1
|
Chen H, Li N, Cai Y, Ma C, Ye Y, Shi X, Guo J, Han Z, Liu Y, Wei X. Exosomes in neurodegenerative diseases: Therapeutic potential and modification methods. Neural Regen Res 2026; 21:478-490. [PMID: 40326981 DOI: 10.4103/nrr.nrr-d-24-00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 05/07/2025] Open
Abstract
In recent years, exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research. Exosomes are small and can effectively cross the blood-brain barrier, allowing them to target deep brain lesions. Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines, mRNAs, and disease-related proteins, thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects. However, exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells. This limitation can lead to side effects and toxicity when they interact with non-specific cells. Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases. In this review, we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases. Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases. We introduce the strategies being used to enhance exosome targeting, including genetic engineering, chemical modifications (both covalent, such as click chemistry and metabolic engineering, and non-covalent, such as polyvalent electrostatic and hydrophobic interactions, ligand-receptor binding, aptamer-based modifications, and the incorporation of CP05-anchored peptides), and nanomaterial modifications. Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases. However, several challenges remain in the clinical application of exosomes. Improvements are needed in preparation, characterization, and optimization methods, as well as in reducing the adverse reactions associated with their use. Additionally, the range of applications and the safety of exosomes require further research and evaluation.
Collapse
Affiliation(s)
- Hongli Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Na Li
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Yuanhao Cai
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
- School of Intelligent Information Engineering, Medicine & Technology College of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Chunyan Ma
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Yutong Ye
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Xinyu Shi
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Jun Guo
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Zhibo Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, China
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Cancer Hospital & Institute, International Cancer Institute, Institute of Medical Technology, Peking University Health Science Center, Department of Biomedical Engineering, Peking University, Beijing, China
| |
Collapse
|
2
|
Wang B, Chen P, Li W, Chen Z. Exosomes in stroke management: A promising paradigm shift in stroke therapy. Neural Regen Res 2026; 21:6-22. [PMID: 39665811 PMCID: PMC12094539 DOI: 10.4103/nrr.nrr-d-24-00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/27/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Effective treatment methods for stroke, a common cerebrovascular disease with a high mortality rate, are still being sought. Exosome therapy, a form of acellular therapy, has demonstrated promising efficacy in various diseases in animal models; however, there is currently insufficient evidence to guide the clinical application of exosome in patients with stroke. This article reviews the progress of exosome applications in stroke treatment. It aims to elucidate the significant potential value of exosomes in stroke therapy and provide a reference for their clinical translation. At present, many studies on exosome-based therapies for stroke are actively underway. Regarding preclinical research, exosomes, as bioactive substances with diverse sources, currently favor stem cells as their origin. Due to their high plasticity, exosomes can be effectively modified through various physical, chemical, and genetic engineering methods to enhance their efficacy. In animal models of stroke, exosome therapy can reduce neuroinflammatory responses, alleviate oxidative stress damage, and inhibit programmed cell death. Additionally, exosomes can promote angiogenesis, repair and regenerate damaged white matter fiber bundles, and facilitate the migration and differentiation of neural stem cells, aiding the repair process. We also summarize new directions for the application of exosomes, specifically the exosome intervention through the ventricular-meningeal lymphatic system. The review findings suggest that the treatment paradigm for stroke is poised for transformation.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Pinzhen Chen
- Department of Radiology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Wenyan Li
- Department of Neurosurgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Zhi Chen
- Department of Neurosurgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Xie Y, Mi X, Xing Y, Dai Z, Pu Q. Past, present, and future of exosomes research in cancer: A bibliometric and visualization analysis. Hum Vaccin Immunother 2025; 21:2488551. [PMID: 40207548 PMCID: PMC11988232 DOI: 10.1080/21645515.2025.2488551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer seriously threatens the lives and health of people worldwide, and exosomes seem to play an important role in managing cancer effectively, which has attracted extensive attention from researchers in recent years. This study aimed to scientifically visualize exosomes research in cancer (ERC) through bibliometric analysis, reviewing the past, summarizing the present, and predicting the future, with a view to providing valuable insights for scholars and policy makers. Researches search and data collection from Web of Science Core Collection and clinical trial.gov. Calculations and visualizations were performed using Microsoft Excel, VOSviewer, Bibliometrix R-package, and CiteSpace. As of December 1, 2024, and March 8, 2025, we identified 8,001 ERC-related publications and 107 ERC-related clinical trials, with an increasing trend in annual publications. Our findings supported that China, Nanjing Medical University, and International Journal of Molecular Sciences were the most productive countries, institutions, and journals, respectively. Whiteside, Theresa L. had the most publications, while Théry, C was the most co-cited scholar. In addition, Cancer Research was the most co-cited journal. Spatial and temporal distribution of clinical trials was the same as for publications. High-frequency keywords were "extracellular vesicle," "microRNA" and "biomarker." Additional, "surface functionalization," "plant," "machine learning," "nanomaterials," "promotes metastasis," "engineered exosomes," and "macrophage-derived exosomes" were promising research topics. Our study comprehensively and visually summarized the structure, hotspots, and evolutionary trends of ERC. It would inspire subsequent studies from a macroscopic perspective and provide a basis for rational allocation of resources and identification of collaborations among researchers.
Collapse
Affiliation(s)
- Yafei Xie
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xingqi Mi
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yikai Xing
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhangyi Dai
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zhou F, Tajamul Mumtaz P, Dogan H, Madadjim R, Cui J, Zempleni J. Divergence of gut bacteria through the selection of genomic variants implicated in the metabolism of sugars, amino acids, and purines by small extracellular vesicles in milk. Gut Microbes 2025; 17:2449704. [PMID: 39762216 DOI: 10.1080/19490976.2025.2449704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 03/08/2025] Open
Abstract
Here, we report that small extracellular vesicles (sEVs) in milk mediate the communication between bacteria and animal kingdoms, increase the divergence of bacteria in the intestine, and alter metabolite production by bacteria. We show that bovine milk sEVs select approximately 55,000 genomic variants in 19 species of bacteria from the murine cecum ex vivo. The genomic variants are transcribed into mRNA. The selection of genomic variants by milk sEVs alters bacterial metabolism, leading to an up to 12-fold difference in the abundance of more than 1000 metabolites in bacteria cultured in milk sEV-free media compared to sEV-containing media. Evidence is particularly strong that selection of genomic variants by milk sEV changes the metabolism of sugars, amino acids, and purines which might contribute to the development of spatial learning and memory deficiencies and seizure phenotypes reported for milk sEV-depleted infants and mice. Human milk is a rich source of sEVs, whereas formula contains only trace amounts of milk sEVs. This report implicates nutritional sEVs in altered microbial metabolism beyond the mere selection of bacterial communities.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Peerzada Tajamul Mumtaz
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Haluk Dogan
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Roland Madadjim
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Juan Cui
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
5
|
Wang J, Zhao M, Fu D, Wang M, Han C, Lv Z, Wang L, Liu J. Human neural stem cell-derived extracellular vesicles protect against ischemic stroke by activating the PI3K/AKT/mTOR pathway. Neural Regen Res 2025; 20:3245-3258. [PMID: 39248158 PMCID: PMC11881723 DOI: 10.4103/nrr.nrr-d-23-01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/11/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00028/figure1/v/2024-12-20T164640Z/r/image-tiff Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells, and can thus be used as substitutes for stem cells in stem cell therapy, thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments. This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke. However, the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear, presenting challenges for clinical translation. To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside, we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke. We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis. The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase, mammalian target of rapamycin, and protein kinase B, and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor. These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Finally, we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile. Therefore, human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Dong Fu
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Chao Han
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Zhongyue Lv
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
6
|
Chen J, Li Y, Quan X, Chen J, Han Y, Yang L, Zhou M, Mok GSP, Wang R, Zhao Y. Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. Neural Regen Res 2025; 20:2181-2198. [PMID: 39101653 PMCID: PMC11759020 DOI: 10.4103/nrr.nrr-d-24-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Li Yang
- Department of Pharmacy, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Greta Seng Peng Mok
- Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| |
Collapse
|
7
|
Saadh MJ, Allela OQB, Kareem RA, Baldaniya L, Ballal S, Vashishth R, Parmar M, Sameer HN, Hamad AK, Athab ZH, Adil M. Prognostic gene expression profile of colorectal cancer. Gene 2025; 955:149433. [PMID: 40122415 DOI: 10.1016/j.gene.2025.149433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer is a major global health burden, with significant heterogeneity in clinical outcomes among patients. Identifying robust prognostic gene expression signatures can help stratify patients, guide treatment decisions, and improve clinical management. This review provides an overview of current prognostic gene expression profiles in colorectal cancer research. We have synthesized evidence from numerous published studies investigating the association between tumor gene expression patterns and patient survival outcomes. The reviewed literature reveals several promising gene signatures that have demonstrated the ability to predict disease-free survival and overall survival in CRC patients, independent of standard clinicopathological risk factors. These genes are crucial in fundamental biological processes, including cell cycle control, epithelial-mesenchymal transition, and immune regulation. The implementation of prognostic gene expression tests in clinical practice holds great potential for enabling more personalized management strategies for colorectal cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Manisha Parmar
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India.
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq.
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | | |
Collapse
|
8
|
Park KS, Lässer C, Lötvall J. Extracellular vesicles and the lung: from disease pathogenesis to biomarkers and treatments. Physiol Rev 2025; 105:1733-1821. [PMID: 40125970 DOI: 10.1152/physrev.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Nanosized extracellular vesicles (EVs) are released by all cells to convey cell-to-cell communication. EVs, including exosomes and microvesicles, carry an array of bioactive molecules, such as proteins and RNAs, encapsulated by a membrane lipid bilayer. Epithelial cells, endothelial cells, and various immune cells in the lung contribute to the pool of EVs in the lung microenvironment and carry molecules reflecting their cellular origin. EVs can maintain lung health by regulating immune responses, inducing tissue repair, and maintaining lung homeostasis. They can be detected in lung tissues and biofluids such as bronchoalveolar lavage fluid and blood, offering information about disease processes, and can function as disease biomarkers. Here, we discuss the role of EVs in lung homeostasis and pulmonary diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary fibrosis, and lung injury. The mechanistic involvement of EVs in pathogenesis and their potential as disease biomarkers are discussed. Finally, the pulmonary field benefits from EVs as clinical therapeutics in severe pulmonary inflammatory disease, as EVs from mesenchymal stem cells attenuate severe respiratory inflammation in multiple clinical trials. Further, EVs can be engineered to carry therapeutic molecules for enhanced and broadened therapeutic opportunities, such as the anti-inflammatory molecule CD24. Finally, we discuss the emerging opportunity of using different types of EVs for treating severe respiratory conditions.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
9
|
Yang L, Chen T, Huang Y, Yang Y, Cheng X, Wei F. hnRNPA2B1 promotes the production of exosomal miR-103-3p from endothelial progenitor cells to alleviate macrophage M1 polarization in acute respiratory distress syndrome. Int Immunopharmacol 2025; 158:114830. [PMID: 40381491 DOI: 10.1016/j.intimp.2025.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Macrophage polarization plays a crucial role in acute respiratory distress syndrome (ARDS). Recently, mounting evidence has uncovered that endothelial progenitor cells (EPCs) secreted exosomes (EPCs-Exos) exert obvious therapeutic effects on the pathological inflammatory process of ARDS, but its potential mechanism is rarely reported. METHODS The primary mouse EPCs and EPCs-Exos were isolated and identified. Absorption of EPCs-Exos by RAW264.7 cells was examined by PKH-26 staining. The polarization of RAW264.7 cells was evaluated by flow cytometry and RT-qPCR analysis. Molecular interactions were verified by dual luciferase assay, RNA pull-down and RNA immunocoprecipitation assays. ARDS mouse model was established, and pathological changes and expressions of related molecules were detected by HE staining, RT-qPCR and western blotting. RESULTS EPCs-Exos could be transferred to macrophages, and effectively reversed LPS-induced polarization of macrophages from M2 to M1 phenotype; however, these changes were diminished by activation of TLR4/NF-κB pathway. MiR-103-3p was proved to be enriched in EPC-Exos and could transfer to macrophage and inactivating TLR4/NF-κB pathway via directly binding to TLR4 3'-UTR. Moreover, miR-103-3p overexpression elevated macrophage M2 polarization and repressed M1 polarization in LPS-treated cells by inhibiting TLR4/NF-κB pathway, and knockdown of miR-103-3p in EPC-Exos abolished the regulatory roles of EPC-Exos on macrophage polarization in vitro, and lung inflammatory injury in vivo. HnRNPA2B1 was proved to interact with miR-103-3p and responsible for its exosomal secretion, which repressed pro-inflammatory macrophage polarization. CONCLUSION These findings suggested that hnRNPA2B1-mediated exosomal delivery of miR-103-3p from EPCs protected against macrophage inflammation in ARDS by inactivation of TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Lei Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Ting Chen
- Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330052, Jiangxi Province, PR China
| | - Yuanlu Huang
- Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330052, Jiangxi Province, PR China
| | - Yuxuan Yang
- Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330052, Jiangxi Province, PR China
| | - Xiaoe Cheng
- Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330052, Jiangxi Province, PR China
| | - Fusheng Wei
- Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330052, Jiangxi Province, PR China.
