1
|
Gilon-Zaltsman O, Weidenfeld-Barenboim K, Samara H, Feuermann Y, Michaeli-Ashkenasi S, Schif-Zuck S, Von Huth P, Butenko S, Assi S, Sabo E, Ariel A, Barkan D. Targeting dormant disseminated tumor cells and their permissive niche by pro-resolving mediators derived from resolution-phase macrophages. Cancer Lett 2025; 612:217468. [PMID: 39826669 DOI: 10.1016/j.canlet.2025.217468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Metastatic breast cancer (BC) can recur years after initial treatments and arise from quiescent disseminated tumor cells (QDTC) that resist conventional therapies. To date there are no treatments to target QDTCs. Previously, the fibrotic-like niche (FLN) enriched with Type I collagen (Col-I) was shown to be required for the switch of QDTC to overt metastases. Here, we examined whether artificially reinstating resolution of inflammation, by using soluble mediators secreted by ex-vivo generated pro-resolving macrophages (CM-Mres), will prevent FLN establishment and in turn hinder QDTC outgrowth. Our findings indicate that CM-Mres promoted immune silencing at the metastatic site as part of the resolution process and inhibited the FLN resulting in the inhibition of the metastatic outgrowth in vitro and in vivo. This was due to inhibition of fibroblasts to myofibroblasts differentiation independent of TGFβ1 canonical signaling and the abolishment of Col-I expression. Furthermore, CM-Mres eliminated myofibroblasts as part of the resolution process by inducing an increase in reactive oxygen species (ROS) via NADPH oxidase leading to DNA damage and apoptosis. Moreover, ROS-mediated apoptosis was also induced by CM-Mres in the dormant and outgrowing DTCs. Overall, our findings suggest for the first time that pro-resolving mediators can target both QDTCs and their permissive niche thus preventing BC from recurring. SIGNIFICANCE: Since conventional therapies fail to eradicate QDTCs. Future identification of the pro-resolving mediators secreted by pro-resolving macrophages may serve as a basis for novel therapeutic strategies targeting QDTCs and their metastatic niche.
Collapse
Affiliation(s)
| | | | - Hadeel Samara
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | | | | | | | - Sergei Butenko
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Simaan Assi
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Carmel Medical Center, Israel
| | - Amiram Ariel
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Dalit Barkan
- Department of Human Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
2
|
Dalapati T, Wang L, Jones AG, Cardwell J, Konigsberg IR, Bossé Y, Sin DD, Timens W, Hao K, Yang I, Ko DC. Context-specific eQTLs provide deeper insight into causal genes underlying shared genetic architecture of COVID-19 and idiopathic pulmonary fibrosis. HGG ADVANCES 2025; 6:100410. [PMID: 39876559 DOI: 10.1016/j.xhgg.2025.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Most genetic variants identified through genome-wide association studies (GWASs) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis. We first identified five genome-wide significant variants associated with both diseases. Four of the variants did not demonstrate clear colocalization between GWAS and healthy lung eQTL signals. Instead, two of the four variants colocalized only in cell type- and disease-specific eQTL datasets. These analyses pointed to higher ATP11A expression from the C allele of rs12585036, in monocytes and in lung tissue from primarily smokers, which increased risk of idiopathic pulmonary fibrosis (IPF) and decreased risk of critically ill COVID-19. We also found lower DPP9 expression (and higher methylation at a specific CpG) from the G allele of rs12610495, acting in fibroblasts and in IPF lungs, and increased risk of IPF and critically ill COVID-19. We further found differential expression of the identified causal genes in diseased lungs when compared to non-diseased lungs, specifically in epithelial and immune cell types. These findings highlight the power of integrating GWASs, context-specific eQTLs, and transcriptomics of diseased tissue to harness human genetic variation to identify causal genes and where they function during multiple diseases.
Collapse
Affiliation(s)
- Trisha Dalapati
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Angela G Jones
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jonathan Cardwell
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Iain R Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Department of Molecular Medicine, Québec City, QC, Canada
| | - Don D Sin
- Center for Heart Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ivana Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
McGovern J, Perry C, Ghincea A, Herzog EL, Shao S, Sun H. The effect of adrenalectomy on bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 2025; 328:L15-L29. [PMID: 39470613 DOI: 10.1152/ajplung.00062.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 10/30/2024] Open
Abstract
Progressive lung fibrosis is often fatal and has limited treatment options. Though the mechanisms are poorly understood, fibrosis is increasingly linked with catecholamines such as adrenaline (AD) and noradrenaline (NA) and hormones such as aldosterone (ALD). The essential functions of the adrenal glands include the production of catecholamines and numerous hormones, but the contribution of adrenal glands to lung fibrosis remains less well studied. Here, we characterized the impact of surgical adrenal ablation in the bleomycin model of lung fibrosis. Wild-type mice underwent surgical adrenalectomy or sham surgery followed by bleomycin administration. We found that although bleomycin-induced collagen overdeposition in the lung was not affected by adrenalectomy, histologic indices of lung remodeling were ameliorated. These findings were accompanied by a decrease of lymphocytes in bronchoalveolar lavage (BAL) and macrophages in lung tissues, along with concomitant reductions in alpha-smooth muscle actin (αSMA) and fibronectin. Surgical adrenalectomy completely abrogated AD, not NA, detection in all compartments. Systemic ALD levels were reduced after adrenalectomy, whereas ALD levels in lung tissues remained unaffected. Taken together, these results support the presence of a pulmonary-adrenal axis in lung fibrosis and suggest that adrenalectomy is protective in this disease. Further investigation will be needed to better understand this observation and aid in the development of novel therapeutic strategies.NEW & NOTEWORTHY The lung-adrenal axis plays a significant role in pulmonary fibrosis. Adrenalectomy provides protection against lung fibrotic ECM remodeling and lung inflammation by reducing the levels of lymphocytes in BAL and macrophages in lung of bleomycin-treated mice. Although compared with sham surgery, adrenalectomy raised collagen concentration in uninjured mice, there was no discernible difference in bleomycin-induced collagen accumulation. However, adrenalectomy significantly reversed the enhanced expression and colocalization of αSMA and fibronectin induced by bleomycin.
Collapse
Affiliation(s)
- John McGovern
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Carrighan Perry
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Alexander Ghincea
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Erica L Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Molecular Medicine/Experimental Pathology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Shuai Shao
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Huanxing Sun
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
4
|
Scharpf BR, Ruetten H, Sandhu J, Wegner KA, Chandrashekar S, Fox O, Turco AE, Cole C, Arendt LM, Strand DW, Vezina CM. Prostatic Escherichia coli infection drives CCR2-dependent recruitment of fibrocytes and collagen production. Dis Model Mech 2025; 18:DMM052012. [PMID: 39748675 PMCID: PMC11789281 DOI: 10.1242/dmm.052012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Prostate fibrosis contributes to lower urinary tract dysfunction (LUTD). To develop targeted treatments for prostate fibrosis, it is necessary to identify the cell types and molecular pathways required for collagen production. We used a genetic approach to label and track potential collagen-producing cell lineages in mouse prostate through a round of Escherichia coli UTI89-mediated prostate inflammation. E. coli increased collagen density and production in Gli1+, S100a4+, Lyz2+ and Cd2+ cell lineages, but not in Myh11+ or Srd5a2+ cell lineages, in the mouse prostate. Molecular phenotyping revealed GLI1+LYZ+S100A4+ cells (fibrocytes) in histologically inflamed human prostate. These fibrocytes colocalized with regions of increased collagen in men with LUTD. Fibrocyte recruitment and collagen synthesis was impaired in Ccr2 null mice but restored by allotransplantation of Rosa-GFP donor bone marrow-derived cells. These results suggest that bone marrow-derived fibrocytes are a mediator of prostatic collagen accumulation.
Collapse
Affiliation(s)
- Brandon R. Scharpf
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kyle A. Wegner
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sneha Chandrashekar
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Olivia Fox
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anne E. Turco
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Clara Cole
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lisa M. Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas W. Strand
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Spagnolo P, Tonelli R, Mura M, Reisman W, Sotiropoulou V, Tzouvelekis A. Investigational gene expression inhibitors for the treatment of idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2025; 34:61-80. [PMID: 39916340 DOI: 10.1080/13543784.2025.2462592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2024] [Accepted: 01/31/2025] [Indexed: 02/12/2025]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial lung disease of unknown cause that occurs primarily in older adults and is associated with poor quality of life and substantial healthcare utilization. IPF has a dismal prognosis. Indeed, first-line therapy, which includes nintedanib and pirfenidone, does not stop disease progression and is often associated with tolerability issues. Therefore, there remains a high medical need for more efficacious and better tolerated treatments. AREAS COVERED Gene therapy is a relatively unexplored field of research in IPF that has the potential to mitigate a range of profibrotic pathways by introducing genetic material into cells. Here, we summarize and critically discuss publications that have explored the safety and efficacy of gene therapy in experimentally-induced pulmonary fibrosis in animals, as clinical studies in humans have not been published yet. EXPERT OPINION The application of gene therapy in pulmonary fibrosis requires further investigation to address several technical and biological hurdles, improve vectors' design, drug delivery, and target selection, mitigate off-target effects and develop markers of gene penetration into target cells. Long-term clinical data are needed to bring gene therapy in IPF one step closer to practice.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, Modena, Italy
| | - Marco Mura
- Division of Respirology, Western University, London, Ontario, Canada
| | - William Reisman
- Division of Respirology, Western University, London, Ontario, Canada
| | | | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
6
|
Dalapati T, Wang L, Jones AG, Cardwell J, Konigsberg IR, Bossé Y, Sin DD, Timens W, Hao K, Yang I, Ko DC. Context-specific eQTLs reveal causal genes underlying shared genetic architecture of critically ill COVID-19 and idiopathic pulmonary fibrosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.13.24310305. [PMID: 39040187 PMCID: PMC11261970 DOI: 10.1101/2024.07.13.24310305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/24/2024]
Abstract
Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis. We first identified five genome-wide significant variants associated with both diseases. Four of the variants did not demonstrate clear colocalization between GWAS and healthy lung eQTL signals. Instead, two of the four variants colocalized only in cell-type and disease-specific eQTL datasets. These analyses pointed to higher ATP11A expression from the C allele of rs12585036, in monocytes and in lung tissue from primarily smokers, which increased risk of IPF and decreased risk of critically ill COVID-19. We also found lower DPP9 expression (and higher methylation at a specific CpG) from the G allele of rs12610495, acting in fibroblasts and in IPF lungs, and increased risk of IPF and critically ill COVID-19. We further found differential expression of the identified causal genes in diseased lungs when compared to non-diseased lungs, specifically in epithelial and immune cell types. These findings highlight the power of integrating GWAS, context-specific eQTLs, and transcriptomics of diseased tissue to harness human genetic variation to identify causal genes and where they function during multiple diseases.
Collapse
Affiliation(s)
- Trisha Dalapati
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Angela G. Jones
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jonathan Cardwell
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Iain R. Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec – Université Laval, Department of Molecular Medicine, Québec City, Canada
| | - Don D. Sin
- Center for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ivana Yang
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Lead contact
| |
Collapse
|
7
|
Bellani S, Molyneaux PL, Maher TM, Spagnolo P. Potential of αvβ6 and αvβ1 integrin inhibition for treatment of idiopathic pulmonary fibrosis. Expert Opin Ther Targets 2024; 28:575-585. [PMID: 38949181 DOI: 10.1080/14728222.2024.2375375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease of unknown cause with a dismal prognosis. Nintedanib and Pirfenidone are approved worldwide for the treatment of IPF, but they only slow the rate of functional decline and disease progression. Therefore, there is an urgent need for more efficacious and better tolerated drugs. AREAS COVERED αvβ6 and αvβ1 are two integrins overexpressed in fibrotic tissue, which play a critical role in the development of lung fibrosis. They act by converting transforming growth factor (TGF)-β, one of the most important profibrotic cytokine, in its active form. Here, we summarize and critically discuss the potential of a dual αvβ6/αvβ1 integrin inhibitor for the treatment of IPF. EXPERT OPINION Bexotegrast, a dual αvβ6/αvβ1 integrin inhibitor, has the potential to slow or even halt disease progression in IPF. Indeed, the strong pre-clinical rationale and promising early phase clinical trial data have raised expectations.
