1
|
Seiler S, Rudolf F, Gomes FR, Pavlovic A, Nebel J, Seidenbecher CI, Foo LC. Astrocyte-derived factors regulate CNS myelination. Glia 2024; 72:2038-2060. [PMID: 39092473 DOI: 10.1002/glia.24596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
The role that astrocytes play in central nervous system (CNS) myelination is poorly understood. We investigated the contribution of astrocyte-derived factors to myelination and revealed a substantial overlap in the secretomes of human and rat astrocytes. Using in vitro myelinating co-cultures of primary retinal ganglion cells and cortical oligodendrocyte precursor cells, we discovered that factors secreted by resting astrocytes, but not reactive astrocytes, facilitated myelination. Soluble brevican emerged as a new enhancer of developmental myelination in vivo, CNS and its absence was linked to remyelination deficits following an immune-mediated damage in an EAE mouse model. The observed reduction of brevican expression in reactive astrocytes and human MS lesions suggested a potential link to the compromised remyelination characteristic of neurodegenerative diseases. Our findings suggested brevican's role in myelination may be mediated through interactions with binding partners such as contactin-1 and tenascin-R. Proteomic analysis of resting versus reactive astrocytes highlighted a shift in protein expression profiles, pinpointing candidates that either facilitate or impede CNS repair, suggesting that depending on their reactivity state, astrocytes play a dual role during myelination.
Collapse
Affiliation(s)
- Sybille Seiler
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Franziska Rudolf
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Filipa Ramilo Gomes
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Anto Pavlovic
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Jana Nebel
- Department Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Lynette C Foo
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| |
Collapse
|
2
|
Elitt CM, Ross MM, Wang J, Fahrni CJ, Rosenberg PA. Developmental regulation of zinc homeostasis in differentiating oligodendrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550230. [PMID: 37546881 PMCID: PMC10402100 DOI: 10.1101/2023.07.26.550230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Oligodendrocytes develop through well characterized stages and understanding pathways regulating their differentiation remains an active area of investigation. Zinc is required for the function of many enzymes, proteins and transcription factors, including those important in myelination and mitosis. Our previous studies using the ratiometric zinc sensor chromis-1 demonstrated a reduction in intracellular free zinc concentrations in mature oligodendrocytes compared with earlier stages (Bourassa et al., 2018). We performed a more detailed developmental study to better understand the temporal course of zinc homeostasis across the oligodendrocyte lineage. Using chromis-1, we found a transient increase in free zinc after developing oligodendrocytes were switched into differentiation medium. To gather other evidence for dynamic regulation of free zinc during oligodendrocyte development, qPCR was used to evaluate mRNA expression of the major zinc storage proteins metallothioneins (MTs), and metal regulatory transcription factor 1 (MTF-1) which controls expression of MTs. MT-1, MT-2 and MTF1 mRNAs were all increased several fold in mature oligodendrocytes compared to developing oligodendrocytes. To assess the depth of the zinc buffer, we assayed zinc release from intracellular stores using the oxidizing thiol reagent 2,2'-dithiodipyridine (DTDP). Exposure to DTDP resulted in a ∼100% increase in free zinc in developing oligodendrocytes but, paradoxically more modest ∼60% increase in mature oligodendrocytes despite the increased expression of MTs. These results suggest that zinc homeostasis is regulated during oligodendrocyte development, that oligodendrocytes are a useful model for studying zinc homeostasis in the central nervous system, and that regulation of zinc homeostasis may be important in oligodendrocyte differentiation.
Collapse
|
3
|
Cardinale CJ, Chang X, Wei Z, Qu HQ, Bradfield JP, Polychronakos C, Hakonarson H. Genome-wide association study of the age of onset of type 1 diabetes reveals HTATIP2 as a novel T cell regulator. Front Immunol 2023; 14:1101488. [PMID: 36817429 PMCID: PMC9930890 DOI: 10.3389/fimmu.2023.1101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Type 1 diabetes, a disorder caused by autoimmune destruction of pancreatic insulin-producing cells, is more difficult to manage when it presents at a younger age. We sought to identify genetic correlates of the age of onset by conducting the first genome-wide association study (GWAS) treating the age of first diagnosis as a quantitative trait. Methods We performed GWAS with a discovery cohort of 4,014 cases and a replication cohort of 493 independent cases. Genome-wide significant SNPs were mapped to a causal variant by Bayesian conditional analysis and gel shift assay. The causal protein-coding gene was identified and characterized by RNA interference treatment of primary human pan-CD4+ T cells with RNA-seq of the transcriptome. The candidate gene was evaluated functionally in primary cells by CD69 staining and proliferation assays. Results Our GWAS replicated the known association of the age of diagnosis with the human leukocyte antigen complex (HLA-DQB1). The second signal identified was in an intron of the NELL1 gene on chromosome 11 and fine-mapped to variant rs10833518 (P < 1.54 × 10-9). Homozygosity for the risk allele leads to average age of onset one year earlier. Knock-down of HIV TAT-interacting protein 2 (HTATIP2), but not other genes in the locus, resulted in alterations to gene expression in signal transduction pathways including MAP kinases and PI3-kinase. Higher levels of HTATIP2 expression are associated with increased viability, proliferation, and activation of T cells in the presence of signals from antigen and cytokine receptors. Discussion This study implicates HTATIP2 as a new type 1 diabetes gene acting via T cell regulation. Larger population sample sizes are expected to reveal additional loci.
Collapse
Affiliation(s)
- Christopher J Cardinale
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,College of Artificial Intelligence and Big Data For Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | | | | | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Nakahara J. [History and prospects of multiple sclerosis treatment]. Rinsho Shinkeigaku 2022; 62:517-523. [PMID: 35753791 DOI: 10.5692/clinicalneurol.cn-001751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system of unknown etiology. Based on a hypothesis that MS is caused by certain viral infections, the efficacy of interferon β was examined in patients and it became the first disease-modifying drug (DMD) approximately 30 years ago. Through the series of research utilizing experimental autoimmune encephalomyelitis, many other DMDs were later developed. With emerging insights on limitation of the animal model, newer treatment strategies are being developed based on pathological findings from MS patients. In the current article, the history of MS treatment and its future prospects will be reviewed and discussed.
Collapse
Affiliation(s)
- Jin Nakahara
- Department of Neurology, Keio University School of Medicine
| |
Collapse
|
5
|
Scalabrino G. Epidermal Growth Factor in the CNS: A Beguiling Journey from Integrated Cell Biology to Multiple Sclerosis. An Extensive Translational Overview. Cell Mol Neurobiol 2022; 42:891-916. [PMID: 33151415 PMCID: PMC8942922 DOI: 10.1007/s10571-020-00989-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews the wealth of papers dealing with the different effects of epidermal growth factor (EGF) on oligodendrocytes, astrocytes, neurons, and neural stem cells (NSCs). EGF induces the in vitro and in vivo proliferation of NSCs, their migration, and their differentiation towards the neuroglial cell line. It interacts with extracellular matrix components. NSCs are distributed in different CNS areas, serve as a reservoir of multipotent cells, and may be increased during CNS demyelinating diseases. EGF has pleiotropic differentiative and proliferative effects on the main CNS cell types, particularly oligodendrocytes and their precursors, and astrocytes. EGF mediates the in vivo myelinotrophic effect of cobalamin on the CNS, and modulates the synthesis and levels of CNS normal prions (PrPCs), both of which are indispensable for myelinogenesis and myelin maintenance. EGF levels are significantly lower in the cerebrospinal fluid and spinal cord of patients with multiple sclerosis (MS), which probably explains remyelination failure, also because of the EGF marginal role in immunology. When repeatedly administered, EGF protects mouse spinal cord from demyelination in various experimental models of autoimmune encephalomyelitis. It would be worth further investigating the role of EGF in the pathogenesis of MS because of its multifarious effects.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy.
| |
Collapse
|
6
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Ten Bosch GJA, Bolk J, 't Hart BA, Laman JD. Multiple sclerosis is linked to MAPK ERK overactivity in microglia. J Mol Med (Berl) 2021; 99:1033-1042. [PMID: 33948692 PMCID: PMC8313465 DOI: 10.1007/s00109-021-02080-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
Reassessment of published observations in patients with multiple sclerosis (MS) suggests a microglial malfunction due to inappropriate (over)activity of the mitogen-activated protein kinase pathway ERK (MAPKERK). These observations regard biochemistry as well as epigenetics, and all indicate involvement of this pathway. Recent preclinical research on neurodegeneration already pointed towards a role of MAPK pathways, in particular MAPKERK. This is important as microglia with overactive MAPK have been identified to disturb local oligodendrocytes which can lead to locoregional demyelination, hallmark of MS. This constitutes a new concept on pathophysiology of MS, besides the prevailing view, i.e., autoimmunity. Acknowledged risk factors for MS, such as EBV infection, hypovitaminosis D, and smoking, all downregulate MAPKERK negative feedback phosphatases that normally regulate MAPKERK activity. Consequently, these factors may contribute to inappropriate MAPKERK overactivity, and thereby to neurodegeneration. Also, MAPKERK overactivity in microglia, as a factor in the pathophysiology of MS, could explain ongoing neurodegeneration in MS patients despite optimized immunosuppressive or immunomodulatory treatment. Currently, for these patients with progressive disease, no effective treatment exists. In such refractory MS, targeting the cause of overactive MAPKERK in microglia merits further investigation as this phenomenon may imply a novel treatment approach.
Collapse
Affiliation(s)
- George J A Ten Bosch
- Department of Medical Oncology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Jolande Bolk
- Department of Anesthesiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Bert A 't Hart
- Department Anatomy and Neuroscience, Amsterdam University Medical Center (VUmc), Amsterdam, The Netherlands.,Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Jon D Laman
- Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Liu Y, Trnka MJ, Guan S, Kwon D, Kim DH, Chen JJ, Greer PA, Burlingame AL, Correia MA. A Novel Mechanism for NF-κB-activation via IκB-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation. Mol Cell Proteomics 2020; 19:1968-1986. [PMID: 32912968 PMCID: PMC7710137 DOI: 10.1074/mcp.ra120.002316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBβ into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.
