1
|
Bullinger K, Dhakar M, Pearson A, Bumanglag A, Guven E, Verma R, Amini E, Sloviter RS, DeBruyne J, Simon RP, Meller R. Retrospective discrimination of PNES and epileptic seizure types using blood RNA signatures. J Neurol 2025; 272:128. [PMID: 39812831 PMCID: PMC11735489 DOI: 10.1007/s00415-024-12877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVES The ability to differentiate epileptic- and non-epileptic events is challenging due to a lack of reliable molecular seizure biomarker that provide a retrospective diagnosis. Here, we use next generation sequencing methods on whole blood samples to identify changes in RNA expression following seizures. METHODS Blood samples were obtained from 32 patients undergoing video electroencephalogram (vEEG) monitoring. Blood samples were collected in PaxGene tubes at baseline (admission) and following a seizure event (4-6 h and 24 h later or discharge). EEG and video of clinical events were reviewed by the clinical team and study epileptologist and were classified as epileptic seizure, psychogenic nonepileptic spell (PNES), or other. RNA was extracted from blood and RNA expression was determined using RNA-sequencing. RESULTS We show significant differences in RNA profiles between patients that did or did not experience an epileptic seizure. Compared to baseline patients with PNES show large increases in RNA expression 4-6 h and 24 h post seizure. Conversely, genes that changed following epileptic seizure showed more modest changes associated with a decrease in immune system function. Transcript usage was changed between patients with PNES and epileptic seizure at all three time points examined. Lists of genes differentially expressed following PNES or epileptic seizure vs. all baseline samples were used as classifiers for prediction. Models generated using random forest and radial support vector machine algorithms were 100% accurate at predicting both PNES and epileptic seizures. SIGNIFICANCE These data suggest that blood gene expression changes may have utility to retrospectively identify patients who have suffered a seizure or seizure-like event as a cause of transient loss of consciousness.
Collapse
Affiliation(s)
- Katie Bullinger
- Department of Neurology, Emory University, Atlanta, GA, USA.
| | - Monica Dhakar
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Andrea Pearson
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Argyle Bumanglag
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Emine Guven
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Rashi Verma
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Elham Amini
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Robert S Sloviter
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Jason DeBruyne
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Roger P Simon
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Robert Meller
- Morehouse School of Medicine, Neuroscience Institute, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
- Morehouse School of Medicine, Institute of Translational Genomic Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Singh Kushwah A, Srivastava K, Banerjee M. Differential expression of DNA repair genes and treatment outcome of chemoradiotherapy (CRT) in cervical cancer. Gene 2023; 868:147389. [PMID: 36963733 DOI: 10.1016/j.gene.2023.147389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Cervical cancer (CaCx) is the malignancy of uterine cervix which induce by human papillomavirus (HPV) infections. HPV infection starts with the induction of double-stranded breaks by increasing oxidative stress and modulation of DNA repair pathways. Deficiency in DNA repair pathways and accumulation of DNA damage increases mutation rates resulting in genomic instability and cancer development. Patients with HPV-associated CaCx display increased sensitivity to cisplatin-based chemoradiotherapy (CRT) and improved survival rates. However, the cellular mechanisms responsible for this characteristic difference are unclear. Here, we have evaluated expression of DNA repair genes in peripheral blood cells and correlated them with treatment outcomes. A total of 211 study subjects includes in the study comprised 103 CaCx patients and 108 healthy controls. All the study subjects were analyzed for the expression profile of DNA repair genes by using real-time PCR (RT-PCR). The differentially expressed DNA repair gene was correlated with the treatment outcome of CRT. OGG1, XRCC2, XRCC3, XRCC4 and XRCC6 genes were found to be significant (P=0.001) down-regulated as compared to controls. While XRCC5 and RAD51 showed significant up-regulated (P=0.024 and 0.041) in CaCx patients. XRCC6 was associated (P=0.033) with poor vital while up-regulated RAD51 showed slight association (P=0.075) with better vital with an increased 2.96- and 2.33-fold risk in the study population. In the case of overall survival, down-regulated XRCC4 was associated (P=0.042) with poor survival (27 months) with the least hazard ratio (0.56 HR). Down-regulated OGG1 involved BER, XRCC2 and XRCC3 in homologous recombination and XRCC4, XRCC5 and XRCC6 in Non-homologous end-joining repair, which showed a deficiency of DNA repair capacity resulting caused of an accumulation of DNA damage and genome instability. Impaired DNA repair gene expression is responsible for poor prognosis and survival in CaCx. Therefore, these gene expressions can be considered a potential prognostic, diagnostic and therapeutic biomarker for CaCx.
Collapse
Affiliation(s)
- Atar Singh Kushwah
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, Uttar Pradesh, India; Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Kirti Srivastava
- Department of Radiotherapy, King George's Medical University, Lucknow-226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, Uttar Pradesh, India.
| |
Collapse
|
3
|
Lv M, He W, Liang T, Yang J, Huang X, Liu S, Liang X, Long J, Su L. Exploring biomarkers for ischemic stroke through integrated microarray data analysis. Brain Res 2022; 1790:147982. [PMID: 35691413 DOI: 10.1016/j.brainres.2022.147982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Stroke is the third leading cause of disability-adjusted life years worldwide, and drugs available for its treatment are limited. This study aimed to explore high-confidence candidate genes associated with ischemic stroke (IS) through bioinformatics analysis and identify potential diagnostic biomarkers and gene-drug interactions. Weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) were integrated to identify overlapping genes. Then, high-confidence candidate genes were screened by least absolute shrinkage and selection operator (LASSO) regression. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of high-confidence candidate genes as biomarkers for IS. The NetworkAnalyst database was used to construct the TF-gene network and miRNA-TF regulatory network of the high-confidence candidate genes. The DGIdb database was used to identified gene-drug interactions. Through the comprehensive analysis of GSE58294 and GSE16561, 10 high-confidence candidate genes were identified by LASSO regression: ARG1, LY96, ABCA1, SLC22A4, CD163, TPM2, SLC25A42, ID3, FAM102A and CD79B. FAM102A had the highest diagnostic value, and the area under curve (AUC), sensitivity and specificity values were 0.974, 0.919 and 0.936, respectively. The HPA database demonstrated that 10 high-confidence candidate genes were expressed in the brain and blood in normal humans. Finally, DGIdb database analysis identified 8 gene-drug interactions. We identified IS-related diagnostic biomarkers and gene-drug interactions that potentially provide new insights into the diagnosis and treatment of IS.
Collapse
Affiliation(s)
- Miao Lv
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Wanting He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Tian Liang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xiaolan Huang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Shengying Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xueying Liang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jianxiong Long
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Li Su
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| |
Collapse
|
4
|
Decreased Expression of Cerebral Dopamine Neurotrophic Factor in Platelets of Probable Alzheimer Patients. Alzheimer Dis Assoc Disord 2021; 36:269-271. [DOI: 10.1097/wad.0000000000000488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/07/2021] [Indexed: 11/25/2022]
|
5
|
Dagonnier M, Donnan GA, Davis SM, Dewey HM, Howells DW. Acute Stroke Biomarkers: Are We There Yet? Front Neurol 2021; 12:619721. [PMID: 33633673 PMCID: PMC7902038 DOI: 10.3389/fneur.2021.619721] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Distinguishing between stroke subtypes and knowing the time of stroke onset are critical in clinical practice. Thrombolysis and thrombectomy are very effective treatments in selected patients with acute ischemic stroke. Neuroimaging helps decide who should be treated and how they should be treated but is expensive, not always available and can have contraindications. These limitations contribute to the under use of these reperfusion therapies. Aim: An alternative approach in acute stroke diagnosis is to identify blood biomarkers which reflect the body's response to the damage caused by the different types of stroke. Specific blood biomarkers capable of differentiating ischemic from hemorrhagic stroke and mimics, identifying large vessel occlusion and capable of predicting stroke onset time would expedite diagnosis and increase eligibility for reperfusion therapies. Summary of Review: To date, measurements of candidate biomarkers have usually occurred beyond the time window for thrombolysis. Nevertheless, some candidate markers of brain tissue damage, particularly the highly abundant glial structural proteins like GFAP and S100β and the matrix protein MMP-9 offer promising results. Grouping of biomarkers in panels can offer additional specificity and sensitivity for ischemic stroke diagnosis. Unbiased “omics” approaches have great potential for biomarker identification because of greater gene, protein, and metabolite coverage but seem unlikely to be the detection methodology of choice because of their inherent cost. Conclusion: To date, despite the evolution of the techniques used in their evaluation, no individual candidate or multimarker panel has proven to have adequate performance for use in an acute clinical setting where decisions about an individual patient are being made. Timing of biomarker measurement, particularly early when decision making is most important, requires urgent and systematic study.
Collapse
Affiliation(s)
- Marie Dagonnier
- Stroke Division, Melbourne Brain Centre, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Neurology, Ambroise Paré Hospital, Mons, Belgium
| | - Geoffrey A Donnan
- Stroke Division, Melbourne Brain Centre, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Melbourne Brain Centre at the Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Stephen M Davis
- Melbourne Brain Centre at the Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Helen M Dewey
- Stroke Division, Melbourne Brain Centre, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia
| | - David W Howells
- Stroke Division, Melbourne Brain Centre, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Faculty of Health, School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
6
|
Abstract
Acute brain injuries such as traumatic brain injury and stroke affect 85 million people a year worldwide, and many survivors suffer from long-term physical, cognitive, or psychosocial impairments. There are few FDA-approved therapies that are effective at preventing, halting, or ameliorating the state of disease in the brain after acute brain injury. To address this unmet need, one potential strategy is to leverage the unique physical and biological properties of nanomaterials. Decades of cancer nanomedicine research can serve as a blueprint for innovation in brain injury nanomedicines, both to emulate the successes and also to avoid potential pitfalls. In this review, we discuss how shared disease physiology between cancer and acute brain injuries can inform the design of novel nanomedicines for acute brain injuries. These disease hallmarks include dysregulated vasculature, an altered microenvironment, and changes in the immune system. We discuss several nanomaterial strategies that can be engineered to exploit these disease hallmarks, for example, passive accumulation, active targeting of disease-associated signals, bioresponsive designs that are "smart", and immune interactions.