| |
Collapse
|
10
|
Kong H, Chen X, Lee W, Xie X, Tao Y, Li M. Dual-color fluorescence detection of tumor-derived extracellular vesicles using a specific and serum-stable membrane-fusion approach. Biosens Bioelectron 2025; 278:117302. [PMID: 40101657 DOI: 10.1016/j.bios.2025.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Tumor-derived extracellular vesicles (tEVs), which are essential mediators for cell-to-cell communication during tumorigenesis and tumor development, have demonstrated significant diagnostic potential in cancer liquid biopsy, particularly through biomarkers like membrane proteins and inner microRNAs. However, traditional detection methods such as ELISA and qRT-PCR encounter challenges with low sensitivity and specificity, complex procedures, and high costs. Although emerging biosensors have been developed, these methods are limited to detecting a single type of tEV biomarker, which may result in misdiagnoses due to false-positive or false-negative signals. Herein, we introduce a specific and serum-stable membrane-fusion approach (SSMFA) capable of simultaneously detecting tEV proteins and microRNAs via dual-color fluorescence analysis. In this strategy, the established epithelial cell adhesion molecule (EpCAM) aptamer-modified serum-stable membrane-fusion liposome (AptSMFL) is labeled with fluorescence resonance energy transfer (FRET) dye pairs, which can specifically recognize EpCAM-overexpressed tEVs and induce serum-stable membrane fusion, allowing the quantification of EpCAM protein levels through red fluorescence changes resulting from FRET alterations. Meanwhile, SSMFA facilitates efficient transfection of the CRISPR/Cas13a probe into tEVs to analyze the levels of microRNA-21 (miR-21) in EpCAM-positive tEVs via green fluorescence detection. When tested on serum samples from hepatocellular carcinoma models, the SSMFA exhibited minimal sample volume requirement and rapid assay time (2 h) to effectively achieve accurate quantification of both tEV EpCAM protein and miR-21 levels. Additionally, this dual-biomarker detection method showed a strong correlation with tumor burden and significantly improved cancer diagnostic accuracy (AUC = 0.98), underscoring the potential of SSMFA as a promising tEV-based liquid biopsy assay for cancer diagnosis.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaodie Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Weijen Lee
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China.
| |
Collapse
|
11
|
Getachew H, Mehrotra S, Kaur T, Fernandez-Godino R, Pierce EA, Garita-Hernandez M. The RNA content of extracellular vesicles from gene-edited PRPF31 +/- hiPSC-RPE show potential as biomarkers of retinal degeneration. Mol Ther Methods Clin Dev 2025; 33:101452. [PMID: 40231248 PMCID: PMC11995067 DOI: 10.1016/j.omtm.2025.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal degeneration (IRD), causing vision loss via the dysfunction and death of photoreceptors and retinal pigment epithelium (RPE). Mutations in the PRPF31 gene are associated with autosomal dominant RP, impairing RPE function. While adeno-associated virus (AAV)-mediated gene therapy shows promise for treating IRDs, the slow progression of these diseases often makes timely measurement of clinical efficacy challenging. Extracellular vesicles (EVs) are lipid enclosed vesicles secreted by cells, and their RNA contents are being explored as circulating biomarkers for other diseases. We hypothesize that EV RNAs could serve as biomarkers of the health status of the neural retina and RPE. To test this, we used PRPF31 +/+ and PRPF31 +/- human induced pluripotent stem cell (hiPSC)-derived RPE (hi-RPE) to investigate the RNAs contained in RPE-derived EVs and how they change in disease. We also compared the RNA contents of RPE-EVs with the RNAs of the hi-RPE cells themselves. We found that EVs from mutant PRPF31 hi-RPE cells have distinct RNA profiles compared to those from control cells, suggesting that EV RNA contents change during disease. Additionally, we identified 18 miRNAs and 865 poly(A) RNAs enriched in EVs from PRPF31 +/- hi-RPE, which could serve as biomarkers for RPE degeneration.
Collapse
Affiliation(s)
- Heran Getachew
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Tarandeep Kaur
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Marcela Garita-Hernandez
- Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Lu X, Xu R, Dong X, Bai D, Ji W, Chen X, Chen H, Hou C, Gao J. Cell-derived exosome therapy for diabetic peripheral neuropathy: a preclinical animal studies systematic review and meta-analysis. Stem Cell Res Ther 2025; 16:297. [PMID: 40490808 DOI: 10.1186/s13287-025-04432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Accepted: 06/02/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUNDS Exosomes is a promising cell-free therapy for Diabetic peripheral neuropathy (DPN) that imposes long-term negative effects on patients' finances, mental health, and quality of life. We conducted a meta-analysis to assess the therapeutic effects of exosomes (such as SCs-derived, FCs-derived, BMSCs-derived, MSCs-derived, and Plasma-derived) on DPN. METHODS We searched nine databases from inception to February 2025, then two researchers independently screened studies, extracted data, and assessed the quality of included studies using SYRCLE's tool. The outcome indicators consisted of at least one of the three key DPN endpoints (electrophysiology, behavioural assessment, and nerve structure) based on the Neurodiab guidelines. R 4.4.2 software was used to conduct all statistical analyses. RESULTS 11 studies were identified, and the risk of bias in most studies was unclear generally. Pooled analyses demonstrated that exosome improved the nerve conduction velocity [MCV (SMD = 4.71 [2.18;7.25], P = 0.0003; I²= 91.8%), SCV (SMD = 1.07 [0.30;1.85], P = 0.0069; I²= 85.3%)], may restore IENFD [SMD = 1.46 [-0.85; 3.77], P = 0.2164; I²=88.7%], alleviated neuropathic pain [mechanical allodynia (SMD= -0.27 [-1.02;0.47], P = 0.4697; I2 = 85.0%), thermal hyperalgesia (SMD= -1.48 [-2.45;-0.50], P = 0.003; I2 = 88.4%)], ameliorated vascular function [blood flow perfusion in plantar (SMD = 2.84 [0.89; 4.80], P = 0.0043; I2 = 74.9%), blood flow perfusion in sciatic nerves (SMD = 2.62 [0.80; 4.43], P = 0.0047; I2 = 75.9%), vessel density (SMD = 2.69 [0.90; 4.49], P = 0.0032; I2 = 0%)], and restored the peripheral nerve structure [sciatic nerve fiber diameter (SMD = 3.29 [1.61; 4.96], P = 0.0066; I2 = 75.5%), axon diameter (SMD = 2.26 [1.64; 2.88], P < 0.0001; I2 = 54.3%), myelin sheath thickness (SMD = 2.56 [1.39; 3.72], P < 0.0001; I2 = 73.0%), g-ratio (SMD= -1.64 [-3.28; 0.00], P = 0.0502; I2 = 34.17)]. Furthermore, after exosome therapy, the expressions of NF-200 (SMD = 2.57 [0.39; 4.75], P = 0.0210; I2 = 33.0%), MBP (SMD = 2.27 [-1.49; 6.02], P = 0.1064; I2 = 59.0%), and S-100β (SMD = 1.90 [0.09; 3.72], P = 0.0399; I2 = 32.5%) evaluating axonal regeneration and remyelination increased significantly. Notably, high-glucose pretreatment of exosomes significantly attenuated these effects, while genetic overexpression modifications or novel dressings-mediated delivery partially counteracted this suppression. CONCLUSIONS Exosome therapy provides a novel therapeutic strategy for the benefit of neurovascular remodeling and functional recovery of DPN, especially when used in conjunction with exosome modification and novel dressings. To bridge the translational gap between preclinical and clinical studies, future research should conduct more large-scale, meticulously designed preclinical trials adhering to ARRIVE criteria before proceeding to clinical translation, to enhance translational rigor and mitigate risks associated with variability in study design.
Collapse
Affiliation(s)
- Xianying Lu
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Xu
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Dong
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingxi Bai
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenting Ji
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Chen
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Chen
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaoming Hou
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jing Gao
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
13
|
Isogai T, Hirosawa KM, Kanno M, Sho A, Kasai RS, Komura N, Ando H, Furukawa K, Ohmi Y, Furukawa K, Yokota Y, Suzuki KG. Extracellular vesicles adhere to cells primarily by interactions of integrins and GM1 with laminin. J Cell Biol 2025; 224:e202404064. [PMID: 40304687 PMCID: PMC12042775 DOI: 10.1083/jcb.202404064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/09/2024] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
Tumor-derived extracellular vesicles (EVs) have attracted significant attention, yet the molecular mechanisms that govern their specific binding to recipient cells remain elusive. Our in vitro study utilizing single-particle tracking demonstrated that integrin heterodimers comprising α6β4 and α6β1 and ganglioside, GM1, are responsible for the binding of small EV (sEV) subtypes to laminin. EVs derived from four distinct tumor cell lines, regardless of size, exhibited high binding affinities for laminin but not for fibronectin, although fibronectin receptors are abundant in EVs and have functional roles in EV-secreting cells. Our findings revealed that integrins in EVs bind to laminin via the conventional molecular interface, facilitated by CD151 rather than by inside-out signaling of talin-1 and kindlin-2. Super-resolution movie observation revealed that sEV integrins bind only to laminin on living recipient cells. Furthermore, sEVs bound to HUVEC and induced cell branching morphogenesis in a laminin-dependent manner. Thus, we demonstrated that EVs predominantly bind to laminin on recipient cells, which is indispensable for cell responses.