Collapse
Affiliation(s)
- Yi Liu
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shenheng Guan
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Doyoung Kwon
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Do-Hyung Kim
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - J-J Chen
- Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - A L Burlingame
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
9
|
Masaki K, Sonobe Y, Ghadge G, Pytel P, Lépine P, Pernin F, Cui QL, Antel JP, Zandee S, Prat A, Roos RP. RNA-binding protein altered expression and mislocalization in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e704. [PMID: 32217641 PMCID: PMC7176246 DOI: 10.1212/nxi.0000000000000704] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Objective To determine whether there are nuclear depletion and cellular mislocalization of RNA-binding proteins (RBPs) transactivation response DNA-binding protein of 43 kDa (TDP-43), fused in sarcoma (FUS), and polypyrimidine tract–binding protein (PTB) in MS, as is the case in amyotrophic lateral sclerosis (ALS) and oligodendrocytes infected with Theiler murine encephalomyelitis virus (TMEV), we examined MS lesions and in vitro cultured primary human brain–derived oligodendrocytes. Methods Nuclear depletion and mislocalization of TDP-43, FUS, and PTB are thought to contribute to the pathogenesis of ALS and TMEV demyelination. The latter findings prompted us to investigate these RBPs in the demyelinated lesions of MS and in in vitro cultured human brain–derived oligodendrocytes under metabolic stress conditions. Results We found (1) mislocalized TDP-43 in oligodendrocytes in active lesions in some patients with MS; (2) decreased PTB1 expression in oligodendrocytes in mixed active/inactive demyelinating lesions; (3) decreased nuclear expression of PTB2 in neurons in cortical demyelinating lesions; and (4) nuclear depletion of TDP-43 in oligodendrocytes under metabolic stress induced by low glucose/low nutrient conditions compared with optimal culture conditions. Conclusion TDP-43 has been found to have a key role in oligodendrocyte function and viability, whereas PTB is important in neuronal differentiation, suggesting that altered expression and mislocalization of these RBPs in MS lesions may contribute to the pathogenesis of demyelination and neurodegeneration. Our findings also identify nucleocytoplasmic transport as a target for treatment.
Collapse
Affiliation(s)
- Katsuhisa Masaki
- From the Department of Neurology (K.M., Y.S., G.G., R.P.R.) and Department of Pathology (P.P.), University of Chicago Medical Center, IL; Neuroimmunology Research Laboratory (P.L., S.Z., A.P.), Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), QC, Canada; and Neuroimmunology Unit (F.P., Q.-L.C., J.P.A.), Montreal Neurological Institute, McGill University, QC, Canada
| | - Yoshifumi Sonobe
- From the Department of Neurology (K.M., Y.S., G.G., R.P.R.) and Department of Pathology (P.P.), University of Chicago Medical Center, IL; Neuroimmunology Research Laboratory (P.L., S.Z., A.P.), Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), QC, Canada; and Neuroimmunology Unit (F.P., Q.-L.C., J.P.A.), Montreal Neurological Institute, McGill University, QC, Canada
| | - Ghanashyam Ghadge
- From the Department of Neurology (K.M., Y.S., G.G., R.P.R.) and Department of Pathology (P.P.), University of Chicago Medical Center, IL; Neuroimmunology Research Laboratory (P.L., S.Z., A.P.), Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), QC, Canada; and Neuroimmunology Unit (F.P., Q.-L.C., J.P.A.), Montreal Neurological Institute, McGill University, QC, Canada
| | - Peter Pytel
- From the Department of Neurology (K.M., Y.S., G.G., R.P.R.) and Department of Pathology (P.P.), University of Chicago Medical Center, IL; Neuroimmunology Research Laboratory (P.L., S.Z., A.P.), Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), QC, Canada; and Neuroimmunology Unit (F.P., Q.-L.C., J.P.A.), Montreal Neurological Institute, McGill University, QC, Canada
| | - Paula Lépine
- From the Department of Neurology (K.M., Y.S., G.G., R.P.R.) and Department of Pathology (P.P.), University of Chicago Medical Center, IL; Neuroimmunology Research Laboratory (P.L., S.Z., A.P.), Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), QC, Canada; and Neuroimmunology Unit (F.P., Q.-L.C., J.P.A.), Montreal Neurological Institute, McGill University, QC, Canada
| | - Florian Pernin
- From the Department of Neurology (K.M., Y.S., G.G., R.P.R.) and Department of Pathology (P.P.), University of Chicago Medical Center, IL; Neuroimmunology Research Laboratory (P.L., S.Z., A.P.), Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), QC, Canada; and Neuroimmunology Unit (F.P., Q.-L.C., J.P.A.), Montreal Neurological Institute, McGill University, QC, Canada
| | - Qiao-Ling Cui
- From the Department of Neurology (K.M., Y.S., G.G., R.P.R.) and Department of Pathology (P.P.), University of Chicago Medical Center, IL; Neuroimmunology Research Laboratory (P.L., S.Z., A.P.), Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), QC, Canada; and Neuroimmunology Unit (F.P., Q.-L.C., J.P.A.), Montreal Neurological Institute, McGill University, QC, Canada
| | - Jack P Antel
- From the Department of Neurology (K.M., Y.S., G.G., R.P.R.) and Department of Pathology (P.P.), University of Chicago Medical Center, IL; Neuroimmunology Research Laboratory (P.L., S.Z., A.P.), Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), QC, Canada; and Neuroimmunology Unit (F.P., Q.-L.C., J.P.A.), Montreal Neurological Institute, McGill University, QC, Canada
| | - Stephanie Zandee
- From the Department of Neurology (K.M., Y.S., G.G., R.P.R.) and Department of Pathology (P.P.), University of Chicago Medical Center, IL; Neuroimmunology Research Laboratory (P.L., S.Z., A.P.), Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), QC, Canada; and Neuroimmunology Unit (F.P., Q.-L.C., J.P.A.), Montreal Neurological Institute, McGill University, QC, Canada
| | - Alexandre Prat
- From the Department of Neurology (K.M., Y.S., G.G., R.P.R.) and Department of Pathology (P.P.), University of Chicago Medical Center, IL; Neuroimmunology Research Laboratory (P.L., S.Z., A.P.), Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), QC, Canada; and Neuroimmunology Unit (F.P., Q.-L.C., J.P.A.), Montreal Neurological Institute, McGill University, QC, Canada
| | - Raymond P Roos
- From the Department of Neurology (K.M., Y.S., G.G., R.P.R.) and Department of Pathology (P.P.), University of Chicago Medical Center, IL; Neuroimmunology Research Laboratory (P.L., S.Z., A.P.), Centre du Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), QC, Canada; and Neuroimmunology Unit (F.P., Q.-L.C., J.P.A.), Montreal Neurological Institute, McGill University, QC, Canada.
| |
Collapse
|
10
|
Grund A, Szaroszyk M, Korf-Klingebiel M, Malek Mohammadi M, Trogisch FA, Schrameck U, Gigina A, Tiedje C, Gaestel M, Kraft T, Hegermann J, Batkai S, Thum T, Perrot A, Remedios CD, Riechert E, Völkers M, Doroudgar S, Jungmann A, Bauer R, Yin X, Mayr M, Wollert KC, Pich A, Xiao H, Katus HA, Bauersachs J, Müller OJ, Heineke J. TIP30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Mol Med 2019; 11:e10018. [PMID: 31468715 PMCID: PMC6783653 DOI: 10.15252/emmm.201810018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Pathological cardiac overload induces myocardial protein synthesis and hypertrophy, which predisposes to heart failure. To inhibit hypertrophy therapeutically, the identification of negative regulators of cardiomyocyte protein synthesis is needed. Here, we identified the tumor suppressor protein TIP30 as novel inhibitor of cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice entailed exaggerated cardiac growth during experimental pressure overload, which was associated with cardiomyocyte cellular hypertrophy, increased myocardial protein synthesis, reduced capillary density, and left ventricular dysfunction. Pharmacological inhibition of protein synthesis improved these defects. Our results are relevant for human disease, since we found diminished cardiac TIP30 levels in samples from patients suffering from end‐stage heart failure or hypertrophic cardiomyopathy. Importantly, therapeutic overexpression of TIP30 in mouse hearts inhibited cardiac hypertrophy and improved left ventricular function during pressure overload and in cardiomyopathic mdx mice. Mechanistically, we identified a previously unknown anti‐hypertrophic mechanism, whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A) to prevent the interaction with its essential co‐factor eEF1B2 and translational elongation. Therefore, TIP30 could be a therapeutic target to counteract cardiac hypertrophy.
Collapse
Affiliation(s)
- Andrea Grund
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Malgorzata Szaroszyk
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Mona Malek Mohammadi
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Felix A Trogisch
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrike Schrameck
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Anna Gigina
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christopher Tiedje
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute for Molecular and Cellphysiology, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Sandor Batkai
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Perrot
- Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Eva Riechert
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Jungmann
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bauer
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Kai C Wollert
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johann Bauersachs
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Oliver J Müller
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Joerg Heineke
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
11
|
Hoch-Kraft P, Trotter J, Gonsior C. Missing in Action: Dysfunctional RNA Metabolism in Oligodendroglial Cells as a Contributor to Neurodegenerative Diseases? Neurochem Res 2019; 45:566-579. [PMID: 30843138 DOI: 10.1007/s11064-019-02763-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
Abstract
The formation of myelin around axons by oligodendrocytes (OL) poses an enormous synthetic and energy challenge for the glial cell. Local translation of transcripts, including the mRNA for the essential myelin protein Myelin Basic Protein (MBP) at the site of myelin deposition has been recognised as an efficient mechanism to assure proper myelin sheath assembly. Oligodendroglial precursor cells (OPCs) form synapses with neurons and may localise many additional mRNAs in a similar fashion to synapses between neurons. In some diseases in which demyelination occurs, an abundance of OPCs is present but there is a failure to efficiently remyelinate and to synthesise MBP. This compromises axonal survival and function. OPCs are especially sensitive to cellular stress as occurring in neurodegenerative diseases, which can impinge on their ability to translate mRNAs into protein. Stress causes the build up of cytoplasmic stress granules (SG) in which many RNAs are sequestered and translationally stalled until the stress ceases. Chronic stress in particular could convert this initially protective reaction of the cell into damage, as persistence of SG may lead to pathological aggregate formation or long-term translation block of SG-associated RNAs. The recent recognition that many neurodegenerative diseases often exhibit an early white matter pathology with a proliferation of surviving OPCs, renders a study of the stress-associated processes in oligodendrocytes and OPCs especially relevant. Here, we discuss a potential dysfunction of RNA regulation in myelin diseases such as Multiple Sclerosis (MS) and Vanishing white matter disease (VWM) and potential contributions of OL dysfunction to neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Fragile X syndrome (FXS).
