1
|
Yadav V, Krishnan A, Baig MS, Majeed M, Nayak M, Vohora D. Decrypting the interaction pattern of Piperlongumine with calf thymus DNA and dodecamer d(CGCGAATTCGCG) 2 B-DNA: Biophysical and molecular docking analysis. Biophys Chem 2022; 285:106808. [PMID: 35358908 DOI: 10.1016/j.bpc.2022.106808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 12/20/2022]
Abstract
The mechanisms of interaction of DNA with pharmacological molecules are critical to understanding their therapeutic actions on physiological systems. Piperlongumine is widely studied for its anticancer potential. Multi-spectrometry, calorimetry and in silico studies were employed to study the interaction of piperlongumine and calf thymus DNA. UV-Vis spectroscopy illustrated a hyperchromic pattern in spectra of the calf thymus DNA-piperlongumine complex, while fluorescent quenching was observed in emission spectral studies. Competitive displacement assay demonstrated higher displacement and binding constant for DNA-rhodamine B complex by piperlongumine than DNA-methylene blue complex. Differential scanning calorimetry presented non-significant changes in melting temperature and molecular docking presented the precise interaction site of piperlongumine with calf thymus DNA at minor groove. Further, piperlongumine treatment did not result in pBluescript KS plasmid DNA cleavage as revealed from the DNA topology assay. All these experiments confirmed the binding of piperlongumine with DNA through minor groove binding mode.
Collapse
Affiliation(s)
- Vaishali Yadav
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Mirza Sarwar Baig
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Muhammed Majeed
- Sami-Sabinsa Group Limited, Bengaluru 560058, Karnataka, India
| | - Mahadeva Nayak
- Sami-Sabinsa Group Limited, Bengaluru 560058, Karnataka, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Durner J, Schrickel K, Watts DC, Becker M, Draenert ME. Direct and indirect eluates from bulk fill resin-based-composites. Dent Mater 2022; 38:489-507. [DOI: 10.1016/j.dental.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
3
|
Fernandes BJD, Couto RD. Toxicological alert: Exposure to glycidyl methacrylate and cancer risk. Toxicol Ind Health 2020; 36:937-939. [PMID: 33155520 DOI: 10.1177/0748233720957816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glycidyl methacrylate (GMA; CAS no. 106-91-2) is a chemical monomer used in the manufacture of dental resins, can coatings and polymers. GMA has demonstrated toxicity to the ocular, digestive, respiratory and dermal systems. Human exposure occurs mainly in the workplace, but it can also happen through food. Although there were no available data on carcinogenicity of GMA, carcinogenic potential in the nasal cavity is highly expected. Further studies are needed to assess GMA exposure in humans. This study provides an alert of GMA human exposure and its genotoxic and carcinogenic potential.
Collapse
Affiliation(s)
- Bruno Jose Dumêt Fernandes
- Clinical Toxicology Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, 495454Federal University of Bahia/UFBA, Salvador, Bahia, Brazil
| | - Ricardo David Couto
- Clinical Biochemistry Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, 495454Federal University of Bahia/UFBA, Salvador, Bahia, Brazil
| |
Collapse
|
4
|
Montanari U, Taresco V, Liguori A, Gualandi C, Howdle SM. Synthesis of novel carvone (meth)acrylate monomers for the production of hydrophilic polymers with high terpene content. POLYM INT 2020. [DOI: 10.1002/pi.6096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ulisse Montanari
- School of Chemistry University of Nottingham, University Park Nottingham UK
| | - Vincenzo Taresco
- School of Chemistry University of Nottingham, University Park Nottingham UK
| | - Anna Liguori
- Department of Chemistry ‘Giacomo Ciamician’ and INSTM UdR of Bologna University of Bologna Bologna Italy
| | - Chiara Gualandi
- Department of Chemistry ‘Giacomo Ciamician’ and INSTM UdR of Bologna University of Bologna Bologna Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI‐MAM University of Bologna Bologna Italy
| | - Steven M Howdle
- School of Chemistry University of Nottingham, University Park Nottingham UK
| |
Collapse
|
5
|
Kim TY, Kim D, Yoon J, Kim S, Yi SW, Oh WT, Park JY, Kim H, Kang M, Lee JB, Sung H. External Self‐Closing Tube to Occlude a Vessel Gradually as a Therapeutic Means of Portosystemic Shunt. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tae Young Kim
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Dae‐Hyun Kim
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Jeong‐Kee Yoon
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Surim Kim
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Se Won Yi
- TMD Lab., Co., Ltd. 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Won Taek Oh
- TMD Lab., Co., Ltd. 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Ju Young Park
- TMD Lab., Co., Ltd. 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Hye‐Seon Kim
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Mi‐Lan Kang
- TMD Lab., Co., Ltd. 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| | - Jung Bok Lee
- Department of Biological ScienceSookmyung Women's University Seoul 04310 Republic of Korea
| | - Hak‐Joon Sung
- Department of Medical EngineeringYonsei University College of Medicine 50‐1 Yonsei‐ro, Seodaemun‐gu Seoul 03722 Republic of Korea
| |
Collapse
|
6
|
Heintze SD, Reichl FX, Hickel R. Wear of dental materials: Clinical significance and laboratory wear simulation methods -A review. Dent Mater J 2019; 38:343-353. [PMID: 30918233 DOI: 10.4012/dmj.2018-140] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review focusses on tribological aspects of teeth during function, the clinical significance of wear, wear of natural teeth and restorative materials and laboratory methods to simulate wear of restorative materials. Ceramic, metal alloy and amalgam show low material wear, whereas resin-based materials demonstrate substantial wear in the long term. The clinical wear shows a high variability with the patient factor accounts for about 50% of the variability. Wear as such seldomly compromises the function of the stomatognath system or individual teeth and is in most cases an esthetic problem. Particles that are ingested due to attrition and abrasion wear may pose a health risk to the patient, especially those from composite resin materials. However, systematic clinical studies on that issue are not available. For laboratory research many wear simulation devices and methods have been developed but only few are validated and have a moderate correlation with clinical wear.