Collapse
|
7
|
Zhuang M, Joshi S, Sun H, Batabyal T, Fraser CL, Kapur J. Difluoroboron β-diketonate polylactic acid oxygen nanosensors for intracellular neuronal imaging. Sci Rep 2021; 11:1076. [PMID: 33441771 PMCID: PMC7806623 DOI: 10.1038/s41598-020-80172-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Abstract
Critical for metabolism, oxygen plays an essential role in maintaining the structure and function of neurons. Oxygen sensing is important in common neurological disorders such as strokes, seizures, or neonatal hypoxic-ischemic injuries, which result from an imbalance between metabolic demand and oxygen supply. Phosphorescence quenching by oxygen provides a non-invasive optical method to measure oxygen levels within cells and tissues. Difluoroboron β-diketonates are a family of luminophores with high quantum yields and tunable fluorescence and phosphorescence when embedded in certain rigid matrices such as poly (lactic acid) (PLA). Boron nanoparticles (BNPs) can be fabricated from dye-PLA materials for oxygen mapping in a variety of biological milieu. These dual-emissive nanoparticles have oxygen-insensitive fluorescence, oxygen-sensitive phosphorescence, and rigid matrix all in one, enabling real-time ratiometric oxygen sensing at micron-level spatial and millisecond-level temporal resolution. In this study, BNPs are applied in mouse brain slices to investigate oxygen distributions and neuronal activity. The optical properties and physical stability of BNPs in a biologically relevant buffer were stable. Primary neuronal cultures were labeled by BNPs and the mitochondria membrane probe MitoTracker Red FM. BNPs were taken up by neuronal cell bodies, at dendrites, and at synapses, and the localization of BNPs was consistent with that of MitoTracker Red FM. The brain slices were stained with the BNPs, and the BNPs did not significantly affect the electrophysiological properties of neurons. Oxygen maps were generated in living brain slices where oxygen is found to be mostly consumed by mitochondria near synapses. Finally, the BNPs exhibited excellent response when the conditions varied from normoxic to hypoxic and when the neuronal activity was increased by increasing K+ concentration. This work demonstrates the capability of BNPs as a non-invasive tool in oxygen sensing and could provide fundamental insight into neuronal mechanisms and excitability research.
Collapse
Affiliation(s)
- Meng Zhuang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tamal Batabyal
- Department of Neurology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Cassandra L Fraser
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, 22903, USA.
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22903, USA.
- UVA Brain Institute, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
8
|
Ludhiadch A, Vasudeva K, Munshi A. Establishing molecular signatures of stroke focusing on omic approaches: a narrative review. Int J Neurosci 2020; 130:1250-1266. [PMID: 32075476 DOI: 10.1080/00207454.2020.1732964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Stroke or 'brain attack' is considered to be the major cause of mortality and morbidity worldwide after myocardial infraction. Inspite of the years of research and clinical practice, the pathogenesis of stroke still remains incompletely understood. Omics approaches not only enable the description of a huge number of molecular platforms but also have a potential to recognize new factors associated with various complex disorders including stroke. The most significant development among all other omics technologies over the recent years has been seen by genomics which is a powerful tool for exploring the genetic architecture of stroke. Genomics has decisively established itself in stroke research and by now wealth of data has been generated providing new insights into the physiology and pathophysiology of stroke. However, the efficacy of genomic data is restricted to risk prediction only. Omics approaches not only enable the description of a huge number of molecular platforms but also have a potential to recognize new factors associated with various complex disorders including stroke. The data generated by omics technologies enables clinicians to provide detailed insight into the makeup of stroke in individual patients, which will further help in developing diagnostic procedures to direct therapies. Present review has been compiled with an aim to understand the potential of integrated omics approach to help in characterization of mechanisms leading to stroke, to predict the patient risk of getting stroke by analyzing signature biomarkers and to develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab
| | - Kanika Vasudeva
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab
| |
Collapse
|
9
|
Joshi H, McIntyre WB, Kooner S, Rathbone M, Gabriele S, Gabriele J, Baranowski D, Frey BN, Mishra RK. Decreased Expression of Cerebral Dopamine Neurotrophic Factor in Platelets of Stroke Patients. J Stroke Cerebrovasc Dis 2020; 29:104502. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.104502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022] Open
|
10
|
Kamtchum-Tatuene J, Jickling GC. Blood Biomarkers for Stroke Diagnosis and Management. Neuromolecular Med 2019; 21:344-368. [PMID: 30830566 PMCID: PMC6722038 DOI: 10.1007/s12017-019-08530-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
Biomarkers are objective indicators used to assess normal or pathological processes, evaluate responses to treatment and predict outcomes. Many blood biomarkers already guide decision-making in clinical practice. In stroke, the number of candidate biomarkers is constantly increasing. These biomarkers include proteins, ribonucleic acids, lipids or metabolites. Although biomarkers have the potential to improve the diagnosis and the management of patients with stroke, there is currently no marker that has demonstrated sufficient sensitivity, specificity, rapidity, precision, and cost-effectiveness to be used in the routine management of stroke, thus highlighting the need for additional work. A better standardization of clinical, laboratory and statistical procedures between centers is indispensable to optimize biomarker performance. This review focuses on blood biomarkers that have shown promise for translation into clinical practice and describes some newly reported markers that could add to routine stroke care. Avenues for the discovery of new stroke biomarkers and future research are discussed. The description of the biomarkers is organized according to their expected application in clinical practice: diagnosis, treatment decision, and outcome prediction.
Collapse
Affiliation(s)
- Joseph Kamtchum-Tatuene
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 4-120 Katz Building, 114 Street & 87 Avenue, Edmonton, AB, T6G 2E1, Canada.
| | - Glen C Jickling
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 4-120 Katz Building, 114 Street & 87 Avenue, Edmonton, AB, T6G 2E1, Canada
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Li S, Zheng H, Chen L, Xu C, Qu X, Qin Z, Gao J, Li J, Liu J. Expression Profile and Potential Functions of Circulating Long Noncoding RNAs in Acute Ischemic Stroke in the Southern Chinese Han Population. Front Mol Neurosci 2019; 12:290. [PMID: 31849604 PMCID: PMC6895137 DOI: 10.3389/fnmol.2019.00290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) have been confirmed to be associated with ischemic stroke (IS); however, their involvement still needs to be extensively explored. Therefore, we aimed to study the expression profile of lncRNAs and the potential roles and mechanisms of lncRNAs in the pathogenesis of acute ischemic stroke (AIS) in the Southern Chinese Han population. Methods: In this study, lncRNA and mRNA expression profiles in AIS were analyzed using high-throughput RNA sequencing (RNA-Seq) and validated using quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and network analyses were performed to predict the functions and interactions of the aberrantly expressed genes. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value of lncRNAs in AIS. Results: RNA-Seq analysis showed that 428 lncRNAs and 957 mRNAs were significantly upregulated, while 791 lncRNAs and 4,263 mRNAs were downregulated in patients with AIS when compared with healthy controls. GO enrichment and KEGG pathway analyses of differentially expressed genes showed that the apoptosis, inflammatory, oxidative and calcium signaling pathways were potentially implicated in AIS pathology. The PCR results showed that the selected lncRNA-C14orf64 and lncRNA-AC136007.2 were significantly downregulated in AIS. ROC curve analysis showed that the area under the ROC curve (AUC) values of lncRNA-C14orf64 and lncRNA-AC136007.2 between AIS and healthy controls were 0.74 and 0.94, respectively. Conclusion: This study provides evidence of altered expression of lncRNAs and their potential functions in AIS. Our findings may facilitate pathological mechanistic studies of lncRNAs in AIS and provide potential diagnostic biomarkers and therapeutic targets for AIS.
Collapse
Affiliation(s)
- Shenghua Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huilei Zheng
- Department of Medical Examination and Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lan Chen
- Department of Internal Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chen Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Qu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenxiu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinpin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Kim JM, Moon J, Yu JS, Park DK, Lee ST, Jung KH, Chu K. Altered long noncoding RNA profile after intracerebral hemorrhage. Ann Clin Transl Neurol 2019; 6:2014-2025. [PMID: 31557399 PMCID: PMC6801204 DOI: 10.1002/acn3.50894] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Objective We investigated the expression pattern of long noncoding RNAs (lncRNA) and messenger RNAs (mRNA) from two different intracerebral hemorrhage (ICH) rat models, and performed gene ontology and gene/protein interaction analyses. Methods We harvested hemorrhagic brain 1, 3, and 7 days after ICH induction by stereotactic collagenase injection. We performed microarray analyses with Agilent array platform to compare the expression of lncRNA and mRNAs from hemorrhagic and normal brains. The RNA expression patterns were also examined from the autologous blood injection ICH model at days 1 and 3, and significantly altered lncRNAs from two ICH models were validated by quantitative reverse transcriptase‐polymerase chain reaction. Gene ontology analysis and pathway analysis were performed with differentially expressed mRNAs after ICH. Gene and protein interaction analysis was performed to elucidate the functional role of upregulated lncRNA in neuronal damage. Results Among the 13,661 lncRNAs studied, 83, 289, and 401 lncRNAs were significantly elevated after 1, 3, and 7 days after collagenase‐induced ICH, respectively. NR_027324, or H19, was the most upregulated lncRNA after 1 day from the two ICH models and its elevation persisted until the 7th day. Gene ontology analysis revealed that immune‐related biological processes such as immune response, immune system process, and defense response were upregulated from both ICH models. Gene and protein interaction study demonstrated that NR_027324 was closely related to the type I interferon signaling pathway. Interpretation This study illustrates the dynamic expression pattern of the lncRNA profile following ICH, and that H19 is the most consistently upregulated lncRNA after ICH.
Collapse
Affiliation(s)
- Jeong-Min Kim
- Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Neurology, Chung-Ang University Medical Center, Seoul, Republic of Korea
| | - Jangsup Moon
- Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Neurology, College of Medicine, Seoul National University Hospital, Seoul National University, Seoul, Republic of Korea
| | - Jung-Suk Yu
- Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Kyu Park
- Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Neurology, College of Medicine, Seoul National University Hospital, Seoul National University, Seoul, Republic of Korea
| | - Keun-Hwa Jung
- Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Neurology, College of Medicine, Seoul National University Hospital, Seoul National University, Seoul, Republic of Korea
| | - Kon Chu
- Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Neurology, College of Medicine, Seoul National University Hospital, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Walsh KB, Zhang X, Zhu X, Wohleb E, Woo D, Lu L, Adeoye O. Intracerebral hemorrhage induces monocyte-related gene expression within six hours: Global transcriptional profiling in swine ICH. Metab Brain Dis 2019; 34:763-774. [PMID: 30796715 PMCID: PMC6910870 DOI: 10.1007/s11011-019-00399-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe neurological disorder with no proven treatment. Our prior research identified a significant association with monocyte level and ICH mortality. To advance our understanding, we sought to identify gene expression after ICH using a swine model to test the hypothesis that ICH would induce peripheral blood mononuclear cell (PBMC) gene expression. In 10 pigs with ICH, two PBMC samples were drawn from each with the first immediately prior to ICH induction and the second six hours later. RNA-seq was performed with subsequent bioinformatics analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity® Pathway Analysis (IPA). There were 182 significantly upregulated and 153 significantly down-regulated differentially expressed genes (DEGs) after ICH. Consistent with findings in humans, significant GO and KEGG pathways were primarily related to inflammation and the immune response. Five genes, all upregulated post-ICH and known to be associated with monocyte activation, were repeatedly DEGs in the significant KEGG pathways: CD14, TLR4, CXCL8, IL-18, and CXCL2. In IPA, the majority of upregulated disease/function categories were related to inflammation and immune cell activation. TNF and LPS were the most significantly activated upstream regulators, and ERK was the most highly connected node in the top network. ICH induced changes in PBMC gene expression within 6 h of onset related to inflammation, the immune response, and, more specifically, monocyte activation. Further research is needed to determine if these changes affect outcomes and may represent new therapeutic targets.
Collapse
Affiliation(s)
- Kyle B Walsh
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA.
- Department of Emergency Medicine, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0769, USA.