Collapse
Affiliation(s)
- Peter Hoch-Kraft
- Cellular Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128, Mainz, Germany
| | - Jacqueline Trotter
- Cellular Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128, Mainz, Germany
| | - Constantin Gonsior
- Cellular Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128, Mainz, Germany.
| |
Collapse
|
12
|
Masaki K, Sonobe Y, Ghadge G, Pytel P, Roos RP. TDP-43 proteinopathy in Theiler's murine encephalomyelitis virus infection. PLoS Pathog 2019; 15:e1007574. [PMID: 30742696 PMCID: PMC6390522 DOI: 10.1371/journal.ppat.1007574] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/22/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
TDP-43, an RNA-binding protein that is primarily nuclear and important in splicing and RNA metabolism, is mislocalized from the nucleus to the cytoplasm of neural cells in amyotrophic lateral sclerosis (ALS), and contributes to disease. We sought to investigate whether TDP-43 is mislocalized in infections with the acute neuronal GDVII strain and the persistent demyelinating DA strain of Theiler's virus murine encephalomyelitis virus (TMEV), a member of the Cardiovirus genus of Picornaviridae because: i) L protein of both strains is known to disrupt nucleocytoplasmic transport, including transport of polypyrimidine tract binding protein, an RNA-binding protein, ii) motor neurons and oligodendrocytes are targeted in both TMEV infection and ALS. TDP-43 phosphorylation, cleavage, and cytoplasmic mislocalization to an aggresome were observed in wild type TMEV-infected cultured cells, with predicted splicing abnormalities. In contrast, cells infected with DA and GDVII strains that have L deletion had rare TDP-43 mislocalization and no aggresome formation. TDP-43 mislocalization was also present in neural cells of TMEV acutely-infected mice. Of note, TDP-43 was mislocalized six weeks after DA infection to the cytoplasm of oligodendrocytes and other glial cells in demyelinating lesions of spinal white matter. A recent study showed that TDP-43 knock down in oligodendrocytes in mice led to demyelination and death of this neural cell [1], suggesting that TMEV infection mislocalization of TDP-43 and other RNA-binding proteins is predicted to disrupt key cellular processes and contribute to the pathogenesis of TMEV-induced diseases. Drugs that inhibit nuclear export may have a role in antiviral therapy.
Collapse
Affiliation(s)
- Katsuhisa Masaki
- Departments of Neurology, University of Chicago Medical Center, Chicago,
IL, United States of America
| | - Yoshifumi Sonobe
- Departments of Neurology, University of Chicago Medical Center, Chicago,
IL, United States of America
| | - Ghanashyam Ghadge
- Departments of Neurology, University of Chicago Medical Center, Chicago,
IL, United States of America
| | - Peter Pytel
- Departments of Pathology, University of Chicago Medical Center, Chicago,
IL, United States of America
| | - Raymond P. Roos
- Departments of Neurology, University of Chicago Medical Center, Chicago,
IL, United States of America
| |
Collapse
|
13
|
Chatterjee M, Koel-Simmelink MJ, Verberk IM, Killestein J, Vrenken H, Enzinger C, Ropele S, Fazekas F, Khalil M, Teunissen CE. Contactin-1 and contactin-2 in cerebrospinal fluid as potential biomarkers for axonal domain dysfunction in multiple sclerosis. Mult Scler J Exp Transl Clin 2018; 4:2055217318819535. [PMID: 30627437 PMCID: PMC6305953 DOI: 10.1177/2055217318819535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/31/2018] [Accepted: 11/22/2018] [Indexed: 01/06/2023] Open
Abstract
Background Contactin-1 and contactin-2 are important for the maintenance of axonal integrity. Objective To investigate the cerebrospinal fluid levels of contactin-1 and contactin-2 in multiple sclerosis patients and controls, and their potential use as prognostic markers for neurodegeneration. Methods Cerebrospinal fluid contactin-1 and contactin-2 were measured in relapsing–remitting multiple sclerosis (n = 41), secondary progressive multiple sclerosis (n = 26) and primary progressive multiple sclerosis patients (n = 13) and controls (n = 18), and in a second cohort with clinically isolated syndrome patients (n = 88, median clinical follow-up period of 2.3 years) and controls (n = 20). Correlations/linear regressions were analysed with other baseline cerebrospinal fluid axonal damage markers and cross-sectional/longitudinal magnetic resonance imaging features. Results Contactin-1 and contactin-2 levels were up to 1.4-fold reduced in relapsing–remitting multiple sclerosis (contactin-1: p = 0.01, contactin-2: p = 0.02) and secondary progressive multiple sclerosis (contactin-1: p = 0.05, contactin-2: p = 0.02) compared to controls. In clinically isolated syndrome patients, contactin-1 tended to increase when compared to controls (p = 0.07). Both contactin-1 and contactin-2 correlated with neurofilament light, neurofilament heavy and magnetic resonance imaging metrics differently depending on the disease stage. In clinically isolated syndrome patients, baseline contactin-2 level (β = –0.42, p = 0.04) predicted the longitudinal decline in cortex volume. Conclusion Cerebrospinal fluid contactin-1 and contactin-2 reveal axonal dysfunction in various stages of multiple sclerosis and their inclusion to the biomarker panel may provide better insight into the extent of axonal damage/dysfunction.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Marleen Ja Koel-Simmelink
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Inge Mw Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Hugo Vrenken
- Department of Radiology, VU University Medical Center, Amsterdam UMC, The Netherlands
| | | | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Austria
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| |
Collapse
|
14
|
Abstract
Although the core concept of remyelination - based on the activation, migration, proliferation and differentiation of CNS progenitors - has not changed over the past 20 years, our understanding of the detailed mechanisms that underlie this process has developed considerably. We can now decorate the central events of remyelination with a host of pathways, molecules, mediators and cells, revealing a complex and precisely orchestrated process. These advances have led to recent drug-based and cell-based clinical trials for myelin diseases and have opened up hitherto unrecognized opportunities for drug-based approaches to therapeutically enhance remyelination.
Collapse
|
15
|
Stangel M, Kuhlmann T, Matthews PM, Kilpatrick TJ. Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nat Rev Neurol 2017; 13:742-754. [PMID: 29146953 DOI: 10.1038/nrneurol.2017.139] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Remyelination in the CNS is the natural process of damage repair in demyelinating diseases such as multiple sclerosis (MS). However, remyelination becomes inadequate in many people with MS, which results in axonal degeneration and clinical disability. Enhancement of remyelination is a logical therapeutic goal; nevertheless, all currently licensed therapies for MS are immunomodulatory and do not support remyelination directly. Several molecular pathways have been identified as potential therapeutic targets to induce remyelination, and some of these have now been assessed in proof-of-concept clinical trials. However, trial design faces several obstacles: optimal clinical or paraclinical outcome measures to assess remyelination remain ill-defined, and identification of the ideal timing of therapy is also a crucial issue. In addition, realistic expectations are needed concerning the probable benefits of such therapies. Nevertheless, approaches that enhance remyelination are likely to be protective for axons and so could prevent long-term neurodegeneration. Future MS treatment paradigms, therefore, are likely to comprise a combinatorial approach that involves both immunomodulatory and regenerative treatments.
Collapse
Affiliation(s)
- Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany
| | - Paul M Matthews
- Division of Brain Sciences, Department of Medicine, and UK Dementia Research Institute, Imperial College London, Burlington Danes, Hammersmith Hospital, DuCane Road, London W12 0NN, UK
| | - Trevor J Kilpatrick
- Department of Anatomy and Neuroscience and Melbourne Neuroscience Institute, University of Melbourne, 30 Royal Parade, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Axonal transport deficits in multiple sclerosis: spiraling into the abyss. Acta Neuropathol 2017; 134:1-14. [PMID: 28315956 PMCID: PMC5486629 DOI: 10.1007/s00401-017-1697-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022]
Abstract
The transport of mitochondria and other cellular components along the axonal microtubule cytoskeleton plays an essential role in neuronal survival. Defects in this system have been linked to a large number of neurological disorders. In multiple sclerosis (MS) and associated models such as experimental autoimmune encephalomyelitis (EAE), alterations in axonal transport have been shown to exist before neurodegeneration occurs. Genome-wide association (GWA) studies have linked several motor proteins to MS susceptibility, while neuropathological studies have shown accumulations of proteins and organelles suggestive for transport deficits. A reduced effectiveness of axonal transport can lead to neurodegeneration through inhibition of mitochondrial motility, disruption of axoglial interaction or prevention of remyelination. In MS, demyelination leads to dysregulation of axonal transport, aggravated by the effects of TNF-alpha, nitric oxide and glutamate on the cytoskeleton. The combined effect of all these pathways is a vicious cycle in which a defective axonal transport system leads to an increase in ATP consumption through loss of membrane organization and a reduction in available ATP through inhibition of mitochondrial transport, resulting in even further inhibition of transport. The persistent activity of this positive feedback loop contributes to neurodegeneration in MS.