Collapse
Affiliation(s)
- Serena Bellani
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College, London, UK
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospitals, London, UK
| | - Toby M Maher
- Hastings Centre for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Liu J, Bao T, Zhou Y, Ma M, Tian Z. Deficiency of Secreted Phosphoprotein 1 Alleviates Hyperoxia-induced Bronchopulmonary Dysplasia in Neonatal Mice. Inflammation 2024:10.1007/s10753-024-02088-1. [PMID: 38951356 DOI: 10.1007/s10753-024-02088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disorder characterized by impaired proximal airway and bronchoalveolar development in premature births. Secreted phosphoprotein 1 (SPP1) is involved in lung development and lung injury events, while its role was not explored in BPD. For establishing the in vivo models of BPD, a mouse model of hyperoxia-induced lung injury was generated by exposing neonatal mice to hyperoxia for 7 days after birth. Alveolar myofibroblasts (AMYFs) were treated with hyperoxia to establish the in vitro models of BPD. Based on the scRNA-seq analysis of lungs of mice housed under normoxia or hyperoxia conditions, mouse macrophages and fibroblasts were main different cell clusters between the two groups, and differentially expressed genes in fibroblasts were screened. Further GO and KEGG enrichment analysis revealed that these differentially expressed genes were mainly enriched in the pathways related to cell proliferation, apoptosis as well as the PI3K-AKT and ERK/MAPK pathways. SPP1 was found up-regulated in the lung tissues of hyperoxia mice. We also demonstrated the up-regulation of SPP1 in the BPD patients, the mouse model of hyperoxia-induced lung injury, and hyperoxia-induced cells. SPP1 deficiency was revealed to reduce the hyperoxia-induced apoptosis, oxidative stress and inflammation and increase the viability of AMYFs. In the mouse model of hyperoxia induced lung injury, SPP1 deficiency was demonstrated to reverse the hyperoxia-induced alveolar growth disruption, oxidative stress and inflammation. Overall, SPP1 exacerbates BPD progression in vitro and in vivo by regulating oxidative stress and inflammatory response via the PI3K-AKT and ERK/MAPK pathways, which might provide novel therapeutic target for BPD therapy.
Collapse
Affiliation(s)
- Juan Liu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Yajuan Zhou
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China.
| |
Collapse
|
9
|
Kanzaki M, Takagi R, Mitsuboshi S, Shidei H, Isaka T, Yamato M. Dual-color FISH analyses of xenogeneic human fibroblast sheets transplanted to repair lung pleural defects in an immunocompromised rat model. BMC Res Notes 2024; 17:139. [PMID: 38750547 PMCID: PMC11097561 DOI: 10.1186/s13104-024-06792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Pulmonary air leaks (PALs) due to visceral pleura injury during surgery is frequently observed after pulmonary resections and the complication is difficult to avoid in thoracic surgery. The development of postoperative PALs is the most common cause of prolonged hospitalization. Previously, we reported that PALs sealants using autologous dermal fibroblast sheets (DFSs) harvested from temperature-responsive culture dishes successfully closed intraoperative PALs during lung resection. OBJECTIVE In this study, we investigated the fate of human DFSs xenogenetically transplanted onto lung surfaces to seal PALs of immunocompromised rat. Dual-color FISH analyses of human fibroblast was employed to detect transplantation human cells on the lung surface. RESULTS One month after transplantation, FISH analyses revealed that transplanted human fibroblasts still composed a sheet-structure, and histology also showed that beneath the sheet's angiogenesis migrating into the sheets was observed from the recipient tissues. FISH analyses revealed that even at 3 months after transplantation, the transplanted human fibroblasts still remained in the sheet. Dual-color FISH analyses of the transplanted human fibroblasts were sparsely present as a result of the cells reaching the end of their lifespan, the cells producing extracellular matrix, and remained inside the cell sheet and did not invade the lungs of the host. CONCLUSIONS DFS-transplanted human fibroblasts showed that they are retained within cell sheets and do not invade the lungs of the host.
Collapse
Affiliation(s)
- Masato Kanzaki
- Department of Thoracic Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Ryo Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shota Mitsuboshi
- Department of Thoracic Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroaki Shidei
- Department of Thoracic Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tamami Isaka
- Department of Thoracic Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
10
|
Conrad C, Magnen M, Tsui J, Wismer H, Naser M, Venkataramani U, Samad B, Cleary SJ, Qiu L, Tian JJ, De Giovanni M, Mende N, Passegue E, Laurenti E, Combes AJ, Looney MR. Decoding functional hematopoietic progenitor cells in the adult human lung. RESEARCH SQUARE 2024:rs.3.rs-3576483. [PMID: 38077002 PMCID: PMC10705601 DOI: 10.21203/rs.3.rs-3576483/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2023]
Abstract
The bone marrow is the main site of blood cell production in adults, however, rare pools of hematopoietic stem and progenitor cells with self-renewal and differentiation potential have been found in extramedullary organs. The lung is primarily known for its role in gas exchange but has recently been described as a site of blood production in mice. Here, we show that functional hematopoietic precursors reside in the extravascular spaces of the human lung, at a frequency similar to the bone marrow, and are capable of proliferation and engraftment. The organ-specific gene signature of pulmonary and medullary CD34+ hematopoietic progenitors indicates greater baseline activation of immune, megakaryocyte/platelet and erythroid-related pathways in lung progenitors. Spatial transcriptomics mapped blood progenitors in the lung to a vascular-rich alveolar interstitium niche. These results identify the lung as a pool for uniquely programmed blood stem and progenitor cells with the potential to support hematopoiesis in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nicole Mende
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
11
|
Zhang X, Shi X, Xie F, Liu Y, Wei X, Cai Y, Chao J. Dissecting pulmonary fibroblasts heterogeneity in lung development, health and diseases. Heliyon 2023; 9:e19428. [PMID: 37674845 PMCID: PMC10477496 DOI: 10.1016/j.heliyon.2023.e19428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Lung fibroblasts are the major components in the connective tissue of the pulmonary interstitium and play essential roles in the developing of postnatal lung, synthesizing the extracellular matrix and maintaining the integrity of the lung architecture. Fibroblasts are activated in various disease conditions and exhibit functional heterogeneities according to their origin, spatial location, activated state and microenvironment. In recent years, advances in technology have enabled researchers to identify fibroblast subpopulations in both mouse and human. Here, we discuss pulmonary fibroblast heterogeneity, focusing on the developing, healthy and pathological lung conditions. We firstly review the expression profiles of fibroblasts during lung development, and then consider fibroblast diversity according to different anatomical sites of lung architecture. Subsequently, we discuss fibroblast heterogeneity in genetic lineage. Finally, we focus on how fibroblast heterogeneity may shed light on different pathological lung conditions such as fibrotic diseases, infectious diseases including COVID-19, and lung cancers. We emphasize the importance of comparative studies to illuminate the overlapping characteristics, expression profiles and signaling pathways of the fibroblast subpopulations across disease conditions, a better characterization of the functional complexity rather than the expression of a particular gene may have important therapeutic applications.
Collapse
Affiliation(s)
- Xinxin Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Xiaoni Shi
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Feiyan Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yaping Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xinyan Wei
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yu Cai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
12
|
Werner G, Sanyal A, Mirizio E, Hutchins T, Tabib T, Lafyatis R, Jacobe H, Torok KS. Single-Cell Transcriptome Analysis Identifies Subclusters with Inflammatory Fibroblast Responses in Localized Scleroderma. Int J Mol Sci 2023; 24:9796. [PMID: 37372943 DOI: 10.3390/ijms24129796] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Localized scleroderma (LS) is an autoimmune disease with both inflammatory and fibrotic components causing an abnormal deposition of collagen in the skin and underlying tissue, often leading to disfigurement and disability. Much of its pathophysiology is extrapolated from systemic sclerosis (SSc) since the histopathology findings in the skin are nearly identical. However, LS is critically understudied. Single-cell RNA sequencing (scRNA seq) technology provides a novel way to obtain detailed information at the individual cellular level, overcoming this barrier. Here, we analyzed the affected skin of 14 patients with LS (pediatric and adult) and 14 healthy controls. Fibroblast populations were the focus, since they are the main drivers of fibrosis in SSc. We identified 12 fibroblast subclusters in LS, which overall had an inflammatory gene expression (IFN and HLA-associated genes). A myofibroblast-like cluster (SFRP4/PRSS23) was more prevalent in LS subjects and shared many upregulated genes expressed in SSc-associated myofibroblasts, though it also had strong expression of CXCL9/10/11, known CXCR3 ligands. A CXCL2/IRF1 cluster identified was unique to LS, with a robust inflammatory gene signature, including IL-6, and according to cell communication analysis are influenced by macrophages. In summary, potential disease-propagating fibroblasts and associated gene signatures were identified in LS skin via scRNA seq.
Collapse
Affiliation(s)
- Giffin Werner
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Anwesha Sanyal
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Emily Mirizio
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Theresa Hutchins
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heidi Jacobe
- Department of Dermatology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Kathryn S Torok
- Department of Pediatrics (Rheumatology), University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
13
|
Wu X, Zhang D, Qiao X, Zhang L, Cai X, Ji J, Ma JA, Zhao Y, Belperio JA, Boström KI, Yao Y. Regulating the cell shift of endothelial cell-like myofibroblasts in pulmonary fibrosis. Eur Respir J 2023; 61:2201799. [PMID: 36758986 PMCID: PMC10249020 DOI: 10.1183/13993003.01799-2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Pulmonary fibrosis is a common and severe fibrotic lung disease with high morbidity and mortality. Recent studies have reported a large number of unwanted myofibroblasts appearing in pulmonary fibrosis, and shown that the sustained activation of myofibroblasts is essential for unremitting interstitial fibrogenesis. However, the origin of these myofibroblasts remains poorly understood. Here, we create new mouse models of pulmonary fibrosis and identify a previously unknown population of endothelial cell (EC)-like myofibroblasts in normal lung tissue. We show that these EC-like myofibroblasts significantly contribute myofibroblasts to pulmonary fibrosis, which is confirmed by single-cell RNA sequencing of human pulmonary fibrosis. Using the transcriptional profiles, we identified a small molecule that redirects the differentiation of EC-like myofibroblasts and reduces pulmonary fibrosis in our mouse models. Our study reveals the mechanistic underpinnings of the differentiation of EC-like myofibroblasts in pulmonary fibrosis and may provide new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- These authors contributed equally to this work
| | - Daoqin Zhang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- These authors contributed equally to this work
| | - Xiaojing Qiao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jocelyn A Ma
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John A Belperio
- Division of Pulmonary and Critical Care Medicine, Clinical Immunology, and Allergy, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
14
|
Bartish M, Abraham MJ, Gonçalves C, Larsson O, Rolny C, Del Rincón SV. The role of eIF4F-driven mRNA translation in regulating the tumour microenvironment. Nat Rev Cancer 2023; 23:408-425. [PMID: 37142795 DOI: 10.1038/s41568-023-00567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Cells can rapidly adjust their proteomes in dynamic environments by regulating mRNA translation. There is mounting evidence that dysregulation of mRNA translation supports the survival and adaptation of cancer cells, which has stimulated clinical interest in targeting elements of the translation machinery and, in particular, components of the eukaryotic initiation factor 4F (eIF4F) complex such as eIF4E. However, the effect of targeting mRNA translation on infiltrating immune cells and stromal cells in the tumour microenvironment (TME) has, until recently, remained unexplored. In this Perspective article, we discuss how eIF4F-sensitive mRNA translation controls the phenotypes of key non-transformed cells in the TME, with an emphasis on the underlying therapeutic implications of targeting eIF4F in cancer. As eIF4F-targeting agents are in clinical trials, we propose that a broader understanding of their effect on gene expression in the TME will reveal unappreciated therapeutic vulnerabilities that could be used to improve the efficacy of existing cancer therapies.