Collapse
Affiliation(s)
| | - Franz-Xaver Reichl
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University
| | - Reinhard Hickel
- Department of Operative Dentistry and Periodontology, Ludwig-Maximilian-University
| |
Collapse
|
7
|
Bielecka-Kowalska A, Czarny P, Wigner P, Synowiec E, Kowalski B, Szwed M, Krupa R, Toma M, Drzewiecka M, Majsterek I, Szemraj J, Sliwinski T, Kowalski M. Ethylene glycol dimethacrylate and diethylene glycol dimethacrylate exhibits cytotoxic and genotoxic effect on human gingival fibroblasts via induction of reactive oxygen species. Toxicol In Vitro 2017; 47:8-17. [PMID: 29107684 DOI: 10.1016/j.tiv.2017.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022]
Abstract
Although methacrylic acid derivatives in their polymeric form are considered to be safe, insufficient polymerization and the release of monomers due to either mechanical or enzymatical factors can lead to their reaching millimolar concentrations in local tissue. The present study evaluates the effect of two methacrylate monomers - ethylene glycol dimethacrylate (EGDMA) and diethylene glycol dimethacrylate (DEGDMA) - on human gingival fibroblasts (HGFs). Both monomers were found to reduce cells viability in MTT assay, increase apoptosis and cause cell cycle arrest in G1/G0 phase. They also increased intracellular reactive oxygen species (ROS) production as measured by DCFH-DA and DHE probes and increased expression of GPx4 and SOD2. Both monomers increased DNA damage in comet assay. Moreover, HGFs were not able to repair those lesions within 120min of repair incubation. However, the monomers were not found to have any effect on the integrity of isolated plasmids. We postulate that EGDMA and DEGDMA exhibit their cytotoxic and genotoxic properties via increased production of ROS, which cause DNA damage, affect apoptosis, viability and cell cycle. Further studies are needed to better understand the properties of methacrylic acid monomers and to evaluate the risk that they cause for patients, dentists and dental technicians.
Collapse
Affiliation(s)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bartosz Kowalski
- Department of Maxillofacial Surgery, Medical University of Lodz, Lodz, Poland
| | - Marzena Szwed
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Renata Krupa
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Malgorzata Drzewiecka
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | | |
Collapse
|
8
|
Yilmaz B, Doğan S, Çelikler Kasimoğullari S. Hemocompatibility, cytotoxicity, and genotoxicity of poly(methylmethacrylate)/nanohydroxyapatite nanocomposites synthesized by melt blending method. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1331349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Begümhan Yilmaz
- Department of Molecular Biology and Genetics, Balikesir University Faculty of Science and Literature, Balikesir, Turkey
| | - Serap Doğan
- Department of Molecular Biology and Genetics, Balikesir University Faculty of Science and Literature, Balikesir, Turkey
| | | |
Collapse
|
9
|
Styllou P, Styllou M, Hickel R, Högg C, Reichl FX, Scherthan H. NAC ameliorates dental composite-induced DNA double-strand breaks and chromatin condensation. Dent Mater J 2017; 36:638-646. [PMID: 28747595 DOI: 10.4012/dmj.2016-316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Released (co)monomers from dental composite components can induce DNA damage of which DNA double-strand breaks (DSBs) threaten genome integrity. Here, we tested whether the administration of the antioxidant N-acetylcysteine (NAC) is able to reduce the dental composite-induced DSBs in primary human gingiva fibroblasts. The dental composites Bis-GMA (bisphenol-A-glycerolate dimethacrylate), GMA (glycidyl methacrylate), HEMA (2-hydroxyethyl methacrylate) and TEGDMA (triethyleneglycol dimethacrylate) were found to induce co-localizing microscopic nuclear foci numbers of the DSB markers γ-H2AX and 53BP1 per cell in the order: GMA>Bis-GMA>TEGDMA>HEMA. Supplementation of (co)monomer-containing culture medium with NAC led to a significant reduction of resin-induced DSBs as well as to an amelioration of dental monomer-induced nuclear chromatin condensation in gingival fibroblasts. Thus, antioxidant treatment can reduce radical-induced chromatin and DNA damage and open avenues to mitigate genotoxic effects of dental composite compounds.
Collapse
Affiliation(s)
- Panorea Styllou
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich
| | - Marianthi Styllou
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich
| | - Reinhard Hickel
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich
| | - Christof Högg
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich
| | - Franz Xaver Reichl
- Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University of Munich
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology affil. to the University of Ulm
| |
Collapse
|
10
|
Monmaturapoj N, Srion A, Chalermkarnon P, Buchatip S, Petchsuk A, Noppakunmongkolchai W, Mai-Ngam K. Properties of poly(lactic acid)/hydroxyapatite composite through the use of epoxy functional compatibilizers for biomedical application. J Biomater Appl 2017; 32:175-190. [DOI: 10.1177/0885328217715783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Autcharaporn Srion
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| | | | - Suthawan Buchatip
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| | | | - Katanchalee Mai-Ngam
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| |
Collapse
|
11
|
Baratéla FJC, Higa OZ, dos Passos ED, de Queiroz AAA. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:72-79. [DOI: 10.1016/j.msec.2016.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/30/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023]
|
12
|
Own brand label restorative materials-A false bargain? J Dent 2016; 56:84-98. [PMID: 27836814 DOI: 10.1016/j.jdent.2016.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/25/2016] [Accepted: 11/07/2016] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES This study aims at evaluating and comparing mechanical, chemical, and cytotoxicological parameters of a commercial brand name composite material against two 'own brand label' (OBL) composites. METHODS Parameters included depth of cure, flexural strength, degree of conversion, polymerization shrinkage, filler particle morphology and elemental analyzes, Vickers hardness, surface roughness parameters after abrasion, monomer elution, and cytotoxicity. RESULTS The conventional composite outperformed the OBLS in terms of depth of cure (p<0.001), degree of cure at the first and last time intervals (p<0.001), hardness (p<0.001), and post-abrasion roughness (p<0.05). The polymerization volumetric shrinkage ranged from 2.86% to 4.13%, with the highest shrinkage seen among the OBLs. Both Monomer elution from the OBLs was statistically significantly higher (p<0.001). Statistically significantly higher cytotoxicity combined with altered morphology and loss of confluence was detected in the cells exposed to extracts from the OBLs. CONCLUSIONS The OBLs were in general outdone by the conventional composite. CLINICAL SIGNIFICANCE OBLs restorative materials have become pervasive in the dental market. Manufacturers often promise equal or better characteristics than existing brand-name composites, but at a lower price. Dentists are highly recommended to reconsider utilization of OBLs lacking sound scientific scrutiny, and our findings underscore this recommendation.