Collapse
|
17
|
Wang C, Zhang CJ, Martin BN, Bulek K, Kang Z, Zhao J, Bian G, Carman JA, Gao J, Dongre A, Xue H, Miller SD, Qian Y, Hambardzumyan D, Hamilton T, Ransohoff RM, Li X. IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nat Commun 2017; 8:15508. [PMID: 28561022 PMCID: PMC5460031 DOI: 10.1038/ncomms15508] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/29/2017] [Indexed: 12/16/2022] Open
Abstract
NOTCH1 signalling contributes to defective remyelination by impairing differentiation of oligodendrocyte progenitor cells (OPCs). Here we report that IL-17 stimulation induces NOTCH1 activation in OPCs, contributing to Th17-mediated demyelinating disease. Mechanistically, IL-17R interacts with NOTCH1 via the extracellular domain, which facilitates the cleavage of NOTHC1 intracellular domain (NICD1). IL-17-induced NOTCH1 activation results in the interaction of IL-17R adaptor Act1 with NICD1, followed by the translocation of the Act1-NICD1 complex into the nucleus. Act1-NICD1 are recruited to the promoters of several NOTCH1 target genes (including STEAP4, a metalloreductase important for inflammation and cell proliferation) that are specifically induced in the spinal cord by Th17 cells. A decoy peptide disrupting the IL-17RA-NOTCH1 interaction inhibits IL-17-induced NOTCH1 activation and attenuates Th17-mediated experimental autoimmune encephalitis (EAE). Taken together, these findings demonstrate critical crosstalk between the IL-17 and NOTCH1 pathway, regulating Th17-induced inflammatory and proliferative genes to promote demyelinating disease.
Collapse
Affiliation(s)
- Chenhui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Cun-Jin Zhang
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of Neurology and Immunology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bradley N. Martin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Katarzyna Bulek
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Zizhen Kang
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Shanghai Institute of Immunology, Shanghai Jiaotong University of School of Medicine, 280 South Chongqing Rd, Huangpu, Shanghai 200025, China
| | - Junjie Zhao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Guanglin Bian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Julie A. Carman
- Discovery Biology, Bristol-Myers Squibb, Princeton, New Jersey 08540, USA
| | - Ji Gao
- Discovery Biology, Bristol-Myers Squibb, Princeton, New Jersey 08540, USA
| | - Ashok Dongre
- Discovery Biology, Bristol-Myers Squibb, Princeton, New Jersey 08540, USA
| | - Haibo Xue
- The Department of Endocrinology and Metabolism, Binzhou Medical University Hospital. Binzhou City, Shandong Province 256603, China
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Youcun Qian
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Dolores Hambardzumyan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University. 201 Dowman Drive. Atlanta, Georgia 30322 USA
| | - Tom Hamilton
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| |
Collapse
|
18
|
Laitman BM, Mariani JN, Zhang C, Sawai S, John GR. Karyopherin Alpha Proteins Regulate Oligodendrocyte Differentiation. PLoS One 2017; 12:e0170477. [PMID: 28107514 PMCID: PMC5249183 DOI: 10.1371/journal.pone.0170477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
Proper regulation of the coordinated transcriptional program that drives oligodendrocyte (OL) differentiation is essential for central nervous system myelin formation and repair. Nuclear import, mediated in part by a group of karyopherin alpha (Kpna) proteins, regulates transcription factor access to the genome. Understanding how canonical nuclear import functions to control genomic access in OL differentiation may aid in the creation of novel therapeutics to stimulate myelination and remyelination. Here, we show that members of the Kpna family regulate OL differentiation, and may play distinct roles downstream of different pro-myelinating stimuli. Multiple family members are expressed in OLs, and their pharmacologic inactivation dose-dependently decreases the rate of differentiation. Additionally, upon differentiation, the three major Kpna subtypes (P/α2, Q/α3, S/α1) display differential responses to the pro-myelinating cues T3 and CNTF. Most notably, the Q/α3 karyopherin Kpna4 is strongly upregulated by CNTF treatment both compared with T3 treatment and other Kpna responses. Kpna4 inactivation results in inhibition of CNTF-induced OL differentiation, in the absence of changes in proliferation or viability. Collectively, these findings suggest that canonical nuclear import is an integral component of OL differentiation, and that specific Kpnas may serve vital and distinct functions downstream of different pro-myelinating cues.
Collapse
Affiliation(s)
- Benjamin M. Laitman
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
- * E-mail:
| | - John N. Mariani
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| | - Chi Zhang
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| | - Setsu Sawai
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| | - Gareth R. John
- Friedman Brain Institute, New York, New York, United States of America
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, New York, New York, United States of America
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, New York, United States of America
| |
Collapse
|
19
|
Tuand K, Stijnen P, Volders K, Declercq J, Nuytens K, Meulemans S, Creemers J. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription. PLoS One 2016; 11:e0151954. [PMID: 26999814 PMCID: PMC4801420 DOI: 10.1371/journal.pone.0151954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neurobeachin (NBEA) is an autism spectrum disorders (ASD) candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA)-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA), an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088) and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW). Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed. METHODS Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO) enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression. RESULTS Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated. CONCLUSION Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for neural development.
Collapse
Affiliation(s)
- Krizia Tuand
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | - Pieter Stijnen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Karolien Volders
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | | | - Kim Nuytens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | | | - John Creemers
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
20
|
Mukherjee S, Tucker-Burden C, Zhang C, Moberg K, Read R, Hadjipanayis C, Brat DJ. Drosophila Brat and Human Ortholog TRIM3 Maintain Stem Cell Equilibrium and Suppress Brain Tumorigenesis by Attenuating Notch Nuclear Transport. Cancer Res 2016; 76:2443-52. [PMID: 26893479 DOI: 10.1158/0008-5472.can-15-2299] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
Abstract
Cancer stem cells exert enormous influence on neoplastic behavior, in part by governing asymmetric cell division and the balance between self-renewal and multipotent differentiation. Growth is favored by deregulated stem cell division, which enhances the self-renewing population and diminishes the differentiation program. Mutation of a single gene in Drosophila, Brain Tumor (Brat), leads to disrupted asymmetric cell division resulting in dramatic neoplastic proliferation of neuroblasts and massive larval brain overgrowth. To uncover the mechanisms relevant to deregulated cell division in human glioma stem cells, we first developed a novel adult Drosophila brain tumor model using brat-RNAi driven by the neuroblast-specific promoter inscuteable Suppressing Brat in this population led to the accumulation of actively proliferating neuroblasts and a lethal brain tumor phenotype. brat-RNAi caused upregulation of Notch signaling, a node critical for self-renewal, by increasing protein expression and enhancing nuclear transport of Notch intracellular domain (NICD). In human glioblastoma, we demonstrated that the human ortholog of Drosophila Brat, tripartite motif-containing protein 3 (TRIM3), similarly suppressed NOTCH1 signaling and markedly attenuated the stem cell component. We also found that TRIM3 suppressed nuclear transport of active NOTCH1 (NICD) in glioblastoma and demonstrated that these effects are mediated by direct binding of TRIM3 to the Importin complex. Together, our results support a novel role for Brat/TRIM3 in maintaining stem cell equilibrium and suppressing tumor growth by regulating NICD nuclear transport. Cancer Res; 76(8); 2443-52. ©2016 AACR.
Collapse
Affiliation(s)
- Subhas Mukherjee
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Carol Tucker-Burden
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Changming Zhang
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Kenneth Moberg
- Department of Cell Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Renee Read
- Department of Pharmacology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Costas Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel J Brat
- Department of Pathology and Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
21
|
Hu Y, Chen F, Liu F, Liu X, Huang N, Cai X, Sun Y, Li A, Luo R. Overexpression of TIP30 inhibits the growth and invasion of glioma cells. Mol Med Rep 2015; 13:605-12. [PMID: 26718891 PMCID: PMC4686083 DOI: 10.3892/mmr.2015.4619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/04/2015] [Indexed: 12/15/2022] Open
Abstract
Glioma is an aggressive malignancy with limited effective treatment and poor prognosis. Therefore, the identification of novel prognostic markers and effective therapeutic targets is important for the treatment of human glioma. TIP30 is a tumor suppressor involved in the regulation of numerous cellular processes, including tumor cell growth, metastasis, and angiogenesis in various human cancers. The present study investigated whether Tat-interacting protein (TIP)30 was able to regulate tumorigenesis and predict the clinical outcome of patients with glioma. A total of 92 human glioma tissue samples and 10 normal brain tissue samples were examined by immunostaining. The results indicated that the expression levels of TIP30 significantly decreased in glioma tissue samples. as compared with normal brain tissue samples. Furthermore, TIP30 expression was inversely correlated with tumor histological classification, pathological grade, tumor size, and epidermal growth factor receptor (EGFR) expression; however, no association was detected between TIP30 expression and patient age and gender. In addition, patients with positive TIP30 expression exhibited significantly longer median overall survival rates, as compared with those with negative TIP30 expression. In vitro experiments revealed that upregulation of TIP30 expression by lentiviral vector transfection inhibited cell growth and induced cell apoptosis, as determined by MTT assay and Annexin V-fluorescein isothiocyanate staining, respectively. In addition, TIP30 expression markedly attenuated cell migration and invasion, as determined by wound healing and transwell assays. Upregulation of TIP30 expression in glioma cells decreased the expression levels of EGFR and its associated downstream molecules phosphorylated extracellular signal-regulated kinases (ERK) and phosphorylated AKT, as determined by western blot analysis. The results of the present study indicated that TIP30 may suppress oncogenesis and glioma progression, thereby improving the prognosis of patients with glioma. Therefore, TIP30 may prove useful as a prognostic biomarker, and as a potential target for glioma therapy.