Collapse
Affiliation(s)
- Margarita Bartish
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Madelyn J Abraham
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Christophe Gonçalves
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Ola Larsson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Sonia V Del Rincón
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
15
|
Xia S, Vila Ellis L, Winkley K, Menden H, Mabry SM, Venkatraman A, Louiselle D, Gibson M, Grundberg E, Chen J, Sampath V. Neonatal hyperoxia induces activated pulmonary cellular states and sex-dependent transcriptomic changes in a model of experimental bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L123-L140. [PMID: 36537711 PMCID: PMC9902224 DOI: 10.1152/ajplung.00252.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hyperoxia disrupts lung development in mice and causes bronchopulmonary dysplasia (BPD) in neonates. To investigate sex-dependent molecular and cellular programming involved in hyperoxia, we surveyed the mouse lung using single cell RNA sequencing (scRNA-seq), and validated our findings in human neonatal lung cells in vitro. Hyperoxia-induced inflammation in alveolar type (AT) 2 cells gave rise to damage-associated transient progenitors (DATPs). It also induced a new subpopulation of AT1 cells with reduced expression of growth factors normally secreted by AT1 cells, but increased mitochondrial gene expression. Female alveolar epithelial cells had less EMT and pulmonary fibrosis signaling in hyperoxia. In the endothelium, expansion of Car4+ EC (Cap2) was seen in hyperoxia along with an emergent subpopulation of Cap2 with repressed VEGF signaling. This regenerative response was increased in females exposed to hyperoxia. Mesenchymal cells had inflammatory signatures in hyperoxia, with a new distal interstitial fibroblast subcluster characterized by repressed lipid biosynthesis and a transcriptomic signature resembling myofibroblasts. Hyperoxia-induced gene expression signatures in human neonatal fibroblasts and alveolar epithelial cells in vitro resembled mouse scRNA-seq data. These findings suggest that neonatal exposure to hyperoxia programs distinct sex-specific stem cell progenitor and cellular reparative responses that underpin lung remodeling in BPD.
Collapse
Affiliation(s)
- Sheng Xia
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Lisandra Vila Ellis
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Konner Winkley
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
| | - Heather Menden
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Sherry M Mabry
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Aparna Venkatraman
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Daniel Louiselle
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
| | - Margaret Gibson
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri
- Children's Mercy Research Institute, Kansas City, Missouri
| | - Jichao Chen
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Venkatesh Sampath
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
- Children's Mercy Research Institute, Kansas City, Missouri
| |
Collapse
|
16
|
Kayalar O, Oztay F. CGRP induces myofibroblast differentiation and the production of extracellular matrix in MRC5s via autocrine and paracrine signalings. J Biochem Mol Toxicol 2022; 36:e23204. [PMID: 36056781 DOI: 10.1002/jbt.23204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2021] [Revised: 04/05/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
There are contradictory views on which calcitonin gene-related peptide (CGRP) causes pulmonary fibrosis. Fibrotic potency of CGRP was tested and compared to that of transforming growth factor-β (TGF-β). Myofibroblast differentiation, cell proliferation, and activations of TGF-β and Wnt pathways were examined for 24, 48, and 72 h in A549 and MRC5 cell lines stimulated with CGRP and TGF-β. CGRP-induced cell proliferation in MRC5s early on while cell proliferation in A549 occurred progressively. CGRP promoted fibroblast-myofibroblast differentiation by inducing the transcription of ACTA2, COL1A1, SMAD2/3, and SMAD4 genes, the production of collagen, fibronectin, α-smooth muscle actin, and activation of TGF-β signaling starting from 24 h. Additionally, TGF-β signaling induced by CGRP decreased the DKK1 level and activated the Wnt signaling in MRC5s. After CGRP stimulation, Wnt7a levels were increased from 24 to 72 h, while Wnt5a levels were elevated at 72 h in MRC5s. CGRP did not induce epithelial-mesenchymal transition in A549s, unlike TGF-β. A comparison of fibrotic potency of CGRP and TGF-β showed that TGF-β is a powerful profibrotic molecule and induces earlier myofibroblast differentiation. Even so, CGRP promotes myofibroblast differentiation and extracellular matrix production by inducing Smad-dependent-TGF-β and Wnt signalings via autocrine and paracrine signalings in MRC5s.
Collapse
Affiliation(s)
- Ozgecan Kayalar
- Department of Biology, Science Faculty, Istanbul University, Istanbul, Turkey.,Koç University Research Centre for Translational Medicine (KUTTAM), School of Medicine, Koç University, Istanbul, Turkey
| | - Fusun Oztay
- Department of Biology, Science Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Fytianos K, Schliep R, Mykoniati S, Khan P, Hostettler KE, Tamm M, Gazdhar A, Knudsen L, Geiser T. Anti-Fibrotic Effect of SDF-1β Overexpression in Bleomycin-Injured Rat Lung. Pharmaceutics 2022; 14:pharmaceutics14091803. [PMID: 36145551 PMCID: PMC9502331 DOI: 10.3390/pharmaceutics14091803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Rational: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease and is associated with high mortality due to a lack of effective treatment. Excessive deposition of the extracellular matrix by activated myofibroblasts in the alveolar space leads to scar formation that hinders gas exchange. Therefore, selectively removing activated myofibroblasts with the aim to repair and remodel fibrotic lungs is a promising approach. Stromal-derived growth factor (SDF-1) is known to stimulate cellular signals which attract stem cells to the site of injury for tissue repair and remodeling. Here, we investigate the effect of overexpression of SDF-1β on lung structure using the bleomycin-injured rat lung model. Methods: Intratracheal administration of bleomycin was performed in adult male rats (F344). Seven days later, in vivo electroporation-mediated gene transfer of either SDF-1β or the empty vector was performed. Animals were sacrificed seven days after gene transfer and histology, design-based stereology, flow cytometry, and collagen measurement were performed on the tissue collected. For in vitro experiments, lung fibroblasts obtained from IPF patients were used. Results: Seven days after SDF-1β gene transfer to bleomycin-injured rat lungs, reduced total collagen, reduced collagen fibrils, improved histology and induced apoptosis of myofibroblasts were observed. Furthermore, it was revealed that TNF-α mediates SDF-1β-induced apoptosis of myofibroblasts; moreover, SDF-1β overexpression increased alveolar epithelial cell numbers and proliferation in vivo and also induced their migration in vitro. Conclusions: Our study demonstrates a new antifibrotic mechanism of SDF-1β overexpression and suggests SDF-1β as a potential new approach for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Kleanthis Fytianos
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical research, University of Bern, 3010 Bern, Switzerland
| | - Ronja Schliep
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hanover, Germany
| | - Sofia Mykoniati
- Department of Internal Medicine, Cantonal Hospital of Jura, 2800 Delemont, Switzerland
| | - Petra Khan
- Department of Biomedical Research and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Katrin E. Hostettler
- Department of Biomedical Research and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Michael Tamm
- Department of Biomedical Research and Clinics of Respiratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical research, University of Bern, 3010 Bern, Switzerland
- Correspondence: (A.G.); (T.G.)
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hanover, Germany
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical research, University of Bern, 3010 Bern, Switzerland
- Correspondence: (A.G.); (T.G.)
| |
Collapse
|
18
|
Liu T, Gonzalez De Los Santos F, Rinke AE, Fang C, Flaherty KR, Phan SH. B7H3-dependent myeloid-derived suppressor cell recruitment and activation in pulmonary fibrosis. Front Immunol 2022; 13:901349. [PMID: 36045668 PMCID: PMC9420866 DOI: 10.3389/fimmu.2022.901349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease without effective curative therapy. Recent evidence shows increased circulating myeloid-derived suppressor cells (MDSCs) in cancer, inflammation, and fibrosis, with some of these cells expressing B7H3. We sought to investigate the role of MDSCs in IPF and its potential mediation via B7H3. Here we prospectively collected peripheral blood samples from IPF patients to analyze for circulating MDSCs and B7H3 expression to assess their clinical significance and potential impact on co-cultured lung fibroblasts and T-cell activation. In parallel, we assess MDSC recruitment and potential B7H3 dependence in a mouse model of pulmonary fibrosis. Expansion of MDSCs in IPF patients correlated with disease severity. Co-culture of soluble B7H3 (sB7H3)-treated mouse monocytic MDSCs (M-MDSCs), but not granulocytic MDSCs (G-MDSCs), activated lung fibroblasts and myofibroblast differentiation. Additionally, sB7H3 significantly enhanced MDSC suppression of T-cell proliferation. Activated M-MDSCs displayed elevated TGFβ and Arg1 expression relative to that in G-MDSCs. Treatment with anti-B7H3 antibodies inhibited bone marrow-derived MDSC recruitment into the bleomycin-injured lung, accompanied by reduced expression of inflammation and fibrosis markers. Selective telomerase reverse transcriptase (TERT) deficiency in myeloid cells also diminished MDSC recruitment associated with the reduced plasma level of sB7H3, lung recruitment of c-Kit+ hematopoietic progenitors, myofibroblast differentiation, and fibrosis. Lung single-cell RNA sequencing (scRNA-seq) revealed fibroblasts as a predominant potential source of sB7H3, and indeed the conditioned medium from activated mouse lung fibroblasts had a chemotactic effect on bone marrow (BM)-MDSC, which was abolished by B7H3 blocking antibody. Thus, in addition to their immunosuppressive activity, TERT and B7H3-dependent MDSC expansion/recruitment from BM could play a paracrine role to activate myofibroblast differentiation during pulmonary fibrosis with potential significance for disease progression mediated by sB7H3.
Collapse
Affiliation(s)
- Tianju Liu
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Sem H. Phan, ; Tianju Liu,
| | | | - Andrew E. Rinke
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chuling Fang
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kevin R. Flaherty
- Division of Pulmonary/Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sem H. Phan
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Sem H. Phan, ; Tianju Liu,
| |
Collapse
|
19
|
BMP3 inhibits TGFβ2-mediated myofibroblast differentiation during wound healing of the embryonic cornea. NPJ Regen Med 2022; 7:36. [PMID: 35879352 PMCID: PMC9314337 DOI: 10.1038/s41536-022-00232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2021] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Often acute damage to the cornea initiates drastic tissue remodeling, resulting in fibrotic scarring that disrupts light transmission and precedes vision impairment. Very little is known about the factors that can mitigate fibrosis and promote scar-free cornea wound healing. We previously described transient myofibroblast differentiation during non-fibrotic repair in an embryonic cornea injury model. Here, we sought to elucidate the mechanistic regulation of myofibroblast differentiation during embryonic cornea wound healing. We found that alpha-smooth muscle actin (αSMA)-positive myofibroblasts are superficial and their presence inversely correlates with wound closure. Expression of TGFβ2 and nuclear localization of pSMAD2 were elevated during myofibroblast induction. BMP3 and BMP7 were localized in the corneal epithelium and corresponded with pSMAD1/5/8 activation and absence of myofibroblasts in the healing stroma. In vitro analyses with corneal fibroblasts revealed that BMP3 inhibits the persistence of TGFβ2-induced myofibroblasts by promoting disassembly of focal adhesions and αSMA fibers. This was confirmed by the expression of vinculin and pFAK. Together, these data highlight a mechanism to inhibit myofibroblast persistence during cornea wound repair.