Collapse
|
13
|
Dental composite components induce DNA-damage and altered nuclear morphology in gingiva fibroblasts. Dent Mater 2015; 31:1335-44. [PMID: 26382061 DOI: 10.1016/j.dental.2015.08.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Released dental composite components can damage human gingival fibroblasts (HGFs) and their DNA. The cytotoxicity, chromatin condensation and the induction of DNA double strand breaks (DSBs) by different compounds of dental composites was investigated using an improved γ-H2AX focus assay. METHODS HGFs were incubated with the monomers: bisphenol-A-ethoxylate-dimethacrylate (Bis-DMA), bisphenol-A-glycerolate-dimethacrylate (BisGMA), ethyltriethylen glycol methacrylate (ETEGMA), glycidyl methacrylate (GMA), 1,6-hexandiol-dimethycrylate (HDDMA), trimethylolpropane ethoxylate triacrylate (TMPTA), and acrylamide (ACR). DSBs were determined by enumerating γ-H2AX and 53BP1 foci colocalized at DSBs. RESULTS A concentration-dependent induction of DSBs was found in the order: GMA>BisGMA>ACR>Bis-DMA>HDDMA>TMPTA>ETEGMA. HGFs exposure to GMA (0.3mM) and to BisGMA (0.09mM) induced the highest rate of DSB foci, i.e. 12-fold and 8-fold, respectively, relative to control (0.33 DSB foci/cell). At the highest concentrations (EC50) prominent changes in the chromatin morphology of HGF cell nuclei, i.e. compaction of nuclear chromatin and reduction of the area covered by the ovoid fibroblast nuclei, were observed. Nuclear condensation was significantly induced by GMA (1.7-fold at 0.3mM) and BisGMA (1.6-fold at 0.09mM), which correlated with the highest numbers of induced DSB foci (GMA, BisGMA, 3.9 and 2.6 foci/cell, respectively). SIGNIFICANCE The improved γ-H2AX/53BP1 focus assay revealed a concentration-dependent increase in DSBs for all tested substances. Furthermore, concentration-dependent changes in HGF cell nucleus morphology was noted, demonstrating genotoxic effects of the substances tested.
Collapse
|
14
|
Barbosa MO, de Carvalho RV, Demarco FF, Ogliari FA, Zanchi CH, Piva E, da Silva AF. Experimental self-etching HEMA-free adhesive systems: cytotoxicity and degree of conversion. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5370. [PMID: 25589203 DOI: 10.1007/s10856-014-5370-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/12/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to evaluate the effect of replacing 2-hydroxyethyl methacrylate (HEMA) by methacrylate surfactant monomers on the cytotoxicity and degree of conversion of two-step self-etching dentin adhesive systems. Five HEMA-free adhesive systems were tested: Bis-EMA 10, Bis-EMA 30, PEG400, PEG400UDMA, PEG1000, and a HEMA group was used as positive control. The cytotoxicity of the experimental primers, with different monomer concentrations (2 or 20 wt%), and bond resins, containing 25 wt% surfactant, was assessed using murine fibroblast cell line 3T3 and the tetrazolium assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)). The degree of conversion of the bond resins was analyzed using Fourier transform infrared spectroscopy. The data were submitted to statistical analysis using level of significance set at P < 0.05. The PEG 1000 group obtained higher cell viability in comparison with HEMA in the 2 % primer. The cell survival rate using 20 % primer showed that PEG1000 and BIS-EMA 10 were less cytotoxic than HEMA. With regard to the eluate from bond resin, the data showed that the groups BIS-EMA 10, BIS-EMA 30 and PEG400UDMA were less cytotoxic than HEMA. No statistically significant difference was found among degrees of conversion of the experimental groups and HEMA. PEG 1000, BIS-EMA 10 and 30 monomers showed the biological potential for use in new adhesive system formulations since they showed lower cytotoxicity and similar degree of conversion when compared with the HEMA-containing group.
Collapse
Affiliation(s)
- Marília Oliveira Barbosa
- Department of Operative Dentistry, School of Dentistry, Federal University of Pelotas, Rua Gonçalves Chaves 457 sala 504, Centro, Pelotas, RS, 96015560, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Lead Intoxication Synergies of the Ethanol-Induced Toxic Responses in Neuronal Cells--PC12. Mol Neurobiol 2014; 52:1504-1520. [PMID: 25367877 DOI: 10.1007/s12035-014-8928-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/07/2014] [Indexed: 01/05/2023]
Abstract
Lead (Pb)-induced neurodegeneration and its link with widespread neurobehavioral changes are well documented. Experimental evidences suggest that ethanol could enhance the absorption of metals in the body, and alcohol consumption may increase the susceptibility to metal intoxication in the brain. However, the underlying mechanism of ethanol action in affecting metal toxicity in brain cells is poorly understood. Thus, an attempt was made to investigate the modulatory effect of ethanol on Pb intoxication in PC12 cells, a rat pheochromocytoma. Cells were co-exposed to biological safe doses of Pb (10 μM) and ethanol (200 mM), and data were compared to the response of cells which received independent exposure to these chemicals at similar doses. Ethanol (200 mM) exposure significantly aggravated the Pb-induced alterations in the end points associated with oxidative stress and apoptosis. The finding confirms the involvement of reactive oxygen species (ROS)-mediated oxidative stress, and impairment of mitochondrial membrane potential, which subsequently facilitate the translocation of triggering proteins between cytoplasm and mitochondria. We further confirmed the apoptotic changes due to induction of mitochondria-mediated caspase cascade. These cellular changes were found to recover significantly, if the cells are exposed to N-acetyl cysteine (NAC), a known antioxidant. Our data suggest that ethanol may potentiate Pb-induced cellular damage in brain cells, but such damaging effects could be recovered by inhibition of ROS generation. These results open up further possibilities for the design of new therapeutics based on antioxidants to prevent neurodegeneration and associated health problems.