Collapse
Affiliation(s)
- Yingying Hu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Fengsheng Chen
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Feiye Liu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Xinhui Liu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Na Huang
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Xiaoli Cai
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Yi Sun
- Cancer Center, 3rd People's Hospital, Dongguan, Guangdong 523326, P.R. China
| | - Aimin Li
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| |
Collapse
|
22
|
Rolyan H, Tyurina YY, Hernandez M, Amoscato AA, Sparvero LJ, Nmezi BC, Lu Y, Estécio MRH, Lin K, Chen J, He RR, Gong P, Rigatti LH, Dupree J, Bayır H, Kagan VE, Casaccia P, Padiath QS. Defects of Lipid Synthesis Are Linked to the Age-Dependent Demyelination Caused by Lamin B1 Overexpression. J Neurosci 2015; 35:12002-17. [PMID: 26311780 PMCID: PMC4549407 DOI: 10.1523/jneurosci.1668-15.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/24/2015] [Accepted: 07/23/2015] [Indexed: 11/21/2022] Open
Abstract
Lamin B1 is a component of the nuclear lamina and plays a critical role in maintaining nuclear architecture, regulating gene expression and modulating chromatin positioning. We have previously shown that LMNB1 gene duplications cause autosomal dominant leukodystrophy (ADLD), a fatal adult onset demyelinating disease. The mechanisms by which increased LMNB1 levels cause ADLD are unclear. To address this, we used a transgenic mouse model where Lamin B1 overexpression is targeted to oligodendrocytes. These mice showed severe vacuolar degeneration of the spinal cord white matter together with marked astrogliosis, microglial infiltration, and secondary axonal damage. Oligodendrocytes in the transgenic mice revealed alterations in histone modifications favoring a transcriptionally repressed state. Chromatin changes were accompanied by reduced expression of genes involved in lipid synthesis pathways, many of which are known to play important roles in myelin regulation and are preferentially expressed in oligodendrocytes. Decreased lipogenic gene expression resulted in a significant reduction in multiple classes of lipids involved in myelin formation. Many of these gene expression changes and lipid alterations were observed even before the onset of the phenotype, suggesting a causal role. Our findings establish, for the first time, a link between LMNB1 and lipid synthesis in oligodendrocytes, and provide a mechanistic framework to explain the age dependence and white matter involvement of the disease phenotype. These results have implications for disease pathogenesis and may also shed light on the regulation of lipid synthesis pathways in myelin maintenance and turnover. SIGNIFICANCE STATEMENT Autosomal dominant leukodystrophy (ADLD) is fatal neurological disorder caused by increased levels of the nuclear protein, Lamin B1. The disease is characterized by an age-dependent loss of myelin, the fatty sheath that covers nerve fibers. We have studied a mouse model where Lamin B1 level are increased in oligodendrocytes, the cell type that produces myelin in the CNS. We demonstrate that destruction of myelin in the spinal cord is responsible for the degenerative phenotype in our mouse model. We show that this degeneration is mediated by reduced expression of lipid synthesis genes and the subsequent reduction in myelin enriched lipids. These findings provide a mechanistic framework to explain the age dependence and tissue specificity of the ADLD disease phenotype.
Collapse
Affiliation(s)
- Harshvardhan Rolyan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15216
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Marylens Hernandez
- Friedman Brain Institute Center for Neural Repair, Department of Neuroscience, and Graduate School of Biological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Louis J Sparvero
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Bruce C Nmezi
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15216
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Marcos R H Estécio
- Department of Epigenetics and Molecular Carcinogenesis, and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Junda Chen
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15216
| | - Rong-Rong He
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Pin Gong
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Lora H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jeffrey Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, and
| | - Hülya Bayır
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, Safar Center for Resuscitation Research and Departments of Critical Care Medicine
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, Pharmacology and Chemical Biology, Chemistry, and Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Patrizia Casaccia
- Graduate School of Biological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Quasar S Padiath
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15216,
| |
Collapse
|
23
|
Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis? Int J Mol Sci 2015; 16:15057-85. [PMID: 26151843 PMCID: PMC4519887 DOI: 10.3390/ijms160715057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS.
Collapse
|
24
|
Kremer D, Hartung HP, Stangel M, Küry P. [New therapeutic strategies for remyelination in multiple sclerosis]. DER NERVENARZT 2015; 86:934-46. [PMID: 26122637 DOI: 10.1007/s00115-014-4249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Multiple sclerosis (MS) is characterized by oligodendrocyte death and myelin sheath destruction of the central nervous system (CNS) in response to autoinflammatory processes. Besides demyelination axonal degeneration constitutes the second histopathological hallmark of this disease. A large number of immunomodulatory and targeted immunosuppression treatments have been approved for relapsing remitting (RR) MS where they effectively reduce relapse rates; however, currently no treatment options exist to repair injured axonal tracts or myelin damage that accumulates over time particularly in progressive MS. In light of the growing available therapeutic repertoire of highly potent immunomodulatory medications there is an increasing interest in the development of therapies aimed at neutralizing neurodegenerative damage. Endogenous remyelination processes occur mainly as a result of oligodendrocyte precursor cell (OPC) activation, recruitment and maturation; however, this repair activity appears to be limited and increasingly fails during disease progression. Based on these observations OPCs are considered as promising targets for the regenerative treatment of all stages of MS. This article presents an overview of approved medications with a suggested role in regeneration, regenerative treatments that are currently being tested in clinical trials, as well as promising future therapeutic approaches derived from basic glial cell research aiming at the promotion of the endogenous repair activity of the brain.
Collapse
Affiliation(s)
- D Kremer
- Neurologische Klinik, Medizinische Fakultät, Heinrich-Heine-Universität, Moorenstr. 5, 40225, Düsseldorf , Deutschland
| | | | | | | |
Collapse
|
25
|
Nadeem M, Sklover L, Sloane JA. Targeting remyelination treatment for multiple sclerosis. World J Neurol 2015; 5:5-16. [DOI: 10.5316/wjn.v5.i1.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/29/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Since disability in multiple sclerosis (MS) is a product of neurodegeneration and deficient remyelination, the ability to enhance neuroregeneration and myelin regeneration in MS is an enticing goal for MS drug development. In particular, remyelination treatments could promote return of neurological function and also prevent further axonal loss and neurodegeneration in MS due to trophic effects of myelin. The study of remyelination has advanced dramatically in the last several years such that a number of pathways inhibiting remyelination have been discovered, including those involving LINGO-1, Notch-1, hyaluronan, retinoid X receptor, and wnt/ß-catenin. Other approaches such as high throughput drug screening for remyelination drugs have caught fire, with identification of dozens of known drugs with oligodendrocyte maturation stimulatory effects. Several drugs identified through screens and other mechanisms are in the process of being further evaluated for remyelination in MS and MS models. We discuss the potential molecular targets and the variety of mechanisms towards drug identification and development in remyelination for MS.
Collapse
|
26
|
Abstract
Multiple sclerosis is an autoimmune disease of the CNS resulting in degeneration of myelin sheaths and loss of oligodendrocytes, which means that protection and electrical insulation of axons and rapid signal propagation are impaired, leading to axonal damage and permanent disabilities. Partial replacement of lost oligodendrocytes and remyelination can occur as a result of activation and recruitment of resident oligodendroglial precursor cells. However, the overall remyelination capacity remains inefficient because precursor cells often fail to generate new oligodendrocytes. Increasing evidence points to the existence of several molecular inhibitors that act on these cells and interfere with their cellular maturation. The p57kip2 gene encodes one such potent inhibitor of oligodendroglial differentiation and this study sheds light on the underlying mode of action. We found that subcellular distribution of the p57kip2 protein changed during differentiation of rat, mouse, and human oligodendroglial cells both in vivo and in vitro. Nuclear export of p57kip2 was correlated with promoted myelin expression, higher morphological phenotypes, and enhanced myelination in vitro. In contrast, nuclear accumulation of p57kip2 resulted in blocked oligodendroglial differentiation. Experimental evidence suggests that the inhibitory role of p57kip2 depends on specific interactions with binding proteins such as LIMK-1, CDK2, Mash1, and Hes5 either by controlling their site of action or their activity. Because functional restoration in demyelinating diseases critically depends on the successful generation of oligodendroglial cells, a therapeutic need that is currently unmet, the regulatory mechanism described here might be of particular interest for identifying suitable drug targets and devising novel therapeutic approaches.
Collapse
|
27
|
Michailidou I, de Vries HE, Hol EM, van Strien ME. Activation of endogenous neural stem cells for multiple sclerosis therapy. Front Neurosci 2015; 8:454. [PMID: 25653584 PMCID: PMC4299409 DOI: 10.3389/fnins.2014.00454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic neurological disability. A promising perspective for future therapy of MS is the regeneration of lesions with replacement of the damaged oligodendrocytes or neurons. Therapies targeting to the enhancement of endogenous remyelination, aim to promote the activation of either the parenchymal oligodendrocyte progenitor cells or the subventricular zone-derived neural stem cells (NSCs). Less studied but highly potent, is the strategy of neuronal regeneration with endogenous NSCs that although being linked to numerous limitations, is anticipated to ameliorate cognitive disability in MS. Focusing on the forebrain, this review highlights the role of NSCs in the regeneration of MS lesions.
Collapse
Affiliation(s)
- Iliana Michailidou
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center Amsterdam, Netherlands
| | - Elly M Hol
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands ; Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands ; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Miriam E van Strien
- Department of Astrocyte Biology and Neurodegeneration, The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Sciences Amsterdam, Netherlands ; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
28
|
Jennings AR, Carroll WM. Oligodendrocyte Lineage Cells in Chronic Demyelination of Multiple Sclerosis Optic Nerve. Brain Pathol 2014; 25:517-30. [PMID: 25175564 PMCID: PMC8028859 DOI: 10.1111/bpa.12193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/26/2014] [Indexed: 11/27/2022] Open
Abstract
Reports that chronically demyelinated multiple sclerosis brain and spinal cord lesions contained immature oligodendrocyte lineage cells have generated major interest aimed at the potential for promotion of endogenous repair. Despite the prominence of the optic nerve as a lesion site and its importance in clinical disease assessment, no detailed studies of multiple sclerosis‐affected optic nerve exist. This study aims to provide insight into the cellular pathology of chronic demyelination in multiple sclerosis through direct morphological and immunohistochemical analysis of optic nerve in conjunction with observations from an experimental cat optic nerve model of successful remyelination. Myelin staining was followed by immunohistochemistry to differentially label neuroglia. Digitally immortalized sections were then analyzed to generate quantification data and antigenic phenotypes including maturational stages within the oligodendrocyte lineage. It was found that some chronically demyelinated multiple sclerosis optic nerve lesions contained oligodendroglial cells and that heterogeneity existed in the presence of myelin sheaths, oligodendrocyte maturational stages and extent of axonal investment. The findings advance our understanding of oligodendrocyte activity in chronically demyelinated human optic nerve and may have implications for studies aimed at enhancement of endogenous repair in multiple sclerosis.