Collapse
Affiliation(s)
- Tatsuki Isogai
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | | | - Miki Kanno
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Ayano Sho
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Rinshi S. Kasai
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Hiromune Ando
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Innovation Research Center for Quantum Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University, Kasugai, Japan
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University, Kasugai, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University, Kasugai, Japan
| | - Yasunari Yokota
- Department of Information Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kenichi G.N. Suzuki
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, Japan
- Innovation Research Center for Quantum Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
14
|
Huang J, Chen L, Li W, Chang CJ. Anti-inflammatory and antioxidative effects of Perilla frutescens-derived extracellular vesicles: Insights from Zebrafish models. Mol Immunol 2025; 182:126-138. [PMID: 40267772 DOI: 10.1016/j.molimm.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Plant-derived extracellular vesicles have recently been extracted and recognized as promising bioactive molecules, owing to their distinctive biological properties and inherent therapeutic activities. In this study, we investigated the physicochemical characteristics, bioactive properties, and therapeutic potential of Perilla frutescens-derived exosome-like nanoparticles (PELNs). Transmission electron microscopy (TEM) revealed that PELNs exhibited a cup-shaped morphology, with a lipid bilayer and a size distribution ranging from 40 to 200 nm (mean: 68.4 ± 13.0 nm). The cargoes in PELNs were analyzed through multi-omics and small RNA sequencing. In vivo studies on zebrafish demonstrated that PELNs are non-toxic at experimental concentrations. A reduction in neutrophil migration to injured fins evidenced the anti-inflammatory properties of PELNs. Furthermore, a meta-analysis of transcriptomic data identified hundreds of differentially expressed genes (DEGs) across 12 samples of three experimental groups. These DEGs were annotated into three categories following gene ontology (GO) enrichment analysis. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these DEGs were involved in immune-related pathways, including complement and coagulation cascades, systemic lupus erythematosus, PPAR signaling pathways, and antigen processing and presentation. Twelve selected DEGs were validated by quantitative real-time PCR (qRT-PCR), with particular confirmation of the mpx and lcp1 genes via in situ hybridization. Furthermore, PELNs demonstrated antioxidative effects by mitigating reactive oxygen species (ROS) levels, as evidenced by measurements of four oxidative stress (OS) indicators (i.e., SOD, CAT, GSH, and MDA) in zebrafish larvae subjected to H2O2-induced OS. In summary, PELNs exhibit substantial anti-inflammatory and antioxidant properties, underscoring their potential as therapeutic agents for treating various inflammatory diseases.
Collapse
Affiliation(s)
- Jinghong Huang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen, Fujian 362021, China; School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Linxin Chen
- Department of Traditional Chinese Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian 301028, China
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen, Fujian 362021, China; School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China.
| | - Chih-Jung Chang
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China; Medical Research Center, Xiamen Chang Gung Hospital, Xiamen, Fujian 301028, China; Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, Fujian 301028, China.
| |
Collapse
|
15
|
Saint-Pol J, Culot M. Minimum information for studies of extracellular vesicles (MISEV) as toolbox for rigorous, reproducible and homogeneous studies on extracellular vesicles. Toxicol In Vitro 2025; 106:106049. [PMID: 40074066 DOI: 10.1016/j.tiv.2025.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Studies based on extracellular vesicles (EVs) have been multiplying exponentially for almost two decades, since they were first identified as vectors of cell-cell communication. However, several of these studies display a lack of rigor in EVs characterization and isolation, without discriminating between the different EV populations, thus generating conflicting and unreproducible results. There is therefore a strong need for standardization and guidelines to conduct studies that are rigorous, transparent, reproducible and comply with certain nomenclatures concerning the type of EVs used. The International Society for Extracellular Vesicles (ISEV) published the Minimum Information for Studies of Extracellular Vesicles (MISEV) in 2014, updating it in 2018 and 2023 to reflect different study contexts and technical advancements. The primary objective of this review is to inform future authors about EVs, including their history, nomenclature, and technical recommendations for the for isolation and functionality analysis for conducing EV-based studies according to current standards. Additionally, it aims to inform reviewers about the key parameters required for characterizing EV preparations.
Collapse
Affiliation(s)
- Julien Saint-Pol
- Univ. Artois, UR 2465, Blood-Brain Barrier laboratory (LBHE), F-62300 Lens, France.
| | - Maxime Culot
- Univ. Artois, UR 2465, Blood-Brain Barrier laboratory (LBHE), F-62300 Lens, France
| |
Collapse
|
16
|
Seth G, Singh S, Sharma G, Suvedi D, Kumar D, Nagraik R, Sharma A. Harnessing the power of stem cell-derived exosomes: a rejuvenating therapeutic for skin and regenerative medicine. 3 Biotech 2025; 15:184. [PMID: 40417660 PMCID: PMC12102458 DOI: 10.1007/s13205-025-04345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/04/2025] [Indexed: 05/27/2025] Open
Abstract
Exosomes are small extracellular vesicles produced by most cell types and contain proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, and DNA) that can be released by donor cells to influence the function of recipient cells. Skin photoaging is the premature aging of skin structures caused by prolonged exposure to ultraviolet (UV), as demonstrated by depigmentation, roughness, rhytides, elastosis, and precancerous alterations. Exosomes are associated with aging processes such as oxidative damage, inflammation, and senescence. Exosomes' anti-aging properties have been linked to various in vitro and preclinical investigations. There are still several unanswered questions about the use of MSC exosomes for skin rejuvenation, despite encouraging results. Uncertainty surrounds the precise processes by which exosomes stimulate the creation of collagen, skin tissue via a variety of mechanisms, including reduced matrix metalloproteinase (MMP) expression, increased collagen and elastin production, and modulation of intracellular signaling pathways and intercellular communication. These findings suggest the therapeutic potential of exosomes in skin aging. This review provides information on the molecular mechanisms and consequences of exosome anti-aging.
Collapse
Affiliation(s)
- Gracy Seth
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Siddharth Singh
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Geetansh Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Divyesh Suvedi
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002 India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002 India
| |
Collapse
|
17
|
Zhang X, Kraus VB. Extracellular vesicles in osteoarthritis synovial fluid contain both transmembrane and intravesical TNF-α. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100612. [PMID: 40290650 PMCID: PMC12032327 DOI: 10.1016/j.ocarto.2025.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
Objective We previously identified extracellular vesicles (EVs) as a key source of TNF-α in the plasma of both knee osteoarthritis (OA) patients and healthy individuals. Building on these findings, this study aimed to evaluate the presence of surface-bound transmembrane TNF-α (TM-TNF-α) and intravesical TNF-α in EVs from OA synovial fluid (SF). Methods Using high-resolution flow cytometry, we rigorously quantified the percentages and integrated mean fluorescence intensity (iMFI) of surface-bound, intravesical, and total TNF-α forms in EVs isolated from SF of 25 knee OA patients. CZ CELLxGENE and OA joint tissue-derived single-cell and single-nuclei RNA sequencing data were used to analyze TNF gene expression. Results TNF is expressed across multiple cell types. In OA joints it is predominantly expressed by synoviocytes, with TNF-α present in the SF EV pool. TM-TNF-α was consistently detected on SF EVs using three distinct TNF-α antibodies, although its frequency and iMFI were significantly lower than the corresponding intravesical TNF-α (Friedman test with Benjamini-Hochberg correction, FDR <0.05). The average percentages (and range) of EVs expressing TNF-α, as detected by the three anti-TNF-α antibodies, were 2.57 % (0.09-37.08 %) for TM-TNF-α+, 8.62 % (0.38-43.64 %) for intravesical TNF-α+, and 14.42 % (0.71-44.32 %) for total EV TNF-α+. Interestingly, TM-TNF-α frequencies on SF EVs were similar to those observed on various immune cell subsets in peripheral blood. Conclusions While intravesical TNF-α may evade TNF-α inhibitors, TNF-α carried by EVs retains pathogenic potential, either by activating pro-inflammatory pathways via TM-TNF-α receptor engagement on target cells, or through the transfer of TNF-α cargo to recipient cells.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
18
|
Hsuuw YD, Su YT, Chan WH, Wu CC, Tsai YC, Chen HC, Huang FJ, Lin CF. Co-culture with adipose mesenchymal stem cells promotes Blastocyst formation and gene expression in embryos from aged mice. Regen Ther 2025; 29:319-327. [PMID: 40242085 PMCID: PMC12002604 DOI: 10.1016/j.reth.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Recent studies have highlighted the positive effects of co-culturing embryos with stem cells on embryo development in various mammalian systems. Stem cells secrete numerous factors, including cytokines, growth factors, and microRNAs, which promote embryo development. However, the impact of stem cells on the development of embryos derived from aged mice's oocytes remains poorly understood. This study evaluated the co-culture effects of adipose tissue-derived mesenchymal stem cells (ADMSCs) on zygotes, focusing on the developmental potential of fertilized embryos. Embryo quality was assessed through staining techniques to measure trophectoderm (TE), inner cell mass (ICM), and total blastocyst cell numbers during in vitro culture. Results demonstrated that ADMSC co-culture significantly improved zygote cleavage and blastocyst development rates, particularly in embryos derived from aged mice. Enhanced implantation and post-implantation potential were observed in embryos from both young and aged mice. Notably, co-culture increased TE, ICM, and total blastocyst cell numbers in aged mice-derived embryos without inducing apoptosis in blastocysts. Gene expression analysis revealed upregulation of OCT4 and G6PDH, associated with pluripotency and glucose metabolism, particularly in embryos from aged mice, while the heat stress marker HSP70 showed no significant changes. These findings demonstrate the potential of ADMSC co-culture as a beneficial protocol for improving embryo development. These findings from this study could offer an important basis for future mechanistic studies in this area.
Collapse
Affiliation(s)
- Yan-Der Hsuuw
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yu-Ting Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Zhongbei Road, Zhongli District, Taoyuan City 32023, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yu-Chieh Tsai
- Department of Obstetrics and Gynecology, An- An Women and Children Clinic & ART Center, Kaohsiung City 80752, Taiwan
| | - Hou-Chun Chen
- Laboratory Animal Center, Office of Advanced Science and Technology, Thammasat University, Krung Thep Maha Nakhon 10200, Thailand
| | - Fu-Jen Huang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan
- Department of Obstetrics and Gynecology, An- An Women and Children Clinic & ART Center, Kaohsiung City 80752, Taiwan
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
19
|
Belmonte T, Benitez ID, García-Hidalgo MC, Molinero M, Pinilla L, Mínguez O, Vaca R, Aguilà M, Moncusí-Moix A, Torres G, Mediano O, Masa JF, Masdeu MJ, Montero-San-Martín B, Ibarz M, Martinez-Camblor P, Gómez-Carballa A, Salas A, Martinón-Torres F, Barbé F, Sánchez-de-la-Torre M, de Gonzalo-Calvo D. Synergic Integration of the miRNome, Machine Learning and Bioinformatics for the Identification of Potential Disease-Modifying Agents in Obstructive Sleep Apnea. Arch Bronconeumol 2025; 61:348-358. [PMID: 39709277 DOI: 10.1016/j.arbres.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/28/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Understanding the diverse pathogenetic pathways in obstructive sleep apnea (OSA) is crucial for improving outcomes. microRNA (miRNA) profiling is a promising strategy for elucidating these mechanisms. OBJECTIVE To characterize the pathogenetic pathways linked to OSA through the integration of miRNA profiles, machine learning (ML) and bioinformatics. METHODS This multicenter study involved 525 patients with suspected OSA who underwent polysomnography. Plasma miRNAs were quantified via RNA sequencing in the discovery phase, with validation in two subsequent phases using RT-qPCR. Supervised ML feature selection methods and comprehensive bioinformatic analyses were employed. The associations among miRNA targets, OSA and OSA treatment were further explored using publicly available external datasets. RESULTS Following the discovery and technical validation phases in a subset of patients with and without confirmed OSA (n=53), eleven miRNAs were identified as candidates for the subsequent feature selection process. These miRNAs were then quantified in the remaining population (n=472). Feature selection methods revealed that the miRNAs let-7d-5p, miR-15a-5p and miR-107 were the most informative of OSA. The predominant mechanisms linked to these miRNAs were closely related to cellular events such as cell death, cell differentiation, extracellular remodeling, autophagy and metabolism. One target of let-7d-5p and miR-15a-5p, the TFDP2 gene, exhibited significant differences in gene expression between subjects with and without OSA across three independent databases. CONCLUSION Our study identified three plasma miRNAs that, in conjunction with their target genes, provide new insights into OSA pathogenesis and reveal novel regulators and potential drug targets.