Collapse
|
20
|
Bronchoalveolar-Lavage-Derived Fibroblast Cell Line (B-LSDM7) as a New Protocol for Investigating the Mechanisms of Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11091441. [PMID: 35563747 PMCID: PMC9103910 DOI: 10.3390/cells11091441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022] Open
Abstract
Background: The use of BAL to study ILDs has improved our understanding of IPF pathogenesis. BAL fluid is routinely collected and can be considered a clinical and research tool. The procedure is well tolerated and minimally invasive. No specific cell lines from BAL or immortalized cell lines from IPF patients are available commercially. A method to quickly isolate and characterize fibroblasts from BAL is an unmet research need. Materials and methods: Here we describe a new protocol by which we isolated a cell line from IPF. The cell line was expanded in vitro and characterized phenotypically, morphologically and functionally. Results: This culture showed highly filamentous cells with an evident central nucleus. From the phenotypic point of view, this cell line displays fibroblast/myofibroblast-like features including expression of alpha-SMA, vimentin, collagen type-1 and fibronectin. The results showed high expression of ROS in these cells. Oxidative stress invariably promotes extracellular matrix expression in lung diseases directly or through over-production of pro-fibrotic growth factors. Conclusions: Our protocol makes it possible to obtain fibroblasts BAL that is a routine non-invasive method that offers the possibility of having a large sample of patients. Standardized culture methods are important for a reliable model for testing molecules and eventual novel development therapeutic targets.
Collapse
|
21
|
Carvallo FR, Stevenson VB. Interstitial pneumonia and diffuse alveolar damage in domestic animals. Vet Pathol 2022; 59:586-601. [DOI: 10.1177/03009858221082228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
Classification of pneumonia in animals has been controversial, and the most problematic pattern is interstitial pneumonia. This is true from the gross and histologic perspectives, and also from a mechanistic point of view. Multiple infectious and noninfectious diseases are associated with interstitial pneumonia, all of them converging in the release of inflammatory mediators that generate local damage and attract inflammatory cells that inevitably trigger a second wave of damage. Diffuse alveolar damage is one of the more frequently identified histologic types of interstitial pneumonia and involves injury to alveolar epithelial and/or endothelial cells, with 3 distinct stages. The first is the “exudative” stage, with alveolar edema and hyaline membranes. The second is the “proliferative” stage, with hyperplasia and reactive atypia of type II pneumocytes, infiltration of lymphocytes, plasma cells, and macrophages in the interstitium and early proliferation of fibroblasts. These stages are reversible and often nonfatal. If damage persists, there is a third “fibrosing” stage, characterized by fibrosis of the interstitium due to proliferation of fibroblasts/myofibroblasts, persistence of type II pneumocytes, segments of squamous metaplasia of alveolar epithelium, plus inflammation. Understanding the lesion patterns associated with interstitial pneumonias, their causes, and the underlying mechanisms aid in accurate diagnosis that involves an interdisciplinary collaborative approach involving pathologists, clinicians, and radiologists.
Collapse
Affiliation(s)
- Francisco R. Carvallo
- Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA
- Virginia Department of Agriculture and Consumer Services, Harrisonburg, VA
| | | |
Collapse
|
22
|
Geng J, Liu Y, Dai H, Wang C. Fatty Acid Metabolism and Idiopathic Pulmonary Fibrosis. Front Physiol 2022; 12:794629. [PMID: 35095559 PMCID: PMC8795701 DOI: 10.3389/fphys.2021.794629] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acid metabolism, including the de novo synthesis, uptake, oxidation, and derivation of fatty acids, plays several important roles at cellular and organ levels. Recent studies have identified characteristic changes in fatty acid metabolism in idiopathic pulmonary fibrosis (IPF) lungs, which implicates its dysregulation in the pathogenesis of this disorder. Here, we review the evidence for how fatty acid metabolism contributes to the development of pulmonary fibrosis, focusing on the profibrotic processes associated with specific types of lung cells, including epithelial cells, macrophages, and fibroblasts. We also summarize the potential therapeutics that target this metabolic pathway in treating IPF.
Collapse
Affiliation(s)
- Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Huaping Dai,
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chen Wang,
| |
Collapse
|
23
|
Gremlich S, Cremona TP, Yao E, Chabenet F, Fytianos K, Roth-Kleiner M, Schittny JC. Tenascin-C: Friend or Foe in Lung Aging? Front Physiol 2021; 12:749776. [PMID: 34777012 PMCID: PMC8578707 DOI: 10.3389/fphys.2021.749776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Lung aging is characterized by lung function impairment, ECM remodeling and airspace enlargement. Tenascin-C (TNC) is a large extracellular matrix (ECM) protein with paracrine and autocrine regulatory functions on cell migration, proliferation and differentiation. This matricellular protein is highly expressed during organogenesis and morphogenetic events like injury repair, inflammation or cancer. We previously showed that TNC deficiency affected lung development and pulmonary function, but little is known about its role during pulmonary aging. In order to answer this question, we characterized lung structure and physiology in 18 months old TNC-deficient and wild-type (WT) mice. Mice were mechanically ventilated with a basal and high tidal volume (HTV) ventilation protocol for functional analyses. Additional animals were used for histological, stereological and molecular biological analyses. We observed that old TNC-deficient mice exhibited larger lung volume, parenchymal volume, total airspace volume and septal surface area than WT, but similar mean linear intercept. This was accompanied by an increase in proliferation, but not apoptosis or autophagy markers expression throughout the lung parenchyma. Senescent cells were observed in epithelial cells of the conducting airways and in alveolar macrophages, but equally in both genotypes. Total collagen content was doubled in TNC KO lungs. However, basal and HTV ventilation revealed similar respiratory physiological parameters in both genotypes. Smooth muscle actin (α-SMA) analysis showed a faint increase in α-SMA positive cells in TNC-deficient lungs, but a marked increase in non-proliferative α-SMA + desmin + cells. Major TNC-related molecular pathways were not up- or down-regulated in TNC-deficient lungs as compared to WT; only minor changes in TLR4 and TGFβR3 mRNA expression were observed. In conclusion, TNC-deficient lungs at 18 months of age showed exaggerated features of the normal structural lung aging described to occur in mice between 12 and 18 months of age. Correlated to the increased pulmonary function parameters previously observed in young adult TNC-deficient lungs and described to occur in normal lung aging between 3 and 6 months of age, TNC might be an advantage in lung aging.
Collapse
Affiliation(s)
- Sandrine Gremlich
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Eveline Yao
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Farah Chabenet
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kleanthis Fytianos
- Department for BioMedical Research, University of Bern, Bern, Switzerland.,Division of Pulmonary Medicine, University of Bern, Bern, Switzerland
| | - Matthias Roth-Kleiner
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
24
|
Samarelli AV, Masciale V, Aramini B, Coló GP, Tonelli R, Marchioni A, Bruzzi G, Gozzi F, Andrisani D, Castaniere I, Manicardi L, Moretti A, Tabbì L, Guaitoli G, Cerri S, Dominici M, Clini E. Molecular Mechanisms and Cellular Contribution from Lung Fibrosis to Lung Cancer Development. Int J Mol Sci 2021; 22:12179. [PMID: 34830058 PMCID: PMC8624248 DOI: 10.3390/ijms222212179] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial lung disease (ILD) of unknown aetiology, with a median survival of 2-4 years from the time of diagnosis. Although IPF has unknown aetiology by definition, there have been identified several risks factors increasing the probability of the onset and progression of the disease in IPF patients such as cigarette smoking and environmental risk factors associated with domestic and occupational exposure. Among them, cigarette smoking together with concomitant emphysema might predispose IPF patients to lung cancer (LC), mostly to non-small cell lung cancer (NSCLC), increasing the risk of lung cancer development. To this purpose, IPF and LC share several cellular and molecular processes driving the progression of both pathologies such as fibroblast transition proliferation and activation, endoplasmic reticulum stress, oxidative stress, and many genetic and epigenetic markers that predispose IPF patients to LC development. Nintedanib, a tyrosine-kinase inhibitor, was firstly developed as an anticancer drug and then recognized as an anti-fibrotic agent based on the common target molecular pathway. In this review our aim is to describe the updated studies on common cellular and molecular mechanisms between IPF and lung cancer, knowledge of which might help to find novel therapeutic targets for this disease combination.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Valentina Masciale
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Beatrice Aramini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Thoracic Surgery Unit, Department of Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 34 Carlo Forlanini Street, 47121 Forlì, Italy
| | - Georgina Pamela Coló
- Laboratorio de Biología del Cáncer INIBIBB-UNS-CONICET-CCT, Bahía Blanca 8000, Argentina;
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Giorgia Guaitoli
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41100 Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| | - Massimo Dominici
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41100 Modena, Italy; (A.V.S.); (V.M.); (B.A.); (R.T.); (A.M.); (G.B.); (F.G.); (D.A.); (I.C.); (L.M.); (A.M.); (S.C.); (M.D.)
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena and Reggio Emilia, University of Modena Reggio Emilia, 41100 Modena, Italy;
| |
Collapse
|
25
|
Liu T, Gonzalez De Los Santos F, Hirsch M, Wu Z, Phan SH. Noncanonical Wnt Signaling Promotes Myofibroblast Differentiation in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:489-499. [PMID: 34107237 PMCID: PMC8641847 DOI: 10.1165/rcmb.2020-0499oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2020] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
The Wnt/β-catenin pathway initiates a signaling cascade that is critical in cell differentiation and the normal development of multiple organ systems. The reactivation of this pathway has been documented in experimental and human idiopathic pulmonary fibrosis, wherein Wnt/β-catenin activation has been implicated in epithelial-cell repair. Furthermore, the canonical ligand Wnt3a is known to induce myofibroblast differentiation; however, the role of noncanonical Wnt ligands remains unclear. This study showed significantly higher levels of Wnt11 expression in cells from both patients with idiopathic pulmonary fibrosis and bleomycin-treated mice, as well as in TGFβ-treated mouse lung fibroblasts. Moreover, Wnt11 induced myofibroblast differentiation as manifested by increased α-SMA (ACTA2) expression, which was similar to that induced by canonical Wnt3a/β-catenin signaling. Further investigation revealed that Wnt11 induction of α-SMA was associated with the activation of JNK (c-Jun N-terminal kinase)/c-Jun signaling and was inhibited by a JNK inhibitor. The potential importance of this signaling pathway was supported by in vivo evidence showing significantly increased levels of Wnt11 and activated JNK in the lungs of mice with bleomycin-induced pulmonary fibrosis. Interestingly, fibroblasts did not express canonical Wnt3a, but treatment of these cells with exogenous Wnt3a induced endogenous Wnt11 and Wnt5a, resulting in repression of the Wnt3a/β-catenin target gene Axin2. These findings suggested that the noncanonical Wnt induction of myofibroblast differentiation mediated by the JNK/c-Jun pathway might play a significant role in pulmonary fibrosis, in addition to or in synergy with canonical Wnt3a/β-catenin signaling. Moreover, Wnt3a activation of noncanonical Wnt signaling might trigger a switch from canonical to noncanonical Wnt signaling to induce myofibroblast differentiation.