Collapse
Affiliation(s)
- Alison Ruth Jennings
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia
| | - William M Carroll
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia.,Department of Neurology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| |
Collapse
|
29
|
Contribution of TIP30 to chemoresistance in laryngeal carcinoma. Cell Death Dis 2014; 5:e1468. [PMID: 25321475 PMCID: PMC4237250 DOI: 10.1038/cddis.2014.424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 12/28/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the most common carcinomas of the head and neck. Despite advances in diagnosis and treatment, the survival of patients with LSCC has not improved in the past two decades. TIP30, a newly identified tumour suppressor, appears to be involved in multiple processes during tumour development. Here, we investigated the involvement of TIP30 in chemoresistance of LSCC in vitro and in vivo. We showed that TIP30 expression decreased significantly in drug-selected cells (DSCs) of laryngeal carcinoma. Suppressing TIP30 enhanced resistance capability to multiple chemotherapy drugs, cell proliferation and self-renewal in Hep2 cells. Additionally, decreased self-renewal capacity and chemotherapeutic resistance were observed in DSCs overexpressing TIP30. Furthermore, TIP30 negatively regulated tumourigenesis and chemoresistance in LSCC cells subcutaneously transplanted into nude mice. Moreover, decreased TIP30 expression contributed to chemoresistance, self-renewal and proliferation of LSCC cells via nuclearlisation of β-catenin, a cell–cell adhesion and stem cell renewal regulator. Consistently, Kaplan–Meier and Cox proportional hazards regression modelling analyses showed that decreased TIP30 expression independently predicted poor survival in patients with LSCC. Taken together, our results reveal that TIP30 has a crucial role in chemoresistance of LSCC through the AKT/glycogen synthase kinase-3β/β-catenin signalling pathway and may be a promising candidate for improving LSCC chemotherapy.
Collapse
|
30
|
Abstract
Nuclear pore complexes (NPCs) are the sole gateways between the nucleus and the cytoplasm of eukaryotic cells and they mediate all macromolecular trafficking between these cellular compartments. Nucleocytoplasmic transport is highly selective and precisely regulated and as such an important aspect of normal cellular function. Defects in this process or in its machinery have been linked to various human diseases, including cancer. Nucleoporins, which are about 30 proteins that built up NPCs, are critical players in nucleocytoplasmic transport and have also been shown to be key players in numerous other cellular processes, such as cell cycle control and gene expression regulation. This review will focus on the three nucleoporins Nup98, Nup214, and Nup358. Common to them is their significance in nucleocytoplasmic transport, their multiple other functions, and being targets for chromosomal translocations that lead to haematopoietic malignancies, in particular acute myeloid leukaemia. The underlying molecular mechanisms of nucleoporin-associated leukaemias are only poorly understood but share some characteristics and are distinguished by their poor prognosis and therapy outcome.
Collapse
|
31
|
Decreased TIP30 promotes Snail-mediated epithelial-mesenchymal transition and tumor-initiating properties in hepatocellular carcinoma. Oncogene 2014; 34:1420-31. [PMID: 24681951 DOI: 10.1038/onc.2014.73] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/27/2014] [Accepted: 02/19/2014] [Indexed: 12/11/2022]
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) is mainly due to tumor recurrence and metastases. Recently, epithelial-mesenchymal transition (EMT) has been implicated in tumor invasion and metastasis. However, the underlying molecular mechanisms are yet to be elucidated. Here, we show that 30-kDa Tat-interacting protein (TIP30), also called CC3, is significantly downregulated during transforming growth factor-β-induced EMT. In our in vitro and in vivo studies, we show that decreased TIP30 expression leads to EMT, as well as enhanced motility and invasion of HCC cells. Also, increased self-renewal ability and chemotherapeutic resistance are observed with TIP30 depletion. Moreover, Snail is one of the key transcription factors promoting EMT, and overexpression of TIP30 greatly decreased nucleic accumulation in Snail through the regulation of intracellular localization. Small interfering RNAs targeting Snail attenuated EMT and tumor-initiating properties induced by TIP30 deficiency. We further confirmed that TIP30 competitively interrupted the interaction of Snail with importin-β2 to block the nuclear import of Snail. Consistently, TIP30 expression significantly correlates with E-cadherin expression in HCC patients. TIP30 or combination of E-cadherin is a powerful marker in predicting the prognosis of HCC. Taken together, our results suggest a novel and critical role of TIP30 involved in HCC progression and aggressiveness.
Collapse
|
32
|
Maki T, Liang AC, Miyamoto N, Lo EH, Arai K. Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases. Front Cell Neurosci 2013; 7:275. [PMID: 24421755 PMCID: PMC3872787 DOI: 10.3389/fncel.2013.00275] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/10/2013] [Indexed: 12/31/2022] Open
Abstract
White matter dysfunction is an important part of many CNS disorders including multiple sclerosis (MS) and vascular dementia. Within injured areas, myelin loss and oligodendrocyte death may trigger endogenous attempts at regeneration. However, during disease progression, remyelination failure may eventually occur due to impaired survival/proliferation, migration/recruitment, and differentiation of oligodendrocyte precursor cells (OPCs). The ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) are the main sources of neural stem/progenitor cells (NSPCs), which can give rise to neurons as well as OPCs. Under normal conditions in the adult brain, the V-SVZ progenitors generate a large number of neurons with a small number of oligodendrocyte lineage cells. However, after demyelination, the fate of V-SVZ-derived progenitor cells shifts from neurons to OPCs, and these newly generated OPCs migrate to the demyelinating lesions to ease white matter damage. In this mini-review, we will summarize the recent studies on extrinsic (e.g., vasculature, extracellular matrix (ECM), cerebrospinal fluid (CSF)) and intrinsic (e.g., transcription factors, epigenetic modifiers) factors, which mediate oligodendrocyte generation from the V-SVZ progenitor cells. A deeper understanding of the mechanisms that regulate the fate of V-SVZ progenitor cells may lead to new therapeutic approaches for ameliorating white matter dysfunction and damage in CNS disorders.
Collapse
Affiliation(s)
- Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Nobukazu Miyamoto
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
33
|
Notch signaling and T-helper cells in EAE/MS. Clin Dev Immunol 2013; 2013:570731. [PMID: 24324509 PMCID: PMC3845449 DOI: 10.1155/2013/570731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 09/25/2013] [Indexed: 12/24/2022]
Abstract
The Notch signaling pathway preservation across species hints to the indispensable role it plays during evolution. Over the last decade the science community has extensively studied the Notch signaling pathway, with Notch emerging as a key player in embryogenesis, tissue homeostasis, angiogenesis, and immunoregulation. Multiple sclerosis (MS) is an incurable yet treatable autoimmune chronic inflammatory disease of the central nervous system. The aim of this review is to provide a brief description of the Notch signaling pathway, and summarize the current literature implicating Notch in the pathogenesis of MS.
Collapse
|
34
|
Promoting return of function in multiple sclerosis: An integrated approach. Mult Scler Relat Disord 2013; 2:S2211-0348(13)00044-8. [PMID: 24363985 DOI: 10.1016/j.msard.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis is a disease characterized by inflammatory demyelination, axonal degeneration and progressive brain atrophy. Most of the currently available disease modifying agents proved to be very effective in managing the relapse rate, however progressive neuronal damage continues to occur and leads to progressive accumulation of irreversible disability. For this reason, any therapeutic strategy aimed at restoration of function must take into account not only immunomodulation, but also axonal protection and new myelin formation. We further highlight the importance of an holistic approach, which considers the variability of therapeutic responsiveness as the result of the interplay between genetic differences and the epigenome, which is in turn affected by gender, age and differences in life style including diet, exercise, smoking and social interaction.
Collapse
|
35
|
Tocopherol derivative TFA-12 promotes myelin repair in experimental models of multiple sclerosis. J Neurosci 2013; 33:11633-42. [PMID: 23843531 DOI: 10.1523/jneurosci.0774-13.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the CNS that is associated with demyelination and axonal loss, resulting in severe neurological handicap. Current MS therapies mostly target neuroinflammation but have only a little impact on CNS myelin repair. Progress toward treatments that enhance remyelination would therefore represent major advances in MS treatment. Here, we examined the ability of TFA-12, a new synthetic compound belonging to tocopherol long-chain fatty alcohols, to promote oligodendrocyte regeneration and remyelination in experimental models of MS. We showed that TFA-12 significantly ameliorates neurological deficit and severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) in mice. Histological evaluation of mouse EAE spinal cords showed that TFA-12 treatment reduces inflammation, astrogliosis, and myelin loss. Additionally, we demonstrated that TFA-12 accelerates remyelination of focal demyelinated lesions induced by lysolecithin injections. We also found that this compound induces the differentiation of oligodendrocyte precursor cells into mature oligodendrocytes through the inhibition of the Notch/Jagged1 signaling pathway. Altogether, our data provide important proof of principle indicating that TFA-12 could be a potential therapeutic compound for myelin repair in MS.
Collapse
|
36
|
Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci 2013; 3:1282-324. [PMID: 24961530 PMCID: PMC4061877 DOI: 10.3390/brainsci3031282] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells) and B cells are involved in this disorder, thus new MS therapies seek damage prevention by resetting multiple components of the immune system. The currently approved therapies are immunoregulatory and reduce the number and rate of lesion formation but are only partially effective. This review summarizes current understanding of the processes at issue: myelination, demyelination and remyelination—with emphasis upon myelin composition/architecture and oligodendrocyte maturation and differentiation. The translational options target oligodendrocyte protection and myelin repair in animal models and assess their relevance in human. Remyelination may be enhanced by signals that promote myelin formation and repair. The crucial question of why remyelination fails is approached is several ways by examining the role in remyelination of available MS medications and avenues being actively pursued to promote remyelination including: (i) cytokine-based immune-intervention (targeting calpain inhibition), (ii) antigen-based immunomodulation (targeting glycolipid-reactive iNKT cells and sphingoid mediated inflammation) and (iii) recombinant monoclonal antibodies-induced remyelination.