Collapse
Affiliation(s)
- Thalia Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benitez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Basic Medical Sciences, University of Lleida, Lleida, Spain
| | - María C García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Lucía Pinilla
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
| | - Olga Mínguez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Rafaela Vaca
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Maria Aguilà
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Gerard Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
| | - Olga Mediano
- Pneumology Department, University Hospital of Guadalajara, Guadalajara, Spain
| | - Juan F Masa
- San Pedro de Alcantara Hospital, Instituto Universitario de Investigación Biosanitaria de Extremadura, Cáceres, Spain
| | - Maria J Masdeu
- Respiratory and Sleep Department, Parc Taulí University Hospital, Parc Taulí Research and Innovation Institute, Autonomous University of Barcelona, Sabadell, Spain
| | | | - Mercè Ibarz
- Department of Clinical Laboratory, University Hospital Arnau de Vilanova, IRBLleida, Lleida, Spain
| | - Pablo Martinez-Camblor
- Anesthesiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Faculty of Health Sciences, Universidad Autonoma de Chile, Providencia, Chile
| | - Alberto Gómez-Carballa
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Galicia, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC) and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Galicia, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC) and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Federico Martinón-Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Galicia, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manuel Sánchez-de-la-Torre
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain; Group of Precision Medicine in Chronic Diseases, Hospital Nacional de Parapléjicos, IDISCAM, Spain; Department of Nursing, Physiotherapy and Occupational Therapy, Faculty of Physiotherapy and Nursing, University of Castilla-La Mancha, Toledo, Spain.
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
20
|
Safaei M, Rajabi SS, Tirgar M, Namdar N, Dalfardi M, Mohammadifar F, Goodarzi A, Farmani AR, Ramezani V, Abpeikar Z. Exosome-based approaches in cancer along with unlocking new insights into regeneration of cancer-prone tissues. Regen Ther 2025; 29:202-216. [DOI: https:/doi.org/10.1016/j.reth.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
|
21
|
Fujii N, Urabe F, Yamamoto S, Inoue K, Kimura T, Shiraishi K. Extracellular vesicles in renal cell carcinoma: A review of the current landscape and future directions. Urol Oncol 2025; 43:370-379. [PMID: 40069067 DOI: 10.1016/j.urolonc.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/23/2025] [Indexed: 05/19/2025]
Abstract
Liquid biopsy, a minimally invasive biopsy method that uses patient body fluids (e.g., blood, urine, or saliva), is considered a useful biomarker for early diagnosis, monitoring of tumor progression, and evaluating treatment efficacy. Extracellular vesicles (EVs), a diverse group of particles classified according to their size and biosynthetic method, are liquid bilayer structures released from various cells. EVs contain specific information, such as DNA, RNA, and proteins derived from released cells. Consequently, they have attracted attention for use in liquid biopsy. EV-derived microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are useful biomarkers for cancer diagnosis, tumor progression, and drug treatment resistance. Renal cell carcinoma (RCC), one of the most common type of urological cancer, accounts for 90% of all renal tumors. In contrast to prostate cancer, for which a tumor marker has been established, clinically applicable and useful biomarkers remain to be established for RCC. EV-derived miRNAs and lncRNAs have been identified as useful biomarkers in several types of carcinoma for determining the diagnosis and predicting tumor progression, and drug treatment resistance in patients with RCC. The development and identification of biomarkers to diagnose and predict tumor progression in RCC will improve the management and prognosis of patients with RCC. This review focuses on EV-derived miRNAs and lncRNAs and discusses the currently available EV-based biomarkers in RCC and their future prospects.
Collapse
Affiliation(s)
- Nakanori Fujii
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan.
| | | | - Keiji Inoue
- Department of Urology, Kochi Medical School, Nankoku, Kochi, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Koji Shiraishi
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| |
Collapse
|
22
|
Kim JH, Kim JE, Kang SJ, Yoon JK. Exosomes and Exosome-Mimetics for Atopic Dermatitis Therapy. Tissue Eng Regen Med 2025; 22:381-396. [PMID: 39832066 PMCID: PMC12122991 DOI: 10.1007/s13770-024-00695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Exosomes and exosome mimetics are used as alternatives to cell therapy. They have shown potential in treating skin disorders by fortifying the skin barrier, mediating angiogenesis, and regulating the immune response while minimizing side effects. Currently, numerous studies have applied exosome therapy to treat atopic dermatitis (AD) caused by a weakened skin barrier and chronic inflammation. Research on exosomes and exosome mimetics represents a promising avenue for tissue regeneration, potentially paving the way for new therapeutic options. However, the efficacy of the therapy remains poorly understood. Also, the potential of exosome mimetics as alternatives to exosomes in skin therapy remains underexplored. METHODS Here, we reviewed the pathological features and current therapies of AD. Next, we reviewed the application of exosomes and exosome mimetics in regenerative medicine. Finally, we highlighted the therapeutic effects of exosomes based on their cell source and assessed whether exosome mimetics are viable alternatives. RESULTS AND CONCLUSION Exosome therapy may treat AD due to its skin regenerative properties, and exosome mimetics may offer an equally effective yet more efficient alternative. Research on exosomes and exosome mimetics represents a promising avenue for tissue regeneration, potentially paving the way for new therapeutic options.
Collapse
Affiliation(s)
- Jae Hoon Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Ju-El Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Seong-Jun Kang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
23
|
Zhang H, Jiang N, Xu M, Jing D, Dong T, Liu Q, Lv Q, Huo R, Chen P, Li L, Wang X. M2 macrophage derived exosomal miR-20a-5p ameliorates trophoblast pyroptosis and placental injuries in obstetric antiphospholipid syndrome via the TXNIP/NLRP3 axis. Life Sci 2025; 370:123561. [PMID: 40127859 DOI: 10.1016/j.lfs.2025.123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
AIM Obstetric antiphospholipid syndrome (OAPS) is a pregnancy-related complication characterized by trophoblast pyroptosis and placental injury induced by antiphospholipid antibodies (aPLs). M2-polarized macrophage-derived exosomes (M2-exos) exert anti-inflammatory, immunomodulatory, and growth-promoting effects in various autoimmune diseases and tumors. However, their role in OAPS is not yet clear. Therefore, in this study, we isolated M2-exos from M2 macrophages and investigated their effects on trophoblast proliferation, death, migration, invasion, and pyroptosis following stimulation using aPLs. MAIN METHODS First, we established an animal model of OAPS and thereafter treated the OAPS mice with exogenous M2-exos via injection through the tail vein. Then to clarify the roles of miR-20a-5p and thioredoxin-interacting protein (TXNIP) in OAPS, we performed gain- or loss-of-function assays, and used GraphPad Prism software to analyze the collected data with statistical significance set at P < 0.05. KEY FINDINGS MicroRNAs (miRNAs) sequencing revealed the enrichment of miR-20a-5p in M2-exos, and these M2-exos significantly alleviated aPLs-induced trophoblast dysfunction. Our results also indicated that M2-exos delivered miR-20a-5p to trophoblast cells directly targeted thioredoxin-interacting protein (TXNIP), and thus suppressed the TXNIP/NLRP3 pathway, reduced pyroptosis and inflammation in trophoblast cells, and improved placental function and fetal development. SIGNIFICANCE M2-exos improve pregnancy outcomes in OAPS via the miR-20a-5p/TXNIP/NLRP3 axis, and thus represent as a novel therapeutic approach for aPLs-induced OAPS.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan 250117, Shandong, China
| | - Ning Jiang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Mingyang Xu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Die Jing
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Tingting Dong
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Qian Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Feixian County People's Hospital, Linyi 273400, Shandong, China
| | - Qingfeng Lv
- The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, Shandong, China
| | - Ruiheng Huo
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Pengzheng Chen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan 250117, Shandong, China.
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan 250117, Shandong, China.
| |
Collapse
|
24
|
Safaei M, Rajabi SS, Tirgar M, Namdar N, Dalfardi M, Mohammadifar F, Goodarzi A, Farmani AR, Ramezani V, Abpeikar Z. Exosome-based approaches in cancer along with unlocking new insights into regeneration of cancer-prone tissues. Regen Ther 2025; 29:202-216. [PMID: 40225049 PMCID: PMC11992408 DOI: 10.1016/j.reth.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Most eukaryotic cells secrete extracellular vesicles called exosomes, which are involved in intercellular communication. Exosomes play a role in tumor development and metastasis by transporting bioactive chemicals from cancerous cells to other cells in local and distant microenvironments. However, the potential of exosomes can be used by engineering them and considering different therapeutic approaches to overcome tumors. Exosomes are a promising drug delivery approach that can help decrease side effects from traditional treatments like radiation and chemotherapy by acting as targeted agents at the tumor site. The present review provides an overview of exosomes and various aspects of the role of exosomes in cancer development, which include these items: exosomes in cancer diagnosis, exosomes and drug delivery, exosomes and drug resistance, exosomal microRNAs and exosomes in tumor microenvironment, etc. Cancer stem cells release exosomes that nurture tumors, promoting unwanted growth and regeneration, and these types of exosomes should be inhibited. Ironically, exosomes from other cells, such as hepatocytes or mesenchymal stem cells (MSCs), are vital for healing organs like the liver and repairing gastric ulcers. Without proper treatment, this healing process can backfire, potentially leading to disease progression or even cancer. What can be found from various studies about the role of exosomes in the field of cancer is that exosomes act like a double-edged sword; on the other hand, natural exosomes in the body may play an important role in the process and progression of cancer, but by engineering exosomes, they can be directed towards target therapy and targeted delivery of drugs to tumor cells. By examining the role and application of exosomes in various mechanisms of cancer, it is possible to help treat this disease more efficiently and quickly in preclinical and clinical research.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyedeh Somayeh Rajabi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahtab Tirgar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Najmeh Namdar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahsa Dalfardi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farnia Mohammadifar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
25
|
Ma Y, Colic I, Muwaffak M, Rahim AA, Brocchini S, Williams GR. In-situ hyaluronic acid-tyramine hydrogels prolong the release of extracellular vesicles and enhance stability. Int J Pharm 2025; 677:125650. [PMID: 40311824 DOI: 10.1016/j.ijpharm.2025.125650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Hydrogels can provide a hydrated environment to encapsulate extracellular vesicles (EVs) while offering promising solutions to some of the challenges that limit their therapeutic potential, e.g. rapid clearance and propensity for enzymatic degradation and aggregation. This study explores the use of a hyaluronic acid-tyramine (HA-TA) hydrogel to prolong the delivery and enhance the stability of EVs. EVs were obtained from lentiviral-transduced HEK293T cells expressing luciferase and eGFP to enable easy quantification. Two encapsulation strategies were evaluated: (1) pre-loading, where EVs were mixed with HA-TA (2.58 % degree of substitution) precursor solution and subsequently crosslinked with 2 U/mL horseradish peroxidase (HRP) and 0.05 mM H2O2; and (2) post-loading, where EVs were soaked into pre-formed dehydrated hydrogels. Both methods improved EV stability over 7 days at 37 °C compared to free EVs. The pre-loading approach was ultimately selected due to its ability to give rapid in situ gelation within one minute. Controlled in vitro release of EVs from the pre-loaded hydrogels was observed to extend beyond 7 days, as determined by CD9 ELISA. The released EVs maintained their bioactivity, as evidenced by effective internalisation into ARPE-19 and H9c2 cell lines, with performance comparable to fresh EVs. The EV release profile could be varied by modifying the hydrogel concentration. These findings underscore the potential of HA-TA hydrogels for localised, sustained, EV delivery with preserved functionality.
