020, 8 (32%) patients are still being followed up at the pediatric GIT clinic, 13 (52%) patients were lost to follow-up and four patients (16%) were demised. Low- to middle-income countries, with no readily available access to genetic testing, need to rely on diagnostic criteria to make a diagnosis of Alagille syndrome in infants who present with cholestasis.
Collapse
Affiliation(s)
- Ibrahim E. Hassan
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, University of Witwatersrand, Johannesburg, South Africa
| | - Grace Okudo
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, University of Witwatersrand, Johannesburg, South Africa
| | - Christina Hajinicolaou
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, University of Witwatersrand, Johannesburg, South Africa
- Divisional Head Paediatric Gastroenterology, Department of Paediatrics and Child Health, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
32
|
Prapa M, Ho SY. Human Genetics of Semilunar Valve and Aortic Arch Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:761-775. [PMID: 38884747 DOI: 10.1007/978-3-031-44087-8_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.
Collapse
Affiliation(s)
- Matina Prapa
- Department of Clinical Genetics, St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Siew Yen Ho
- Cardiac Morphology, Royal Brompton & Harefield Hospitals, London, UK
| |
Collapse
|
33
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
34
|
Hatim O, Pavlinov I, Xu M, Linask K, Beers J, Liu C, Baumgärtel K, Gilbert M, Spinner N, Chen C, Zou J, Zheng W. Generation of an Alagille syndrome (ALGS) patient-derived induced pluripotent stem cell line (TRNDi032-A) carrying a heterozygous mutation (p.Cys682Leufs*7) in the JAG1 gene. Stem Cell Res 2023; 73:103231. [PMID: 37890331 PMCID: PMC10842201 DOI: 10.1016/j.scr.2023.103231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Alagille syndrome (ALGS) is an autosomal dominant, multisystemic disorder due to haploinsufficiency in either the JAG1 gene (ALGS type 1) or the NOTCH2 gene (ALGS type 2). The disease has been difficult to diagnose and treat due to its muti-system clinical presentation, variable expressivity, and prenatal onset for some of the features. The generation of this iPSC line (TRNDi032-A) carrying a heterozygous mutation, p.Cys682Leufs*7 (c.2044dup), in the JAG1 gene provides a means of studying the disease and developing novel therapeutics towards patient treatment.
Collapse
Affiliation(s)
- Omer Hatim
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ivan Pavlinov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kaari Linask
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeanette Beers
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karsten Baumgärtel
- Travere Therapeutics, 3611 Valley Centre Drive, Suite 300, San Diego, CA, USA
| | - Melissa Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nancy Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Catherine Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Niknejad N, Fox D, Burwinkel JL, Zarrin-Khameh N, Cho S, Soriano A, Cast AE, Lopez MF, Huppert KA, Rigo F, Huppert SS, Jafar-Nejad P, Jafar-Nejad H. ASO silencing of a glycosyltransferase, Poglut1 , improves the liver phenotypes in mouse models of Alagille syndrome. Hepatology 2023; 78:1337-1351. [PMID: 37021797 PMCID: PMC10558624 DOI: 10.1097/hep.0000000000000380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND AND AIMS Paucity of intrahepatic bile ducts (BDs) is caused by various etiologies and often leads to cholestatic liver disease. For example, in patients with Alagille syndrome (ALGS), which is a genetic disease primarily caused by mutations in jagged 1 ( JAG1) , BD paucity often results in severe cholestasis and liver damage. However, no mechanism-based therapy exists to restore the biliary system in ALGS or other diseases associated with BD paucity. Based on previous genetic observations, we investigated whether postnatal knockdown of the glycosyltransferase gene protein O -glucosyltransferase 1 ( Poglut1) can improve the ALGS liver phenotypes in several mouse models generated by removing one copy of Jag1 in the germline with or without reducing the gene dosage of sex-determining region Y-box 9 in the liver. APPROACH AND RESULTS Using an ASO established in this study, we show that reducing Poglut1 levels in postnatal livers of ALGS mouse models with moderate to profound biliary abnormalities can significantly improve BD development and biliary tree formation. Importantly, ASO injections prevent liver damage in these models without adverse effects. Furthermore, ASO-mediated Poglut1 knockdown improves biliary tree formation in a different mouse model with no Jag1 mutations. Cell-based signaling assays indicate that reducing POGLUT1 levels or mutating POGLUT1 modification sites on JAG1 increases JAG1 protein level and JAG1-mediated signaling, suggesting a likely mechanism for the observed in vivo rescue. CONCLUSIONS Our preclinical studies establish ASO-mediated POGLUT1 knockdown as a potential therapeutic strategy for ALGS liver disease and possibly other diseases associated with BD paucity.
Collapse
Affiliation(s)
- Nima Niknejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Duncan Fox
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX
| | - Jennifer L. Burwinkel
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Neda Zarrin-Khameh
- Department of Pathology & Immunology, Baylor College of Medicine and Ben Taub Hospital, Houston, TX
| | - Soomin Cho
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX
| | | | - Ashley E. Cast
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mario F. Lopez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Kari A. Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Stacey S. Huppert
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX
| |
Collapse
|
36
|
Ayoub MD, Bakhsh AA, Vandriel SM, Keitel V, Kamath BM. Management of adults with Alagille syndrome. Hepatol Int 2023; 17:1098-1112. [PMID: 37584849 PMCID: PMC10522532 DOI: 10.1007/s12072-023-10578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023]
Abstract
Alagille syndrome (ALGS) is a complex rare genetic disorder that involves multiple organ systems and is historically regarded as a disease of childhood. Since it is inherited in an autosomal dominant manner in 40% of patients, it carries many implications for genetic counselling of patients and screening of family members. In addition, the considerable variable expression and absence of a clear genotype-phenotype correlation, results in a diverse range of clinical manifestations, even in affected individuals within the same family. With recent therapeutic advancements in cholestasis treatment and the improved survival rates with liver transplantation (LT), many patients with ALGS survive into adulthood. Although LT is curative for liver disease secondary to ALGS, complications secondary to extrahepatic involvement remain problematic lifelong. This review is aimed at providing a comprehensive review of ALGS to adult clinicians who will take over the medical care of these patients following transition, with particular focus on certain aspects of the condition that require lifelong surveillance. We also provide a diagnostic framework for adult patients with suspected ALGS and highlight key aspects to consider when determining eligibility for LT in patients with this syndrome.