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Neurobiology Research Center, Cincinnati, OH, USA
| | - Daniel Woo
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Long Lu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Opeolu Adeoye
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Emergency Medicine, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0769, USA
| |
Collapse
|
14
|
Sayad A, Taheri M, Azari I, Oskoei VK, Ghafouri-Fard S. PIAS genes as disease markers in bipolar disorder. J Cell Biochem 2019; 120:12937-12942. [PMID: 30861611 DOI: 10.1002/jcb.28564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/16/2018] [Accepted: 01/10/2019] [Indexed: 11/11/2022]
Abstract
The protein inhibitors of activated STAT (PIAS) are involved in regulation of many transcription factors and signaling pathways that contribute to the pathogenesis of bipolar disease (BD). In the current study, we evaluated the expression of four PIAS genes (PIAS1-4) in peripheral blood of BD patients and healthy subjects to explore their contribution in the pathogenesis of BD and their suitability as peripheral biomarkers for this disorder. All PIAS genes were significantly upregulated in total BD patients compared with total controls. The sex-based analysis confirmed upregulation of PIAS1-4 genes in male BD patients compared with male controls (P < 0.001). However, PIAS1 was significantly downregulated in female patients compared with female controls (P = 0.02). Expression levels of other PIAS genes were not significantly different between female patients and female controls. There were no significant correlations between expression levels of PIAS genes and any of the clinical data of study participants after adjustment of the effects of the sex. On the basis of the area under the curve (AUC) values in receiver operating characteristic curves, PIAS4 had the best performance in the differentiation of disease status between study participants (AUC = 0.81). PIAS3 and PIAS4 genes had the best sensitivity and specificity values, respectively. Combination of expression levels of four genes resulted in the improvement of diagnostic power (AUC = 0.82). The current data implies the role of PIAS genes in the pathogenesis of BD and denotes their suitability as peripheral markers for this disorder.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Azari
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Kholghi Oskoei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Zou J, Wang X, Huang L, Liu J, Kong Y, Li S, Lu Q. Kininogen Level in the Cerebrospinal Fluid May Be a Potential Biomarker for Predicting Epileptogenesis. Front Neurol 2019; 10:37. [PMID: 30804871 PMCID: PMC6371036 DOI: 10.3389/fneur.2019.00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/11/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose: Epilepsy is a highly disabling neurological disorder. Brain insult is the most critical cause of epilepsy in adults. This study aimed to find reliable and efficient biomarkers for predicting secondary epilepsy. Materials and methods: The LiCl-pilocarpine (LiCl-Pilo) chronic epilepsy rat model was used, and rat cerebrospinal fluid (CSF) was collected 5 days after status epilepticus (SE). The CSF was analyzed using the label-free LC-ESI-Q-TOF-MS/MS. Differential expression of proteins was confirmed using enzyme-linked immunosorbent assay (ELISA) and Western blotting. The corresponding protein level in the CSF of patients with encephalitis in the postacute phase was determined using ELISA and compared between patients with and without symptomatic epilepsy after encephalitis during a 2-year follow-up. Results: The proteomics and ELISA results showed that the protein level of kininogen (KNG) was obviously elevated in both CSF and hippocampus, but not in serum, 5 days after the onset of SE in LiCl-Pilo chronic epilepsy model rats. In patients with encephalitis, the protein level of KNG in the CSF in the postacute phase was significantly elevated in patients with a recurrent epileptic seizure during a 2-year follow-up than in patients without a recurrent seizure. Conclusion: KNG in the CSF may serve as a potential biomarker for predicting epileptogenesis in patients with encephalitis.
Collapse
Affiliation(s)
- Jing Zou
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinxin Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ligang Huang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Liu
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Kong
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Shengtian Li
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Qinchi Lu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Dagonnier M, Wilson WJ, Favaloro JM, Rewell SSJ, Lockett LJ, Sastra SA, Jeffreys AL, Dewey HM, Donnan GA, Howells DW. Hyperacute changes in blood mRNA expression profiles of rats after middle cerebral artery occlusion: Towards a stroke time signature. PLoS One 2018; 13:e0206321. [PMID: 30439964 PMCID: PMC6237327 DOI: 10.1371/journal.pone.0206321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Stroke evolution is a highly dynamic but variable disease which makes clinical decision making difficult. Biomarker discovery programs intended to aid clinical decision making have however largely ignored the rapidity of stroke evolution. We have used gene array technology to determine blood mRNA expression changes over the first day after stroke in rats. Blood samples were collected from 8 male spontaneously hypertensive rats at 0, 1, 2, 3, 6 and 24h post stroke induction by middle cerebral artery occlusion. RNA was extracted from whole blood stabilized in PAXgene tubes and mRNA expression was detected by oligonucleotide Affymetrix microarray. Using a pairwise comparison model, 1932 genes were identified to vary significantly over time (p≤0.5x10-7) within 24h after stroke. Some of the top20 most changed genes are already known to be relevant to the ischemic stroke physiopathology (e.g. Il-1R, Nos2, Prok2). Cluster analysis showed multiple stereotyped and time dependent profiles of gene expression. Direction and rate of change of expression for some profiles varied dramatically during these 24h. Profiles with potential clinical utility including hyper acute or acute transient upregulation (with expression peaking from 2 to 6h after stroke and normalisation by 24h) were identified. We found that blood gene expression varies rapidly and stereotypically after stroke in rats. Previous researchers have often missed the optimum time for biomarker measurement. Temporally overlapping profiles have the potential to provide a biological “stroke clock” able to tell the clinician how far an individual stroke has evolved.
Collapse
Affiliation(s)
- Marie Dagonnier
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Australia
- * E-mail:
| | - William John Wilson
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia
| | - Jenny Margaret Favaloro
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Australia
| | - Sarah Susan Jane Rewell
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Australia
| | - Linda Jane Lockett
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia
| | - Stephen Andrew Sastra
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Australia
| | - Amy Lucienne Jeffreys
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Australia
| | - Helen Margaret Dewey
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Australia
| | - Geoffrey Alan Donnan
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Australia
| | - David William Howells
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, Heidelberg, Australia
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| |
Collapse
|
17
|
Meling S, Skovgaard K, Bårdsen K, Helweg Heegaard PM, Ulvund MJ. Expression of selected genes isolated from whole blood, liver and obex in lambs with experimental classical scrapie and healthy controls, showing a systemic innate immune response at the clinical end-stage. BMC Vet Res 2018; 14:281. [PMID: 30208891 PMCID: PMC6134718 DOI: 10.1186/s12917-018-1607-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/31/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Incubation period, disease progression, pathology and clinical presentation of classical scrapie in sheep are highly dependent on PRNP genotype, time and route of inoculation and prion strain. Our experimental model with pre-colostrum inoculation of homozygous VRQ lambs has shown to be an effective model with extensive PrPSc dissemination in lymphatic tissue and a short incubation period with severe clinical disease. Serum protein analysis has shown an elevation of acute phase proteins in the clinical stages of this experimental model, and here, we investigate changes in gene expression in whole blood, liver and brain. RESULTS The animals in the scrapie group showed severe signs of illness 22 weeks post inoculation necessitating euthanasia at 23 weeks post inoculation. This severe clinical presentation was accompanied by changes in expression of several genes. The following genes were differentially expressed in whole blood: TLR2, TLR4, C3, IL1B, LF and SAA, in liver tissue, the following genes differentially expressed: TNF-α, SAA, HP, CP, AAT, TTR and TF, and in the brain tissue, the following genes were differentially expressed: HP, CP, ALB and TTR. CONCLUSIONS We report a strong and evident transcriptional innate immune response in the terminal stage of classical scrapie in these animals. The PRNP genotype and time of inoculation are believed to contribute to the clinical presentation, including the extensive dissemination of PrPSc throughout the lymphatic tissue.
Collapse
Affiliation(s)
- Siv Meling
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kemitorvet, 2800 Lyngby, Denmark
| | - Kjetil Bårdsen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | | | - Martha J. Ulvund
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| |
Collapse
|
18
|
Dagonnier M, Cooke IR, Faou P, Sidon TK, Dewey HM, Donnan GA, Howells DW. Discovery and Longitudinal Evaluation of Candidate Biomarkers for Ischaemic Stroke by Mass Spectrometry-Based Proteomics. Biomark Insights 2017; 12:1177271917749216. [PMID: 29308009 PMCID: PMC5751906 DOI: 10.1177/1177271917749216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/11/2017] [Indexed: 01/17/2023] Open
Abstract
Application of acute therapies such as thrombolysis for ischaemic stroke (IS) is constrained because of diagnostic uncertainty and the dynamic nature of stroke biology. To investigate changes in blood proteins after stroke and as a result of thrombolysis treatment we performed label-free quantitative proteomics on serum samples using high-resolution mass spectrometry and long high-performance liquid chromatography gradient (5 hours) combined with a 50-cm column to optimise the peptide separation. We identified (false discovery rate [FDR]: 1%) and quantified a total of 574 protein groups from a total of 92 samples from 30 patients. Ten patients were treated by thrombolysis as part of a randomised placebo-controlled trial and up to 5 samples were collected from each individual at different time points after stroke. We identified 26 proteins differently expressed by treatment group (FDR: 5%) and significant changes of expression over time for 23 proteins (FDR: 10%). Molecules such as fibrinogen and C-reactive protein showed expression profiles with a high-potential clinical utility in the acute stroke setting. Protein expression profiles vary acutely in the blood after stroke and have the potential to allow the construction of a stroke clock and to have an impact on IS treatment decision making.
Collapse
Affiliation(s)
- Marie Dagonnier
- Stroke Department, The Florey Institute of Neuroscience & Mental Health and Melbourne Brain Centre, Melbourne, VIC, Australia
| | - Ira Robin Cooke
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.,Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, La Trobe University, Melbourne, VIC, Australia
| | - Pierre Faou
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Tara Kate Sidon
- Stroke Department, The Florey Institute of Neuroscience & Mental Health and Melbourne Brain Centre, Melbourne, VIC, Australia
| | - Helen Margaret Dewey
- Stroke Department, The Florey Institute of Neuroscience & Mental Health and Melbourne Brain Centre, Melbourne, VIC, Australia
| | - Geoffrey Alan Donnan
- Stroke Department, The Florey Institute of Neuroscience & Mental Health and Melbourne Brain Centre, Melbourne, VIC, Australia
| | - David William Howells
- Stroke Department, The Florey Institute of Neuroscience & Mental Health and Melbourne Brain Centre, Melbourne, VIC, Australia.,School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
19
|
Sang M, Wang X, Zhang H, Sun X, Ding X, Wang P, Jiao R, Cheng H, Yang S, Zhang G. Gene Expression Profile of Peripheral Blood Mononuclear Cells in Response to Intracerebral Hemorrhage. DNA Cell Biol 2017; 36:647-654. [PMID: 28654306 DOI: 10.1089/dna.2017.3650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
RNA-sequencing, a powerful tool, yields a comprehensive view of whole transcriptome. Intracerebral hemorrhage (ICH) is a devastating form of stroke. To date, RNA-sequencing analysis of ICH has not been reported. Peripheral blood mononuclear cells (PBMCs) were used as a source of mRNA for gene expression profile analysis in stroke. In this study, we performed transcriptome analyses for PBMCs from four ICH patients and four healthy volunteers on Illumina platform. We identified 4040 significantly differentially expressed genes (DEGs). Functional annotation of DEGs with DAVID Bioinformatics Resources indicated that genes associated with cell apoptosis, autophagy, cell-cell adhesion, inflammatory response, protein binding, positive regulation of gene expression, and signal transduction were most significantly enriched by DEGs. Gene set enrichment analysis identified 40 significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including chemokine signaling, cytokine-cytokine receptor interaction, oxidative phosphorylation, and glutathione metabolism processes. These data point to a complex mechanism for ICH pathogenesis. Overall, the present study demonstrated an altered gene expression profile of PBMCs in response to acute ICH. Our study provided important information for understanding the molecular mechanisms of ICH pathogenesis at system-wide levels.