Collapse
Affiliation(s)
| | | | - Mitchell Hirsch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
26
|
Peptide DR8 analogs alleviate pulmonary fibrosis via suppressing TGF-β1 mediated epithelial-mesenchymal transition and ERK1/2 pathway in vivo and in vitro. Eur J Pharm Sci 2021; 167:106009. [PMID: 34537373 DOI: 10.1016/j.ejps.2021.106009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that lacks effective treatments in clinic. It is characterized by repair disorder of epithelial cells, formation of fibroblast foci as well as destruction of alveolar structure. Previously we first determined that parent peptide DR8 (DHNNPQIR-NH2) has anti-fibrotic activity in bleomycin-induced mice. In order to further improve the druggability of DR8, including anti-fibrotic activity, stability and security, the structure-activity relationship was investigated using a series of D-amino acid and alanine scanning analogs of DR8. The results indicated that peptides DR8-3D and DR8-8A exhibited potent anti-fibrotic activity and better stability. Further mechanism research revealed that DR8-3D and DR8-8A ameliorated lung fibrosis by inhibiting TGF-β1 mediated epithelial-mesenchymal transition process and ERK1/2 signaling pathway in vitro and in vivo. Moreover, we found that anti-fibrotic activity of DR8 was closely related to the residues aspartic acid (Asp)1, histidine (His)2, proline (Pro)5 and glutamine (Gln)6, which suggested that the position of residues asparagine (Asn)3, asparagine (Asn)4, isoleucine (Ile)7 and arginine (Arg)8 could be further modified to optimized its anti-fibrotic effect. Therefore, we consider that DR8-3D and DR8-8A not only could be used as a potential leading compound for the treatment of bleomycin-induced lung fibrosis but also laid a foundation for the development of new anti-fibrotic drugs.
Collapse
|
27
|
Liu T, Yang M, Xia Y, Jiang C, Li C, Jiang Z, Wang X. Microarray-based analysis of renal complement components reveals a therapeutic target for lupus nephritis. Arthritis Res Ther 2021; 23:223. [PMID: 34433493 PMCID: PMC8385907 DOI: 10.1186/s13075-021-02605-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Screening abnormal pathways and complement components in the kidneys of patients with lupus nephritis (LN) and NZB/W mice may help to identify complement-related therapeutic targets for LN. Methods KEGG and GO enrichment assays were used to analyze kidney microarray data of LN patients and NZB/W mice. Immunohistochemistry and immunofluorescence assays were used to measure renal expression of complement-related proteins and TGFβ1. Cytokines were measured using RT-qPCR and ELISA. Results We screened the renal pathogenic pathways present in LN patients and NZB/W mice and selected the complement activation pathway for further study. The results indicated greater renal expression of C1qa, C1qb, C3, C3aR1, and C5aR1 at the mRNA and protein levels. C3 appeared to be a key factor in LN and the renal signaling downstream of C1 was inhibited. There were significant correlations between the expression of TGFβ1 and C3. Analysis of primary cell cultures indicated that TGFβ1 promoted the expression of C3 and that a TGFβ1 antagonist decreased the levels of C3 and C3aR. TGFβ1 inhibition significantly inhibited the deposition of complement-related factors in the kidneys of NZB/W mice. Conclusions At the onset of LN, there are significant increases in the renal levels of C3 and other complement pathway-related factors in patients with LN and NZB/W mice. C3 may lead to albuminuria and participate in the pathogenesis of LN. TGFβ1 promotes C3 synthesis, and TGFβ1 inhibition may block the progression of LN by inhibiting the synthesis of C3 and other complement components. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02605-9.
Collapse
Affiliation(s)
- Tao Liu
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingyue Yang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ying Xia
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan Jiang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chenxu Li
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenyu Jiang
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Xiaosong Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
28
|
Brügger M, Démoulins T, Barut GT, Zumkehr B, Oliveira Esteves BI, Mehinagic K, Haas Q, Schögler A, Rameix-Welti MA, Eléouët JF, Moehrlen U, Marti TM, Schmid RA, Summerfield A, Posthaus H, Ruggli N, Hall SRR, Alves MP. Pulmonary mesenchymal stem cells are engaged in distinct steps of host response to respiratory syncytial virus infection. PLoS Pathog 2021; 17:e1009789. [PMID: 34320038 PMCID: PMC8351988 DOI: 10.1371/journal.ppat.1009789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2021] [Revised: 08/09/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Lung-resident (LR) mesenchymal stem and stromal cells (MSCs) are key elements of the alveolar niche and fundamental regulators of homeostasis and regeneration. We interrogated their function during virus-induced lung injury using the highly prevalent respiratory syncytial virus (RSV) which causes severe outcomes in infants. We applied complementary approaches with primary pediatric LR-MSCs and a state-of-the-art model of human RSV infection in lamb. Remarkably, RSV-infection of pediatric LR-MSCs led to a robust activation, characterized by a strong antiviral and pro-inflammatory phenotype combined with mediators related to T cell function. In line with this, following in vivo infection, RSV invades and activates LR-MSCs, resulting in the expansion of the pulmonary MSC pool. Moreover, the global transcriptional response of LR-MSCs appears to follow RSV disease, switching from an early antiviral signature to repair mechanisms including differentiation, tissue remodeling, and angiogenesis. These findings demonstrate the involvement of LR-MSCs during virus-mediated acute lung injury and may have therapeutic implications.
Collapse
Affiliation(s)
- Melanie Brügger
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Thomas Démoulins
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G. Tuba Barut
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Beatrice Zumkehr
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Blandina I. Oliveira Esteves
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kemal Mehinagic
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Aline Schögler
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Marie-Anne Rameix-Welti
- Université Paris-Saclay, INSERM, Université de Versailles St. Quentin, UMR 1173 (2I), Versailles, France
| | | | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Thomas M. Marti
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph A. Schmid
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Horst Posthaus
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sean R. R. Hall
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Marco P. Alves
- Institute of Virology and Immunology, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Cofilin-1 promotes fibrocyte differentiation and contributes to pulmonary fibrosis. Biochem Biophys Res Commun 2021; 565:43-49. [PMID: 34090209 DOI: 10.1016/j.bbrc.2021.05.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 11/22/2022]
Abstract
Fibrocytes originate from the bone marrow monocyte lineage and participate in the pathogenesis of pulmonary fibrosis. Research providing a comprehensive picture of fibrocytes is still limited. Cofilin-1 (CFL-1) is an important protein that regulates cell proliferation, migration and differentiation. Whether CFL-1 can induce monocyte differentiation into fibrocytes and promote the process of pulmonary fibrosis is unknown. Compared with that of healthy controls, the expression of CFL-1 was significantly increased in the plasma and peripheral blood mononuclear cells (PBMCs) from idiopathic pulmonary fibrosis (IPF) and connective tissue disease-associated interstitial lung disease (CTD-ILD) patients (P < 0.05). The percentages of peripheral blood fibrocytes in the IPF group (4.2550 ± 0.3483%) and CTD-ILD group (4.7100 ± 0.4811%) were higher than that in the control group (1.6340 ± 0.2549%) (both P < 0.05). In vitro, PBMCs transfected with siRNA-CFL-1 showed lower expression of CFL-1, and the percentage of fibrocytes was lower than that of the control (P < 0.05). PBMCs transfected with Lv-CFL-1 to increase the expression of CFL-1 showed a higher percentage of fibrocytes than the control (P < 0.05). In mice with bleomycin-induced pulmonary fibrosis, the relative expression of CFL-1 was increased, and the percentage of fibrocytes was higher than that in the saline group (P < 0.05). In bleomycin-induced mice, interference with Lv-CFL-1 decreased the expression of CFL-1, the percentage of fibrocytes was lower, and the lung tissue showed less fibrosis (P < 0.05). The overexpression of CFL-1 is associated with pulmonary fibrogenesis. CFL-1 could promote the differentiation of fibrocytes from monocyte peripheral blood mononuclear cells and promote pulmonary fibrosis.
Collapse
|
30
|
Taghizadeh S, Heiner M, Vazquez-Armendariz AI, Wilhelm J, Herold S, Chen C, Zhang JS, Bellusci S. Characterization in mice of the resident mesenchymal niche maintaining AT2 stem cell proliferation in homeostasis and disease. STEM CELLS (DAYTON, OHIO) 2021; 39:1382-1394. [PMID: 34048616 DOI: 10.1002/stem.3423] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Received: 02/02/2021] [Accepted: 05/08/2021] [Indexed: 11/06/2022]
Abstract
Resident mesenchymal cells (rMCs defined as Cd31Neg Cd45Neg EpcamNeg ) control the proliferation and differentiation of alveolar epithelial type 2 (AT2) stem cells in vitro. The identity of these rMCs is still elusive. Among them, Axin2Pos mesenchymal alveolar niche cells (MANCs), which are expressing Fgf7, have been previously described. We propose that an additional population of rMCs, expressing Fgf10 (called rMC-Sca1Pos Fgf10Pos ) are equally important to maintain AT2 stem cell proliferation. The alveolosphere model, based on the AT2-rMC co-culture in growth factor-reduced Matrigel, was used to test the efficiency of different rMC subpopulations isolated by FACS from adult murine lung to sustain the proliferation and differentiation of AT2 stem cells. We demonstrate that rMC-Sca1Pos Fgf10Pos cells are efficient to promote the proliferation and differentiation of AT2 stem cells. Co-staining of adult lung for Fgf10 mRNA and Sftpc protein respectively, indicate that 28% of Fgf10Pos cells are located close to AT2 cells. Co-ISH for Fgf7 and Fgf10 indicate that these two populations do not significantly overlap. Gene arrays comparing rMC-Sca1Pos Axin2Pos and rMC-Sca1Pos Fgf10Pos support that these two cell subsets express differential markers. In addition, rMC function is decreased in obese ob/ob mutant compared to WT mice with a much stronger loss of function in males compared to females. In conclusion, rMC-Sca1Pos Fgf10Pos cells play important role in supporting AT2 stem cells proliferation and differentiation. This result sheds a new light on the subpopulations of rMCs contributing to the AT2 stem cell niche in homeostasis and in the context of pre-existing metabolic diseases.
Collapse
Affiliation(s)
- Sara Taghizadeh
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou.,Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| | - Monika Heiner
- Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| | | | - Jochen Wilhelm
- Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany.,Institute for Lung Health (ILH), Germany
| | - Susanne Herold
- Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Jin San Zhang
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Saverio Bellusci
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou.,Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Germany
| |
Collapse
|
31
|
Cymbopogon winterianus Essential Oil Attenuates Bleomycin-Induced Pulmonary Fibrosis in a Murine Model. Pharmaceutics 2021; 13:pharmaceutics13050679. [PMID: 34065064 PMCID: PMC8150729 DOI: 10.3390/pharmaceutics13050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
The essential oil of Cymbopogon winterianus (EOCW) is a natural product with antioxidant, anti-inflammatory, and antifibrotic properties. We studied the effect of EOCW in the progression of histological changes of pulmonary fibrosis (PF) in a rodent model. The oil was obtained by hydrodistillation and characterized using gas chromatography–mass spectrometry. Intratracheal instillation of bleomycin was performed in 30 rats to induce PF, while Sham animals were subjected to instillation of saline solution. The treatment was performed using daily oral administration of distilled water, EOCW at 50, 100, and 200 mg/kg, and deflazacort (DFC). After 28 days, hemogram and bronchoalveolar lavage fluid (BALF), tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were assayed. Histological grading of PF, immunohistochemical expression of α-smooth muscle actin (α-SMA), and transforming growth factor-β (TGF-β) were also analyzed. The EOCW major compounds were found to be citronellal, geraniol, and citronellol. EOCW significantly reduced inflammation in BALF, reduced MDA levels, and increased SOD activity. EOCW attenuated histological grading of PF and reduced immunohistochemical expression of α-SMA and TGF-β in a dose-dependent way, likely due to the reduction of oxidative stress, inflammation, and TGF-β-induced myofibroblast differentiation.