Collapse
Affiliation(s)
- Yingchang Ma
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ines Colic
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Maha Muwaffak
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
26
|
Zhang L, Wong CY, Shao H. Integrated technologies for molecular profiling of genetic and modified biomarkers in extracellular vesicles. LAB ON A CHIP 2025; 25:2504-2520. [PMID: 40135945 DOI: 10.1039/d5lc00053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles actively released by cells into a variety of biofluids. EVs carry myriad molecular cargoes; these include classical genetic biomarkers inherited from the parent cells as well as EV modifications by other entities (e.g., small molecule drugs). Aided by these diverse cargoes, EVs enable long-distance intercellular communication and have been directly implicated in various disease pathologies. As such, EVs are being increasingly recognized as a source of valuable biomarkers for minimally-invasive disease diagnostics and prognostics. Despite the clinical potential, EV molecular profiling remains challenging, especially in clinical settings. Due to the nanoscale dimension of EVs as well as the abundance of contaminants in biofluids, conventional EV detection methods have limited resolution, require extensive sample processing and can lose rare biomarkers. To address these challenges, new micro- and nanotechnologies have been developed to discover EV biomarkers and empower clinical applications. In this review, we introduce EV biogenesis for different cargo incorporation, and discuss the use of various EV biomarkers for clinical applications. We also assess different chip-based integrated technologies developed to measure genetic and modified biomarkers in EVs. Finally, we highlight future opportunities in technology development to facilitate the clinical translation of various EV biomarkers.
Collapse
Affiliation(s)
- Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore 117599, Singapore.
| | - Chi Yan Wong
- Institute for Health Innovation & Technology, National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore 117599, Singapore.
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, MD6, 14 Medical Drive #14-01, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| |
Collapse
|
27
|
Tong J, Chen Y, Ling X, Huang Z, Yao G, Xie Z. MSC-derived exosomal miR-125b-5p suppressed retinal microvascular endothelial cell ferroptosis in diabetic retinopathy. Stem Cells 2025; 43:sxaf023. [PMID: 40247684 DOI: 10.1093/stmcls/sxaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
Progressive endothelial cell injury of retinal vascular is a vital factor in diabetic retinopathy (DR) pathogenesis. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) showed beneficial effects on DR. However, the effects of MSC-sEVs on endothelial dysfunction of DR and the mechanism is still unclear. In this study, MSC-sEVs mitigated retinal blood-retina barrier (BRB) impairment in rats with streptozotocin (STZ)-induced DR by reducing ferroptosis in vivo and in vitro. MSC-sEVs miRNA sequencing analysis revealed that miR-125b-5p may mediate human retina microvascular endothelial cells (HRMECs) ferroptosis and P53 as a downstream target based on dual-luciferase reporter assays. Silencing miR-125b-5p in MSC-sEVs reversed the therapeutic effects of MSC-sEVs on rats with DR and advanced glycation end products (AGEs)-treated HRMECs. Additionally, overexpression of miR-125b-5p could diminish ferroptosis in HRMECs, and this effect could be effectively reversed by overexpressing P53. This study indicated the potential therapeutic effect of MSC-sEVs on vascular endothelial function maintenance and that the delivery of sEVs carrying miR-125b-5p could prevent endothelial cell ferroptosis by inhibiting P53, thereby protecting the BRB.
Collapse
Affiliation(s)
- Jun Tong
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China
- Department of Ophthalmology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Yueqin Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Xinru Ling
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Zhenping Huang
- Department of Ophthalmology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Genhong Yao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Zhenggao Xie
- Department of Ophthalmology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, People's Republic of China
| |
Collapse
|
28
|
Wang Y, Jin RU, Xu J, Lin DC, Sun Z, Xu Y, Li QK, Zhang H. Harnessing technologies to unravel gastric cancer heterogeneity. Trends Cancer 2025:S2405-8033(25)00107-4. [PMID: 40425443 DOI: 10.1016/j.trecan.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025]
Abstract
Gastric cancer arises from complex carcinogenic factor interactions, with limited treatment options due to the lack of targetable driver gene mutations and significant tumor heterogeneity. Recent studies have provided promising novel approaches to improve our understanding of gastric cancer heterogeneity through integrated characterization, combining genomics with emerging technologies. Delineating the molecular changes and targeting specific molecular subtypes will enhance the efficacy of gastric cancer treatment and improve clinical outcomes. This review provides a comprehensive overview of current technologies used in gastric cancer research, highlighting key discoveries and treatment strategies driven by these innovations. Finally, we discuss the emerging technology-guided directions and potential breakthroughs that could enhance the understanding of gastric cancer tumor heterogeneity, ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Yuefan Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Ramon U Jin
- Division of Oncology and Gastroenterology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joanne Xu
- College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ding Chiao Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Zhenyu Sun
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yuanwei Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Qing K Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
29
|
Gan L, Guo X, Dong S, Sun C. The biology of exosomes and exosomal non-coding RNAs in cardiovascular diseases. Front Pharmacol 2025; 16:1529375. [PMID: 40492132 PMCID: PMC12147041 DOI: 10.3389/fphar.2025.1529375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/07/2025] [Indexed: 06/11/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, both in developed and developing countries. Despite the implementation of various measures in clinical practice that have shown certain curative effects, poor prognosis and irreversible pathological cardiac remodeling continue to limit the therapeutic effect of CVDs. There are still many new mechanisms worth exploring for the regulation of CVDs. Previous studies have highlighted the potential applicability of exosomes in CVDs, and significant research has been conducted in this area. In this review, we summarize the physiological mechanisms of exosomes and the basic research achievements in regulating CVDs via exosomal non-coding RNAs. We also discuss the limitations and prospects of exosome application in CVD treatment.
Collapse
Affiliation(s)
- Lu Gan
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofei Guo
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shichao Dong
- Department of Pharmacy, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chuan Sun
- Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Cui L, Song Y, Hou Z, Yang L, Guo S, Wang C. From bench to bedside: the research status and application opportunity of extracellular vesicles and their engineering strategies in the treatment of skin defects. J Nanobiotechnology 2025; 23:375. [PMID: 40414838 DOI: 10.1186/s12951-025-03461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 05/11/2025] [Indexed: 05/27/2025] Open
Abstract
Engineered extracellular vesicles (EVs), which are EVs modified to enhance certain biological properties, offer a promising therapeutic strategy for the treatment of skin defects. Conventional nanomaterials often encounter clinical translation challenges due to potential toxicity and limited targeting. Engineered EVs, utilizing inherent biocompatibility and effective physiological barrier traversal, can ameliorate the limitations of conventional EV therapies to some extent, including detection, isolation, purification, and therapeutic validation. Recent advances in EV engineering, such as genetic modification of production cells to control cargo, surface engineering for targeted delivery, and pre-treatment of parental cells to optimize production and bioactivity, have improved therapeutic efficacy in laboratory studies through enhanced targeting, prolonged retention time, and increased yield. Many studies have suggested the potential ability of engineered EVs to treat a variety of skin defects, including diabetic wounds, burns, and hypertrophic scars, providing a promising avenue for their clinical translation in this area. This paper reviews the therapeutic potential of engineered EVs in skin regeneration, highlighting their role in promoting cell migration and angiogenesis, modulating inflammation and reducing scar formation during wound healing. In addition, given the investment in this rapidly evolving field and the growing clinical trial activity, this review also explores recent global advances and provides an outlook on future application opportunities for EVs in the treatment of skin defects.
Collapse
Affiliation(s)
- Longwei Cui
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110002, People's Republic of China
| | - Yantao Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110002, People's Republic of China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110002, People's Republic of China.
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110002, People's Republic of China.
| |
Collapse
|
31
|
Chen L, Li S, Fu Y. MicroRNAs in Corneal Diseases: Emerging Roles as Biomarkers, Regulators, and Therapeutics. Ocul Surf 2025:S1542-0124(25)00068-0. [PMID: 40412549 DOI: 10.1016/j.jtos.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/29/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
MicroRNAs (miRNAs) are conserved, short, non-coding RNAs that play a crucial role in regulating gene expression. Emerging evidence suggests that miRNAs are closely involved in the pathophysiology of various corneal diseases, particularly in regulating corneal wound healing, inflammation and neovascularization. In this review, we summarized the recent progress of miRNAs in corneal diseases, especially focused on their application as diagnostic biomarkers, regulators of cell biology, and therapeutic targets. Recent advances in miRNA detection technology have made it possible to analyze minimal miRNAs in samples such as tears or exosomes, further enhancing the ability to identify disease-specific miRNA profiles and providing potential objective indicators for the early diagnosis of disease. Meanwhile, we summarized the mechanisms and pathways of multiple miRNAs in regulating various biological processes of corneal cells, as well as the advantages of studying miRNA compared to proteins or genes. Furthermore, we explore the potential of miRNAs-based therapies, especially introduce various miRNA delivery systems and challenges associated with clinical translation. This review highlights the need for further research to harness the full potential of miRNAs in treating various corneal diseases.
Collapse
Affiliation(s)
- Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospill, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011 Shanghai, China
| | - Shiding Li
- Department of Ophthalmology, Shanghai Ninth People's Hospill, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011 Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospill, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011 Shanghai, China.