Collapse
Affiliation(s)
- Mohammed D Ayoub
- Department of Pediatrics, Faculty of Medicine, Rabigh Branch, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Ahmad A Bakhsh
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Pediatrics, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Shannon M Vandriel
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Otto Von Guericke University Magdeburg, Magdeburg, Germany
| | - Binita M Kamath
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
37
|
Stanberry I, Cunningham D, Ye S, Alonzo M, Zhao MT, Garg V, Lilly B. Characterization of an induced pluripotent stem cell line NCHi011-A from a 23-year-old female with Alagille Syndrome harboring a heterozygous JAG1 pathogenic variant. Stem Cell Res 2023; 72:103213. [PMID: 37774637 PMCID: PMC10807224 DOI: 10.1016/j.scr.2023.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Alagille syndrome (ALGS) is a multisystem disease with high variability in clinical features. ALGS is predominantly caused by pathogenic variants in the Notch ligand JAG1. An iPSC line, NCHi011-A, was generated from a ALGS patient with complex cardiac phenotypes consisting of pulmonic valve and branch pulmonary artery stenosis. NCHi011-A is heterozygous for a single base duplication causing a frameshift in the JAG1 gene. This iPSC line demonstrates normal cellular morphology, expression of pluripotency markers, trilineage differentiation potential, and identity to the source patient. NCHi011-A provides a resource for modeling ALGS and investigating the role of Notch signaling in the disease.
Collapse
Affiliation(s)
- Isaac Stanberry
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - David Cunningham
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Shiqiao Ye
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Alonzo
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brenda Lilly
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
38
|
Cunningham D, Stanberry I, Ye S, Alonzo M, Zhao MT, Garg V, Lilly B. Generation of iPSC line NCHi012-A from a patient with Alagille syndrome and heterozygous pathogenic variant in the JAG1 gene. Stem Cell Res 2023; 71:103177. [PMID: 37549562 PMCID: PMC10528323 DOI: 10.1016/j.scr.2023.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023] Open
Abstract
Alagille syndrome (ALGS) is an autosomal dominant disease affecting the liver, heart and other organs with high variability. About 95% of ALGS cases are associated with pathogenic variants in JAG1, encoding the Jagged1 ligand that binds to Notch receptors. The iPSC line NCHi012-A was derived from an ALGS patient with cholestatic liver disease and mild pulmonary stenosis, who is heterozygous for a 2 bp deletion in the JAG1 coding sequence. We report here an initial characterization of NCHi012-A to evaluate its morphology, pluripotency, differentiation potential, genotype, karyotype and identity to the source patient.
Collapse
Affiliation(s)
- David Cunningham
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Isaac Stanberry
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Shiqiao Ye
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Alonzo
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brenda Lilly
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
39
|
Semenova N, Kamenets E, Annenkova E, Marakhonov A, Gusarova E, Demina N, Guseva D, Anisimova I, Degtyareva A, Taran N, Strokova T, Zakharova E. Clinical Characterization of Alagille Syndrome in Patients with Cholestatic Liver Disease. Int J Mol Sci 2023; 24:11758. [PMID: 37511516 PMCID: PMC10380973 DOI: 10.3390/ijms241411758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Alagille syndrome (ALGS) is a multisystem condition characterized by cholestasis and bile duct paucity on liver biopsy and variable involvement of the heart, skeleton, eyes, kidneys, and face and caused by pathogenic variants in the JAG1 or NOTCH2 gene. The variable expressivity of the clinical phenotype and the lack of genotype-phenotype correlations lead to significant diagnostic difficulties. Here we present an analysis of 18 patients with cholestasis who were diagnosed with ALGS. We used an NGS panel targeting coding exons of 52 genes, including the JAG1 and NOTCH2 genes. Sanger sequencing was used to verify the mutation in the affected individuals and family members. The specific facial phenotype was seen in 16/18 (88.9%). Heart defects were seen in 8/18 (44.4%) patients (pulmonary stenosis in 7/8). Butterfly vertebrae were seen in 5/14 (35.7%) patients. Renal involvement was detected in 2/18 (11.1%) cases-one patient had renal cysts, and one had obstructive hydronephrosis. An ophthalmology examination was performed on 12 children, and only one had posterior embryotoxon (8.3%). A percutaneous liver biopsy was performed in nine cases. Bile duct paucity was detected in six/nine cases (66.7%). Two patients required liver transplantation because of cirrhosis. We identified nine novel variants in the JAG1 gene-eight frameshift variants (c.1619_1622dupGCTA (p.Tyr541X), c.1160delG (p.Gly387fs), c.964dupT (p.C322fs), c.120delG (p.L40fs), c.1984dupG (p.Ala662Glyfs), c.3168_3169delAG (p.R1056Sfs*51), c.2688delG (p.896CysfsTer49), c.164dupG (p.Cys55fs)) and one missense variant, c.2806T > G (p.Cys936Gly). None of the patients presented with NOTCH2 variants. In accordance with the classical criteria, only six patients could meet the diagnostic criteria in our cohort without genetic analysis. Genetic testing is important in the diagnosis of ALGS and can help differentiate it from other types of cholestasis.