Collapse
Affiliation(s)
- Ming Sang
- 1 Central Laboratory of Xiangyang No. 1 People's Hospital, Institute of Parkinson's Disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine , Shiyan, People's Republic of China
| | - Xuanbin Wang
- 1 Central Laboratory of Xiangyang No. 1 People's Hospital, Institute of Parkinson's Disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine , Shiyan, People's Republic of China
| | - Hanyao Zhang
- 2 College of Forestry, Key Laboratory of Biodiversity Conservation in Southwest China, Southwest Forestry University , Kunming, People's Republic of China
| | - Xiaodong Sun
- 1 Central Laboratory of Xiangyang No. 1 People's Hospital, Institute of Parkinson's Disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine , Shiyan, People's Republic of China
| | - Xudong Ding
- 1 Central Laboratory of Xiangyang No. 1 People's Hospital, Institute of Parkinson's Disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine , Shiyan, People's Republic of China
| | - Puqing Wang
- 1 Central Laboratory of Xiangyang No. 1 People's Hospital, Institute of Parkinson's Disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine , Shiyan, People's Republic of China
| | - Rong Jiao
- 1 Central Laboratory of Xiangyang No. 1 People's Hospital, Institute of Parkinson's Disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine , Shiyan, People's Republic of China
| | - Huaxian Cheng
- 1 Central Laboratory of Xiangyang No. 1 People's Hospital, Institute of Parkinson's Disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine , Shiyan, People's Republic of China
| | - Sijun Yang
- 3 ABSL-3 Laboratory at the Center for Animal Experiment and State Key Laboratory of Virology, Wuhan University School of Medicine , Wuhan, People's Republic of China
| | - Guibin Zhang
- 1 Central Laboratory of Xiangyang No. 1 People's Hospital, Institute of Parkinson's Disease, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine , Shiyan, People's Republic of China
| |
Collapse
|
20
|
Abstract
A biomarker to aid in the diagnosis of ischemic stroke and its causes would be of value in acute clinical practice. It could have applications to aid in acute stroke treatment decisions for tissue plasminogen activator and/or the triage to endovascular therapy. A stroke biomarker may also be useful to identify stroke etiology and guide stroke prevention treatments. This review provides an overview of RNA as a novel biomarker for the diagnosis and assessment of ischemic stroke. Topics addressed include RNA to identify acute ischemic stroke; RNA to identify transient ischemic attack; RNA to predict large vessel, cardioembolic and small vessel cause of stroke; and RNA to predict risk of tissue plasminogen activator related hemorrhagic transformation. Emerging methods to measure RNA as a point-of-care assay include microfluidics sorting and electrochemical sensors.
Collapse
Affiliation(s)
- Nicholas E Swyngedouw
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Glen C Jickling
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Neurology, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
21
|
Du Y, Deng W, Wang Z, Ning M, Zhang W, Zhou Y, Lo EH, Xing C. Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation. J Cereb Blood Flow Metab 2017; 37:1425-1434. [PMID: 27328691 PMCID: PMC5453462 DOI: 10.1177/0271678x16656199] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mice and rats are the most commonly used animals for preclinical stroke studies, but it is unclear whether targets and mechanisms are always the same across different species. Here, we mapped the baseline expression of a chemokine/cytokine subnetwork and compared responses after oxygen-glucose deprivation in primary neurons, astrocytes, and microglia from mouse, rat, and human. Baseline profiles of chemokines (CX3CL1, CXCL12, CCL2, CCL3, and CXCL10) and cytokines (IL-1α, IL-1β, IL-6, IL-10, and TNFα) showed significant differences between human and rodents. The response of chemokines/cytokines to oxygen-glucose deprivation was also significantly different between species. After 4 h oxygen-glucose deprivation and 4 h reoxygenation, human and rat neurons showed similar changes with a downregulation in many chemokines, whereas mouse neurons showed a mixed response with up- and down-regulated genes. For astrocytes, subnetwork response patterns were more similar in rats and mice compared to humans. For microglia, rat cells showed an upregulation in all chemokines/cytokines, mouse cells had many down-regulated genes, and human cells showed a mixed response with up- and down-regulated genes. This study provides proof-of-concept that species differences exist in chemokine/cytokine subnetworks in brain cells that may be relevant to stroke pathophysiology. Further investigation of differential gene pathways across species is warranted.
Collapse
Affiliation(s)
- Yang Du
- 1 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,2 Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,3 Department of Geriatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenjun Deng
- 4 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zixing Wang
- 5 Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - MingMing Ning
- 4 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Zhang
- 1 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,3 Department of Geriatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiming Zhou
- 2 Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- 2 Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Changhong Xing
- 2 Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
22
|
Sun G, Luan B, Zhao R, Li Z, Xing Z. Characterizing Dysregulated Networks in Individual Patients with Ischemic Stroke Based on Monte Carlo Cross-Validation. DNA Cell Biol 2016; 35:795-801. [PMID: 27726417 DOI: 10.1089/dna.2016.3453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to introduce a new method to elucidating the molecular mechanisms in ischemic stroke. Genes from microarray data were performed enrichment to biological pathways. Dysregulated pathways and dysregulated pathway pairs were identified and constructed into networks. After Random Forest classification was performed, area under the curve (AUC) value of main network was calculated. After 50 bootstraps of Monte Carlo Cross-Validation, six pairs of pathways were found for >40 times. The best main network with AUC value = 0.735 was identified, including 14 pairs of pathways. Compared with the traditional method (gene set enrichment analysis), although a small part of pathways were shared, most of the pathways were closely related with ischemic stroke. The best network may give new insights into the underlying molecular mechanisms in ischemic stroke. It may play pivotal roles in the progression of ischemic stroke and particular attention should be focused on them for further research.
Collapse
Affiliation(s)
- Guojian Sun
- 1 Department of Rehabilitation Medicine, The People's Hospital of Liaocheng , Liaocheng, People's Republic of China
| | - Bin Luan
- 1 Department of Rehabilitation Medicine, The People's Hospital of Liaocheng , Liaocheng, People's Republic of China
| | - Ruiying Zhao
- 2 The Blood Center of Liaocheng , Liaocheng, People's Republic of China
| | - Zhanbiao Li
- 1 Department of Rehabilitation Medicine, The People's Hospital of Liaocheng , Liaocheng, People's Republic of China
| | - Zhangmin Xing
- 1 Department of Rehabilitation Medicine, The People's Hospital of Liaocheng , Liaocheng, People's Republic of China
| |
Collapse
|
23
|
Breen MS, Beliakova-Bethell N, Mujica-Parodi LR, Carlson JM, Ensign WY, Woelk CH, Rana BK. Acute psychological stress induces short-term variable immune response. Brain Behav Immun 2016; 53:172-182. [PMID: 26476140 DOI: 10.1016/j.bbi.2015.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022] Open
Abstract
In spite of advances in understanding the cross-talk between the peripheral immune system and the brain, the molecular mechanisms underlying the rapid adaptation of the immune system to an acute psychological stressor remain largely unknown. Conventional approaches to classify molecular factors mediating these responses have targeted relatively few biological measurements or explored cross-sectional study designs, and therefore have restricted characterization of stress-immune interactions. This exploratory study analyzed transcriptional profiles and flow cytometric data of peripheral blood leukocytes with physiological (endocrine, autonomic) measurements collected throughout the sequence of events leading up to, during, and after short-term exposure to physical danger in humans. Immediate immunomodulation to acute psychological stress was defined as a short-term selective up-regulation of natural killer (NK) cell-associated cytotoxic and IL-12 mediated signaling genes that correlated with increased cortisol, catecholamines and NK cells into the periphery. In parallel, we observed down-regulation of innate immune toll-like receptor genes and genes of the MyD88-dependent signaling pathway. Correcting gene expression for an influx of NK cells revealed a molecular signature specific to the adrenal cortex. Subsequently, focusing analyses on discrete groups of coordinately expressed genes (modules) throughout the time-series revealed immune stress responses in modules associated to immune/defense response, response to wounding, cytokine production, TCR signaling and NK cell cytotoxicity which differed between males and females. These results offer a spring-board for future research towards improved treatment of stress-related disease including the impact of stress on cardiovascular and autoimmune disorders, and identifies an immune mechanism by which vulnerabilities to these diseases may be gender-specific.
Collapse
Affiliation(s)
- Michael S Breen
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | | | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-5281, USA
| | - Joshua M Carlson
- Department of Psychology, Northern Michigan University, Marquette, MI 49855, USA
| | - Wayne Y Ensign
- Space and Naval Warfare Systems Center - Pacific, Applied Sciences Division, San Diego, CA 92152, USA
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; VA San Diego Center for Stress and Mental Health, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Gerring Z, Rodriguez-Acevedo AJ, Powell JE, Griffiths LR, Montgomery GW, Nyholt DR. Blood gene expression studies in migraine: Potential and caveats. Cephalalgia 2016; 36:669-78. [PMID: 26862113 DOI: 10.1177/0333102416628463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/24/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Global gene expression analysis may be used to obtain insights into the functional processes underlying migraine. However, there is a shortage of high-quality post-mortem brain tissue samples for genetic analysis. One approach is to use a more accessible tissue as a surrogate, such as peripheral blood. PURPOSE Discuss the benefits and caveats of blood genomic profiling in migraine and its potential application in the development of biomarkers of migraine susceptibility and outcome. Demonstrate the utility of blood-based expression profiles in migraine by analysing pilot Illumina HT-12 expression data from 76 (38 case, 38 control) whole-blood samples. CONCLUSION Current evidence suggests peripheral blood is a biologically valid substrate for genetic studies of migraine, and may be used to identify biomarkers and therapeutic pathways. Pilot blood gene expression data confirm that expression profiles significantly differ between migraine case and non-migraine control individuals.