Collapse
|
32
|
Velázquez-Díaz P, Nakajima E, Sorkhdini P, Hernandez-Gutierrez A, Eberle A, Yang D, Zhou Y. Hermansky-Pudlak Syndrome and Lung Disease: Pathogenesis and Therapeutics. Front Pharmacol 2021; 12:644671. [PMID: 33841163 PMCID: PMC8028140 DOI: 10.3389/fphar.2021.644671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2020] [Accepted: 02/11/2021] [Indexed: 12/19/2022] Open
Abstract
Hermansky-Pudlak Syndrome (HPS) is a rare, genetic, multisystem disorder characterized by oculocutaneous albinism (OCA), bleeding diathesis, immunodeficiency, granulomatous colitis, and pulmonary fibrosis. HPS pulmonary fibrosis (HPS-PF) occurs in 100% of patients with subtype HPS-1 and has a similar presentation to idiopathic pulmonary fibrosis. Upon onset, individuals with HPS-PF have approximately 3 years before experiencing signs of respiratory failure and eventual death. This review aims to summarize current research on HPS along with its associated pulmonary fibrosis and its implications for the development of novel treatments. We will discuss the genetic basis of the disease, its epidemiology, and current therapeutic and clinical management strategies. We continue to review the cellular processes leading to the development of HPS-PF in alveolar epithelial cells, lymphocytes, mast cells, and fibrocytes, along with the molecular mechanisms that contribute to its pathogenesis and may be targeted in the treatment of HPS-PF. Finally, we will discuss emerging new cellular and molecular approaches for studying HPS, including lentiviral-mediated gene transfer, induced pluripotent stem cells (iPSCs), organoid and 3D-modelling, and CRISPR/Cas9-based gene editing approaches.
Collapse
Affiliation(s)
| | - Erika Nakajima
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | | | - Adam Eberle
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
33
|
Li S, Shao L, Fang J, Zhang J, Chen Y, Yeo AJ, Lavin MF, Yu G, Shao H. Hesperetin attenuates silica-induced lung injury by reducing oxidative damage and inflammatory response. Exp Ther Med 2021; 21:297. [PMID: 33717240 PMCID: PMC7885076 DOI: 10.3892/etm.2021.9728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress and the inflammatory response are two important mechanisms of silica-induced lung injury. Hesperetin (HSP) is a natural flavonoid compound that is found in citrus fruits and has been indicated to exhibit strong antioxidant and anti-inflammatory properties. The current study evaluated the protective effect of HSP on lung injury in rats exposed to silica. The results indicated that the degree of alveolitis and pulmonary fibrosis in the HSP-treated group was significantly decreased compared with the silica model group. The content of hydroxyproline (HYP) was also revealed to decrease overall in the HSP treated group compared with the silica model group, indicating that the degree of pulmonary fibrosis was decreased compared with the silica model group. The present study also demonstrated that HSP reduced oxidation levels of malondialdehyde (MDA) and increased the activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-PX). Total antioxidant capacity (T-AOC) was also increased following HSP treatment, indicating that HSP can alleviate oxidative stress in the lung tissue of silica-exposed rats. In addition, HSP was revealed to inhibit the synthesis and secretion of fibrogenic factor TGF-β1, reduce the production of pro-inflammatory cytokines IL-1β, IL-4, TNF-α and increase the levels of anti-inflammatory factors IFN-γ and IL-10. The current study demonstrated that HSP can effectively attenuate silica-induced lung injury by reducing oxidative damage and the inflammatory response.
Collapse
Affiliation(s)
- Shuxian Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Shao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jinguo Fang
- Primary Health Department, Linqing Health Bureau, Linqing, Shandong 252600, P.R. China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yanqin Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Abrey J Yeo
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin F Lavin
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
34
|
Skibba M, Drelich A, Poellmann M, Hong S, Brasier AR. Nanoapproaches to Modifying Epigenetics of Epithelial Mesenchymal Transition for Treatment of Pulmonary Fibrosis. Front Pharmacol 2020; 11:607689. [PMID: 33384604 PMCID: PMC7770469 DOI: 10.3389/fphar.2020.607689] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronically progressive interstitial lung that affects over 3 M people worldwide and rising in incidence. With a median survival of 2-3 years, IPF is consequently associated with high morbidity, mortality, and healthcare burden. Although two antifibrotic therapies, pirfenidone and nintedanib, are approved for human use, these agents reduce the rate of decline of pulmonary function but are not curative and do not reverse established fibrosis. In this review, we discuss the prevailing epithelial injury hypothesis, wherein pathogenic airway epithelial cell-state changes known as Epithelial Mesenchymal Transition (EMT) promotes the expansion of myofibroblast populations. Myofibroblasts are principal components of extracellular matrix production that result in airspace loss and mortality. We review the epigenetic transition driving EMT, a process produced by changes in histone acetylation regulating mesenchymal gene expression programs. This mechanistic work has focused on the central role of bromodomain-containing protein 4 in mediating EMT and myofibroblast transition and initial preclinical work has provided evidence of efficacy. As nanomedicine presents a promising approach to enhancing the efficacy of such anti-IPF agents, we then focus on the state of nanomedicine formulations for inhalable delivery in the treatment of pulmonary diseases, including liposomes, polymeric nanoparticles (NPs), inorganic NPs, and exosomes. These nanoscale agents potentially provide unique properties to existing pulmonary therapeutics, including controlled release, reduced systemic toxicity, and combination delivery. NP-based approaches for pulmonary delivery thus offer substantial promise to modify epigenetic regulators of EMT and advance treatments for IPF.
Collapse
Affiliation(s)
- Melissa Skibba
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Adam Drelich
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael Poellmann
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Seungpyo Hong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul, South Korea
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
35
|
Li C, Kuemmerle JF. The fate of myofibroblasts during the development of fibrosis in Crohn's disease. J Dig Dis 2020; 21:326-331. [PMID: 32092217 DOI: 10.1111/1751-2980.12852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis is a devastating complication in patients with inflammatory bowel disease. Its characteristics include the loss of regular peristalsis and nutrition absorption, excessive deposition of extracellular matrix (ECM) components, thickness of intestinal lumen due to the formation of strictures and of scar tissue. As a major cell type involved in fibrogenesis, the myofibroblasts have already been shown to have a plastic and heterogeneous function in producing abundant collagen, fibronectin and connective tissue growth factor. The primary sources of ECM-producing and vimentin-positive myofibroblasts come from different precursor cells, including bone marrow-derived mesenchymal cells, fibrocytes, pericytes, epithelial to mesenchymal transition and endothelial to mesenchymal transition. Recent immunological research findings suggest that numerous cytokines and chemokines made from macrophages, in addition to T cells and other myeloid cell types, are also important drivers of myofibroblast differentiation and hence of the activation of myofibroblast-mediated transforming growth factor and collagen production. In this review we discuss the origins, roles and cell signaling of myofibroblasts during the development of fibrosis in different organs, particularly in Crohn's disease. Finally, we suggest that the epigenetic and immunological regulation of myofibroblast differentiation may provide a novel antifibrotic strategy in the near future.
Collapse
Affiliation(s)
- Chao Li
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia.,Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - John F Kuemmerle
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia.,Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
36
|
Krempaska K, Barnowski S, Gavini J, Hobi N, Ebener S, Simillion C, Stokes A, Schliep R, Knudsen L, Geiser TK, Funke-Chambour M. Azithromycin has enhanced effects on lung fibroblasts from idiopathic pulmonary fibrosis (IPF) patients compared to controls [corrected]. Respir Res 2020; 21:25. [PMID: 31941499 PMCID: PMC6964061 DOI: 10.1186/s12931-020-1275-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2019] [Accepted: 01/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease without a cure and new drug strategies are urgently needed. Differences in behavior between diseased and healthy cells are well known and drug response can be different between cells isolated from IPF patients and controls. The macrolide Azithromycin (AZT) has anti-inflammatory and immunomodulatory properties. Recently anti-fibrotic effects have been described. However, the anti-fibrotic effects on primary IPF-fibroblasts (FB) directly compared to control-FB are unknown. We hypothesized that IPF-FB react differently to AZT in terms of anti-fibrotic effects. METHODS Primary normal human lung and IPF-FB were exposed to TGF-β (5 ng/ml), Azithromycin (50 μM) alone or in combination prior to gene expression analysis. Pro-collagen Iα1 secretion was assessed by ELISA and protein expression by western blot (αSMA, Fibronectin, ATP6V1B2, LC3 AB (II/I), p62, Bcl-xL). Microarray analysis was performed to screen involved genes and pathways after Azithromycin treatment in control-FB. Apoptosis and intraluminal lysosomal pH were analyzed by flow cytometry. RESULTS AZT significantly reduced collagen secretion in TGF-β treated IPF-FB compared to TGF-β treatment alone, but not in control-FB. Pro-fibrotic gene expression was similarly reduced after AZT treatment in IPF and control-FB. P62 and LC3II/I western blot revealed impaired autophagic flux after AZT in both control and IPF-FB with significant increase of LC3II/I after AZT in control and IPF-FB, indicating enhanced autophagy inhibition. Early apoptosis was significantly higher in TGF-β treated IPF-FB compared to controls after AZT. Microarray analysis of control-FB treated with AZT revealed impaired lysosomal pathways. The ATPase and lysosomal pH regulator ATP6V0D2 was significantly less increased after additional AZT in IPF-FB compared to controls. Lysosomal function was impaired in both IPF and control FB, but pH was significantly more increased in TGF-β treated IPF-FB. CONCLUSION We report different treatment responses after AZT with enhanced anti-fibrotic and pro-apoptotic effects in IPF compared to control-FB. Possibly impaired lysosomal function contributes towards these effects. In summary, different baseline cell phenotype and behavior of IPF and control cells contribute to enhanced anti-fibrotic and pro-apoptotic effects in IPF-FB after AZT treatment and strengthen its role as a new potential anti-fibrotic compound, that should further be evaluated in clinical studies.