Collapse
Affiliation(s)
| | - Elena Kamenets
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | | | | | - Elena Gusarova
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Nina Demina
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Daria Guseva
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Inga Anisimova
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Anna Degtyareva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after V.I. Kulakov, Ministry of Health of the Russian Federation, 115522 Moscow, Russia
- Department of Neonatology, First Moscow State Medical University named after I.M. Sechenov, 115522 Moscow, Russia
| | - Natalia Taran
- Federal Research Centre of Nutrition and Biotechnology, 115522 Moscow, Russia
| | - Tatiana Strokova
- Federal Research Centre of Nutrition and Biotechnology, 115522 Moscow, Russia
| | | |
Collapse
|
40
|
Wang MX, Han J, Liu T, Wang RX, Li LT, Li ZD, Yang JC, Liu LL, Lu Y, Xie XB, Gong JY, Li SY, Zhang L, Ling V, Wang JS. Poly-hydroxylated bile acids and their prognostic roles in Alagille syndrome. World J Pediatr 2023; 19:652-662. [PMID: 36658452 DOI: 10.1007/s12519-022-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The liver manifestations of Alagille syndrome (ALGS) are highly variable, and factors affecting its prognosis are poorly understood. We asked whether the composition of bile acids in ALGS patients with good clinical outcomes differs from that in patients with poor outcomes and whether bile acids could be used as prognostic biomarkers. METHODS Blood for bile acid profiling was collected from genetically confirmed JAG1-associated ALGS patients before one year of age. A good prognosis was defined as survival with native liver and total bilirubin (TB) < 85.5 μmol/L, while a poor prognosis was defined as either liver transplantation, death from liver failure, or TB ≥ 85.5 μmol/L at the last follow-up. RESULTS We found that the concentrations of two poly-hydroxylated bile acids, tauro-2β,3α,7α,12α-tetrahydroxylated bile acid (THBA) and glyco-hyocholic acid (GHCA), were significantly increased in patients with good prognosis compared to those with poor prognosis [area under curve (AUC) = 0.836 and 0.782, respectively] in the discovery cohort. The same trend was also observed in the molar ratios of GHCA to glyco- chenodeoxycholic acid (GCDCA) and tetrahydroxylated bile acid (THCA) to tauro-chenodeoxycholic acid (TCDCA) (both AUC = 0.836). A validation cohort confirmed these findings. Notably, tauro-2β,3α,7α,12α-THBA achieved the highest prediction accuracy of 88.00% (92.31% sensitivity and 83.33% specificity); GHCA at > 607.69 nmol/L was associated with native liver survival [hazard ratio: 13.03, 95% confidence interval (CI): (2.662-63.753), P = 0.002]. CONCLUSIONS We identified two poly-hydroxylated bile acids as liver prognostic biomarkers of ALGS patients. Enhanced hydroxylation of bile acids may result in better clinical outcomes.
Collapse
Affiliation(s)
- Meng-Xuan Wang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, 201508, China
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jun Han
- University of Victoria-Genome BC Proteomics Centre and Division of Medical Sciences, Victoria, British Columbia, Canada
| | - Teng Liu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Ren-Xue Wang
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Li-Ting Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Zhong-Die Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jun-Cong Yang
- University of Victoria-Genome BC Proteomics Centre and Division of Medical Sciences, Victoria, British Columbia, Canada
| | - Lang-Li Liu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Shi-Yu Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, China
| | - Victor Ling
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
- Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China.
| |
Collapse
|
41
|
Halma J, Lin HC. Alagille syndrome: understanding the genotype-phenotype relationship and its potential therapeutic impact. Expert Rev Gastroenterol Hepatol 2023; 17:883-892. [PMID: 37668532 DOI: 10.1080/17474124.2023.2255518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Alagille syndrome (ALGS) is an autosomal dominant, multisystem genetic disorder with wide phenotypic variability caused by mutations in the Notch signaling pathway, specifically from mutations in either the Jagged1 (JAG1) or NOTCH2 gene. The range of clinical features in ALGS can involve various organ systems including the liver, heart, eyes, skeleton, kidney, and vasculature. Despite the genetic mutations being well-defined, there is variable expressivity and individuals with the same mutation may have different clinical phenotypes. AREAS COVERED While no clear genotype-phenotype correlation has been identified in ALGS, this review will summarize what is currently known about the genotype-phenotype relationship and how this relationship influences the treatment of the multisystemic disorder. This review includes discussion of numerous studies which have focused on describing the genotype-phenotype relationship of different organ systems in ALGS as well as relevant basic science and population studies of ALGS. A thorough literature search was completed via the PubMed and National Library of Medicine GeneReviews databases including dates from 1969, when ALGS was first identified, to February 2023. EXPERT OPINION The genetics of ALGS are well defined; however, ongoing investigation to identify genotype-phenotype relationships as well as genetic modifiers as potential therapeutic targets is needed. Clinicians and patients alike would benefit from identification of a correlation to aid in diagnostic evaluation and management.