Collapse
|
37
|
Nagara Y, Tateishi T, Yamasaki R, Hayashi S, Kawamura M, Kikuchi H, Iinuma KM, Tanaka M, Iwaki T, Matsushita T, Ohyagi Y, Kira JI. Impaired cytoplasmic-nuclear transport of hypoxia-inducible factor-1α in amyotrophic lateral sclerosis. Brain Pathol 2013; 23:534-46. [PMID: 23368766 DOI: 10.1111/bpa.12040] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/25/2013] [Indexed: 12/14/2022] Open
Abstract
We investigated the mechanisms underlying abnormal vascular endothelial growth factor (VEGF) production in amyotrophic lateral sclerosis (ALS). We immunohistochemically studied VEGF, its receptors VEGFR1 and 2, and hypoxia-inducible factor-1α (HIF-1α) in autopsied ALS spinal cords. We also chronologically assessed the expression of HIF-1α, karyopherin β1, karyopherin β-cargo protein complex inhibitors and nuclear pore complex proteins in G93A mutant superoxide dismutase 1 (mSOD1) transgenic mice at presymptomatic, symptomatic and end stages. In ALS patients, compared with controls, HIF-1α immunoreactivity in the cytoplasm of anterior horn cells (AHCs) was significantly increased, while immunoreactivities for VEGF and VEGFRs were significantly decreased. Similar changes in HIF-1α and VEGF levels were observed in mSOD1 transgenic mice. HIF-1α co-localized with karyopherin β1 in the cytoplasm of AHCs and karyopherin β1 co-localized with nucleoporin 62 (Nup62) on the nuclear envelope. From the presymptomatic stage of mSOD1 transgenic mice, karyopherin β1 immunoreactivity in AHC nuclei significantly decreased and morphological irregularities of the Nup62-immunostained nuclear envelope became more pronounced with disease progression. Thus, in AHCs from mSOD1 transgenic mice, transport of cytoplasmic HIF-1α to the nuclear envelope and into the nucleus is impaired from the presymptomatic stage, suggesting that impaired cytoplasmic-nuclear transport of HIF-1α through the nuclear pore might precede motor neuron degeneration.
Collapse
Affiliation(s)
- Yuko Nagara
- Department of Neurology, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system characterized by infiltration of immune cells and progressive damage to myelin and axons. All therapeutics used to treat MS have been developed to target an overactive immune response, with aims to reduce disease activity. Chronic demyelinated axons are further prone to irreversible damage and death, and it is imperative that new therapies address this critical issue. Remyelination, the generation of new myelin in the adult nervous system, is an endogenous repair mechanism that restores function of denuded axons and delays their deterioration. Although remyelination can be extensive in some patients, the majority of cases limit repair only to the acute phase of disease. A significant current drive in new MS therapeutics is to identify targets that can promote remyelination by boosting endogenous oligodendrocyte precursor cells to form new myelin. Also, a number of inhibitory pathways have been identified in chronic MS lesions that prevent oligodendrocyte precursor cells from being properly recruited to demyelinated lesions or interfere with their differentiation to myelin-forming oligodendrocytes. In this review, we introduce the phenomenon of remyelination from the view of experimental models and studies in MS patients, describe a potential role in remyelination for currently available MS mediations, and discuss many avenues that are being actively studied to promote remyelination. The next frontier in MS therapeutics will supplement immunomodulation with agents that directly foster myelin repair, with aims to delay disease progression and recover lost neurological functions.
Collapse
Affiliation(s)
- Michael B. Keough
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| |
Collapse
|
39
|
Nakahara J, Maeda M, Aiso S, Suzuki N. Current concepts in multiple sclerosis: autoimmunity versus oligodendrogliopathy. Clin Rev Allergy Immunol 2012; 42:26-34. [PMID: 22189514 DOI: 10.1007/s12016-011-8287-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that affects millions of patients worldwide. The current disease-modifying therapies (DMTs) that are widely used to treat MS only show modest effects. Because MS is a chronic disease, it is important to develop treatments that have better long-term efficacy. Recently, several new-generation DMTs have been developed, most of which target specific immune molecules based on the assumption that MS is an autoimmune disease. These DMTs are designed to inhibit inflammation that is thought to directly cause demyelination. Preliminary studies suggest that these new therapies are likely to show a greater effect in reducing relapses in early MS patients, although their long-term efficacy is still unknown. In contrast, it was recently reported that the initial course of MS does not significantly influence long-term disability and that disability increases approximately at the same rate despite variable relapse frequencies. Furthermore, new neuropathological evidence now argues against the autoimmune hypothesis and suggests that MS is a primary oligodendrogliopathy disease in which the inflammatory response may be a mere epiphenomenon. So can we be optimistic about the unproven long-term outcomes of new DMTs or should we reconsider the pathogenesis of MS when developing more disease-specific treatments?
Collapse
Affiliation(s)
- Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
40
|
Louvi A, Artavanis-Tsakonas S. Notch and disease: a growing field. Semin Cell Dev Biol 2012; 23:473-80. [PMID: 22373641 PMCID: PMC4369912 DOI: 10.1016/j.semcdb.2012.02.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 01/09/2023]
Abstract
Signals through the Notch receptors are used throughout development to control cellular fate choices. Our intention here is to provide an overview of the involvement of Notch signaling in human disease, which, keeping pace with the known biology of the pathway, manifests itself in a pleiotropic fashion. A pathway with such broad action in normal development, a profound involvement in the biology of adult stem cells and intricate and complex controls governing its activity, poses numerous challenges. We provide an overview of Notch related pathologies identified thus far and emphasize aspects that have been modeled in experimental systems in order to understand the underlying pathobiology and, hopefully, help the definition of rational therapeutic avenues.
Collapse
Affiliation(s)
- Angeliki Louvi
- Department of Neurosurgery and Neurobiology, Program on Neurogenetics, Yale School of Medicine, New Haven, CT, United States.
| | | |
Collapse
|
41
|
Chatel G, Fahrenkrog B. Dynamics and diverse functions of nuclear pore complex proteins. Nucleus 2012; 3:162-71. [PMID: 22555605 DOI: 10.4161/nucl.19674] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear pore complexes (NPCs) are best known for their central role in controlling the molecular trafficking between the cytoplasm and the nucleus. NPCs are assembled from about 30 different proteins and a growing body of evidence suggests that these nucleoporins are not only acting in the context of NPCs, but also in the nucleoplasm and cytoplasm. In this context it is well accepted that a set of nucleoporins are important regulators of a variety of mitotic processes, including kinetochore assembly, spindle checkpoint control and cytokinesis, whereas others associate with chromatin and administer gene expression. However, the functional importance of nucleoporins go far beyond these roles and this review will provide an overview of the latest insights into the versatility of metazoan nucleoporins with an emphasis on their roles in cell migration, cellular signaling and tissue-specific activities.
Collapse
Affiliation(s)
- Guillaume Chatel
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | | |
Collapse
|
42
|
Sato C, Zhao G, Ilagan MXG. An overview of notch signaling in adult tissue renewal and maintenance. Curr Alzheimer Res 2012; 9:227-40. [PMID: 21605032 PMCID: PMC4361071 DOI: 10.2174/156720512799361600] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/27/2011] [Accepted: 06/10/2011] [Indexed: 11/22/2022]
Abstract
The Notch pathway is a critical mediator of short-range cell-cell communication that is reiteratively used to regulate a diverse array of cellular processes during embryonic development and the renewal and maintenance of adult tissues. Most Notch-dependent processes utilize a core signaling mechanism that is dependent on regulated intramembrane proteolysis: Upon ligand binding, Notch receptors undergo ectodomain shedding by ADAM metalloproteases, followed by γ-secretase-mediated intramembrane proteolysis. This releases the Notch intracellular domain, which translocates to the nucleus to activate transcription. In this review, we highlight the roles of Notch signaling particularly in self-renewing tissues in adults and several human diseases and raise some key considerations when targeting ADAMs and γ-secretase as disease-modifying strategies for Alzheimer's Disease.
Collapse
Affiliation(s)
- Chihiro Sato
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA 63110
| | - Guojun Zhao
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA 63110
| | - Ma. Xenia G. Ilagan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA 63110
| |
Collapse
|
43
|
Patel JR, Klein RS. Mediators of oligodendrocyte differentiation during remyelination. FEBS Lett 2011; 585:3730-7. [PMID: 21539842 PMCID: PMC3158966 DOI: 10.1016/j.febslet.2011.04.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/17/2022]
Abstract
Myelin, a dielectric sheath that wraps large axons in the central and peripheral nervous systems, is essential for proper conductance of axon potentials. In multiple sclerosis (MS), autoimmune-mediated damage to myelin within the central nervous system (CNS) leads to progressive disability primarily due to limited endogenous repair of demyelination with associated axonal pathology. While treatments are available to limit demyelination, no treatments are available to promote myelin repair. Studies examining the molecular mechanisms that promote remyelination are therefore essential for identifying therapeutic targets to promote myelin repair and thereby limit disability in MS. Here, we present our current understanding of the critical extracellular and intracellular pathways that regulate the remyelinating capabilities of oligodendrocyte precursor cells (OPCs) within the adult CNS.
Collapse
Affiliation(s)
- Jigisha R. Patel
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Robyn S. Klein
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110
| |
Collapse
|
44
|
Huang JK, Fancy SPJ, Zhao C, Rowitch DH, ffrench-Constant C, Franklin RJM. Myelin regeneration in multiple sclerosis: targeting endogenous stem cells. Neurotherapeutics 2011; 8:650-8. [PMID: 21904791 PMCID: PMC3250284 DOI: 10.1007/s13311-011-0065-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Regeneration of myelin sheaths (remyelination) after central nervous system demyelination is important to restore saltatory conduction and to prevent axonal loss. In multiple sclerosis, the insufficiency of remyelination leads to the irreversible degeneration of axons and correlated clinical decline. Therefore, a regenerative strategy to encourage remyelination may protect axons and improve symptoms in multiple sclerosis. We highlight recent studies on factors that influence endogenous remyelination and potential promising pharmacological targets that may be considered for enhancing central nervous system remyelination.