Collapse
|
16
|
Orsini G, Catellani A, Ferretti C, Gesi M, Mattioli-Belmonte M, Putignano A. Cytotoxicity of a silorane-based dental composite on human gingival fibroblasts. World J Stomatol 2013; 2:86-90. [DOI: 10.5321/wjs.v2.i4.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/05/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the direct and indirect biocompatibility of Filtek Silorane on human gingival fibroblastic cells.
METHODS: Sixty-three standardized cylindrical specimens (8 mm diameter and 2 mm thickness) of restorative material were prepared using a light emitting diode-curing unit. The sample were built up in one increment and divided in 2 groups. In the first group, 21 samples (unpolished samples) were left without a specific polishing procedure; in the second one, 42 samples (polished samples) were polished with 4 different grains of discs. Fibroblast cultures, obtained from gingiva of 2 subjects without systemic and oral disease, were used to assess the direct and indirect biocompatibility. Cells cultured for 48 h in normal culture medium were used as a control.
RESULTS: The scanning electron microscope observations of fibroblasts cultured on the silorane samples, either polished or unpolished, confirmed the good biocompatibility of the material, favouring the cellular spreading. 3-dimethylthiazol-2, 5-diphenyltetrazolium bromide tests showed a significant reduction (P < 0.01) of gingival fibroblasts viability cultured both in polished samples (90.05% ± 19.00%) and unpolished samples (78.15% ± 11.00%) compared with the control. Cells growth in medium conditioned with the samples for 1 wk showed a significant viability reduction (P < 0.01) compared to the control. A reduction of cell viability was observed even in the groups containing the material for 3 wk (polished: 89.45% ± 10.00%; unpolished: 65.97% ± 10.00%), even if the cytotoxicity was reduced after this long time exposure.
CONCLUSION: Although the poor chromatic availability of this material remains a big limit that restricts its use to posterior sectors, the silorane-based material can be considered an option to perform restorations when aesthetic demands are not the priority, such as the class II restorations
Collapse
|
17
|
Koulaouzidou EA, Touplikioti P, Ziouti F, Papazisis KT. Effects of a dental adhesive on cell cycle regulatory proteins. Dent Mater J 2013; 32:986-91. [PMID: 24240893 DOI: 10.4012/dmj.2013-090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dental bonding agents may affect the cell cycle patterns and induce cell cycle arrest by blocking its progression. This study tested the cell cycle effects through cyclin-dependent kinase (cdc2) and Rb phosphorylation. Human lung fibroblasts (MRC5) were used for the experiments. The bonding agent tested was the total-etch XP bond. Extracts of the bonding agent were prepared and serial dilutions were tested. The effects of the bonding agent on cell survival, proliferation and DNA synthesis were tested by the SRB and BrdU assays. Analysis of cell cycle distribution was performed by flow cytometry. XP bond exhibited strong inhibition of DNA synthesis and after 48 h of exposure cells were accumulated in the G2/M phase. Cells exposed to the half maximal cell growth inhibitory concentration (IC50) showed an increase in cdc2 kinase and Rb phosphorylation. The results most likely indicate mutagenic effect of the tested agent.
Collapse
|
18
|
Genotoxic damage in the oral mucosal cells of subjects carrying restorative dental fillings. Arch Toxicol 2013; 87:2247-8. [PMID: 24241249 DOI: 10.1007/s00204-013-1155-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 01/28/2023]
|
19
|
Shehata M, Durner J, Eldenez A, Van Landuyt K, Styllou P, Rothmund L, Hickel R, Scherthan H, Geurtsen W, Kaina B, Carell T, Reichl FX. Cytotoxicity and induction of DNA double-strand breaks by components leached from dental composites in primary human gingival fibroblasts. Dent Mater 2013; 29:971-9. [DOI: 10.1016/j.dental.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/05/2013] [Accepted: 07/03/2013] [Indexed: 01/22/2023]
|
20
|
Poplawski T, Chojnacki C, Czubatka A, Klupinska G, Chojnacki J, Blasiak J. Helicobacter pylori infection and antioxidants can modulate the genotoxic effects of heterocyclic amines in gastric mucosa cells. Mol Biol Rep 2013; 40:5205-12. [PMID: 23661025 PMCID: PMC3723983 DOI: 10.1007/s11033-013-2622-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 04/30/2013] [Indexed: 01/09/2023]
Abstract
Helicobacter pylori (H. pylori) infection plays an important role in gastric carcinogenesis. This bacterium may induce cancer transformation and change the susceptibility of gastric mucosa cells to various exogenous dietary irritants. The aim of the study was to evaluate the influence of H. pylori infection on the reaction of the stomach cells to a genotoxic effect of heterocyclic amines (HCAs). These well-known mutagens are formed during cooking of protein-rich foods, primarily meat. Taking into account that persons consuming a mixed-western diet are exposed to these compound nearly an entire lifetime and more than half of human population is infected with H. pylori, it is important to assess the combined effect of H. pylori infection and HCAs in the context of DNA damage in gastric mucosa cells, which is a prerequisite to cancer transformation. We employed 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) because these substances are present in a great amount in cooked and fried meat. Using alkaline comet assay, we showed that the extent of the DNA damage induced by HCAs was significantly higher in H. pylori infected gastric mucosa cells than in non-infected counterparts. We did not observed any difference in the efficiency of repair of DNA lesions induced by HCAs in both type of cells. Vitamin C reduced the genotoxic effects of HCAs in H. pylori infected and non-infected gastric mucosa cells. Melatonin more effectively decreased DNA damage caused by HCAs in H. pylori infected gastric mucosa cells as compared with control. Our results suggest that H. pylori infection may influence the susceptibility of gastric mucosa cells to HCAs and dietary antioxidative substances, including vitamin C and melatonin may inhibit the genotoxic effects of HCAs on gastric mucosa cells and may reduce the risk of carcinogenesis caused by food borne mutagens and H. pylori infection.