Collapse
Affiliation(s)
- Jennifer Halma
- Division of Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Henry C Lin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
42
|
Zhang YQ, Gao PF, Yang JM, Zhang J, Lu YL, Wang JS. Balanced Translocation Disrupting JAG1 Identified by Optical Genomic Mapping in Suspected Alagille Syndrome. Hum Mutat 2023; 2023:5396281. [PMID: 40225158 PMCID: PMC11918711 DOI: 10.1155/2023/5396281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 04/15/2025]
Abstract
We report the clinical and genetic features of a Han Chinese boy who presented with disease suspect for Alagille syndrome (ALGS). Multiple genetic analyses (panel sequencing, multiplex-ligation-dependent probe amplification, and whole genome sequencing) failed to uncover a causative variant. Optical genomic mapping detected a reciprocal translocation between chromosomes 4 and 20, interrupting JAG1. Long-range polymerase chain reaction and targeted sequencing identified the exact breakpoints. Sanger sequencing and reanalysis of genome sequencing raw data further confirmed the result. This translocation is expected to generate aberrant JAG1 transcripts that lead to complete loss of JAG1 expression. This is the first t(4;20)(q22.1;p12.2) balanced translocation detected by optical genomic mapping and characterized at base-pair resolution in ALGS. Our approach permitted precise diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Yi-Qiong Zhang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Peng-Fei Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing-Min Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai WeHealth Biomedical Technology Co., Ltd., Shanghai, China
- Key Laboratory of Birth Defects and Reproductive Health of National Health and Family Planning Commission (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute), Chongqing 400020, China
| | - Jing Zhang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yu-Lan Lu
- Center for Molecular Medicine, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defect, Shanghai, China
| |
Collapse
|
43
|
Sok P, Sabo A, Almli LM, Jenkins MM, Nembhard WN, Agopian AJ, Bamshad MJ, Blue EE, Brody LC, Brown AL, Browne ML, Canfield MA, Carmichael SL, Chong JX, Dugan-Perez S, Feldkamp ML, Finnell RH, Gibbs RA, Kay DM, Lei Y, Meng Q, Moore CA, Mullikin JC, Muzny D, Olshan AF, Pangilinan F, Reefhuis J, Romitti PA, Schraw JM, Shaw GM, Werler MM, Harpavat S, Lupo PJ, University of Washington Center for Mendelian Genomics, NISC Comparative
Sequencing Program, the National Birth Defects Prevention Study. Exome-wide assessment of isolated biliary atresia: A report from the National Birth Defects Prevention Study using child-parent trios and a case-control design to identify novel rare variants. Am J Med Genet A 2023; 191:1546-1556. [PMID: 36942736 PMCID: PMC10947986 DOI: 10.1002/ajmg.a.63185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
The etiology of biliary atresia (BA) is unknown, but recent studies suggest a role for rare protein-altering variants (PAVs). Exome sequencing data from the National Birth Defects Prevention Study on 54 child-parent trios, one child-mother duo, and 1513 parents of children with other birth defects were analyzed. Most (91%) cases were isolated BA. We performed (1) a trio-based analysis to identify rare de novo, homozygous, and compound heterozygous PAVs and (2) a case-control analysis using a sequence kernel-based association test to identify genes enriched with rare PAVs. While we replicated previous findings on PKD1L1, our results do not suggest that recurrent de novo PAVs play important roles in BA susceptibility. In fact, our finding in NOTCH2, a disease gene associated with Alagille syndrome, highlights the difficulty in BA diagnosis. Notably, IFRD2 has been implicated in other gastrointestinal conditions and warrants additional study. Overall, our findings strengthen the hypothesis that the etiology of BA is complex.
Collapse
Affiliation(s)
- Pagna Sok
- Pediatrics, Baylor College of Medicine, Houston, Texas,
USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston, Texas, USA
| | - Lynn M. Almli
- National Center on Birth Defects and Developmental
Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia,
USA
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental
Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia,
USA
| | - Wendy N. Nembhard
- Fay W. Boozman College of Public Health, University of
Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - A. J. Agopian
- Department of Epidemiology, Human Genetics, and
Environmental Sciences, University of Texas School of Public Health, Houston, Texas,
USA
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle,
Washington, USA
| | - Elizabeth E. Blue
- Brotman Baty Institute for Precision Medicine, Seattle,
Washington, USA
- Division of Medical Genetics, Department of Medicine,
University of Washington, Seattle, Washington, USA
| | - Lawrence C. Brody
- Genetics and Environment Interaction Section, National
Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland,
USA
| | | | - Marilyn L. Browne
- Birth Defects Registry, New York State Department of
Health, Albany, New York, USA
- Department of Epidemiology and Biostatistics, School of
Public Health, University at Albany, Rensselaer, New York, USA
| | - Mark A. Canfield
- Birth Defects Epidemiology and Surveillance Branch, Texas
Department of State Health Services, Austin, Texas, USA
| | - Suzan L. Carmichael
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, California, USA
| | - Jessica X. Chong
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle,
Washington, USA
| | - Shannon Dugan-Perez
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston, Texas, USA
| | - Marcia L. Feldkamp
- Division of Medical Genetics, Department of Pediatrics,
University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Richard H. Finnell
- Department of Medicine, Center for Precision
Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston, Texas, USA
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State
Department of Health, Albany, New York, USA
| | - Yunping Lei
- Department of Medicine, Center for Precision
Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston, Texas, USA
| | - Cynthia A. Moore
- National Center on Birth Defects and Developmental
Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia,
USA
| | - James C. Mullikin
- Genetics and Environment Interaction Section, National
Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland,
USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine,
Houston, Texas, USA
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global
Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Faith Pangilinan
- Genetics and Environment Interaction Section, National
Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland,
USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental
Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia,
USA
| | - Paul A. Romitti
- Department of Epidemiology, University of Iowa College of
Public Health, Iowa City, Iowa, USA
| | | | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, California, USA
| | - Martha M. Werler
- Department of Epidemiology, Boston University, Boston,
Massachusetts, USA
| | - Sanjiv Harpavat
- Pediatrics, Baylor College of Medicine, Houston, Texas,
USA
- Gastroenterology, Hepatology and Nutrition, Texas
Children’s Hospital, Houston, Texas, USA
| | - Philip J. Lupo
- Pediatrics, Baylor College of Medicine, Houston, Texas,
USA
| | | |
Collapse
|
44
|
Xie S, Wei S, Ma X, Wang R, He T, Zhang Z, Yang J, Wang J, Chang L, Jing M, Li H, Zhou X, Zhao Y. Genetic alterations and molecular mechanisms underlying hereditary intrahepatic cholestasis. Front Pharmacol 2023; 14:1173542. [PMID: 37324459 PMCID: PMC10264785 DOI: 10.3389/fphar.2023.1173542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Hereditary cholestatic liver disease caused by a class of autosomal gene mutations results in jaundice, which involves the abnormality of the synthesis, secretion, and other disorders of bile acids metabolism. Due to the existence of a variety of gene mutations, the clinical manifestations of children are also diverse. There is no unified standard for diagnosis and single detection method, which seriously hinders the development of clinical treatment. Therefore, the mutated genes of hereditary intrahepatic cholestasis were systematically described in this review.