Collapse
Affiliation(s)
- Zachary Gerring
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Astrid J Rodriguez-Acevedo
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Joseph E Powell
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia The Centre for Neurogenetics and Statistical Genomics, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Grant W Montgomery
- Molecular Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Raman K, O'Donnell MJ, Czlonkowska A, Duarte YC, Lopez-Jaramillo P, Peñaherrera E, Sharma M, Shoamanesh A, Skowronska M, Yusuf S, Paré G. Peripheral Blood MCEMP1 Gene Expression as a Biomarker for Stroke Prognosis. Stroke 2016; 47:652-8. [PMID: 26846866 DOI: 10.1161/strokeaha.115.011854] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE A limitation when making early decisions on stroke management is the lack of rapid diagnostic and prognostic testing. Our study sought to identify peripheral blood RNA biomarkers associated with stroke. The secondary aims were to assess the discriminative capacity of RNA biomarkers for primary stroke type and stroke prognosis at 1-month. METHODS Whole-blood gene expression profiling was conducted on the discovery cohort: 129 first-time stroke cases that had blood sampling within 5 days of symptom onset and 170 control participants with no history of stroke. RESULTS Through multiple regression analysis, we determined that expression of the gene MCEMP1 had the strongest association with stroke of 11 181 genes tested. MCEMP1 increased by 2.4-fold in stroke when compared with controls (95% confidence interval, 2.0-2.8; P=8.2×10(-22)). In addition, expression was elevated in intracerebral hemorrhage when compared with ischemic stroke cases (P=3.9×10(-4)). MCEMP1 was also highest soon after symptom onset and had no association with stroke risk factors. Furthermore, MCEMP1 expression independently improved discrimination of 1-month outcome. Indeed, discrimination models for disability and mortality that included MCEMP1 expression, baseline modified Rankin Scale score, and primary stroke type improved discrimination when compared with a model without MCEMP1 (disability Net Reclassification Index, 0.76; P=3.0×10(-6) and mortality Net Reclassification Index, 1.3; P=1.1×10(-9)). Significant associations with MCEMP1 were confirmed in an independent validation cohort of 28 stroke cases and 34 controls. CONCLUSIONS This study demonstrates that peripheral blood expression of MCEMP1 may have utility for stroke diagnosis and as a prognostic biomarker of stroke outcome at 1-month.
Collapse
Affiliation(s)
- Kripa Raman
- From the Population Health Research Institute and Hamilton Health Sciences (K.R., M.O., M. Sharma, A.S., S.Y., G.P.), and Department of Medical Science (K.R.), Medicine (M.O.), Neurology (M. Sharma, A.S.), Clinical Epidemiology and Biostatistics (S.Y.), Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada; HRB-Clinical Research Facility, National University of Ireland, Galway, Ireland (M.O.); Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw Medical University, Warsaw, Poland (A.C., M. Skowronska); Luis Vernaza Hospital, Guayaquil, Ecuador (Y.C.D., E.P.); Ophthalmological Foundation of Santander, Floridablanca, Santander, Colombia (P.L.-J.); and Instituto MASIRA, School of Health Sciences, University of Santander (UDES), Bucaramanga, Santander, Colombia (P.L.-J.)
| | - Martin J O'Donnell
- From the Population Health Research Institute and Hamilton Health Sciences (K.R., M.O., M. Sharma, A.S., S.Y., G.P.), and Department of Medical Science (K.R.), Medicine (M.O.), Neurology (M. Sharma, A.S.), Clinical Epidemiology and Biostatistics (S.Y.), Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada; HRB-Clinical Research Facility, National University of Ireland, Galway, Ireland (M.O.); Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw Medical University, Warsaw, Poland (A.C., M. Skowronska); Luis Vernaza Hospital, Guayaquil, Ecuador (Y.C.D., E.P.); Ophthalmological Foundation of Santander, Floridablanca, Santander, Colombia (P.L.-J.); and Instituto MASIRA, School of Health Sciences, University of Santander (UDES), Bucaramanga, Santander, Colombia (P.L.-J.)
| | - Anna Czlonkowska
- From the Population Health Research Institute and Hamilton Health Sciences (K.R., M.O., M. Sharma, A.S., S.Y., G.P.), and Department of Medical Science (K.R.), Medicine (M.O.), Neurology (M. Sharma, A.S.), Clinical Epidemiology and Biostatistics (S.Y.), Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada; HRB-Clinical Research Facility, National University of Ireland, Galway, Ireland (M.O.); Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw Medical University, Warsaw, Poland (A.C., M. Skowronska); Luis Vernaza Hospital, Guayaquil, Ecuador (Y.C.D., E.P.); Ophthalmological Foundation of Santander, Floridablanca, Santander, Colombia (P.L.-J.); and Instituto MASIRA, School of Health Sciences, University of Santander (UDES), Bucaramanga, Santander, Colombia (P.L.-J.)
| | - Yan Carlos Duarte
- From the Population Health Research Institute and Hamilton Health Sciences (K.R., M.O., M. Sharma, A.S., S.Y., G.P.), and Department of Medical Science (K.R.), Medicine (M.O.), Neurology (M. Sharma, A.S.), Clinical Epidemiology and Biostatistics (S.Y.), Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada; HRB-Clinical Research Facility, National University of Ireland, Galway, Ireland (M.O.); Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw Medical University, Warsaw, Poland (A.C., M. Skowronska); Luis Vernaza Hospital, Guayaquil, Ecuador (Y.C.D., E.P.); Ophthalmological Foundation of Santander, Floridablanca, Santander, Colombia (P.L.-J.); and Instituto MASIRA, School of Health Sciences, University of Santander (UDES), Bucaramanga, Santander, Colombia (P.L.-J.)
| | - Patricio Lopez-Jaramillo
- From the Population Health Research Institute and Hamilton Health Sciences (K.R., M.O., M. Sharma, A.S., S.Y., G.P.), and Department of Medical Science (K.R.), Medicine (M.O.), Neurology (M. Sharma, A.S.), Clinical Epidemiology and Biostatistics (S.Y.), Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada; HRB-Clinical Research Facility, National University of Ireland, Galway, Ireland (M.O.); Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw Medical University, Warsaw, Poland (A.C., M. Skowronska); Luis Vernaza Hospital, Guayaquil, Ecuador (Y.C.D., E.P.); Ophthalmological Foundation of Santander, Floridablanca, Santander, Colombia (P.L.-J.); and Instituto MASIRA, School of Health Sciences, University of Santander (UDES), Bucaramanga, Santander, Colombia (P.L.-J.)
| | - Ernesto Peñaherrera
- From the Population Health Research Institute and Hamilton Health Sciences (K.R., M.O., M. Sharma, A.S., S.Y., G.P.), and Department of Medical Science (K.R.), Medicine (M.O.), Neurology (M. Sharma, A.S.), Clinical Epidemiology and Biostatistics (S.Y.), Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada; HRB-Clinical Research Facility, National University of Ireland, Galway, Ireland (M.O.); Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw Medical University, Warsaw, Poland (A.C., M. Skowronska); Luis Vernaza Hospital, Guayaquil, Ecuador (Y.C.D., E.P.); Ophthalmological Foundation of Santander, Floridablanca, Santander, Colombia (P.L.-J.); and Instituto MASIRA, School of Health Sciences, University of Santander (UDES), Bucaramanga, Santander, Colombia (P.L.-J.)
| | - Mike Sharma
- From the Population Health Research Institute and Hamilton Health Sciences (K.R., M.O., M. Sharma, A.S., S.Y., G.P.), and Department of Medical Science (K.R.), Medicine (M.O.), Neurology (M. Sharma, A.S.), Clinical Epidemiology and Biostatistics (S.Y.), Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada; HRB-Clinical Research Facility, National University of Ireland, Galway, Ireland (M.O.); Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw Medical University, Warsaw, Poland (A.C., M. Skowronska); Luis Vernaza Hospital, Guayaquil, Ecuador (Y.C.D., E.P.); Ophthalmological Foundation of Santander, Floridablanca, Santander, Colombia (P.L.-J.); and Instituto MASIRA, School of Health Sciences, University of Santander (UDES), Bucaramanga, Santander, Colombia (P.L.-J.)
| | - Ashkan Shoamanesh
- From the Population Health Research Institute and Hamilton Health Sciences (K.R., M.O., M. Sharma, A.S., S.Y., G.P.), and Department of Medical Science (K.R.), Medicine (M.O.), Neurology (M. Sharma, A.S.), Clinical Epidemiology and Biostatistics (S.Y.), Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada; HRB-Clinical Research Facility, National University of Ireland, Galway, Ireland (M.O.); Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw Medical University, Warsaw, Poland (A.C., M. Skowronska); Luis Vernaza Hospital, Guayaquil, Ecuador (Y.C.D., E.P.); Ophthalmological Foundation of Santander, Floridablanca, Santander, Colombia (P.L.-J.); and Instituto MASIRA, School of Health Sciences, University of Santander (UDES), Bucaramanga, Santander, Colombia (P.L.-J.)
| | - Marta Skowronska
- From the Population Health Research Institute and Hamilton Health Sciences (K.R., M.O., M. Sharma, A.S., S.Y., G.P.), and Department of Medical Science (K.R.), Medicine (M.O.), Neurology (M. Sharma, A.S.), Clinical Epidemiology and Biostatistics (S.Y.), Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada; HRB-Clinical Research Facility, National University of Ireland, Galway, Ireland (M.O.); Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw Medical University, Warsaw, Poland (A.C., M. Skowronska); Luis Vernaza Hospital, Guayaquil, Ecuador (Y.C.D., E.P.); Ophthalmological Foundation of Santander, Floridablanca, Santander, Colombia (P.L.-J.); and Instituto MASIRA, School of Health Sciences, University of Santander (UDES), Bucaramanga, Santander, Colombia (P.L.-J.)
| | - Salim Yusuf
- From the Population Health Research Institute and Hamilton Health Sciences (K.R., M.O., M. Sharma, A.S., S.Y., G.P.), and Department of Medical Science (K.R.), Medicine (M.O.), Neurology (M. Sharma, A.S.), Clinical Epidemiology and Biostatistics (S.Y.), Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada; HRB-Clinical Research Facility, National University of Ireland, Galway, Ireland (M.O.); Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw Medical University, Warsaw, Poland (A.C., M. Skowronska); Luis Vernaza Hospital, Guayaquil, Ecuador (Y.C.D., E.P.); Ophthalmological Foundation of Santander, Floridablanca, Santander, Colombia (P.L.-J.); and Instituto MASIRA, School of Health Sciences, University of Santander (UDES), Bucaramanga, Santander, Colombia (P.L.-J.)
| | - Guillaume Paré
- From the Population Health Research Institute and Hamilton Health Sciences (K.R., M.O., M. Sharma, A.S., S.Y., G.P.), and Department of Medical Science (K.R.), Medicine (M.O.), Neurology (M. Sharma, A.S.), Clinical Epidemiology and Biostatistics (S.Y.), Pathology and Molecular Medicine (G.P.), McMaster University, Hamilton, Ontario, Canada; HRB-Clinical Research Facility, National University of Ireland, Galway, Ireland (M.O.); Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw Medical University, Warsaw, Poland (A.C., M. Skowronska); Luis Vernaza Hospital, Guayaquil, Ecuador (Y.C.D., E.P.); Ophthalmological Foundation of Santander, Floridablanca, Santander, Colombia (P.L.-J.); and Instituto MASIRA, School of Health Sciences, University of Santander (UDES), Bucaramanga, Santander, Colombia (P.L.-J.).
| |
Collapse
|
26
|
Asano S, Chantler PD, Barr TL. Gene expression profiling in stroke: relevance of blood-brain interaction. Curr Opin Pharmacol 2015; 26:80-6. [PMID: 26562440 DOI: 10.1016/j.coph.2015.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
Abstract
Biomarker profiling is utilized to identify diagnostic and prognostic candidates for stroke. Clinical and preclinical biomarker data suggest altered circulating immune responses may illuminate the mechanisms of stroke recovery. However, the relationship between peripheral blood biomarker profile(s) and brain profiles following stroke remains elusive. Data show that neutrophil lymphocyte ratio (NLR) predicts stroke outcome. Neutrophils release Arginase 1 (ARG1) resulting in T lymphocyte suppression in peripheral blood. Interestingly, the cellular response to stroke may have implications for known biomarker profiles. Conversely, preclinical evidence suggests that upregulation of ARG1 in microglia is a marker of M2 macrophages and may influence neuroprotection. Comparing clinical and preclinical studies creates opportunities to explore the molecular mechanisms of blood and brain biomarker interactions in stroke.