Collapse
Affiliation(s)
- Tomasz Poplawski
- Department of Molecular Genetics, University of Lodz, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
21
|
Immune response to nanomaterials: implications for medicine and literature review. Curr Allergy Asthma Rep 2013; 13:50-7. [PMID: 22941559 DOI: 10.1007/s11882-012-0302-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanomaterials, substances below 100 nm, are increasingly used in medical diagnosis and treatment every day. The use of such materials has helped deliver drugs across the blood-brain barrier, alleviate allergy symptoms, specifically target cancer or HIV cells, and more. However, the tunable characteristics of such materials have not been perfected. The different materials, sizes, shapes, and structures have different responses on the body. This paper will investigate the successful treatments made with nanoparticles and some general health effects. A review of the literature revealed an inflammatory response and an increased production of reactive oxidative species (ROS) to be common immune responses to nanomaterial use. The mechanisms by which the inflammatory response and ROS production occur will also be discussed.
Collapse
|
22
|
Coates EE, Riggin CN, Fisher JP. Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis. J Biomed Mater Res A 2012; 101:1962-70. [PMID: 23225791 DOI: 10.1002/jbm.a.34499] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 10/16/2012] [Indexed: 01/13/2023]
Abstract
Ionic crosslinking of alginate via divalent cations allows for high viability of an encapsulated cell population, and is an effective biomaterial for supporting a spherical chondrocyte morphology. However, such crosslinking chemistry does not allow for injectable and stable hydrogels which are more appropriate for clinical applications. In this study, the addition of methacrylate groups to the alginate polymer chains was utilized so as to allow the free radical polymerization initiated by a photoinitiator during UV light exposure. This approach establishes covalent crosslinks between methacrylate groups instead of the ionic crosslinks formed by the calcium in unmodified alginate. Although this approach has been well described in the literature, there are currently no reports of stem cell differentiation and subsequent chondrocyte gene expression profiles in photocrosslinked alginate. In this study, we demonstrate the utility of photocrosslinked alginate hydrogels containing interpenetrating hyaluronic acid chains to support stem cell chondrogenesis. We report high cell viability and no statistical difference in metabolic activity between mesenchymal stem cells cultured in calcium crosslinked alginate and photocrosslinked alginate for up to 10 days of culture. Furthermore, chondrogenic gene markers are expressed throughout the study, and indicate robust differentiation up to the day 14 time point. At early time points, days 1 and 7, the addition of hyaluronic acid to the photocrosslinked scaffolds upregulates gene markers for both the chondrocyte and the superficial zone chondrocyte phenotype. Taken together, we show that photocrosslinked, injectable alginate shows significant potential as a delivery mechanism for cell-based cartilage repair therapies.
Collapse
Affiliation(s)
- Emily E Coates
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | | | | |
Collapse
|
23
|
Fluorescent nanoparticles for intracellular sensing: A review. Anal Chim Acta 2012; 751:1-23. [DOI: 10.1016/j.aca.2012.09.025] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 12/31/2022]
|
24
|
Genotoxic damage in the oral mucosa cells of subjects carrying restorative dental fillings. Arch Toxicol 2012; 87:179-87. [DOI: 10.1007/s00204-012-0915-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/24/2012] [Indexed: 12/26/2022]
|
25
|
Elution of monomers from three different bonding systems and their antibacterial effect. Odontology 2012; 101:170-6. [DOI: 10.1007/s10266-012-0071-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/04/2012] [Indexed: 11/26/2022]
|
26
|
Schulz SD, König A, Steinberg T, Tomakidi P, Hellwig E, Polydorou O. Human gingival keratinocyte response to substances eluted from silorane composite material reveal impact on cell behavior reflected by RNA levels and induction of apoptosis. Dent Mater 2012; 28:e135-42. [PMID: 22575741 DOI: 10.1016/j.dental.2012.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/15/2012] [Accepted: 04/16/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The aim of this study was the characterization of siloran-derived composite eluates in conjunction with their putative impact on human gingival keratinocytes (HGK), i.e. levels of total RNA and induction of apoptosis compared to a methacrylate-based material. METHODS Standardized Filtek™ Silorane specimens (n = 20) were subjected to scanning ion monitoring to detect monomer masses between 100 and 1000, after storage in human saliva, and 75% ethanol for up to 28 days. In order to evaluate the effect on cells, HGK were exposed to eluates from Filtek™ Silorane, Filtek™ Supreme XT and control medium for 1 and 4 days, prior to isolation of total RNA, and Annexin-5 fluorescence labeling indicating induction of apoptosis. RESULTS Irrespective of the mode and storage time, SIM identified discrete peaks, corresponding to masses of "393" and "337". In response to both composite eluates, an effect on HGK was reflected by drastically reduced levels of isolated total RNA at each time period (after 1 day: control: 302 ng/μl; Filtek™ Silorane: 128 ng/μl, Filtek™ Supreme XT: 129 ng/μl and after 4 days: control: 528 ng/μl; Filtek™ Silorane: 162 ng/μl, Filtek™ Supreme XT: 166 ng/μl). Exposure to eluates from both composite materials yielded apoptosis induction in HGK, as demonstrated by a significant increase of cells exhibiting Annnexin-5 fluorescence. SIGNIFICANCE Two distinct peaks were identified, which indicated the presence of corresponding substances. The composite-derived effects on HGK strongly suggest a negative impact on cells, as revealed by a clear reduction of total RNA levels, and significant increase in induction of apoptosis.