Collapse
Affiliation(s)
- Shuying Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruilin Wang
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting He
- Department of Pharmacy, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhao Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Yang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawei Wang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Chang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Manyi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanling Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
45
|
Sticova E, Fabian O. Morphological aspects of small-duct cholangiopathies: A minireview. World J Hepatol 2023; 15:538-553. [PMID: 37206655 PMCID: PMC10190694 DOI: 10.4254/wjh.v15.i4.538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023] Open
Abstract
The biliary system consists of intrahepatic and extrahepatic bile ducts lined by biliary epithelial cells (cholangiocytes). Bile ducts and cholangiocytes are affected by a variety of disorders called cholangiopathies, which differ in aetiology, pathogenesis, and morphology. Classification of cholangiopathies is complex and reflects pathogenic mechanisms (immune-mediated, genetic, drug- and toxin-induced, ischaemic, infectious, neoplastic), predominant morphological patterns of biliary injury (suppurative and non-suppurative cholangitis, cholangiopathy), and specific segments of the biliary tree affected by the disease process. While the involvement of large extrahepatic and intrahepatic bile ducts is typically visualised using radiology imaging, histopathological examination of liver tissue obtained by percutaneous liver biopsy still plays an important role in the diagnosis of cholangiopathies affecting the small intrahepatic bile ducts. To increase the diagnostic yield of a liver biopsy and determine the optimal therapeutic approach, the referring clinician is tasked with interpreting the results of histopathological examination. This requires knowledge and understanding of basic morphological patterns of hepatobiliary injury and an ability to correlate microscopic findings with results obtained by imaging and laboratory methods. This minireview describes the morphological aspects of small-duct cholangiopathies pertaining to the diagnostic process.
Collapse
Affiliation(s)
- Eva Sticova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague 14021, Czech Republic
- Department of Pathology, The Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague 10000, Czech Republic
| | - Ondrej Fabian
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague 14021, Czech Republic
- Department of Pathology and Molecular Medicine, The Third faculty of Medicine, Charles University and Thomayer University Hospital, Prague 14059, Czech Republic
| |
Collapse
|
46
|
Dangoni GD, Teixeira ACB, Aguiar TF, Sugayama SMM, Filho VO, Bertola DR, Krepischi ACV. A rare case of hepatoblastoma in a syndromic child with a de novo germline JAG1 mutation. Pediatr Blood Cancer 2023; 70:e30311. [PMID: 36965188 DOI: 10.1002/pbc.30311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/27/2023]
Affiliation(s)
- Gustavo Dib Dangoni
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Anne Caroline Barbosa Teixeira
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Talita Ferreira Aguiar
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sofia Mizuho Miura Sugayama
- Faculty of Medicine, Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), University of São Paulo, São Paulo, SP, Brazil
| | - Vicente Odone Filho
- Faculty of Medicine, Department of Pediatrics, Instituto de Tratamento do Câncer Infantil (ITACI), University of São Paulo, São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
- Genetics Unit, Instituto da Criança, Hospital das Clinicas Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
47
|
Cotellessa L, Marelli F, Duminuco P, Adamo M, Papadakis GE, Bartoloni L, Sato N, Lang-Muritano M, Troendle A, Dhillo WS, Morelli A, Guarnieri G, Pitteloud N, Persani L, Bonomi M, Giacobini P, Vezzoli V. Defective jagged-1 signaling affects GnRH development and contributes to congenital hypogonadotropic hypogonadism. JCI Insight 2023; 8:161998. [PMID: 36729644 PMCID: PMC10077483 DOI: 10.1172/jci.insight.161998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
In vertebrate species, fertility is controlled by gonadotropin-releasing hormone (GnRH) neurons. GnRH cells arise outside the central nervous system, in the developing olfactory pit, and migrate along olfactory/vomeronasal/terminal nerve axons into the forebrain during embryonic development. Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome are rare genetic disorders characterized by infertility, and they are associated with defects in GnRH neuron migration and/or altered GnRH secretion and signaling. Here, we documented the expression of the jagged-1/Notch signaling pathway in GnRH neurons and along the GnRH neuron migratory route both in zebrafish embryos and in human fetuses. Genetic knockdown of the zebrafish ortholog of JAG1 (jag1b) resulted in altered GnRH migration and olfactory axonal projections to the olfactory bulbs. Next-generation sequencing was performed in 467 CHH unrelated probands, leading to the identification of heterozygous rare variants in JAG1. Functional in vitro validation of JAG1 mutants revealed that 7 out of the 9 studied variants exhibited reduced protein levels and altered subcellular localization. Together our data provide compelling evidence that Jag1/Notch signaling plays a prominent role in the development of GnRH neurons, and we propose that JAG1 insufficiency may contribute to the pathogenesis of CHH in humans.