Collapse
Affiliation(s)
- Shinichi Asano
- Division of Exercise Physiology, West Virginia University, Morgantown, WV, USA; Center for Cardiovascular and Respiratory Sciences, School of Medicine, West Virginia University, USA
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University, Morgantown, WV, USA; Center for Cardiovascular and Respiratory Sciences, School of Medicine, West Virginia University, USA; Clinical and Translational Sciences Institute, West Virginia University, Morgantown, WV, USA
| | - Taura L Barr
- School of Nursing, West Virginia University, Morgantown, WV, USA; Center for Neuroscience, Morgantown, WV, USA; Center for Basic and Translational Stroke Research, Morgantown, WV, USA.
| |
Collapse
|
27
|
Jickling GC, Sharp FR. Improving the translation of animal ischemic stroke studies to humans. Metab Brain Dis 2015; 30:461-7. [PMID: 24526567 PMCID: PMC4186910 DOI: 10.1007/s11011-014-9499-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/28/2014] [Indexed: 12/18/2022]
Abstract
Despite testing more than 1,026 therapeutic strategies in models of ischemic stroke and 114 therapies in human ischemic stroke, only one agent tissue plasminogen activator has successfully been translated to clinical practice as a treatment for acute stroke. Though disappointing, this immense body of work has led to a rethinking of animal stroke models and how to better translate therapies to patients with ischemic stroke. Several recommendations have been made, including the STAIR recommendations and statements of RIGOR from the NIH/NINDS. In this commentary we discuss additional aspects that may be important to improve the translational success of ischemic stroke therapies. These include use of tissue plasminogen activator in animal studies; modeling ischemic stroke heterogeneity in terms of infarct size and cause of human stroke; addressing the confounding effect of anesthesia; use of comparable therapeutic dosage between humans and animals based on biological effect; modeling the human immune system; and developing outcome measures in animals comparable to those used in human stroke trials. With additional study and improved animal modeling of factors involved in human ischemic stroke, we are optimistic that new stroke therapies will be developed.
Collapse
Affiliation(s)
- Glen C Jickling
- Department of Neurology, MIND Institute Wet Labs Room 2415, University of California at Davis Medical Center, 2805 50th Street, Sacramento, CA, 95817, USA,
| | | |
Collapse
|
28
|
Wang H, Liu S, Tang Z, Liu J. Some cross-talks between immune cells and epilepsy should not be forgotten. Neurol Sci 2014; 35:1843-9. [PMID: 25253631 DOI: 10.1007/s10072-014-1955-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/14/2014] [Indexed: 11/25/2022]
Abstract
Recent studies have reported that immune cells were not always found in brain specimens from epileptic patients, then should we stop investigating the relationship between these cells and epilepsy? The answer is no! In addition to immunocyte infiltration in brain parenchyma, a flurry of papers have demonstrated that there were significant alterations in peripheral blood cells (PBCs) immediately after seizure onset, especially changes in some specific transporters of neurotransmitters expressed on the membrane of immunocyte. These transporters may regulate neuronal excitability in mature neurons. Besides, many researchers did find activated leukocytes adhered to the endothelium of blood brain barrier or infiltrated into the brain parenchyma in several types of epilepsy both in human and animal studies; moreover, it is worth noting that different immune cells play different roles in epilepsy development, which was indicated by in vitro and in vivo evidence. This review is going to summarize available evidence supporting changes in PBCs after seizures, and will also focus on some specific effects of immune cells on epilepsy development.
Collapse
Affiliation(s)
- Hong Wang
- Dalian Municipal Central Hospital, No. 2 VIP Ward, Shahekou District, Dalian, 116000, Liaoning Province, China
| | | | | | | |
Collapse
|
29
|
Blood genomic profiling in extracranial- and intracranial atherosclerosis in ischemic stroke patients. Thromb Res 2014; 134:686-92. [DOI: 10.1016/j.thromres.2014.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 11/20/2022]
|
30
|
Bhatt SP, Guleria R. Sleep apnea and fatty liver disease: The growing link and management issues. World J Respirol 2014; 4:11-18. [DOI: 10.5320/wjr.v4.i2.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/27/2013] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) is associated with metabolic, cardiovascular and neuropsychological disorders, with substantial morbidity and economic costs. OSA has been estimated to affect 4%-11% of the population, depending on age. Obesity is a significant risk factor for OSA. Non alcoholic fatty liver disease (NAFLD) has emerged as an integral component of the metabolic syndrome, with insulin resistance as the central pathogenic feature. Estimates based on imaging and autopsy studies suggest that about 20%-30% of adults in the United States and other Western countries have NAFLD. Evidence now suggests that NAFLD is independently correlated to insulin resistance regardless of adiposity. Some authors have suggested that OSA may be another contributor to NAFLD development. In complex diseases, several or many different genes interact with environmental factors in determining disease presence or its phenotype. Individual genes only have a small effect on disease risk and can therefore be very difficult to identify. The genetic and hormonal determinants of OSA and NAFLD have received little attention. A wide variety of intermediate phenotypes and genes are involved in OSA and NAFLD which makes this syndrome genetically complex. Various adipokines, the most important of which are leptin, adiponectin, tumor necrosis factor-alpha, resistin and interleukin-6, have a key role in NAFLD and OSA. Some studies have suggested that oxidative stress may also contribute to the development of NAFLD and OSA. Lifestyle intervention, insulin sensitizer drugs and bariatric surgery aim to improve metabolic syndrome, OSA and NAFLD but need further investigation.
Collapse
|
31
|
Sharp FR, Jickling GC. Modeling immunity and inflammation in stroke: differences between rodents and humans? Stroke 2014; 45:e179-80. [PMID: 25061082 DOI: 10.1161/strokeaha.114.005639] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Frank R Sharp
- From the Department of Neurology and the MIND Institute, University of California at Davis, Sacramento.
| | - Glen C Jickling
- From the Department of Neurology and the MIND Institute, University of California at Davis, Sacramento
| |
Collapse
|
32
|
Cox-Limpens KEM, Gavilanes AWD, Zimmermann LJI, Vles JSH. Endogenous brain protection: what the cerebral transcriptome teaches us. Brain Res 2014; 1564:85-100. [PMID: 24713346 DOI: 10.1016/j.brainres.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/23/2014] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
Despite efforts to reduce mortality caused by stroke and perinatal asphyxia, these are still the 2nd largest cause of death worldwide in the age groups they affect. Furthermore, survivors of cerebral hypoxia-ischemia often suffer neurological morbidities. A better understanding of pathophysiological mechanisms in focal and global brain ischemia will contribute to the development of tailored therapeutic strategies. Similarly, insight into molecular pathways involved in preconditioning-induced brain protection will provide possibilities for future treatment. Microarray technology is a great tool for investigating large scale gene expression, and has been used in many experimental studies of cerebral ischemia and preconditioning to unravel molecular (patho-) physiology. However, the amount of data across microarray studies can be daunting and hard to interpret which is why we aim to provide a clear overview of available data in experimental rodent models. Findings for both injurious ischemia and preconditioning are reviewed under separate subtopics such as cellular stress, inflammation, cytoskeleton and cell signaling. Finally, we investigated the transcriptome signature of brain protection across preconditioning studies in search of transcripts that were expressed similarly across studies. Strikingly, when comparing genes discovered by single-gene analysis we observed only 15 genes present in two studies or more. We subjected these 15 transcripts to DAVID Annotation Clustering analysis to derive their shared biological meaning. Interestingly, the MAPK signaling pathway and more specifically the ERK1/2 pathway geared toward cell survival/proliferation was significantly enriched. To conclude, we advocate incorporating pathway analysis into all microarray data analysis in order to improve the detection of similarities between independently derived datasets.
Collapse
Affiliation(s)
- K E M Cox-Limpens
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - L J I Zimmermann
- Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - J S H Vles
- Department of Pediatric Neurology, Maastricht University Medical Center (MUMC), P.Debyelaan 25, 6229 HX Maastricht, The Netherlands.
| |
Collapse
|
33
|
Abstract
Epileptogenesis, a process leading to a reduced threshold for seizures after transient brain insults, as well as the mechanisms underlying the propensity to generate spontaneous epileptic seizures, are highly dynamic processes. Biomarkers--objective measures of biological processes--would be excellent tools for monitoring epileptogenesis and the dynamics of increased seizure propensity, as well as the potential to interfere, for example pharmacologically, with these key pathological aspects of epilepsy. Molecular biomarkers have revolutionized therapies, as well as response prediction and monitoring of therapies in other biomedical fields. However, high-impact molecular biomarkers are still not available in the context of epilepsy. Several factors, such as the large heterogeneity of epileptic syndromes and their underlying pathological patterns, as well as the limited availability of tissue samples, represent a particular challenge to the development of molecular biomarkers in epileptogenesis and epilepsy. However, substantial technical progress has been made recently with respect to biomarker characterization and monitoring by large throughput analysis on the genomic, mRNA, and proteomic levels, starting from minute amounts of brain tissue or body fluids, for example cerebrospinal fluid, blood, serum, or plasma. Given the substantial cellular- and network-level functional pathophysiology involved in epilepsy, it may be beneficial in the future to combine molecular analysis with other methods, such as imaging and electrophysiological biomarkers.
Collapse
Affiliation(s)
- Katarzyna Lukasiuk
- The Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02 093 Warsaw, Poland
| | - Albert J. Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
34
|
Fisher E, Boenink M, van der Burg S, Woodbury N. Responsible healthcare innovation: anticipatory governance of nanodiagnostics for theranostics medicine. Expert Rev Mol Diagn 2014; 12:857-70. [DOI: 10.1586/erm.12.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Rao P, Benito E, Fischer A. MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci 2013; 6:39. [PMID: 24324397 PMCID: PMC3840814 DOI: 10.3389/fnmol.2013.00039] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/31/2013] [Indexed: 01/23/2023] Open
Abstract
For many neurological diseases, the efficacy and outcome of treatment depend on early detection. Diagnosis is currently based on the detection of symptoms and neuroimaging abnormalities, which appear at relatively late stages in the pathogenesis. However, the underlying molecular responses to genetic and environmental insults begin much earlier and non-coding RNA networks are critically involved in these cellular regulatory mechanisms. Profiling RNA expression patterns could thus facilitate presymptomatic disease detection. Obtaining indirect readouts of pathological processes is particularly important for brain disorders because of the lack of direct access to tissue for molecular analyses. Living neurons and other CNS cells secrete microRNA and other small non-coding RNA into the extracellular space packaged in exosomes, microvesicles, or lipoprotein complexes. This discovery, together with the rapidly evolving massive sequencing technologies that allow detection of virtually all RNA species from small amounts of biological material, has allowed significant progress in the use of extracellular RNA as a biomarker for CNS malignancies, neurological, and psychiatric diseases. There is also recent evidence that the interactions between external stimuli and brain pathological processes may be reflected in peripheral tissues, facilitating their use as potential diagnostic markers. In this review, we explore the possibilities and challenges of using microRNA and other small RNAs as a signature for neurodegenerative and other neuropsychatric conditions.