Collapse
Affiliation(s)
- Kristina Krempaska
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sandra Barnowski
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Jacopo Gavini
- Department of Visceral Surgery and Medicine, Department for BioMedical Research, Inselspital, Bern University Hospital and University of Bern, 3010, Bern, Switzerland
| | - Nina Hobi
- AlveoliX AG, Murtenstrasse 50, 3008, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, Organs-on-Chip Technologies, University of Bern, Bern, Switzerland
| | - Simone Ebener
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Cedric Simillion
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Andrea Stokes
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ronja Schliep
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Thomas K Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
37
|
Chen X, Xu H, Hou J, Wang H, Zheng Y, Li H, Cai H, Han X, Dai J. Epithelial cell senescence induces pulmonary fibrosis through Nanog-mediated fibroblast activation. Aging (Albany NY) 2019; 12:242-259. [PMID: 31891567 PMCID: PMC6977687 DOI: 10.18632/aging.102613] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease tightly correlated with aging. The pathological features of IPF include epithelial cell senescence and abundant foci of highly activated pulmonary fibroblasts. However, the underlying mechanism between epithelial cell senescence and pulmonary fibroblast activation remain to be elucidated. In our study, we demonstrated that Nanog, as a pluripotency gene, played an essential role in the activation of pulmonary fibroblasts. In the progression of IPF, senescent epithelial cells could contribute to the activation of pulmonary fibroblasts via increasing the expression of senescence-associated secretory phenotype (SASP). In addition, we found activated pulmonary fibroblasts exhibited aberrant activation of Wnt/β-catenin signalling and elevated expression of Nanog. Further study revealed that the activation of Wnt/β-catenin signalling was responsible for senescent epithelial cell-induced Nanog phenotype in pulmonary fibroblasts. β-catenin was observed to bind to the promoter of Nanog during the activation of pulmonary fibroblasts. Targeted inhibition of epithelial cell senescence or Nanog could effectively suppress the activation of pulmonary fibroblasts and impair the development of pulmonary fibrosis, indicating a potential for the exploration of novel anti-fibrotic strategies.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Hongyang Xu
- Department of Critical Care Medicine, The Affiliated WuXi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Hui Wang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yi Zheng
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Hourong Cai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
38
|
Chuang HM, Chen YS, Harn HJ. The Versatile Role of Matrix Metalloproteinase for the Diverse Results of Fibrosis Treatment. Molecules 2019; 24:molecules24224188. [PMID: 31752262 PMCID: PMC6891433 DOI: 10.3390/molecules24224188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is a type of chronic organ failure, resulting in the excessive secretion of extracellular matrix (ECM). ECM protects wound tissue from infection and additional injury, and is gradually degraded during wound healing. For some unknown reasons, myofibroblasts (the cells that secrete ECM) do not undergo apoptosis; this is associated with the continuous secretion of ECM and reduced ECM degradation even during de novo tissue formation. Thus, matrix metalloproteinases (MMPs) are considered to be a potential target of fibrosis treatment because they are the main groups of ECM-degrading enzymes. However, MMPs participate not only in ECM degradation but also in the development of various biological processes that show the potential to treat diseases such as stroke, cardiovascular diseases, and arthritis. Therefore, treatment involving the targeting of MMPs might impede typical functions. Here, we evaluated the links between these MMP functions and possible detrimental effects of fibrosis treatment, and also considered possible approaches for further applications.
Collapse
Affiliation(s)
- Hong-Meng Chuang
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Yu-Shuan Chen
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien 970, Taiwan; (H.-M.C.); (Y.-S.C.)
- Department of Pathology, Hualien Tzu Chi Hospital & Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +03-8561825 (ext. 15615)
| |
Collapse
|
39
|
Valenzi E, Bulik M, Tabib T, Morse C, Sembrat J, Trejo Bittar H, Rojas M, Lafyatis R. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis 2019; 78:1379-1387. [PMID: 31405848 PMCID: PMC7255436 DOI: 10.1136/annrheumdis-2018-214865] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2018] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Myofibroblasts are key effector cells in the extracellular matrix remodelling of systemic sclerosis-associated interstitial lung disease (SSc-ILD); however, the diversity of fibroblast populations present in the healthy and SSc-ILD lung is unknown and has prevented the specific study of the myofibroblast transcriptome. We sought to identify and define the transcriptomes of myofibroblasts and other mesenchymal cell populations in human healthy and SSc-ILD lungs to understand how alterations in fibroblast phenotypes lead to SSc-ILD fibrosis. METHODS We performed droplet-based, single-cell RNA-sequencing with integrated canonical correlation analysis of 13 explanted lung tissue specimens (56 196 cells) from four healthy control and four patients with SSc-ILD, with findings confirmed by cellular indexing of transcriptomes and epitopes by sequencing in additional samples. RESULTS Examination of gene expression in mesenchymal cells identified two major, SPINT2hi and MFAP5hi, and one minor, WIF1hi, fibroblast populations in the healthy control lung. Combined analysis of control and SSc-ILD mesenchymal cells identified SPINT2hi, MFAP5hi, few WIF1hi fibroblasts and a new large myofibroblast population with evidence of actively proliferating myofibroblasts. We compared differential gene expression between all SSc-ILD and control mesenchymal cell populations, as well as among the fibroblast subpopulations, showing that myofibroblasts undergo the greatest phenotypic changes in SSc-ILD and strongly upregulate expression of collagens and other profibrotic genes. CONCLUSIONS Our results demonstrate previously unrecognised fibroblast heterogeneity in SSc-ILD and healthy lungs, and define multimodal transcriptome-phenotypes associated with these populations. Our data indicate that myofibroblast differentiation and proliferation are key pathological mechanisms driving fibrosis in SSc-ILD.
Collapse
Affiliation(s)
- Eleanor Valenzi
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melissa Bulik
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christina Morse
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
Kim JE, Kim HJ, Jung JW, Song DG, Park D, Lee H, Um H, Park J, Nam SH, Cho M, Lee JW. TM4SF5-mediated CD44v8-10 splicing variant promotes survival of type II alveolar epithelial cells during idiopathic pulmonary fibrosis. Cell Death Dis 2019; 10:645. [PMID: 31501417 PMCID: PMC6733838 DOI: 10.1038/s41419-019-1878-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2019] [Revised: 08/14/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) regulate cell fate, although signaling molecules that regulate ROS hormesis remain unclear. Here we show that transmembrane 4 L six family member 5 (TM4SF5) in lung epithelial cells induced the alternatively spliced CD44v8-10 variant via an inverse ZEB2/epithelial splicing regulatory proteins (ESRPs) linkage. TM4SF5 formed complexes with the cystine/glutamate antiporter system via TM4SF5- and CD44v8-10-dependent CD98hc plasma-membrane enrichment. Dynamic TM4SF5 binding to CD98hc required CD44v8-10 under ROS-generating inflammatory conditions. TM4SF5 and CD44v8-10 upregulated cystine/glutamate antiporter activity and intracellular glutathione levels, leading to ROS modulation for cell survival. Tm4sf5-null mice exhibited attenuated bleomycin-induced pulmonary fibrosis with lower CD44v8-10 and ESRPs levels than wild-type mice. Primary mouse alveolar epithelial cells (AECs) revealed type II AECs (AECII), but not type I, to adapt the TM4SF5-mediated characteristics, suggesting TM4SF5-mediated AECII survival following AECI injury during idiopathic pulmonary fibrosis (IPF). Thus, the TM4SF5-mediated CD44v8-10 splice variant could be targeted against IPF.
Collapse
Affiliation(s)
- Ji Eon Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Jin Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Woo Jung
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dae-Geun Song
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, Gangwon-do, 25451, Republic of Korea
| | - Dasomi Park
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Um
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinsoo Park
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seo Hee Nam
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Moonjae Cho
- Institute of Medical Science, Department of Biochemistry, School of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea. .,Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
41
|
Chong SG, Sato S, Kolb M, Gauldie J. Fibrocytes and fibroblasts-Where are we now. Int J Biochem Cell Biol 2019; 116:105595. [PMID: 31473260 DOI: 10.1016/j.biocel.2019.105595] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
Fibroblasts are considered major contributors to the process of fibrogenesis and the progression of matrix deposition and tissue distortion in fibrotic diseases such as Pulmonary Fibrosis. Recent discovery of the fibrocyte, a circulating possible precursor cell to the tissue fibroblast in fibrosis, has raised issues regarding the characterization of fibrocytes with respect to their morphology, growth characteristics in vitro, their biological role in vivo and their potential utility as a biomarker and/ or treatment target in various human diseases. Characterization studies of the fibrocyte continue as does emerging conflicting data concerning the relationship to or with the lung fibroblast. The source of signals that direct the traffic of these cells, as well as their response to therapeutic intervention with newly available drugs, bring new insights to the understanding of this cell type. The identification of exosomes from fibrocytes that can affect resident fibroblast activities suggest mechanisms of their influence on pathogenesis. Moreover, interesting comparisons with other pathologies are emerging involving the influence of circulating mesenchymal precursor cells on tissue responses.
Collapse
Affiliation(s)
- Sy Giin Chong
- Departments of Medicine and Pathology and Molecular Medicine, Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada; School of Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Seidai Sato
- Departments of Medicine and Pathology and Molecular Medicine, Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada; Division of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Martin Kolb
- Departments of Medicine and Pathology and Molecular Medicine, Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada
| | - Jack Gauldie
- Departments of Medicine and Pathology and Molecular Medicine, Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
42
|
Zhou Y, Ji J, Ji L, Wang L, Hong F. Respiratory exposure to nano-TiO 2 induces pulmonary toxicity in mice involving reactive free radical-activated TGF-β/Smad/p38MAPK/Wnt pathways. J Biomed Mater Res A 2019; 107:2567-2575. [PMID: 31356723 DOI: 10.1002/jbm.a.36762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Numerous studies have shown that lung injury can be caused by respiratory exposure to nanoparticulate titanium dioxide (nano-TiO2 ), but whether pulmonary inflammation and fibrosis are related to the activation of the TGF-β/Smad/p38MAPK/Wnt pathways remains unclear. In this study, mice were administrated nano-TiO2 by nasal instillation for nine consecutive months, and the molecular mechanisms of nano-TiO2 on the pulmonary toxicity of mice were examined. The findings suggested that nano-TiO2 caused pneumonia and pulmonary fibrosis. Furthermore, the results also showed that an overproduction of reactive free radicals occurred in mouse lungs, and that the expression of TGF-β/p38MAPK/Wnt pathway-related factors, including hypoxia-inducible factor 1α (HIF-1α), transforming growth factor-β1 (TGF-β1), phosphorylated p38 mitogen activated protein kinases (p-p38MAPK), small mothers against decapentaplegic homolog 2 (Smad2), extracellular matrix (ECM), Wingless/Integrated 3 (Wnt3), Wingless/Integrated 4 (Wnt4), integrin-linked kinase (ILK), β-catenin, nuclear factor-κB (NF-κB), α-smooth muscle actin (α-SMA), c-Myc, Type I collage (collagen I), and Type collage III (collagen III) were remarkably elevated, while phosphorylated glycogen synthase kinase-3β (p-GSK-3β) expression was decreased. Those data implied that the pulmonary inflammation and fibrosis caused by nano-TiO2 exposure may be involved in reactive free radical-mediated activation of the TGF-β/Smad/p38MAPK/Wnt pathways.
Collapse
Affiliation(s)
- Yingjun Zhou
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China.,School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China.,School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Li Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China.,School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Ling Wang
- Library of Soochow University, Suzhou, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China.,School of Life Sciences, Huaiyin Normal University, Huaian, China
| |
Collapse
|
43
|
Gupta A, Utpat K, Desai U, Joshi JM. Hermansky-Pudlak syndrome with interstitial lung disease: A holistically worked up couplet. Lung India 2019; 36:345-348. [PMID: 31290422 PMCID: PMC6625230 DOI: 10.4103/lungindia.lungindia_258_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is an extremely subtile autosomal recessive disorder characterized by tyrosinase-positive oculocutaneous albinism (Ty-pos OCA), bleeding tendencies, and systemic complications associated to lysosomal dysfunction. The most grave complication of disease is interstitial lung disease (ILD) leading to irrevocable pulmonary fibrosis. Patients with HPS-1, HPS-2, and HPS-4 variants have a penchant to develop pulmonary fibrosis. The pulmonary involvement is characterised by progressive dyspnea hypoxemia respiratory failure and corpulmonale. The disease has an unfortunate prognosis with a high mortality rate and a poor quality of life. The options currently available in the therapeutic armamentarium are dismal with a dire need for opportune research. We hereby narrate an intriguing case scenario of a pair of siblings affected with this rare disorder with its associated ILD.