Collapse
Affiliation(s)
- Simon Daniel Schulz
- Department of Oral Biotechnology, University Medical Center Freiburg, Dental School and Hospital, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Dental methacrylates may exert genotoxic effects via the oxidative induction of DNA double strand breaks and the inhibition of their repair. Mol Biol Rep 2012; 39:7487-96. [PMID: 22327778 PMCID: PMC3358545 DOI: 10.1007/s11033-012-1582-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/30/2012] [Indexed: 12/02/2022]
Abstract
Methacrylate monomers used in dentistry have been shown to induce DNA double strand breaks (DSBs), one of the most serious DNA damage. In the present work we show that a model dental adhesive consisting of 45% 2-hydroxyethyl methacrylate (HEMA) and 55% bisphenol A-diglycidyl dimethacrylate (Bis-GMA) at concentrations up to 0.25 mM Bis-GMA induced oxidative DNA in cultured primary human gingival fibroblasts (HGFs) as evaluated by the comet assay and probed with human 8-hydroxyguanine DNA-glycosylase 1. HEMA/Bis-GMA induced DSBs in HGFs as assessed by the neutral comet assay and phosphorylation of the H2AX histone and sodium ascorbate or melatonin (5-methoxy-N-acetyltryptamine) both at 50 μM reduced the DSBs, they also inhibited apoptosis induced by HEMA/Bis-GMA. The adhesive slowed the kinetics of the repair of DNA damage induced by hydrogen peroxide in HGFs, while sodium ascorbate or melatonin improved the efficacy of H2O2-induced damage in the presence of the methacrylates. The adhesive induced a rise in the G2/M cell population, accompanied by a reduction in the S cell population and an increase in G0/G1 cell population. Sodium ascorbate or melatonin elevated the S population and reduced the G2/M population. In conclusion, HEMA/Bis-GMA induce DSBs through, at least in part, oxidative mechanisms, and these compounds may interfere with DSBs repair. Vitamin C or melatonin may reduce the detrimental effects induced by methacrylates applied in dentistry.
Collapse
|
28
|
Szczepanska J, Pawlowska E, Synowiec E, Czarny P, Rekas M, Blasiak J, Szaflik JP. Protective effect of chitosan oligosaccharide lactate against DNA double-strand breaks induced by a model methacrylate dental adhesive. Med Sci Monit 2011; 17:BR201-208. [PMID: 21804456 PMCID: PMC3539618 DOI: 10.12659/msm.881898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Monomers of methacrylates used in restorative dentistry have been recently reported to induce DNA double-strand breaks (DSBs) in human gingival fibroblasts (HGFs) in vitro. Because such monomers may penetrate the pulp and oral cavity due to the incompleteness of polymerization and polymer degradation, they may induce a similar effect in vivo. DSBs are the most serious type of DNA damage and if misrepaired or not repaired may lead to mutation, cancer transformation and cell death. Therefore, the protection against DSBs induced by methacrylate monomers released from dental restorations is imperative. Material/Methods We examined the protective action of chitosan oligosaccharide lactate (ChOL) against cytotoxic and genotoxic effects induced by monomers of the model adhesive consisting of 55% bisphenol A-diglycidyl dimethacrylate (Bis-GMA) and 45% 2-hydroxyethyl methacrylate (HEMA). We evaluated the extent of DSBs by the neutral comet assay and the phosphorylation of the H2AX histone test. Results ChOL increased the viability of HGFs exposed to Bis-GMA/HEMA as assessed by flow cytometry. ChOL decreased the extent of DSBs induced by Bis-GMA/HEMA as evaluated by neutral comet assay and phosphorylation of the H2AX histone. ChOL did not change mechanical properties of the model adhesive, as checked by the shear bond test. Scanning electron microscopy revealed a better sealing of the dentinal microtubules in the presence of ChOL, which may protect pulp cells against the harmful action of the monomers. Conclusions ChOL can be considered as an additive to methacrylate-based dental materials to prevent DSBs induction, but further studies are needed on its formulation with the methacrylates.
Collapse
Affiliation(s)
- Joanna Szczepanska
- Department of Developmental Dentistry, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
29
|
Polydorou O, Huberty C, Wolkewitz M, Bolek R, Hellwig E, Kümmerer K. The effect of storage medium on the elution of monomers from composite materials. J Biomed Mater Res B Appl Biomater 2011; 100:68-74. [DOI: 10.1002/jbm.b.31923] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/27/2011] [Accepted: 05/10/2011] [Indexed: 11/11/2022]
|
30
|
Blasiak J, Kasznicki J, Drzewoski J, Pawlowska E, Szczepanska J, Reiter RJ. Perspectives on the use of melatonin to reduce cytotoxic and genotoxic effects of methacrylate-based dental materials. J Pineal Res 2011; 51:157-62. [PMID: 21470304 DOI: 10.1111/j.1600-079x.2011.00877.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin (5-methoxy-N-acetyltryptamine), an indoleamine produced in the pineal gland and many other organs, displays a wide spectrum of protective effects against cell injury of various origins. Contemporary dental restorative materials mainly consist of methacrylate polymers with some additives. However, because of the incompleteness of polymerization process in situ as well as mechanical shearing and enzymatic degradation, methacrylate monomers are released from the restoration into the oral cavity and the pulp, from where they gain access to other tissues and organs. Such monomers have displayed toxic properties in many in vivo and in vitro studies, including cytotoxicity and genotoxicity and a considerable portion of these effects is underlined by the oxidative action of these compounds. As melatonin shows biocompatibility with the oral cavity and displays antioxidative properties, it may be considered as a protective agent against harmful effects of methacrylate monomers derived from dental restorations. Melatonin decreases cytotoxic and genotoxic effects of methacrylate monomers used in dentistry, and it does not influence the bond strength of dental composites. This opens a new possible application of melatonin to improve properties of biomaterials used in dentistry.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
31
|
Szczepanska J, Poplawski T, Synowiec E, Pawlowska E, Chojnacki CJ, Chojnacki J, Blasiak J. 2-hydroxylethyl methacrylate (HEMA), a tooth restoration component, exerts its genotoxic effects in human gingival fibroblasts trough methacrylic acid, an immediate product of its degradation. Mol Biol Rep 2011; 39:1561-74. [PMID: 21617943 PMCID: PMC3249584 DOI: 10.1007/s11033-011-0895-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/17/2011] [Indexed: 12/21/2022]
Abstract
HEMA (2-hydroxyethyl methacrylate), a methacrylate commonly used in dentistry, was reported to induce genotoxic effects, but their mechanism is not fully understood. HEMA may be degraded by the oral cavity esterases or through mechanical stress following the chewing process. Methacrylic acid (MAA) is the primary product of HEMA degradation. In the present work we compared cytotoxic and genotoxic effects induced by HEMA and MAA in human gingival fibroblasts (HGFs). A 6-h exposure to HEMA or MAA induced a weak decrease in the viability of HGFs. Neither HEMA nor MAA induced strand breaks in the isolated plasmid DNA, but both compounds evoked DNA damage in HGFs, as evaluated by the alkaline comet assay. Oxidative modifications to the DNA bases were monitored by the DNA repair enzymes Endo III and Fpg. DNA damage induced by HEMA and MAA was not persistent and was removed during a 120 min repair incubation. Results from the neutral comet assay indicated that both compounds induced DNA double strand breaks (DSBs) and they were confirmed by the γ-H2AX assay. Both compounds induced apoptosis and perturbed the cell cycle. Therefore, methacrylic acid, a product of HEMA degradation, may be involved in its cytotoxic and genotoxic action.