Collapse
Affiliation(s)
- Pooja Rao
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen Göttingen, Germany
| | | | | |
Collapse
|
36
|
Cox C, Sharp FR. RNA-based blood genomics as an investigative tool and prospective biomarker for ischemic stroke. Neurol Res 2013; 35:457-64. [DOI: 10.1179/1743132813y.0000000212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
37
|
Core modular blood and brain biomarkers in social defeat mouse model for post traumatic stress disorder. BMC SYSTEMS BIOLOGY 2013; 7:80. [PMID: 23962043 PMCID: PMC3751782 DOI: 10.1186/1752-0509-7-80] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 08/02/2013] [Indexed: 02/07/2023]
Abstract
Background Post-traumatic stress disorder (PTSD) is a severe anxiety disorder that affects a substantial portion of combat veterans and poses serious consequences to long-term health. Consequently, the identification of diagnostic and prognostic blood biomarkers for PTSD is of great interest. Previously, we assessed genome-wide gene expression of seven brain regions and whole blood in a social defeat mouse model subjected to various stress conditions. Results To extract biological insights from these data, we have applied a new computational framework for identifying gene modules that are activated in common across blood and various brain regions. Our results, in the form of modular gene networks that highlight spatial and temporal biological functions, provide a systems-level molecular description of response to social stress. Specifically, the common modules discovered between the brain and blood emphasizes molecular transporters in the blood-brain barrier, and the associated genes have significant overlaps with known blood signatures for PTSD, major depression, and bipolar disease. Similarly, the common modules specific to the brain highlight the components of the social defeat stress response (e.g., fear conditioning pathways) in each brain sub-region. Conclusions Many of the brain-specific genes discovered are consistent with previous independent studies of PTSD or other mental illnesses. The results from this study further our understanding of the mechanism of stress response and contribute to a growing list of diagnostic biomarkers for PTSD.
Collapse
|
38
|
Affiliation(s)
- Frank R Sharp
- University of California-Davis Medical Center, Medical Investigation of Neurodevelopmental Disorders Wet Labs, 2805 50th St, Sacramento, CA 95817, USA.
| | | |
Collapse
|
39
|
Pera J, Korostynski M, Golda S, Piechota M, Dzbek J, Krzyszkowski T, Dziedzic T, Moskala M, Przewlocki R, Szczudlik A, Slowik A. Gene expression profiling of blood in ruptured intracranial aneurysms: in search of biomarkers. J Cereb Blood Flow Metab 2013; 33:1025-31. [PMID: 23512133 PMCID: PMC3705426 DOI: 10.1038/jcbfm.2013.37] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/07/2013] [Accepted: 02/15/2013] [Indexed: 11/09/2022]
Abstract
The molecular mechanisms underlying the systemic response to subarachnoid hemorrhage (SAH) from ruptured intracranial aneurysms (RAs) are not fully understood. We investigated whether the analysis of gene expression in peripheral blood could provide clinically relevant information regarding the biologic consequences of SAH. Transcriptomics were performed using Illumina HumanHT-12v4 microarrays for 43 RA patients and 18 controls (C). Differentially expressed transcripts were analyzed for overrepresented functional groups and blood cell type-specific gene expression. The set of differentially expressed transcripts was validated using quantitative polymerase chain reaction in an independent group of subjects (15 RA patients and 14 C). There were 135 differentially expressed genes (false discovery rate 1%, absolute fold change 1.7): the abundant levels of 78 mRNAs increased and 57 mRNAs decreased. Among RA patients, transcripts specific to T lymphocyte subpopulations were downregulated, whereas those related to monocytes and neutrophils were upregulated. Expression profiles of a set of 16 genes and lymphocyte-to-monocyte-and-neutrophil gene expression ratios distinguished RA patients from C. These results indicate that SAH from RAs strongly influences the transcription profiles of blood cells. A specific pattern of these changes suggests suppression in lymphocyte response and enhancements in monocyte and neutrophil activities. This is probably related to the immunodepression observed in SAH.
Collapse
Affiliation(s)
- Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Saris CGJ, Groen EJN, van Vught PWJ, van Es MA, Blauw HM, Veldink JH, van den Berg LH. Gene expression profile of SOD1-G93A mouse spinal cord, blood and muscle. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:190-8. [PMID: 23298163 DOI: 10.3109/21678421.2012.749914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The exact pathway leading to neuron death and muscle atrophy in amyotrophic lateral sclerosis (ALS) has not yet been elucidated. Gene expression profile of spinal cord, blood and muscle could provide signalling pathways and systemic alterations useful for future biomarker development. In our study we compared whole genome expression profiles of lumbar spinal cord with peripheral blood and tibialis anterior muscle in 16 mutant SOD1-G93A mice and 15 wild-type littermates. In SOD1-G93A mice, 11 genes were significantly differentially expressed in spinal cord, and 16 genes in blood, while much larger transcriptional changes were noted in muscle (1745 genes significant; six overlapping with spinal cord (0.3%)) probably due to muscle atrophy. Overlap with spinal cord was enriched for significant genes in blood (six of 16 overlapping with spinal cord (37.5%)). Three genes were significantly down-regulated in all three tissues, and were closely related to mitochondrial function. Furthermore, clustering the significant genes in spinal cord and in blood, but not in muscle, could identify the SOD1-G93A mice. We conclude that blood gene expression profile overlapped with profile of spinal cord, allowing differentiation of SOD1-G93A mice from wild-type littermates. Blood gene expression profiling may be a promising biomarker for ALS patients.
Collapse
Affiliation(s)
- Christiaan G J Saris
- Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Transcriptomics is the study of how our genes are regulated and expressed in different biological settings. Technical advances now enable quantitative assessment of all expressed genes (ie, the entire "transcriptome") in a given tissue at a given time. These approaches provide a powerful tool for understanding complex biological systems and for developing novel biomarkers. This chapter will introduce basic concepts in transcriptomics and available technologies for developing transcriptomic biomarkers. We will then review current and emerging applications in cardiovascular medicine.
Collapse
Affiliation(s)
- Dawn M Pedrotty
- Penn Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
42
|
Liu R, Yin L, Pu Y. Association between gene expression of metabolizing enzymes and esophageal squamous cell carcinomas in China. Genet Test Mol Biomarkers 2012; 16:1211-7. [PMID: 22853296 DOI: 10.1089/gtmb.2012.0032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epidemiological studies have indicated that the incidence of esophageal squamous cell carcinoma (ESCC) is associated with environmental exposure to mutagens and carcinogens. To determine whether the basal expression level of genes involved in metabolism of carcinogens is associated with the risk of ESCC, a case-control study of 100 patients with newly diagnosed, untreated ESCC and 117 healthy controls was performed, and the relative expression levels of four metabolism genes (CYP2E1, GSTP1, MTHFR, and NQO1) were determined with quantitative real-time reverse transcription-polymerase chain reaction in peripheral blood mononuclear cells (PBMCs). Analyzed with the mean of relative expression level in the controls as the cut-off point, the result exhibited that the increased risk for ESCC was significantly associated with reduced expression of GSTP1 (odds ratio [OR]=3.644, 95% confidence interval [CI: 1.947-6.823) and NQO1 (OR=1.870, 95% CI: 1.046-3.345). When adjusted for age, sex, smoking status, and alcohol use, the increased risk for ESCC was significantly associated with reduced expression of GSTP1, MTHFR, and NQO1, and GSTP1 mRNA showed a steady association with the risk for ESCC (OR=2.640) in the model of stepwise regression analysis. Reduced expression of GSTP1 in PBMCs was significantly associated with the risk for ESCC, suggesting an important etiology clue to the early progression of ESCC in the Huaian population of China.
Collapse
Affiliation(s)
- Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, P.R. China.
| | | | | |
Collapse
|
43
|
TTC7B emerges as a novel risk factor for ischemic stroke through the convergence of several genome-wide approaches. J Cereb Blood Flow Metab 2012; 32:1061-72. [PMID: 22453632 PMCID: PMC3367223 DOI: 10.1038/jcbfm.2012.24] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We hereby propose a novel approach to the identification of ischemic stroke (IS) susceptibility genes that involves converging data from several unbiased genetic and genomic tools. We tested the association between IS and genes differentially expressed between cases and controls, then determined which data mapped to previously reported linkage peaks and were nominally associated with stroke in published genome-wide association studies. We first performed gene expression profiling in peripheral blood mononuclear cells of 20 IS cases and 20 controls. Sixteen differentially expressed genes mapped to reported whole-genome linkage peaks, including the TTC7B gene, which has been associated with major cardiovascular disease. At the TTC7B locus, 46 tagging polymorphisms were tested for association in 565 Portuguese IS cases and 520 controls. Markers nominally associated in at least one test and defining associated haplotypes were then examined in 570 IS Spanish cases and 390 controls. Several polymorphisms and haplotypes in the intron 5-intron 6 region of TTC7B were also associated with IS risk in the Spanish and combined data sets. Multiple independent lines of evidence therefore support the role of TTC7B in stroke susceptibility, but further work is warranted to identify the exact risk variant and its pathogenic potential.
Collapse
|
44
|
Oh SH, Kim OJ, Shin DA, Song J, Yoo H, Kim YK, Kim JK. Alteration of immunologic responses on peripheral blood in the acute phase of ischemic stroke: blood genomic profiling study. J Neuroimmunol 2012; 249:60-5. [PMID: 22591946 DOI: 10.1016/j.jneuroim.2012.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/30/2012] [Accepted: 04/15/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Peripheral blood cells and inflammatory mediators have a detrimental effect on brain during cerebral ischemia. We investigated the immunologic changes on peripheral blood in the acute phase of ischemic stroke using RNA microarray. METHODS mRNA microarray and real time-polymerase chain reaction (RT-PCR) for genes of interest in microarray data were analyzed in 12 stroke patients and 12 controls. Plasma matrix metalloproteinase-9 (MMP-9) concentrations were measured in 120 stroke patients and 82 controls. RESULTS In microarray analysis, a total of 11 genes of interest showed different expression in patients with ischemic stroke. The three most highly expressed genes were C19orf59 (chromosome 19 open reading frame 59), MMP9 and IL18RAP (interleukin-18 receptor accessory protein), whereas gene with the lowest expression was GNLY (granulysin). The expression patterns of three selected genes (MMP9, IL18RAP and GNLY) were validated by RT-PCR. The plasma concentration of MMP-9 was significantly elevated in the stroke patients, and showed a weakly positive correlation with infarct volume. Gene set enrichment analysis (GSEA) showed that gene sets related to immunity and defense, signal transduction, transport and cell adhesion were significant in acute ischemic stroke. CONCLUSIONS In the peripheral blood, numerous genes of inflammatory mediators, including MMP9, IL18RAP and GNLY, are altered in the acute phase of ischemic stroke. This stroke-specific gene expression profiling provides valuable information about the role of peripheral inflammation to the pathophysiological mechanism of ischemic stroke.