| |
Collapse
|
32
|
Asgari R, Rashidi S, Soleymani B, Bakhtiari M, Mohammadi P, Yarani R, Mansouri K. The supportive role of stem cells-derived exosomes in the embryo implantation process by regulating oxidative stress. Biomed Pharmacother 2025; 188:118171. [PMID: 40412359 DOI: 10.1016/j.biopha.2025.118171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/28/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025] Open
Abstract
Oxidative stress can affect many aspects of the reproduction process. The embryo implantation process is also one of the critical steps in establishing a successful pregnancy, and several factors, including oxidative stress, can impact the process. Oxidative stress is a state of imbalance between pro-oxidant molecules such as reactive oxygen species (ROS) and antioxidant defenses. Excessive levels of ROS cause damage to the cellular macromolecules such as nucleic acids, proteins, and lipids, resulting in cell dysfunction and pathological conditions. Recently, studies have displayed the therapeutic and antioxidant properties of exosomes derived from stem cells. Exosomes are one type of extracellular vesicles (EVs) secreted by almost all cells and contain different biomolecules. The unique properties of exosomes, like regulation of biological processes, transportation of biomolecules, stability, and biodegradability, can make exosomes a promising therapeutic option in reproductive disorders and diseases. Exosomes also can significantly improve the curative effect of oxidative stress-related pathogenesis. Accordingly, this review aims to provide a novel overview of how exosomes derived from stem cells can regulate oxidative stress and support the process of embryo implantation, hoping to pave the way to clinical applications and future research in this field.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sahar Rashidi
- Department of Obstetrics and Gynecology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bijan Soleymani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Kamran Mansouri
- Regenerative Medicine Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
33
|
Guerrero J, Maevskaia E, Pfister P, Dominguez AP, Ghayor C, Bhattacharya I, Scherberich A, Weber FE. Mineralized Osteoblast-Derived Exosomes and 3D-printed Ceramic-based Scaffolds for Enhanced Bone Healing: A Preclinical Exploration. Acta Biomater 2025:S1742-7061(25)00376-9. [PMID: 40409510 DOI: 10.1016/j.actbio.2025.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/25/2025] [Accepted: 05/21/2025] [Indexed: 05/25/2025]
Abstract
In regenerative medicine, addressing the complex challenge of bone tissue regeneration demands innovative strategies. Exosomes, nanoscale vesicles rich in bioactive molecules, have shown great promise in tissue repair. This study focuses on exosomes derived from mineralized osteoblasts (MOBs), which play a pivotal role in bone formation. We investigated the therapeutic potential of exosomes isolated from osteoblasts cultured in osteogenic medium for 21 days, delivered via 3D-printed gyroid scaffolds composed of hydroxyapatite (HA) and tricalcium phosphate (TCP). The exosomes were characterized through nanoparticle tracking analysis to determine size, morphology, and concentration, while proteomics revealed their cargo contents. In vitro, rabbit bone marrow mesenchymal stromal cells (rBMSCs) were cultured as monolayers and within ceramic scaffolds, where MOB-derived exosomes were shown to promote osteogenic differentiation. In vivo, their osteoconductive and bone augmentation capabilities were evaluated in two rabbit calvarial models, while the osteoinductive potential was further tested in a heterotopic mouse model. Neo-bone formation was assessed using µCT and histological analysis. Our findings demonstrated that MOB-derived exosomes upregulated bone-related gene expression and promoted mineralization in rBMSCs, even in the absence of osteogenic medium. Proteomics confirmed the presence of bone-associated proteins in these exosomes. In rabbit models, however, exosomes did not significantly enhance bone formation. In contrast, in the heterotopic mouse model, exosomes functionalized onto ceramic scaffolds exhibited strong osteoinductive activity. This study highlights the potential of MOB-derived exosomes to enhance 3D-printed ceramic scaffolds for bone regeneration, offering a promising avenue for bone healing without the need for additional growth factors or stem cells. STATEMENT OF SIGNIFICANCE: The here presented report of our project not only advances our understanding of the role of exosome-functionalized scaffolds in bone regeneration but also proposes a promising alternative to traditional growth factor- or cell-based approaches. We are confident that this study represents a novel and impactful contribution to the field.
Collapse
Affiliation(s)
- Julien Guerrero
- University of Zurich, Center of Dental Medicine, Oral Biotechnology & Bioengineering, Zürich, Switzerland
| | - Ekaterina Maevskaia
- University of Zurich, Center of Dental Medicine, Oral Biotechnology & Bioengineering, Zürich, Switzerland
| | - Pablo Pfister
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Ana Pérez Dominguez
- University of Zurich, Center of Dental Medicine, Oral Biotechnology & Bioengineering, Zürich, Switzerland
| | - Chafik Ghayor
- University of Zurich, Center of Dental Medicine, Oral Biotechnology & Bioengineering, Zürich, Switzerland
| | - Indranil Bhattacharya
- University of Zurich, Center of Dental Medicine, Oral Biotechnology & Bioengineering, Zürich, Switzerland
| | - Arnaud Scherberich
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Franz E Weber
- University of Zurich, Center of Dental Medicine, Oral Biotechnology & Bioengineering, Zürich, Switzerland; CABMM, Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
34
|
Wang M, Liu H, Huang J, Cai T, Xu ZP, Zhang L. Advancing cancer gene therapy: the emerging role of nanoparticle delivery systems. J Nanobiotechnology 2025; 23:362. [PMID: 40394591 PMCID: PMC12090605 DOI: 10.1186/s12951-025-03433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
Gene therapy holds immense potential due to its ability to precisely target oncogenes, making it a promising strategy for cancer treatment. Advances in genetic science and bioinformatics have expanded the applications of gene delivery technologies beyond detection and diagnosis to potential therapeutic interventions. However, traditional gene therapy faces significant challenges, including limited therapeutic efficacy and the rapid degradation of genetic materials in vivo. To address these limitations, multifunctional nanoparticles have been engineered to encapsulate and protect genetic materials, enhancing their stability and therapeutic effectiveness. Nanoparticles are being extensively explored for their ability to deliver various genetic payloads-including plasmid DNA, messenger RNA, and small interfering RNA-directly to cancer cells. This review highlights key gene modulation strategies such as RNA interference, gene editing systems, and chimeric antigen receptor (CAR) technologies, alongside a diverse array of nanoscale delivery systems composed of polymers, lipids, and inorganic materials. These nanoparticle-based delivery platforms aim to improve targeted transport of genetic material into cancer cells, ultimately enhancing the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Maoze Wang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Huina Liu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China
| | - Jinling Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Ting Cai
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China.
| | - Zhi Ping Xu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Lingxiao Zhang
- Interdisciplinary Nanoscience Center (INANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| |
Collapse
|
35
|
Shah KA, Ali T, Hussain Y, Dormocara A, You B, Cui JH. Isolation, characterization and therapeutic potentials of exosomes in lung cancer: Opportunities and challenges. Biochem Biophys Res Commun 2025; 759:151707. [PMID: 40153996 DOI: 10.1016/j.bbrc.2025.151707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/08/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Lung cancer (LC) signifies the primary cause of cancer-related mortality, representing 24 % of all cancer fatalities. LC is intricate and necessitates innovative approaches for early detection, precise diagnosis, and tailored treatment. Exosomes (EXOs), a subclass of extracellular vesicles (EVs), are integral to LC advancement, intercellular communication, tumor spread, and resistance to anticancer therapies. EXOs represent a viable drug delivery strategy owing to their distinctive biological characteristics, such as natural origin, biocompatibility, stability in blood circulation, minimal immunogenicity, and potential for modification. They can function as vehicles for targeted pharmaceuticals and facilitate the advancement of targeted therapeutics. EXOs are pivotal in the metastatic cascade, facilitating communication between cancer cells and augmenting their invasive capacity. Nonetheless, obstacles such as enhancing cargo loading efficiency, addressing homogeneity concerns during preparation, and facilitating large-scale clinical translation persist. Interdisciplinary collaboration in research is crucial for enhancing the efficacy of EXOs drug delivery systems. This review explores the role of EXOs in LC, their potential as therapeutic agents, and challenges in their development, aiming to advance targeted treatments. Future research should concentrate on engineering optimization and developing innovative EXOs to improve flexibility and effectiveness in clinical applications.
Collapse
Affiliation(s)
- Kiramat Ali Shah
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Tariq Ali
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Yaseen Hussain
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Amos Dormocara
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Bengang You
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Jing-Hao Cui
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China.
| |
Collapse
|
36
|
Kohli SK, Dhurve G, Mohammad KG, Khan TA, Yusuf M. The power of small RNAs: A comprehensive review on bacterial stress response and adaptation. Int J Biol Macromol 2025; 315:144411. [PMID: 40398788 DOI: 10.1016/j.ijbiomac.2025.144411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Bacteria employ a wide range of RNA-based regulatory systems to adapt to various environmental stressors. Among these, small non-coding RNAs (sRNAs) have emerged as critical regulators of gene expression. These compact RNA molecules modulate numerous cellular functions, including stress adaptation, biofilm development, and virulence. By acting primarily at the post-transcriptional level, sRNAs enable bacteria to swiftly adjust gene expression in response to external challenges. One key mechanism of sRNA action is translational repression, which includes the regulation of toxin-antitoxin systems pathways essential for bacterial persistence and antibiotic resistance. Additionally, sRNAs orchestrate the expression of genes involved in biofilm formation, enhancing surface adhesion, extracellular matrix production, and resistance to antimicrobial agents. Bacterial outer membrane vesicles (OMVs) also play a significant role in stress adaptation and intercellular communication. These vesicles transport a complex cargo of proteins, lipids, and nucleic acids, including sRNAs. The transfer of sRNAs through OMVs can modulate the physiology of neighboring bacterial cells as well as host cells, highlighting their role in cross-kingdom signaling. sRNAs serve as versatile and potent regulatory elements that support bacterial survival under hostile conditions. Advancing our understanding of sRNA-mediated networks offers promising avenues for uncovering bacterial pathogenesis and developing innovative antimicrobial therapies.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Department of Earth and Climate Sciences (ECS), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Ganeshwari Dhurve
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Kashif Gulam Mohammad
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Tanveer Alam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohammad Yusuf
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
37
|
Fan B, Wang L, Hu T, Zheng L, Wang J. Exosomal miR-196a-5p Secreted by Bone Marrow Mesenchymal Stem Cells Inhibits Ferroptosis and Promotes Drug Resistance of Acute Myeloid Leukemia. Antioxid Redox Signal 2025. [PMID: 40388337 DOI: 10.1089/ars.2024.0882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Background: Ferroptosis is a nonapoptotic type of cell death characterized by an increase in lipid reactive oxygen species (ROS). Acute myeloid leukemia (AML)-derived bone marrow mesenchymal stem cells (AML-BMSCs) support the progression and drug resistance of AML by secreting various bioactive substances, including exosomes. However, the role of BMSCs in regulating lipid metabolism and ferroptosis in AML remains unexplored. Results: Exosomes secreted by AML-BMSCs increased the expression of miR-196a-5p in AML cells. MiR-196a-5p promoted the proliferation of AML cells, reduced lipid ROS and ferroptosis, and was associated with poor prognosis in AML patients. Mechanistically, miR-196a-5p inhibited the expression level of neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L). Co-immunoprecipitation (CO-IP) analysis showed that NEDD4L was bound to long-chain acyl-CoA synthetase (ACSL)3 and promoted ubiquitin-mediated degradation of ACSL3 protein. In addition, we also demonstrated that AML-BMSCs highly expressed Ras-associated binding protein 7A (RAB7A), which was associated with exosomal miR-196a-5p release. Importantly, cytarabine (Ara-C) activated the expression of RAB7A and promoted the secretion of exosomal miR-196a-5p, which weakened the ubiquitination of ACSL3 by NEDD4L, leading to ferroptosis inhibition and Ara-C resistance in AML. Innovation: This is the first time that exosomes secreted by BMSCs (BMSCs-exos) have been linked to ferroptosis in AML cells, thereby expanding our understanding of the mechanism of drug resistance in AML cells. High miR-196a-5p expression reduced lipid ROS levels and ferroptosis in AML cells by inhibiting NEDD4L-mediated ubiquitination of ACSL3. Conclusion: This study identified a new network through which BMSCs-exos regulate ferroptosis in AML cells. We combined BMSCs and AML cells to provide new ideas for drug research targeting exosome secretion and ferroptosis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Bingjie Fan
- Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, China
| | - Li Wang
- Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tianzhen Hu
- Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lin Zheng
- Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
38
|
Badal AK, Nayek A, Dhar R, Karmakar S. MicroRNA nanoformulation: a promising approach to anti-tumour activity. Invest New Drugs 2025:10.1007/s10637-025-01534-7. [PMID: 40366533 DOI: 10.1007/s10637-025-01534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025]
Abstract
Cancer is a major cause of morbidity and mortality, making it one of the most debilitating diseases in our time. Despite advancements in therapeutic strategies, the development of chemoresistance and the occurrence of secondary tumours pose significant challenges. While several promising anti-tumour agents have been identified, their clinical utility is often limited due to toxicity and associated side effects. MicroRNAs (mi-RNAs) are critical regulators of gene expression, and their altered levels are closely linked to cancer development and progression. Although some microRNAs have shown potential as biomarkers for cancer detection, their integration into routine clinical practice has yet to be realized. Numerous candidate microRNAs exhibit therapeutic potential for cancer treatment; however, further research is needed to create efficient, patient-compliant, and customized drug delivery systems. In recent decades, various nanotechnology platforms have successfully transitioned to clinical trials, particularly in the field of RNA nanotechnology. Several RNA nanoparticles have been developed to address key challenges in vivo for targeting cancer, demonstrating favourable biodistribution characteristics. Studies have shown that RNA nanoparticles, characterized by precise stoichiometry and homogeneity, can effectively target tumour cells while avoiding aggregation in normal, healthy tissues following systemic injection. Animal models have demonstrated that RNA nanoparticles can deliver therapeutics such as siRNA and anti-microRNA, effectively inhibiting tumour growth. Using nanoparticles conjugated with antibodies and/or peptides enhances the targeted delivery and sustained release of microRNAs and anti-microRNAs, which may reduce the required therapeutic dosage and minimize systemic and cellular damage. This review focuses on developing microRNA nanoformulations to improve cellular uptake, bioavailability, and accumulation at tumour sites, assessing their potential anti-tumour efficacy against various types of malignancies. The significance of these advancements in clinical oncology cannot be overstated.