Collapse
Affiliation(s)
- Jeffrey K. Huang
- MRC Cambridge Centre for Stem Cell Biology and Regenerative Medicine, and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, United Kingdom CB3 0ES
| | - Stephen P. J. Fancy
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA
| | - Chao Zhao
- MRC Cambridge Centre for Stem Cell Biology and Regenerative Medicine, and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, United Kingdom CB3 0ES
| | - David H. Rowitch
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine and Howard Hughes Medical Institute, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA
| | - Charles ffrench-Constant
- MRC Centre for Regenerative Medicine and MS Society/University of Edinburgh Centre for Translational Research, Centre for Inflammation Research, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, United Kingdom EH16 4TJ
| | - Robin J. M. Franklin
- MRC Cambridge Centre for Stem Cell Biology and Regenerative Medicine, and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, United Kingdom CB3 0ES
| |
Collapse
|
45
|
Abstract
The spontaneous recovery observed in the early stages of multiple sclerosis (MS) is substituted with a later progressive course and failure of endogenous processes of repair and remyelination. Although this is the basic rationale for cell therapy, it is not clear yet to what degree the MS brain is amenable for repair and whether cell therapy has an advantage in comparison to other strategies to enhance endogenous remyelination. Central to the promise of stem cell therapy is the therapeutic plasticity, by which neural precursors can replace damaged oligodendrocytes and myelin, and also effectively attenuate the autoimmune process in a local, nonsystemic manner to protect brain cells from further injury, as well as facilitate the intrinsic capacity of the brain for recovery. These fundamental immunomodulatory and neurotrophic properties are shared by stem cells of different sources. By using different routes of delivery, cells may target both affected white matter tracts and the perivascular niche where the trafficking of immune cells occur. It is unclear yet whether the therapeutic properties of transplanted cells are maintained with the duration of time. The application of neural stem cell therapy (derived from fetal brain or from human embryonic stem cells) will be realized once their purification, mass generation, and safety are guaranteed. However, previous clinical experience with bone marrow stromal (mesenchymal) stem cells and the relative easy expansion of autologous cells have opened the way to their experimental application in MS. An initial clinical trial has established the probable safety of their intravenous and intrathecal delivery. Short-term follow-up observed immunomodulatory effects and clinical benefit justifying further clinical trials.
Collapse
Affiliation(s)
- Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel.
| |
Collapse
|
46
|
Zhang J, Kramer EG, Asp L, Dutta DJ, Navrazhina K, Pham T, Mariani JN, Argaw AT, Melendez-Vasquez CV, John GR. Promoting myelin repair and return of function in multiple sclerosis. FEBS Lett 2011; 585:3813-20. [PMID: 21864535 DOI: 10.1016/j.febslet.2011.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Conduction block in demyelinated axons underlies early neurological symptoms, but axonal transection and neuronal loss are believed to be responsible for more permanent chronic deficits. Several therapies are approved for treatment of relapsing-remitting MS, all of which are immunoregulatory and clinically proven to reduce the rate of lesion formation and exacerbation. However, existing approaches are only partially effective in preventing the onset of disability in MS patients, and novel treatments to protect myelin-producing oligodendrocytes and enhance myelin repair may improve long-term outcomes. Studies in vivo in genetically modified mice have assisted in the characterization of mechanisms underlying the generation of neuropathology in MS patients, and have identified potential avenues for oligodendrocyte protection and myelin repair. However, no treatments are yet approved that target these areas directly, and in addition, the relationship between demyelination and axonal transection in the lesions of the disease remains unclear. Here, we review translational research targeting oligodendrocyte protection and myelin repair in models of autoimmune demyelination, and their potential relevance as therapies in MS.
Collapse
Affiliation(s)
- Jingya Zhang
- Corinne Goldsmith Dickinson Center for MS, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ables JL, Breunig JJ, Eisch AJ, Rakic P. Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 2011; 12:269-83. [PMID: 21505516 DOI: 10.1038/nrn3024] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Notch pathway is often regarded as a developmental pathway, but components of Notch signalling are expressed and active in the adult brain. With the advent of more sophisticated genetic manipulations, evidence has emerged that suggests both conserved and novel roles for Notch signalling in the adult brain. Not surprisingly, Notch is a key regulator of adult neural stem cells, but it is increasingly clear that Notch signalling also has roles in the regulation of migration, morphology, synaptic plasticity and survival of immature and mature neurons. Understanding the many functions of Notch signalling in the adult brain, and its dysfunction in neurodegenerative disease and malignancy, is crucial to the development of new therapeutics that are centred around this pathway.
Collapse
Affiliation(s)
- Jessica L Ables
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
48
|
Syed YA, Hand E, Möbius W, Zhao C, Hofer M, Nave KA, Kotter MR. Inhibition of CNS remyelination by the presence of semaphorin 3A. J Neurosci 2011; 31:3719-28. [PMID: 21389227 PMCID: PMC6622776 DOI: 10.1523/jneurosci.4930-10.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 11/21/2022] Open
Abstract
Failure of oligodendrocyte precursor cell (OPC) differentiation has been recognized as the leading cause for the failure of myelin regeneration in diseases such as multiple sclerosis (MS). One explanation for the failure of OPC differentiation in MS is the presence of inhibitory molecules in demyelinated lesions. So far only a few inhibitory substrates have been identified in MS lesions. Semaphorin 3A (Sema3A), a secreted member of the semaphorin family, can act as repulsive guidance cue for neuronal and glial cells in the CNS. Recent studies suggest that Sema3A is also expressed in active MS lesions. However, the implication of Sema3A expression in MS lesions remains unclear as OPCs are commonly present in chronic demyelinated lesions. In the present study we identify Sema3A as a potent, selective, and reversible inhibitor of OPC differentiation in vitro. Furthermore, we show that administration of Sema3A into demyelinating lesions in the rat CNS results in a failure of remyelination. Our results imply an important role for Sema3A in the differentiation block occurring in MS lesions.
Collapse
Affiliation(s)
- Yasir A. Syed
- Anne McLaren Laboratory for Regenerative Medicine, Medical Research Council Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, Forvie Site, Cambridge, CB2 0SZ, United Kingdom
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria, and
| | - Elisabeth Hand
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
| | - Wiebke Möbius
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
| | - Chao Zhao
- Neurosciences, MRC Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, Department of Veterinary Medicine, Cambridge CB3 0ES, United Kingdom
| | - Matthias Hofer
- Anne McLaren Laboratory for Regenerative Medicine, Medical Research Council Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, Forvie Site, Cambridge, CB2 0SZ, United Kingdom
| | - Klaus A. Nave
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
| | - Mark R. Kotter
- Anne McLaren Laboratory for Regenerative Medicine, Medical Research Council Centre for Stem Cell Biology and Regenerative Medicine, University of Cambridge, Forvie Site, Cambridge, CB2 0SZ, United Kingdom
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria, and
| |
Collapse
|
49
|
Zhang J, Kramer EG, Mahase S, Dutta DJ, Bonnamain V, Argaw AT, John GR. Targeting oligodendrocyte protection and remyelination in multiple sclerosis. THE MOUNT SINAI JOURNAL OF MEDICINE, NEW YORK 2011; 78:244-57. [PMID: 21425268 PMCID: PMC3074606 DOI: 10.1002/msj.20244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the brain and spinal cord with a presumed autoimmune etiology. Conduction block in demyelinated axons underlies early neurological symptoms, whereas axonal transection is believed responsible for more permanent later deficits. Approved treatments for the disease are immunoregulatory and reduce the rate of lesion formation and clinical exacerbation, but are only partially effective in preventing the onset of disability in multiple sclerosis patients. Approaches that directly protect myelin-producing oligodendrocytes and enhance remyelination may improve long-term outcomes and reduce the rate of axonal transection. Studies in genetically modified animals have improved our understanding of mechanisms underlying central nervous system pathology in multiple sclerosis models, and have identified pathways that regulate oligodendrocyte viability and myelin repair. However, although clinical trials are ongoing, many have been unsuccessful, and no treatments are yet approved that target these areas in multiple sclerosis. In this review, we examine avenues for oligodendrocyte protection and endogenous myelin repair in animal models of demyelination and remyelination, and their relevance as therapeutics in human patients.
Collapse
Affiliation(s)
- Jingya Zhang
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Chen V, Shtivelman E. CC3/TIP30 regulates metabolic adaptation of tumor cells to glucose limitation. Cell Cycle 2010; 9:4941-53. [PMID: 21150275 DOI: 10.4161/cc.9.24.14230] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CC3/TIP30 is a metastasis and tumor suppressor, with reduced or absent expression in a variety of aggressive tumors. Overexpression of CC3 in tumor cells predisposes them to apoptosis in response to different death signals. We found that silencing of CC3 expression does not increase apoptotic resistance of cells. However, it strongly improves survival of tumor cells in response to glucose limitation. HeLa cells with silenced CC3 survive long-term in low glucose, and, in comparison to control HeLa cells, show superior metabolic adaptation to glucose limitation. First, unlike the parental HeLa cells, HeLa with silenced CC3 activate and maintain high levels of mitochondrial respiration that is critical for their ability to thrive in low glucose. Second, silencing of CC3 leads to higher expression levels of mitochondrial proteins in respiration complexes when cells are continuously cultured in limiting glucose. Third, HeLa cells with silenced CC3 maintain higher levels of c-MYC and the M2 isoform of pyruvate kinase in low glucose, contributing to more efficient glycolysis. Fourth, HeLa cells with silenced CC3 fail to fully activate AMPK in response to glucose limitation. Inhibition of AMPK, either pharmacologic or via siRNA, protects control HeLa cells from death in low glucose. The metabolic flexibility acquired by cells after silencing of CC3 could be directly relevant to the development of metastatic and aggressive human tumors that frequently have low or absent expression of CC3.
Collapse
|