Collapse
Affiliation(s)
- Ludovica Cotellessa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,University Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, FHU 1000 days for health, Lille, France
| | - Federica Marelli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Duminuco
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Michela Adamo
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Georgios E Papadakis
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Lucia Bartoloni
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Naoko Sato
- Department of Pediatrics, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mariarosaria Lang-Muritano
- Department of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
| | - Amineh Troendle
- Department of Endocrinology, Diabetology, and Metabolism, Lindenhofspital, Bern, Switzerland
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Giacobini
- University Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, FHU 1000 days for health, Lille, France
| | - Valeria Vezzoli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
48
|
Dąbrowska J, Biedziak B, Bogdanowicz A, Mostowska A. Identification of Novel Risk Variants of Non-Syndromic Cleft Palate by Targeted Gene Panel Sequencing. J Clin Med 2023; 12:2051. [PMID: 36902838 PMCID: PMC10004578 DOI: 10.3390/jcm12052051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Non-syndromic cleft palate (ns-CP) has a genetically heterogeneous aetiology. Numerous studies have suggested a crucial role of rare coding variants in characterizing the unrevealed component of genetic variation in ns-CP called the "missing heritability". Therefore, this study aimed to detect low-frequency variants that are implicated in ns-CP aetiology in the Polish population. For this purpose, coding regions of 423 genes associated with orofacial cleft anomalies and/or involved with facial development were screened in 38 ns-CP patients using the next-generation sequencing technology. After multistage selection and prioritisation, eight novel and four known rare variants that may influence an individual's risk of ns-CP were identified. Among detected alternations, seven were located in novel candidate genes for ns-CP, including COL17A1 (c.2435-1G>A), DLG1 (c.1586G>C, p.Glu562Asp), NHS (c.568G>C, p.Val190Leu-de novo variant), NOTCH2 (c.1997A>G, p.Tyr666Cys), TBX18 (c.647A>T, p.His225Leu), VAX1 (c.400G>A, p.Ala134Thr) and WNT5B (c.716G>T, p.Arg239Leu). The remaining risk variants were identified within genes previously linked to ns-CP, confirming their contribution to this anomaly. This list included ARHGAP29 (c.1706G>A, p.Arg569Gln), FLNB (c.3605A>G, Tyr1202Cys), IRF6 (224A>G, p.Asp75Gly-de novo variant), LRP6 (c.481C>A, p.Pro161Thr) and TP63 (c.353A>T, p.Asn118Ile). In summary, this study provides further insights into the genetic components contributing to ns-CP aetiology and identifies novel susceptibility genes for this craniofacial anomaly.
Collapse
Affiliation(s)
- Justyna Dąbrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland
| | - Barbara Biedziak
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Agnieszka Bogdanowicz
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland
| |
Collapse
|
49
|
Li J, Wu H, Chen S, Pang J, Wang H, Li X, Gan W. Clinical and Genetic Characteristics of Alagille Syndrome in Adults. J Clin Transl Hepatol 2023; 11:156-162. [PMID: 36406308 PMCID: PMC9647109 DOI: 10.14218/jcth.2021.00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/26/2021] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS Alagille syndrome (AGS) is an autosomal dominant multisystem disorder caused by mutations in the JAG1 and NOTCH2 genes. AGS has been rarely reported in adult patients, mainly because its characteristics in adults are subtle. The study aimed to improve the understanding of adult AGS by a descriptive case series. METHODS Eight adults diagnosed with AGS at our hospital between June 2016 and June 2019 were included in the study. Clinical data, biochemical results, imaging results, liver histopathology, and genetic testing were analyzed. RESULTS Three female and five male patients with a median age of 24.5 years at the time of diagnosis were included in the analysis. The clinical manifestations were adult-onset (62.5%, 5/8), cholestasis (50%, 4/8), butterfly vertebrae (62.5%, 5/8), systolic murmurs (12.5%, 1/8), typical facies (12.5%, 1/8), posterior embryotoxon, and renal abnormalities (0/8). Genetic sequencing showed that all patients had mutations, with four occurring in the JAG1 gene and four in the NOTCH2 gene. Six were substitution mutations, one was a deletion mutation, and one was a splicing mutation. Five had been previously reported; but the others, one JAG1 mutation and two NOTCH2 mutations were unique and are reported here for the first time. CONCLUSIONS The clinical manifestations highlighted by the current diagnostic criteria for most adults with AGS are atypical. Those who do not meet the criteria but are highly suspicious of having AGS need further evaluation, especially genetic testing.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haicong Wu
- Department of Hepatobiliary Medicine, 900th Hospital of Joint Logistics Support Force, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Shuru Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahui Pang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Heping Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinhua Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Gan