Collapse
Affiliation(s)
| | - Arnab Nayek
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ruby Dhar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | - Subhradip Karmakar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| |
Collapse
|
39
|
Castellano M, Blanco V, Li Calzi M, Costa B, Witwer K, Hill M, Cayota A, Segovia M, Tosar JP. Ribonuclease activity undermines immune sensing of naked extracellular RNA. CELL GENOMICS 2025; 5:100874. [PMID: 40334662 DOI: 10.1016/j.xgen.2025.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Cell membranes are thought of as barriers to extracellular RNA (exRNA) uptake. While naked exRNAs can be spontaneously internalized by certain cells, functional cytosolic delivery has been rarely observed. Here, we show that extracellular ribonucleases (RNases)-primarily from cell culture supplements-have obscured the study of exRNA functionality. When ribonuclease inhibitor (RI) is added to cell cultures, naked exRNAs can trigger pro-inflammatory responses in dendritic cells and macrophages, largely via endosomal Toll-like receptors (TLRs). Moreover, naked exRNAs can escape endosomes, engaging cytosolic RNA sensors. In addition, naked extracellular mRNAs can be spontaneously internalized and translated by various cell types in an RI-dependent manner. In vivo, RI co-injection amplifies naked-RNA-induced activation of splenic lymphocytes and myeloid leukocytes. Furthermore, naked RNA is inherently pro-inflammatory in RNase-poor compartments like the peritoneal cavity. These findings demonstrate that naked RNA is bioactive without requiring vesicular encapsulation, making a case for nonvesicular-exRNA-mediated intercellular communication.
Collapse
Affiliation(s)
- Mauricio Castellano
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Immunoregulation and Inflammation Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Analytical Biochemistry Unit, School of Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Valentina Blanco
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Marco Li Calzi
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Bruno Costa
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Analytical Biochemistry Unit, School of Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; EV Core Facility "EXCEL," Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marcelo Hill
- Immunoregulation and Inflammation Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Montevideo 11800, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Hospital de Clínicas, Universidad de la República, Montevideo 11600, Uruguay
| | - Mercedes Segovia
- Immunoregulation and Inflammation Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Montevideo 11800, Uruguay.
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Analytical Biochemistry Unit, School of Science, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
40
|
Chen T, Chen D, Su W, Liang J, Liu X, Cai M. Extracellular vesicles as vital players in drug delivery: a focus on clinical disease treatment. Front Bioeng Biotechnol 2025; 13:1600227. [PMID: 40438295 PMCID: PMC12116468 DOI: 10.3389/fbioe.2025.1600227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/29/2025] [Indexed: 06/01/2025] Open
Abstract
Extracellular vesicles (EVs), a diverse population of bilayer lipid-membrane vesicles secreted by cells, have emerged as ideal drug carriers due to their efficient cellular uptake and targeted delivery capabilities. Advancements in medical and bioengineering collaborations have enabled EVs to be engineered for specific marker expression or therapeutic cargo transport, positioning them as a promising modality for treating cancer, neurological disorders, cardiovascular diseases, and beyond. EV-based drug delivery strategies offer distinct advantages, including facilitation of intercellular communication and immune modulation, high biocompatibility and stability, the ability to traverse the blood-brain barrier, and potential synergistic interactions with encapsulated therapeutics to enhance efficacy. This review explores EV isolation and scalable production, emphasizing cost-effective and reproducible manufacturing strategies, cargo-loading methodologies, and therapeutic applications. Additionally, the current landscape of EV-based targeted drug delivery, clinical translation prospects, and prevailing challenges are examined to provide a comprehensive perspective on their potential in drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Xiangning Liu
- The First Affiliated Hospital of Jinan University, hospital of Stomatology, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
| | - Mingxiang Cai
- The First Affiliated Hospital of Jinan University, hospital of Stomatology, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
41
|
Li L, Zheng Z, Lan W, Tang N, Zhang D, Ling J, Wu Y, Yang P, Fu L, Liu J, Zhang J, Yu P, Huang T. Role of Exosomes in Cardiovascular Disease: A Key Regulator of Intercellular Communication in Cardiomyocytes. ACS OMEGA 2025; 10:18145-18169. [PMID: 40385188 PMCID: PMC12079207 DOI: 10.1021/acsomega.4c11423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
In the cardiovascular system, different types of cardiovascular cells can secrete specific exosomes and participate in the maintenance of cardiovascular function and the occurrence and development of diseases. Exosomes carry biologically active substances such as proteins and nucleic acids from cells of origin and can be used as biomarkers for disease diagnosis and prognosis assessment. In addition, exosome-mediated intercellular communication plays a key role in the occurrence and development of cardiovascular diseases and has become a potential therapeutic target. This article emphasizes the importance of understanding the mechanism of exosomes in cardiovascular diseases and systematically details the current understanding of exosomes as regulators of intercellular communication in cardiomyocytes, providing a basis for future research and therapeutic intervention.
Collapse
Affiliation(s)
- Liuxin Li
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Zhidong Zheng
- Department of Endocrinology and Metabolism, second Affiliated Hospital
of Nanchang University, Nanchang, People’s Republic of China, The second Clinical Medical College, Nanchang University, Nanchang 330006, Republic of China
| | - Wenyu Lan
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Nan Tang
- The
Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Deju Zhang
- Food
and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 0000, Hong Kong
| | - Jitao Ling
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Yuting Wu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Pingping Yang
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Linhua Fu
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jianping Liu
- Department
of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| | - Jing Zhang
- Department
of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical
College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Peng Yu
- Department
of Metabolism and Endocrinology, The Second
Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Tieqiu Huang
- Department
of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi
Medical College, Nanchang University, Nanchang 330006, Jiangxi,China
| |
Collapse
|
42
|
Phan N, Li Y, Yang M, Liu F. Tear fluid derived extracellular vesicles for new biomarker discovery. Ocul Surf 2025; 37:314-322. [PMID: 40368029 DOI: 10.1016/j.jtos.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Various cell types release extracellular vesicles (EVs) containing proteins, DNA, and RNA essential for intercellular communication. The bioactive molecules from EVs can reflect disease status and monitor progression, while their communication abilities suggest therapeutic potential. We will review various EV isolation methods, EV-enriched fluids, and studies analyzing differential mi-RNA and protein levels extracted from EVs. Specifically, tear-derived EVs, which protect their molecular content and allow for real-time monitoring of ocular conditions such as Dry Eye Disease (DED), Sjögren's disease (SJD), Ocular graft-versus-host disease (oGVHD), and Diabetic Retinopathy (DR), which all currently remain undiagnosed in patients. EVs also provide potential as carriers for gene transfer, and mesenchymal stem cell (MSCs)-derived EVs are shown to be immunomodulatory, demonstrating promise for autoimmune ocular diseases. Through the multi-omic analysis of tear-fluid content, EVs are promising biomarkers and therapeutic agents in ocular diseases.
Collapse
Affiliation(s)
- Natalie Phan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Yi Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| | - Fei Liu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Mohak S, Fabian Z. Extracellular Vesicles as Precision Delivery Systems for Biopharmaceuticals: Innovations, Challenges, and Therapeutic Potential. Pharmaceutics 2025; 17:641. [PMID: 40430932 PMCID: PMC12115175 DOI: 10.3390/pharmaceutics17050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Unlike traditional small-molecule agents, biopharmaceuticals, like synthetic RNAs, enzymes, and monoclonal antibodies, are highly vulnerable to environmental conditions. Preservation of their functional integrity necessitates advanced delivery methods. Being biocompatible, extracellular vesicles (EVs) gained attention as a promising system for delivering biopharmaceuticals, addressing challenges related to the stability and efficacy of sensitive therapeutic molecules. Indeed, EVs can cross biological barriers like the blood-brain barrier, delivering therapeutic cargo to tissues that are traditionally difficult to reach. Recent innovations in surface modification technologies, including ligand and antibody attachment, have further enhanced EVs' targeting capabilities, making them particularly effective in personalized medicine. Here, we review the versatile suitability of EVs for being next-generation delivery vehicles of biopharmaceuticals, including current standings, practical challenges, and possible future directions of the technology.
Collapse
Affiliation(s)
- Sidhesh Mohak
- Department of Medicine, South Texas Health System, McAllen, TX 78503, USA;
- Department of Clinical Sciences, Saint James School of Medicine, Arnos Vale VC0280, Saint Vincent and the Grenadines
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Rd, Preston PR1 2HE, UK
- Translocon Biotechnologies PLC, Akadémia u. 6, 1054 Budapest, Hungary
| |
Collapse
|
44
|
Vader P. Extracellular vesicles for drug delivery: A major interest for the Journal of Controlled Release. J Control Release 2025; 381:113599. [PMID: 40049519 DOI: 10.1016/j.jconrel.2025.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Affiliation(s)
- Pieter Vader
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Santos CMDAM, de Souza ATB, Neta APR, Freire LVP, Sarmento ACA, de Medeiros KS, Luchessi AD, Cobucci RN, Gonçalves AK, Crispim JCDO. Exosomal MicroRNAs as Epigenetic Biomarkers for Endometriosis: A Systematic Review and Bioinformatics Analysis. Int J Mol Sci 2025; 26:4564. [PMID: 40429709 PMCID: PMC12111455 DOI: 10.3390/ijms26104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 05/29/2025] Open
Abstract
The clinical application of exosomal microRNAs as diagnostic biomarkers presents a promising approach for identifying potential markers of endometriosis. We conducted a systematic review of case-control studies to investigate exosomal microRNAs as epigenetic biomarkers potentially involved in the pathogenesis of endometriosis. A comprehensive literature search was performed across PubMed, Embase, Web of Science, and Scopus databases, yielding 702 studies, with 12 meeting the inclusion criteria after screening and full-text review. These studies included 191 women with confirmed endometriosis and 169 healthy controls. Quality assessment using the Newcastle-Ottawa Scale indicated a moderate quality across studies, with a common score of 5/9. In total, 668 exosomal microRNAs were found to be significantly differentially expressed between endometriosis patients and controls. In serum samples, 119 exosomal microRNAs were differentially expressed, with miR-22-3p, miR-320a, miR-320b, and miR-1273g-3p reported in more than one study. In endometrial tissue samples, miR-200c-3p and miR-425-5p were identified in more than one study, with miR-200c-3p consistently upregulated. Bioinformatic analysis indicated that these exosomal microRNAs are involved in key signaling pathways such as PI3K/Akt, MAPK, and TGF-β, which are associated with cell proliferation, migration, and inflammation. Despite these promising findings, variability in exosomal microRNA expression patterns across studies underscores the need for standardized methods and validation in large-scale, ethnically diverse cohorts. Future research should focus on rigorous validation studies to establish clinically relevant exosomal microRNAs for early diagnosis and improved patient outcomes.