Collapse
Affiliation(s)
- Abhishek Gupta
- Department of Pulmonary Medicine, T. N. Medical College, B. Y. L. Nair Hospital, Mumbai, Maharashtra, India
| | - Ketaki Utpat
- Department of Pulmonary Medicine, T. N. Medical College, B. Y. L. Nair Hospital, Mumbai, Maharashtra, India
| | - Unnati Desai
- Department of Pulmonary Medicine, T. N. Medical College, B. Y. L. Nair Hospital, Mumbai, Maharashtra, India
| | - Jyotsna M Joshi
- Department of Pulmonary Medicine, T. N. Medical College, B. Y. L. Nair Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
44
|
Peyser R, MacDonnell S, Gao Y, Cheng L, Kim Y, Kaplan T, Ruan Q, Wei Y, Ni M, Adler C, Zhang W, Devalaraja-Narashimha K, Grindley J, Halasz G, Morton L. Defining the Activated Fibroblast Population in Lung Fibrosis Using Single-Cell Sequencing. Am J Respir Cell Mol Biol 2019; 61:74-85. [DOI: 10.1165/rcmb.2018-0313oc] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Rebecca Peyser
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | | | - Yinglin Gao
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | - Luis Cheng
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | - Yong Kim
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | - Theodore Kaplan
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | - Qin Ruan
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | - Yi Wei
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | - Min Ni
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | - Christina Adler
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | - Wen Zhang
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | | | - Justin Grindley
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| | - Lori Morton
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York
| |
Collapse
|
45
|
Tighe RM, Heck K, Soderblom E, Zhou S, Birukova A, Young K, Rouse D, Vidas J, Komforti MK, Toomey CB, Cuttitta F, Sunday ME. Immediate Release of Gastrin-Releasing Peptide Mediates Delayed Radiation-Induced Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1029-1040. [PMID: 30898588 DOI: 10.1016/j.ajpath.2019.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/12/2017] [Revised: 01/07/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Abstract
Radiation-induced pulmonary fibrosis (RTPF) is a progressive, serious condition in many subjects treated for thoracic malignancies or after accidental nuclear exposure. No biomarker exists for identifying the irradiated subjects most susceptible to pulmonary fibrosis (PF). Previously, we determined that gastrin-releasing peptide (GRP) was elevated within days after birth in newborns exposed to hyperoxia who later developed chronic lung disease. The goal of the current study was to test whether radiation (RT) exposure triggers GRP release in mice and whether this contributes to RTPF in vivo. We determined urine GRP levels and lung GRP immunostaining in mice 0 to 24 after post-thoracic RT (15 Gy). Urine GRP levels were significantly elevated between 24 hours post-RT; GRP-blocking monoclonal antibody 2A11, given minutes post-RT, abrogated urine GRP levels by 6 to 12 hours and also altered phosphoprotein signaling pathways at 24 hours post-RT. Strong extracellular GRP immunostaining was observed in lung at 6 hours post-RT. Mice given one dose of GRP monoclonal antibody 2A11 24 hours post-RT had significantly reduced myofibroblast accumulation and collagen deposition 15 weeks later, indicating protection against lung fibrosis. Therefore, elevation of urine GRP could be predictive of RTPF development. In addition, transient GRP blockade could mitigate PF in normal lung after therapeutic or accidental RT exposure.
Collapse
Affiliation(s)
- Robert M Tighe
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina
| | - Karissa Heck
- Department of Pathology, Duke University Durham, North Carolina
| | - Erik Soderblom
- Department of Cell Biology, Duke University Durham, North Carolina
| | - Shutang Zhou
- Department of Pathology, Duke University Durham, North Carolina
| | - Anastasiya Birukova
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina
| | - Kenneth Young
- Department of Radiation Oncology, Duke University Durham, North Carolina
| | - Douglas Rouse
- Division of Laboratory Animal Resources, Duke University Durham, North Carolina
| | - Jessica Vidas
- Department of Pathology, Duke University Durham, North Carolina
| | | | | | - Frank Cuttitta
- Mouse, Cancer and Genetics Program, National Cancer Institute, Frederick, Maryland
| | - Mary E Sunday
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina; Department of Pathology, Duke University Durham, North Carolina.
| |
Collapse
|
46
|
TTC3 contributes to TGF-β 1-induced epithelial-mesenchymal transition and myofibroblast differentiation, potentially through SMURF2 ubiquitylation and degradation. Cell Death Dis 2019; 10:92. [PMID: 30696809 PMCID: PMC6351531 DOI: 10.1038/s41419-019-1308-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 01/05/2023]
Abstract
Transforming growth factor-β (TGF-β) acts as a key cytokine in epithelial−mesenchymal transition (EMT) and myofibroblast differentiation, which are important for normal tissue repair and fibrotic diseases. Ubiquitylation and proteasomal degradation of TGF-β signaling proteins acts as a regulatory mechanism for the precise control of TGF-β signaling. SMAD-specific ubiquitin E3 ligase (SMAD ubiquitination regulatory factor 2, SMURF2) controls TGF-β signaling proteins including the TGF-β receptor (TGFR) and SMAD2/3. Here, we report that tetratricopeptide repeat domain 3 (TTC3), a ubiquitin E3 ligase, positively regulates TGF-β1-induced EMT and myofibroblast differentiation, through inducing ubiquitylation and proteasomal degradation of SMURF2. In human bronchial epithelial cells (BEAS-2B) and normal human lung fibroblasts, TTC3 knockdown suppressed TGF-β1-induced EMT and myofibroblast differentiation, respectively. Similarly, when TTC3 expression was suppressed, the TGF-β1-stimulated elevation of p-SMAD2, SMAD2, p-SMAD3, and SMAD3 were inhibited. In contrast, overexpression of TTC3 caused both EMT and myofibroblast differentiation in the absence of TGF-β1 treatment. TGF-β1 reduced SMURF2 levels and TTC3 overexpression led to a further decrease in SMURF2 levels, while TTC3 knockdown inhibited TGF-β1-induced SMURF2 reduction. In cell and in vitro ubiquitylation assays demonstrated TTC3-mediated SMURF2 ubiquitylation, and coimmunoprecipitation assays established the binding between SMURF2 and TTC3. TGF-β1-induced TTC3 expression was inhibited by the knockdown of SMAD2 and SMAD3. Finally, Ttc3 mRNA levels were significantly increased and Smurf2 protein levels were significantly decreased in the lungs of mice treated with bleomycin as compared with the lungs of control mice. Collectively, these data suggest that TTC3 may contribute to TGF-β1-induced EMT and myofibroblast differentiation, potentially through SMURF2 ubiquitylation/proteasomal degradation and subsequent inhibition of SMURF2-mediated suppression of SMAD2 and SMAD3, which in turn induces TTC3 expression.
Collapse
|
47
|
Woodcock HV, Eley JD, Guillotin D, Platé M, Nanthakumar CB, Martufi M, Peace S, Joberty G, Poeckel D, Good RB, Taylor AR, Zinn N, Redding M, Forty EJ, Hynds RE, Swanton C, Karsdal M, Maher TM, Fisher A, Bergamini G, Marshall RP, Blanchard AD, Mercer PF, Chambers RC. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun 2019; 10:6. [PMID: 30602778 PMCID: PMC6315032 DOI: 10.1038/s41467-018-07858-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2017] [Accepted: 11/29/2018] [Indexed: 01/06/2023] Open
Abstract
Myofibroblasts are the key effector cells responsible for excessive extracellular matrix deposition in multiple fibrotic conditions, including idiopathic pulmonary fibrosis (IPF). The PI3K/Akt/mTOR axis has been implicated in fibrosis, with pan-PI3K/mTOR inhibition currently under clinical evaluation in IPF. Here we demonstrate that rapamycin-insensitive mTORC1 signaling via 4E-BP1 is a critical pathway for TGF-β1 stimulated collagen synthesis in human lung fibroblasts, whereas canonical PI3K/Akt signaling is not required. The importance of mTORC1 signaling was confirmed by CRISPR-Cas9 gene editing in normal and IPF fibroblasts, as well as in lung cancer-associated fibroblasts, dermal fibroblasts and hepatic stellate cells. The inhibitory effect of ATP-competitive mTOR inhibition extended to other matrisome proteins implicated in the development of fibrosis and human disease relevance was demonstrated in live precision-cut IPF lung slices. Our data demonstrate that the mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies.
Collapse
Affiliation(s)
- Hannah V Woodcock
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Jessica D Eley
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Delphine Guillotin
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Carmel B Nanthakumar
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Matteo Martufi
- Target Sciences, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Simon Peace
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Gerard Joberty
- Cellzome, a GSK Company, Meyershofstrasse 1, 69117, Heidelberg, Germany
| | - Daniel Poeckel
- Cellzome, a GSK Company, Meyershofstrasse 1, 69117, Heidelberg, Germany
| | - Robert B Good
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Adam R Taylor
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Nico Zinn
- Cellzome, a GSK Company, Meyershofstrasse 1, 69117, Heidelberg, Germany
| | - Matthew Redding
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Ellen J Forty
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Robert E Hynds
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Charles Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Toby M Maher
- Fibrosis Research Group, Inflammation, Repair & Development Section, NHLI, Imperial College, London, SW3 6LY, UK
| | - Andrew Fisher
- Newcastle Fibrosis Research Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | | | - Richard P Marshall
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Andy D Blanchard
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Paul F Mercer
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
48
|
Sandbo N. Mechanisms of Fibrosis in IPF. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
49
|
Rodrigues da Silva M, Schapochnik A, Peres Leal M, Esteves J, Bichels Hebeda C, Sandri S, Pavani C, Ratto Tempestini Horliana AC, Farsky SHP, Lino-dos-Santos-Franco A. Beneficial effects of ascorbic acid to treat lung fibrosis induced by paraquat. PLoS One 2018; 13:e0205535. [PMID: 30395570 PMCID: PMC6218022 DOI: 10.1371/journal.pone.0205535] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023] Open
Abstract
Paraquat (PQ) is one of the most widely employed herbicides that is used worldwide and it causes severe toxic effects in humans and animals. A PQ exposition can lead to pulmonary fibrosis (PF) and the mechanisms seem to be linked to oxidative stress, although other pathways have been suggested. Antioxidants can be useful as a therapy, although interventions with this kind of system are still controversial. Hence, this study has investigated the role of ascorbic acid (vitamin C) post-treatment on PQ-induced PF in male C57/BL6 mice. Pulmonary fibrosis was induced by a single PQ injection (10mg/kg; i.p.). The control group received a PQ vehicle. Seven days after the PQ or vehicle injections, the mice received vitamin C (150 mg/kg, ip, once a day) or the vehicle, over the following 7 days. Twenty-four hours after the last dose of vitamin C or the vehicle, the mice were euthanized and their bronchoalveolar lavage fluid (BALF) and their lungs were collected. The data obtained showed that vitamin C reduced the cellular recruitment, the secretion of IL-17 –a cytokine involved in neutrophils migration, TGF-β–a pro-fibrotic mediator and the collagen deposition. Moreover, vitamin C elevated the superoxide dismutase (SOD) and catalase levels, both antioxidant enzymes, but it did not alter the tracheal contractile response that was evoked by methacholine. Therefore, the researchers have highlighted the mechanisms of vitamin C as being non-invasive and have suggested it as a promising tool to treat lung fibrosis when it is induced by a PQ intoxication.
Collapse
Affiliation(s)
- Marcia Rodrigues da Silva
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Adriana Schapochnik
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Mayara Peres Leal
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Janete Esteves
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Cristina Bichels Hebeda
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil, Brazil
| | - Christiane Pavani
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Sandra H. P. Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil, Brazil
| | - Adriana Lino-dos-Santos-Franco
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
- * E-mail:
| |
Collapse
|
50
|
Cui X, Sun X, Lu F, Jiang X. Baicalein represses TGF-β1-induced fibroblast differentiation through the inhibition of miR-21. Toxicol Appl Pharmacol 2018; 358:35-42. [DOI: 10.1016/j.taap.2018.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
|