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Vandriel SM, Li L, She H, Wang J, Gilbert MA, Jankowska I, Czubkowski P, Gliwicz‐Miedzińska D, Gonzales EM, Jacquemin E, Bouligand J, Spinner NB, Loomes KM, Piccoli DA, D'Antiga L, Nicastro E, Sokal É, Demaret T, Ebel NH, Feinstein JA, Fawaz R, Nastasio S, Lacaille F, Debray D, Arnell H, Fischler B, Siew S, Stormon M, Karpen SJ, Romero R, Kim KM, Baek WY, Hardikar W, Shankar S, Roberts AJ, Evans HM, Jensen MK, Kavan M, Sundaram SS, Chaidez A, Karthikeyan P, Sanchez MC, Cavalieri ML, Verkade HJ, Lee WS, Squires JE, Hajinicolaou C, Lertudomphonwanit C, Fischer RT, Larson‐Nath C, Mozer‐Glassberg Y, Arikan C, Lin HC, Bernabeu JQ, Alam S, Kelly DA, Carvalho E, Ferreira CT, Indolfi G, Quiros‐Tejeira RE, Bulut P, Calvo PL, Önal Z, Valentino PL, Desai DM, Eshun J, Rogalidou M, Dezsőfi A, Wiecek S, Nebbia G, Pinto RB, Wolters VM, Tamara ML, Zizzo AN, Garcia J, Schwarz K, Beretta M, Sandahl TD, Jimenez‐Rivera C, Kerkar N, Brecelj J, Mujawar Q, Rock N, Busoms CM, Karnsakul W, Lurz E, Santos‐Silva E, Blondet N, Bujanda L, Shah U, Thompson RJ, Hansen BE, Kamath BM. Natural history of liver disease in a large international cohort of children with Alagille syndrome: Results from the GALA study. Hepatology 2023; 77:512-529. [PMID: 36036223 PMCID: PMC9869940 DOI: 10.1002/hep.32761] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Alagille syndrome (ALGS) is a multisystem disorder, characterized by cholestasis. Existing outcome data are largely derived from tertiary centers, and real-world data are lacking. This study aimed to elucidate the natural history of liver disease in a contemporary, international cohort of children with ALGS. APPROACH AND RESULTS This was a multicenter retrospective study of children with a clinically and/or genetically confirmed ALGS diagnosis, born between January 1997 and August 2019. Native liver survival (NLS) and event-free survival rates were assessed. Cox models were constructed to identify early biochemical predictors of clinically evident portal hypertension (CEPH) and NLS. In total, 1433 children (57% male) from 67 centers in 29 countries were included. The 10 and 18-year NLS rates were 54.4% and 40.3%. By 10 and 18 years, 51.5% and 66.0% of children with ALGS experienced ≥1 adverse liver-related event (CEPH, transplant, or death). Children (>6 and ≤12 months) with median total bilirubin (TB) levels between ≥5.0 and <10.0 mg/dl had a 4.1-fold (95% confidence interval [CI], 1.6-10.8), and those ≥10.0 mg/dl had an 8.0-fold (95% CI, 3.4-18.4) increased risk of developing CEPH compared with those <5.0 mg/dl. Median TB levels between ≥5.0 and <10.0 mg/dl and >10.0 mg/dl were associated with a 4.8 (95% CI, 2.4-9.7) and 15.6 (95% CI, 8.7-28.2) increased risk of transplantation relative to <5.0 mg/dl. Median TB <5.0 mg/dl were associated with higher NLS rates relative to ≥5.0 mg/dl, with 79% reaching adulthood with native liver ( p < 0.001). CONCLUSIONS In this large international cohort of ALGS, only 40.3% of children reach adulthood with their native liver. A TB <5.0 mg/dl between 6 and 12 months of age is associated with better hepatic outcomes. These thresholds provide clinicians with an objective tool to assist with clinical decision-making and in the evaluation of therapies.
Collapse
Affiliation(s)
- Shannon M. Vandriel
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Li‐Ting Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Huiyu She
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jian‐She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Melissa A. Gilbert
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Nutrition Disturbances and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Piotr Czubkowski
- Department of Gastroenterology, Hepatology, Nutrition Disturbances and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dorota Gliwicz‐Miedzińska
- Department of Gastroenterology, Hepatology, Nutrition Disturbances and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Emmanuel M. Gonzales
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases (Biliary Atresia and Genetic Cholestasis), FILFOIE, ERN RARE LIVER, Bicêtre Hospital, AP‐HP and Inserm U1193, Hepatinov, Université Paris‐Saclay, Le Kremlin‐Bicêtre, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases (Biliary Atresia and Genetic Cholestasis), FILFOIE, ERN RARE LIVER, Bicêtre Hospital, AP‐HP and Inserm U1193, Hepatinov, Université Paris‐Saclay, Le Kremlin‐Bicêtre, France
| | - Jérôme Bouligand
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris‐Saclay, Assistance Publique‐Hôpitaux de Paris, Centre Hospitalier Universitaire de Bicêtre, Le Kremlin‐Bicêtre, France
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kathleen M. Loomes
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David A. Piccoli
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lorenzo D'Antiga
- Pediatric Hepatology, Gastroenterology and Transplantation, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and Transplantation, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Étienne Sokal
- Service De Gastroentérologie & Hépatologie Pédiatrique, Cliniques Universitaires Saint‐Luc, Brussels, Belgium
| | - Tanguy Demaret
- Service De Gastroentérologie & Hépatologie Pédiatrique, Cliniques Universitaires Saint‐Luc, Brussels, Belgium
| | - Noelle H. Ebel
- Division of Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Jeffrey A. Feinstein
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Rima Fawaz
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Silvia Nastasio
- Division of Gastroenterology, Hepatology, & Nutrition, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Florence Lacaille
- Department of Pediatric Gastroenterology, and Nutrition, Necker‐Enfants Malades Hospital, University of Paris, Paris, France
| | - Dominique Debray
- Pediatric Liver Unit, National Reference Centre for Rare Pediatric Liver Diseases (Biliary Atresia and Genetic Cholestasis), FILFOIE, ERN RARE LIVER, Necker‐Enfants Malades Hospital, University of Paris, Paris, France
| | - Henrik Arnell
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Björn Fischler
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Susan Siew
- Department of Gastroenterology, The Children's Hospital at Westmead, Sydney, Australia
| | - Michael Stormon
- Department of Gastroenterology, The Children's Hospital at Westmead, Sydney, Australia
| | - Saul J. Karpen
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rene Romero
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kyung Mo Kim
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Republic of Korea
| | - Woo Yim Baek
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Republic of Korea
| | - Winita Hardikar
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Melbourne, Australia
| | - Sahana Shankar
- Mazumdar Shaw Medical Center, Narayana Health, Bangalore, India
| | - Amin J. Roberts
- Department of Paediatric Gastroenterology, Starship Child Health, Auckland, New Zealand
| | - Helen M. Evans