Collapse
Affiliation(s)
- Joanna Szczepanska
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Tomasz Poplawski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Ewelina Synowiec
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland
| | - Cezary J. Chojnacki
- Department of Gastroenterology and Internal Medicine, Medical University of Lodz, Plac Hallera 1, 91-647 Lodz, Poland
| | - Jan Chojnacki
- Department of Gastroenterology and Internal Medicine, Medical University of Lodz, Plac Hallera 1, 91-647 Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
32
|
Removal of dental amalgam fillings and its influence on saliva morphological picture - case report. Adv Med Sci 2011; 56:119-22. [PMID: 21444276 DOI: 10.2478/v10039-011-0001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of dental restorative materials on patients' general and oral health is the main interest of many researchers but the question of their safety is still under consideration. An otherwise healthy 23-year-old patient with no history of oral abnormalities was examined. Dental amalgam restorations were replaced by composite resin material. Salivary smears prepared two days and two weeks after the amalgam removal were compared with those taken before the procedure.
Collapse
|
33
|
García-Medina S, Razo-Estrada C, Galar-Martinez M, Cortéz-Barberena E, Gómez-Oliván LM, Alvarez-González I, Madrigal-Bujaidar E. Genotoxic and cytotoxic effects induced by aluminum in the lymphocytes of the common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:113-8. [PMID: 20883821 DOI: 10.1016/j.cbpc.2010.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
Abstract
Few studies have been made in regard to the effect of aluminum on the molecular and cellular structure and function of aquatic organisms; therefore, in the present report we determined the genotoxic and cytotoxic effects induced by the metal on the lymphocytes of carp (Cyprinus carpio). Three groups of fish were exposed to 0.05, 120, and 239 mg/L of aluminum (Al), respectively, by using Al₂ (SO₄)₃·7H₂O, and another group was included as control. The cells obtained were studied with the comet assay, flow cytometry, and the TUNEL method. With the first method we found a concentration and time dependent, significant increase in the amount of DNA damage induced by Al, and a higher damage when we evaluated the level of oxidized DNA. By applying flow cytometry we established that the metal induced a DNA content increase and ploidy modifications as well as apoptosis and disturbances of the cell cycle progression. With the last method we determined a significant increase in the amount of apoptotic cells, mainly in the 72-96 h period. Our results established that Al caused deleterious DNA and cellular effects in the tested organism, and they suggested the pertinence of evaluating toxicity induced by the metal in organisms living in contaminated water bodies.
Collapse
Affiliation(s)
- Sandra García-Medina
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, IPN, México
| | | | | | | | | | | | | |
Collapse
|
34
|
Wisniewska-Jarosinska M, Poplawski T, Chojnacki CJ, Pawlowska E, Krupa R, Szczepanska J, Blasiak J. Independent and combined cytotoxicity and genotoxicity of triethylene glycol dimethacrylate and urethane dimethacrylate. Mol Biol Rep 2010; 38:4603-11. [PMID: 21127987 PMCID: PMC3162630 DOI: 10.1007/s11033-010-0593-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/20/2010] [Indexed: 01/06/2023]
Abstract
Dental composite materials contain polymers of methacrylates, which, due to mechanical abrasion and enzymatic action of saliva, may release their monomers into oral cavity and the pulp. Moreover, polymerization is always incomplete and leaves usually considerable fraction of free monomers. Mechanisms of the genotoxicity of methacrylate monomers have been rarely explored. As the polymerization of a monomer is catalyzed by a co-monomer, their combined action should be considered. In the present work, we investigated cytotoxic and genotoxic effects of urethane dimethacrylate (UDMA), often used as a monomer, at 1 mM, and triethylene glycol dimethacrylate (TEGDMA), a typical co-monomer, at 5 mM singly and in combination. Experiments were conducted on Chinese hamster ovary cells. Cell viability, apoptosis and cell cycle were assessed by flow cytometry, whereas DNA damage was evaluated by plasmid conformation test and comet assay. Both compounds decreased the viability of the cells, but did not induce strand breaks in an isolated plasmid DNA. However, both substances, either singly or in combination, damaged DNA in CHO cells as evaluated by comet assay. Both compounds induced apoptosis, but a combined action of them led to a decrease in the number of apoptotic cells. The combined action of UDMA and TEGDMA in the disturbance of cell cycle was lesser compared to the action of each compound individually. Individually, though UDMA and TEGDMA may induce cytotoxic and genotoxic, however, a combination of both does not produce a significant increase in these effects.