Collapse
Affiliation(s)
- Seung-Hun Oh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
The transcriptome of cerebral ischemia. Brain Res Bull 2012; 88:313-9. [PMID: 22381515 DOI: 10.1016/j.brainresbull.2012.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/20/2011] [Accepted: 02/13/2012] [Indexed: 01/26/2023]
Abstract
The molecular causality and response to stroke is complex. Yet, much of the literature examining the molecular response to stroke has focused on targeted pathways that have been well-characterized. Consequently, our understanding of stroke pathophysiology has made little progress by way of clinical therapeutics since tissue plasminogen activator was approved for treatment nearly a decade ago. The lack of clinical translation is in part due to neuron-focused studies, preclinical models of cerebral ischemia and the paradoxical nature of neuro-inflammation. With the evolution of the Stroke Therapy Academic Industry Roundtable criteria streamlining research efforts and broad availability of genomic technologies, the ability to decipher the molecular fingerprint of ischemic stroke is on the horizon. This review highlights preclinical microarray findings of the ischemic brain, discusses the transcriptome of cerebral preconditioning and emphasizes the importance of further characterizing the role of the neurovascular unit and peripheral white blood cells in mediating stroke damage and repair within the penumbra.
Collapse
|
46
|
Abstract
The heterogeneity of epilepsy syndromes and pathologies creates a great challenge for the search for biomarkers. Not surprisingly, identification of a marker that is specific and sensitive for a given epileptogenic pathology remains an unmet need. There have, however, been several studies of major epileptogenic etiologies like traumatic brain injury that aimed to identify molecular markers in blood and cerebrospinal fluid that predict outcome, by using proteomics and metabolomics. Unfortunately, epileptogenesis has not been analyzed as an outcome measure. Another question to be explored is whether a palette of molecular markers is needed, rather than a single molecule, with each marker probing a different component of epileptogenic pathology. Further, perhaps multiple biomarker platforms (e.g., imaging, proteomics, electrophysiology) should be used in combination and/or in a defined temporal sequence.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | | |
Collapse
|
47
|
Hershey A, Horn P, Kabbouche M, O'Brien H, Powers S. Genomic expression patterns in menstrual-related migraine in adolescents. Headache 2012; 52:68-79. [PMID: 22220971 PMCID: PMC3265619 DOI: 10.1111/j.1526-4610.2011.02049.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exacerbation of migraine with menses is common in adolescent girls and women with migraine, occurring in up to 60% of females with migraine. These migraines are oftentimes longer and more disabling and may be related to estrogen levels and hormonal fluctuations. OBJECTIVE This study identifies the unique genomic expression pattern of menstrual-related migraine (MRM) in comparison to migraine occurring outside the menstrual period and headache-free controls. METHODS Whole blood samples were obtained from female subjects having an acute migraine during their menstrual period (MRM) or outside of their menstrual period (non-MRM) and controls (C)--females having a menstrual period without any history of headache. The messenger RNA was isolated from these samples, and genomic profile was assessed. Affymetrix Human Exon ST 1.0 (Affymetrix, Santa Clara, CA, USA) arrays were used to examine the genomic expression pattern differences between these 3 groups. RESULTS Blood genomic expression patterns were obtained on 56 subjects (MRM = 18, non-MRM = 18, and controls = 20). Unique genomic expression patterns were observed for both MRM and non-MRM. For MRM, 77 genes were identified that were unique to MRM, while 61 genes were commonly expressed for MRM and non-MRM, and 127 genes appeared to have a unique expression pattern for non-MRM. In addition, there were 279 genes that differentially expressed for MRM compared to non-MRM that were not differentially expressed for non-MRM. Gene ontology of these samples indicated many of these groups of genes were functionally related and included categories of immunomodulation/inflammation, mitochondrial function, and DNA homeostasis. CONCLUSIONS Blood genomic patterns can accurately differentiate MRM from non-MRM. These results indicate that MRM involves a unique molecular biology pathway that can be identified with a specific biomarker and suggest that individuals with MRM have a different underlying genetic etiology.
Collapse
Affiliation(s)
- Andrew Hershey
- Children's Hospital Medical Center, Department of Neurology, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | |
Collapse
|
48
|
Bernardini C, Lattanzi W, Bosco P, Franceschini C, Plazzi G, Michetti F, Ferri R. Genome-wide gene expression profiling of human narcolepsy. Gene Expr 2012; 15:171-81. [PMID: 22783726 PMCID: PMC6043843 DOI: 10.3727/105221612x13372578119652] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The objective of this study was to perform global gene expression profiling of patients affected by narcolepsy with cataplexy (NRLCP). This enabled identifying new potential biomarkers and relevant molecules possibly involved in the disease pathogenesis. In this study 10 NRLCP patients and 10 healthy controls were compared. Total RNA isolated from blood specimens was analyzed using microarray technology followed by statistical data analysis to detect genome-wide differential gene expression between patients and controls. Functional analysis of the gene list was performed in order to interpret the biological significance of the data. One hundred and seventy-three genes showed significant (p < 0.01) differential expression between the two tested conditions. The biological interpretation allowed categorizing differentially expressed genes involved in neurite outgrowth/extension and brain development, which could be possibly regarded as peripheral markers of the disease. Moreover, the NRLCP-related gene expression profiles indicated a dysregulation of metabolic and immune-related mechanisms. In conclusion, the gene expression profile associated to NRLCP suggested that molecular markers of neurological impairment, dysmetabolic and immune-related mechanisms, can be detected in blood of NRLCP patients.
Collapse
Affiliation(s)
- Camilla Bernardini
- Institute of Anatomy and Cell Biology, Catholic University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Nardo G, Pozzi S, Pignataro M, Lauranzano E, Spano G, Garbelli S, Mantovani S, Marinou K, Papetti L, Monteforte M, Torri V, Paris L, Bazzoni G, Lunetta C, Corbo M, Mora G, Bendotti C, Bonetto V. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells. PLoS One 2011; 6:e25545. [PMID: 21998667 PMCID: PMC3187793 DOI: 10.1371/journal.pone.0025545] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/05/2011] [Indexed: 12/13/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal progressive motor neuron disease, for which there are still no diagnostic/prognostic test and therapy. Specific molecular biomarkers are urgently needed to facilitate clinical studies and speed up the development of effective treatments. Methodology/Principal Findings We used a two-dimensional difference in gel electrophoresis approach to identify in easily accessible clinical samples, peripheral blood mononuclear cells (PBMC), a panel of protein biomarkers that are closely associated with ALS. Validations and a longitudinal study were performed by immunoassays on a selected number of proteins. The same proteins were also measured in PBMC and spinal cord of a G93A SOD1 transgenic rat model. We identified combinations of protein biomarkers that can distinguish, with high discriminatory power, ALS patients from healthy controls (98%), and from patients with neurological disorders that may resemble ALS (91%), between two levels of disease severity (90%), and a number of translational biomarkers, that link responses between human and animal model. We demonstrated that TDP-43, cyclophilin A and ERp57 associate with disease progression in a longitudinal study. Moreover, the protein profile changes detected in peripheral blood mononuclear cells of ALS patients are suggestive of possible intracellular pathogenic mechanisms such as endoplasmic reticulum stress, nitrative stress, disturbances in redox regulation and RNA processing. Conclusions/Significance Our results indicate that PBMC multiprotein biomarkers could contribute to determine amyotrophic lateral sclerosis diagnosis, differential diagnosis, disease severity and progression, and may help to elucidate pathogenic mechanisms.
Collapse
Affiliation(s)
- Giovanni Nardo
- Dulbecco Telethon Institute, Milano, Italy
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Silvia Pozzi
- Dulbecco Telethon Institute, Milano, Italy
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Mauro Pignataro
- Dulbecco Telethon Institute, Milano, Italy
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Eliana Lauranzano
- Dulbecco Telethon Institute, Milano, Italy
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Giorgia Spano
- Dulbecco Telethon Institute, Milano, Italy
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Silvia Garbelli
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Salvatore Maugeri, Pavia, Italy
- National Institute for Occupational Safety and Prevention (ISPESL), Research Center at the IRCCS Fondazione Salvatore Maugeri, Pavia, Italy
| | - Stefania Mantovani
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Salvatore Maugeri, Pavia, Italy
- National Institute for Occupational Safety and Prevention (ISPESL), Research Center at the IRCCS Fondazione Salvatore Maugeri, Pavia, Italy
| | | | | | - Marta Monteforte
- Department of Oncology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Valter Torri
- Department of Oncology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Luca Paris
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Gianfranco Bazzoni
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Niguarda Ca’ Granda Hospital, Milano, Italy
| | - Massimo Corbo
- NEuroMuscular Omnicentre (NEMO), Niguarda Ca’ Granda Hospital, Milano, Italy
| | | | - Caterina Bendotti
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | - Valentina Bonetto
- Dulbecco Telethon Institute, Milano, Italy
- Department of Molecular Biochemistry and Pharmacology, Mario Negri Institute for Pharmacological Research, Milano, Italy
- * E-mail:
| |
Collapse
|
50
|
Falkenberg VR, Whistler T, Murray JR, Unger ER, Rajeevan MS. Identification of Phosphoglycerate Kinase 1 (PGK1) as a reference gene for quantitative gene expression measurements in human blood RNA. BMC Res Notes 2011; 4:324. [PMID: 21896205 PMCID: PMC3224551 DOI: 10.1186/1756-0500-4-324] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/06/2011] [Indexed: 01/18/2023] Open
Abstract
Background Blood is a convenient sample and increasingly used for quantitative gene expression measurements with a variety of diseases including chronic fatigue syndrome (CFS). Quantitative gene expression measurements require normalization of target genes to reference genes that are stable and independent from variables being tested in the experiment. Because there are no genes that are useful for all situations, reference gene selection is an essential step to any quantitative reverse transcription-PCR protocol. Many publications have described appropriate genes for a wide variety of tissues and experimental conditions, however, reference genes that may be suitable for the analysis of CFS, or human blood RNA derived from whole blood as well as isolated peripheral blood mononuclear cells (PBMCs), have not been described. Findings Literature review and analyses of our unpublished microarray data were used to narrow down the pool of candidate reference genes to six. We assayed whole blood RNA from Tempus tubes and cell preparation tube (CPT)-collected PBMC RNA from 46 subjects, and used the geNorm and NormFinder algorithms to select the most stable reference genes. Phosphoglycerate kinase 1 (PGK1) was one of the optimal normalization genes for both whole blood and PBMC RNA, however, additional genes differed for the two sample types; Ribosomal protein large, P0 (RPLP0) for PBMC RNA and Peptidylprolyl isomerase B (PPIB) for whole blood RNA. We also show that the use of a single reference gene is sufficient for normalization when the most stable candidates are used. Conclusions We have identified PGK1 as a stable reference gene for use with whole blood RNA and RNA derived from PBMC. When stable genes are selected it is possible to use a single gene for normalization rather than two or three. Optimal normalization will improve the ability of results from PBMC RNA to be compared with those from whole blood RNA and potentially allows comparison of gene expression results from blood RNA collected and processed by different methods with the intention of biomarker discovery. Results of this study should facilitate large-scale molecular epidemiologic studies using blood RNA as the target of quantitative gene expression measurements.
Collapse
Affiliation(s)
- Virginia R Falkenberg
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control & Prevention, Atlanta, GA, 30333, USA.
| | | | | | | | | |
Collapse
|