- Department of Paediatric Gastroenterology, Starship Child Health, Auckland, New Zealand
| | - M. Kyle Jensen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Utah, Salt Lake City, Utah, USA
| | - Marianne Kavan
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Utah, Salt Lake City, Utah, USA
| | - Shikha S. Sundaram
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics and the Digestive Health Institute, Children's Hospital of Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander Chaidez
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics and the Digestive Health Institute, Children's Hospital of Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Maria Camila Sanchez
- Pediatric Gastroenterology and Hepatology Division, Hospital Italiano Buenos Aires, Buenos Aires, Argentina
| | - Maria Lorena Cavalieri
- Pediatric Gastroenterology and Hepatology Division, Hospital Italiano Buenos Aires, Buenos Aires, Argentina
| | - Henkjan J. Verkade
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Way Seah Lee
- Faculty of Medicine, Department of Paediatrics, University of Malaya, Kuala Lumpur, Malaysia
| | - James E. Squires
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christina Hajinicolaou
- Division of Paediatric Gastroenterology, Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Chatmanee Lertudomphonwanit
- Division of Gastroenterology, Department of Pediatrics, Ramathibodi Hospital Mahidol University, Bangkok, Thailand
| | - Ryan T. Fischer
- Department of Gastroenterology, Section of Hepatology, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Catherine Larson‐Nath
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yael Mozer‐Glassberg
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Cigdem Arikan
- Department of Pediatric Gastroenterology and Organ Transplant, Koc University School of Medicine, Istanbul, Turkey
| | - Henry C. Lin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, USA
| | - Jesus Quintero Bernabeu
- Pediatric Hepatology and Liver Transplant Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Deirdre A. Kelly
- Liver Unit, Birmingham Women's & Children's Hospital NHS Trust, University of Birmingham, Birmingham, UK
| | - Elisa Carvalho
- Pediatric Gastroenterology Department, Hospital da Criança de Brasília, Centro Universitário de Brasília, Brasília, Brazil
| | - Cristina Targa Ferreira
- Pediatric Gastroenterology Service, Hospital da Criança Santo Antôni, Universidade Federal de Ciências da Saúde de Porto Alegre, Complexo Hospitalar Santa Casa, Porto Alegre, RS, Brazil
| | - Giuseppe Indolfi
- Paediatric and Liver Unit, Department Neurofarba, University of Florence and Meyer Children's University Hospital, Florence, Italy
| | - Ruben E. Quiros‐Tejeira
- Department of Pediatrics, Children's Hospital & Medical Center and University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Pinar Bulut
- Division of Pediatric Gastroenterology and Hepatology, Phoenix Children's Hospital, Phoenix, USA
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera‐Universitaria Citta' della Salute e della Scienza, Turin, Italy
| | - Zerrin Önal
- Pediatric Gastroenterology, Hepatology and Nutrition Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Pamela L. Valentino
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dev M. Desai
- Solid Organ Transplant Department, Children's Health – Children's Medical Center, Dallas, Texas, USA
| | - John Eshun
- Department of Pediatric Gastroenterology, Le Bonheur Children's Hospital, The University of Tennessee Health Science Center, Memphis, Texas, USA
| | - Maria Rogalidou
- Division of Gastroenterology & Hepatology, First Department of Pediatrics, “Agia Sofia” Children's Hospital, University of Athens, Athens, Greece
| | - Antal Dezsőfi
- First Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Sabina Wiecek
- Department of Pediatrics, Medical University of Silesia in Katowice, Katowice, Poland
| | - Gabriella Nebbia
- Servizio di Epatologia Pediatrica, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Raquel Borges Pinto
- Division of Pediatric Gastroenterology of Hospital da Criança Conceição do Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Victorien M. Wolters
- Department of Pediatric Gastroenterology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Andréanne N. Zizzo
- Division of Paediatric Gastroenterology and Hepatology, London Health Sciences Centre, Children's Hospital, Western University, London, Ontario, Canada
| | - Jennifer Garcia
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Miami Transplant Institute, University of Miami, Miami, Florida, USA
| | - Kathleen Schwarz
- Division of Pediatric Gastroenterology, University of California San Diego, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Marisa Beretta
- Faculty of Health Sciences, Wits Donald Gordon Medical Centre, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Carolina Jimenez‐Rivera
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Nanda Kerkar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Jernej Brecelj
- Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Faculty of Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Quais Mujawar
- Section of Pediatric Gastroenterology, Department of Pediatrics, University of Manitoba, Winnipeg, Canada
| | - Nathalie Rock
- Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Cristina Molera Busoms
- Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Wikrom Karnsakul
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eberhard Lurz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Ermelinda Santos‐Silva
- Pediatric Gastroenterology Unit, Centro Hospitalar Universitário Do Porto, Porto, Portugal
| | - Niviann Blondet
- Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Luis Bujanda
- Department of Hepatology and Gastroenterology, Biodonostia Health Research Institute, Donostia University Hospital, Universidad del País Vasco (UPV/EHU), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), San Sebastián, Spain
| | - Uzma Shah
- Harvard Medical School, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | | | - Bettina E. Hansen
- Toronto General Hospital University Health Network, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, Toronto, Ontario, Canada
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| |
Collapse
|