Collapse
Affiliation(s)
- Maria Wisniewska-Jarosinska
- Department of Gastroenterology and Internal Medicine, Medical University of Lodz, 1 Haller's Square, 90-647 Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
35
|
Kashyap MP, Singh AK, Siddiqui MA, Kumar V, Tripathi VK, Khanna VK, Yadav S, Jain SK, Pant AB. Caspase Cascade Regulated Mitochondria Mediated Apoptosis in Monocrotophos Exposed PC12 Cells. Chem Res Toxicol 2010; 23:1663-72. [DOI: 10.1021/tx100234m] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. P. Kashyap
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - A. K. Singh
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - M. A. Siddiqui
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - V. Kumar
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - V. K. Tripathi
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - V. K. Khanna
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - S. Yadav
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - S. K. Jain
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - A. B. Pant
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
36
|
Yin H, Casey PS, McCall MJ, Fenech M. Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:15399-408. [PMID: 20809599 DOI: 10.1021/la101033n] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The relationship between the toxicity of zinc oxide (ZnO) nanoparticles (NPs) and their surface chemistry was investigated. Cytotoxicity, genotoxicity, and the ability to generate reactive oxygen species (ROS) were assessed for well-characterized ZnO NPs whose surface chemistry was varied from its pristine state by coating with oleic acid (OA), poly(methacrylic acid) (PMAA), or components adsorbed from cell culture medium (medium-soaked). It was found that uncoated NPs showed ROS accumulation and diminished cell viability whereas all tested surface coatings assisted in reducing ROS production and cytotoxicity. The ability of coatings to reduce the cytotoxicity of ZnO NPs was ranked in the following order: medium-soaked ≈ PMAA > OA. However, PMAA-coated ZnO had significant genotoxicity compared to uncoated ZnO and the other coated NPs, highlighting the need to investigate thoroughly the effects of NP surface modification on both cytotoxicity and genotoxicity assays. The lowest toxicity was achieved with a surface coating of components from a cell culture medium.
Collapse
Affiliation(s)
- Hong Yin
- CSIRO Materials Science and Engineering, CSIRO Future Manufacturing Flagship, Clayton VIC 3168, Australia.
| | | | | | | |
Collapse
|
37
|
Drozdz K, Wysokinski D, Krupa R, Wozniak K. Bisphenol A-glycidyl methacrylate induces a broad spectrum of DNA damage in human lymphocytes. Arch Toxicol 2010; 85:1453-61. [PMID: 20878393 PMCID: PMC3204149 DOI: 10.1007/s00204-010-0593-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/09/2010] [Indexed: 11/27/2022]
Abstract
Bisphenol A-glycidyl methacrylate (BisGMA) is monomer of dental filling composites, which can be released from these materials and cause adverse biologic effects in human cells. In the present work, we investigated genotoxic effect of BisGMA on human lymphocytes and human acute lymphoblastic leukemia cell line (CCRF-CEM) cells. Our results indicate that BisGMA is genotoxic for human lymphocytes. The compound induced DNA damage evaluated by the alkaline, neutral, and pH 12.1 version of the comet assay. This damage included oxidative modifications of the DNA bases, as checked by DNA repair enzymes EndoIII and Fpg, alkali-labile sites and DNA double-strand breaks. BisGMA induced DNA-strand breaks in the isolated plasmid. Lymphocytes incubated with BisGMA at 1 mM were able to remove about 50% of DNA damage during 120-min repair incubation. The monomer at 1 mM evoked a delay of the cell cycle in the S phase in CCRF-CEM cells. The experiment with spin trap—DMPO demonstrated that BisGMA induced reactive oxygen species, which were able to damage DNA. BisGMA is able to induce a broad spectrum of DNA damage including severe DNA double-strand breaks, which can be responsible for a delay of the cell cycle in the S phase.
Collapse
Affiliation(s)
- Kinga Drozdz
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | | | - Renata Krupa
- Laboratory of DNA Repair, Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Katarzyna Wozniak
- Laboratory of DNA Repair, Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
38
|
Pawlowska E, Poplawski T, Ksiazek D, Szczepanska J, Blasiak J. Genotoxicity and cytotoxicity of 2-hydroxyethyl methacrylate. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2010; 696:122-9. [DOI: 10.1016/j.mrgentox.2009.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/25/2009] [Accepted: 12/28/2009] [Indexed: 01/22/2023]
|
39
|
Poplawski T, Loba K, Pawlowska E, Szczepanska J, Blasiak J. Genotoxicity of urethane dimethacrylate, a tooth restoration component. Toxicol In Vitro 2009; 24:854-62. [PMID: 20005290 DOI: 10.1016/j.tiv.2009.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 11/26/2009] [Accepted: 12/03/2009] [Indexed: 01/15/2023]
Abstract
Urethane dimethacrylate (UDMA) is used in dental restorative materials in its polymeric form. However, the process of polymerization is usually incomplete and the monomers of UDMA can diffuse into the oral cavity and the pulp, reaching millimolar concentrations. In the present work we showed that UDMA at 0.1 and 1.0 mM decreased the viability of and induced DNA damage in lymphocytes in a concentration dependent manner, but it did not affect a plasmid DNA in vitro. UDMA at 1mM induced apoptosis in lymphocytes. The lymphocytes exposed to UDMA were able to repair their DNA within 60 min. Analysis with DNA repair enzymes Endo III and Fpg showed that UDMA induced mainly oxidative DNA lesions. Vitamin C and chitosan decreased genotoxic effect of UDMA. Our results show that monomers of UDMA may exert pronounced cyto- and genotoxic effects in human lymphocytes and chitosan can be considered as a protection against such effects.
Collapse
Affiliation(s)
- Tomasz Poplawski
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | | | | | | | | |
Collapse
|