Collapse
Affiliation(s)
| | - Amaxsell Thiago Barros de Souza
- Postgraduate Program in Sciences Applied to Women’s Health, Federal University of Rio Grande do Norte, Natal 59012-310, Brazil; (A.T.B.d.S.); (L.V.P.F.); (R.N.C.); (A.K.G.)
| | - Antonia Pereira Rosa Neta
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (A.P.R.N.)
| | - Liziane Virginia Pereira Freire
- Postgraduate Program in Sciences Applied to Women’s Health, Federal University of Rio Grande do Norte, Natal 59012-310, Brazil; (A.T.B.d.S.); (L.V.P.F.); (R.N.C.); (A.K.G.)
| | - Ayane Cristine Alves Sarmento
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | | | - André Ducati Luchessi
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (A.P.R.N.)
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| | - Ricardo Ney Cobucci
- Postgraduate Program in Sciences Applied to Women’s Health, Federal University of Rio Grande do Norte, Natal 59012-310, Brazil; (A.T.B.d.S.); (L.V.P.F.); (R.N.C.); (A.K.G.)
- Postgraduate Program in Biotechnology, Potiguar University, Natal 59056-000, Brazil
| | - Ana Katherine Gonçalves
- Postgraduate Program in Sciences Applied to Women’s Health, Federal University of Rio Grande do Norte, Natal 59012-310, Brazil; (A.T.B.d.S.); (L.V.P.F.); (R.N.C.); (A.K.G.)
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (A.P.R.N.)
| | - Janaina Cristiana de Oliveira Crispim
- Postgraduate Program in Technological Development and Innovation in Medicines, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
- Postgraduate Program in Sciences Applied to Women’s Health, Federal University of Rio Grande do Norte, Natal 59012-310, Brazil; (A.T.B.d.S.); (L.V.P.F.); (R.N.C.); (A.K.G.)
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil;
| |
Collapse
|
46
|
Liu G, Liu J, Li S, Zhang Y, He R. Exosome-Mediated Chemoresistance in Cancers: Mechanisms, Therapeutic Implications, and Future Directions. Biomolecules 2025; 15:685. [PMID: 40427578 PMCID: PMC12108986 DOI: 10.3390/biom15050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Chemotherapy resistance represents a formidable obstacle in oncological therapeutics, substantially compromising the efficacy of adjuvant chemotherapy regimens and contributing to unfavorable clinical prognoses. Emerging evidence has elucidated the pivotal involvement of exosomes in the dissemination of chemoresistance phenotypes among tumor cells and within the tumor microenvironment. This review delineates two distinct intra-tumoral resistance mechanisms orchestrated by exosomes: (1) the exosome-mediated sequestration of chemotherapeutic agents coupled with enhanced drug efflux in neoplastic cells, and (2) the horizontal transfer of chemoresistance to drug-sensitive cells through the delivery of bioactive molecular cargo, thereby facilitating the propagation of resistance phenotypes across the tumor population. Furthermore, the review covers current in vivo experimental data focusing on targeted interventions against specific genetic elements and exosomal secretion pathways, demonstrating their potential in mitigating chemotherapy resistance. Additionally, the therapeutic potential of inhibiting exosome-mediated transporter transfer strategy is particularly examined as a promising strategy to overcome tumor resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | - Yumiao Zhang
- School of Chemical Engineering and Technology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (Ministry of Education) and State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300350, China; (G.L.); (J.L.); (S.L.)
| | - Ren He
- School of Chemical Engineering and Technology, School of Synthetic Biology and Biomanufacturing, Frontiers Science Center for Synthetic Biology (Ministry of Education) and State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300350, China; (G.L.); (J.L.); (S.L.)
| |
Collapse
|
47
|
Barr SI, Abd El-Azeem EM, Bessa SS, Mohamed TM. Role of exosomes in pathogenesis, diagnosis, and treatment of diabetic nephropathy. BMC Nephrol 2025; 26:230. [PMID: 40340661 PMCID: PMC12063312 DOI: 10.1186/s12882-025-04120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication that can progress to end-stage renal disease, with its prevalence and associated mortality increasing globally. However extensive research, the precise mechanisms underlying DN pathogenesis remain unclear, and the current treatment options for DN are limited to dialysis or renal replacement therapy, although several experimental approaches have shown potential, they remain investigational and lack clinical translation. Exosomes play a pivotal role in disease diagnosis and prognosis. Urinary exosomes, originating from various kidney cells, reflect the kidney's pathological condition and are involved in cell-to-cell communication through autocrine or paracrine signaling; therefore, they could contribute to the pathogenesis of DN and potential therapeutic approaches. Additionally, due to their diverse cargo, which depend on cellular origin and pathological state, exosomes may act as biomarkers for the early prediction of DN. This review presents a comprehensive overview of the latest findings on the role of exosomes in the diagnosis, pathogenesis, and treatment of DN.
Collapse
Affiliation(s)
- Shaimaa I Barr
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Eman M Abd El-Azeem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sahar S Bessa
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
48
|
Hu X, Chen Y, Ying H, He C, Ren Y, Tian Y, Tan Y. Metabolic-associated fatty liver disease (MAFLD) promotes the progression of hepatocellular carcinoma by enhancing KIF20A expression. Int Immunopharmacol 2025; 154:114589. [PMID: 40168801 DOI: 10.1016/j.intimp.2025.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Compared to other HCC, those related to MAFLD exhibit distinct prognostic differences. This article aims to elucidate the impact of MAFLD on HCC prognosis through the lens of KIF20A, thereby providing a theoretical foundation for targeted therapies in MAFLD-related HCC. METHODS We employed the Weighted gene co-expression network analysis (WGCNA) method alongside the Mime package to identify key genes associated with MAFLD-related HCC. Subsequently, we utilized OCLR and CytoTRACE algorithms to evaluate the relationship between these genes and HCC stemness. The R package was employed to conduct immunological analyses on both mRNA sequencing and single-cell data. We validated the effects of core genes on HCC through experimental approaches, including cell culture, Transwell assays, Western Blot, and proliferation assays. Finally, we predicted potential therapeutic drugs using the OncoPredict software package. RESULTS WGCNA identified the cyan module associated with MAFLD in GSE135251 and the blue module linked to HCC in TCGA. Further analysis identified KIF20A as the core gene in MAFLD-related HCC. Utilizing the OCLR and CytoTRACE algorithms, KIF20A was found to correlate with mRNA stemness index (mRNAsi). Analysis of public databases revealed that KIF20A promotes immune tolerance through the SPP1-CD44 pathway and drives HCC progression via the G2M checkpoint. Experimental results demonstrated that lipotoxic damage in HCC cells and small extracellular vesicles (sEVs) derived from these cells upregulate KIF20A, thereby accelerating HCC progression. Finally, OncoPredict and AutoDock were employed to predict drugs targeting KIF20A. CONCLUSION MAFLD-related HCC can elevate KIF20A levels and promote tumor proliferation and migration.
Collapse
Affiliation(s)
- Xinsong Hu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China; Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, Jiangsu, China
| | - Hao Ying
- Department of Neurology, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cong He
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yangyang Ren
- Clinical Laboratory, Xinyi People's Hospital, Xuzhou, Jiangsu, China.
| | - Yiqing Tian
- Clinical Laboratory, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, China.
| | - Youwen Tan
- The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
49
|
Liu Z, Zhao Z, Xiao Z, Li M, Wang X, Huang Y, Li Y. Extracellular vesicles derived from bone marrow mesenchymal stem cells regulate SREBF2/HMGB1 axis by transporting miR-378a-3p to inhibit ferroptosis in intestinal ischemia-reperfusion injury. Cell Death Discov 2025; 11:223. [PMID: 40335466 PMCID: PMC12058992 DOI: 10.1038/s41420-025-02509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025] Open
Abstract
Intestinal ischemia-reperfusion (II/R) injury represents a life-threatening and complex pathophysiological process that remains challenging to treat clinically, and emerging evidence suggests that ferroptosis plays an essential role in its pathogenesis. This study aimed to investigate whether extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) can mitigate II/R-induced ferroptosis in a murine model. Using a bioinformatics database, we initially identified genes with abnormal expression patterns in II/R injury. Then, we confirmed the association between II/R injury, ferroptosis, and the HMGB1/SREBF2 axis through in vivo and in vitro experiments. To determine the role of HMGB1 in hypoxia/reoxygenation (H/R)-induced ferroptosis in Caco-2 cells, we transfected cells with either sh-HMGB1 or control sh-NC constructs and developed an H/R model in vitro. Subsequently, we examined factors regulating HMGB1-mediated ferroptosis in Caco-2 cells and assessed the effect of BMSC-EVs on this process. To further explore the mechanism underlying the protective effects of BMSC-EVs in II/R injury, we screened for miRNAs with reduced expression during II/R and verified their involvement. Among these, miR-378a-3p was identified as a candidate for regulating ferroptosis. To confirm its functional role, we treated II/R mice with BMSC-EVs overexpressing miR-378a-3p and assessed the outcomes. Our findings revealed that HMGB1, which is a key regulatory factor of ferroptosis, was significantly upregulated during II/R injury, and its knockdown alleviated H/R-induced ferroptosis in Caco-2 cells. We also found that SREBF2 directly regulates HMGB1 expression to promote H/R-induced ferroptosis in vitro. Importantly, BMSC-EVs alleviated II/R injury by suppressing ferroptosis in Caco-2 cells, and mechanistically, miR-378a-3p, a miRNA derived from BMSC-EVs, inhibited II/R-induced ferroptosis by modulating the SREBF2/HMGB1 axis. In conclusion, BMSC-EVs may exert protective effects against II/R injury by delivering miR-378a-3p, which regulates the SREBF2/HMGB1 axis to suppress ferroptosis, providing important insights into the pathological mechanisms underlying II/R injury and potential therapeutic strategies for its management.
Collapse
Affiliation(s)
- Zan Liu
- Department of Pediatric Surgery, Clinical Research Center for Pediatric Solid Tumors in Hunan Province, Hunan Provincial Key Laboratory of Pediatric Orthopedics, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, PR China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, College of Pharmacy, Changsha Medical University, Changsha, PR China
| | - Zitong Zhao
- Center of Reproductive Medicine, Changsha Hospital for Maternal and Child Health Care of Hunan Normal University, Changsha, PR China
| | - Zhenghui Xiao
- Emergency center of Hunan Children's Hospital, Changsha, Hunan, PR China
| | - Ming Li
- Department of Pediatric Surgery, Clinical Research Center for Pediatric Solid Tumors in Hunan Province, Hunan Provincial Key Laboratory of Pediatric Orthopedics, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, PR China
| | - Xiyang Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, PR China.
- Hunan Provincial Key Laboratory of Neurorestoration, Changsha, Hunan, PR China.
| | - Yong Li
- Department of Pediatric Surgery, Clinical Research Center for Pediatric Solid Tumors in Hunan Province, Hunan Provincial Key Laboratory of Pediatric Orthopedics, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, PR China.
| |
Collapse
|
50
|
Jay SM. Addressing barriers to clinical translation of extracellular vesicle therapeutics. Mol Ther 2025; 33:1879-1880. [PMID: 40010335 DOI: 10.1016/j.ymthe.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Affiliation(s)
- Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|