1
|
Zheng Z, Chen J, Xu J, Jiang B, Li L, Li Y, Dai Y, Wang B. Peripheral blood RNA biomarkers can predict lesion severity in degenerative cervical myelopathy. Neural Regen Res 2025; 20:1764-1775. [PMID: 39104114 PMCID: PMC11688566 DOI: 10.4103/nrr.nrr-d-23-01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00027/figure1/v/2024-08-05T133530Z/r/image-tiff Degenerative cervical myelopathy is a common cause of spinal cord injury, with longer symptom duration and higher myelopathy severity indicating a worse prognosis. While numerous studies have investigated serological biomarkers for acute spinal cord injury, few studies have explored such biomarkers for diagnosing degenerative cervical myelopathy. This study involved 30 patients with degenerative cervical myelopathy (51.3 ± 7.3 years old, 12 women and 18 men), seven healthy controls (25.7 ± 1.7 years old, one woman and six men), and nine patients with cervical spondylotic radiculopathy (51.9 ± 8.6 years old, three women and six men). Analysis of blood samples from the three groups showed clear differences in transcriptomic characteristics. Enrichment analysis identified 128 differentially expressed genes that were enriched in patients with neurological disabilities. Using least absolute shrinkage and selection operator analysis, we constructed a five-gene model (TBCD, TPM2, PNKD, EIF4G2, and AP5Z1) to diagnose degenerative cervical myelopathy with an accuracy of 93.5%. One-gene models (TCAP and SDHA) identified mild and severe degenerative cervical myelopathy with accuracies of 83.3% and 76.7%, respectively. Signatures of two immune cell types (memory B cells and memory-activated CD4+ T cells) predicted levels of lesions in degenerative cervical myelopathy with 80% accuracy. Our results suggest that peripheral blood RNA biomarkers could be used to predict lesion severity in degenerative cervical myelopathy.
Collapse
Affiliation(s)
- Zhenzhong Zheng
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jialin Chen
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jinghong Xu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Bin Jiang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yawei Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yuliang Dai
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
de Sousa N, Correia-Silva A, Pinho AG, Vidinha-Mira A, Cainé L, Lima MF, Santos DJ, Cibrão JR, Campos J, Cavaleiro H, Pinho TS, Afonso JL, Sampaio-Marques B, Monteiro S, Silva NA, Barreiro-Iglesias A, Salgado AJ. Baclofen modulates the immune response after spinal cord injury with locomotor benefits. Br J Pharmacol 2025; 182:1783-1802. [PMID: 39842440 DOI: 10.1111/bph.17438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND PURPOSE Spinal cord injury (SCI) is a neurological condition that affects motor and sensory functions below the injury site. The consequences of SCI are devastating for the patients, and although significant efforts have been done in the last years, there is no effective therapy. Baclofen has emerged in the last few years as an interesting drug in the SCI field. Already used in the SCI clinical setting to control spasticity, baclofen has shown important impact on SCI recovery in animal models, such as lampreys and mice. EXPERIMENTAL APPROACH AND KEY RESULTS Herein, we proposed to go deeper into baclofen's mechanism of action and to study its role on the modulation of the immune response after SCI, a major process associated with the severeness of the lesion. Using a SCI compression mice model, we confirmed that baclofen leads to higher locomotor performance, but only at 1 mg·kg-1 and not in higher concentrations, as 5 mg·kg-1. Moreover, we found that baclofen at 1 mg·kg-1 can strongly modulate the immune response after SCI at local, systemic and peripheric levels. This is interesting and intriguingly at the same time, since now, additional studies should be performed to understand if the modulation of the immune response is the responsible for the locomotor outcomes observed on Baclofen treated animals. CONCLUSION AND IMPLICATIONS Our findings showed, for the first time, that baclofen can modulate the immune response after SCI, becoming a relevant drug in the field of the immunomodulators.
Collapse
Affiliation(s)
- Nídia de Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Ariana Correia-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Andreia G Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - André Vidinha-Mira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Laura Cainé
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Marta F Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Diogo J Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Jorge R Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Helena Cavaleiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - João L Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Ozaki T, Sugie T, Suzuki Y, Uchimura K, Suzui M, Sakamoto K, Shirane M, Kadomatsu K. Systemic administrations of protamine heal subacute spinal cord injury in mice. Neurosci Res 2025; 212:11-19. [PMID: 39638151 DOI: 10.1016/j.neures.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Spinal cord injury (SCI) results in damage to neural circuits that cause long-term locomotor and sensory disability. The objective of the present study is to evaluate whether a clinical drug, protamine, can be employed as a therapeutic agent for SCI. First, we examined the rescue effect of protamine on dystrophic endballs (DEs) cultured on a chondroitin sulfate (CS) gradient coating. Consequently, axons with DE, which are unable to grow through the CS barrier, resumed growth after protamine treatment and were able to pass through the barrier. In addition, we tested whether protamine resolves the DE phenotype, accumulation of autophagosomes. The results demonstrated that protamine has significantly reduced the density of LC3 in DEs. Subsequently, mice were administered 1 mg/kg protamine via the tail vein one week following a contusion injury to the thoracic spinal cord. The hindlimb movements of the mice were evaluated in order to assess the therapeutic effect of protamine. Eleven venous administrations of protamine improved the symptoms. The current study has demonstrated that protamine cancels the CS inhibitory effect on axonal regrowth. Administrations of protamine were observed to alleviate hindlimb motor dysfunction in SCI mice. Our results suggest an effective therapeutic agent for SCI and a possibility for drug repositioning. It would be of interest to see if protamine also exerts a therapeutic effect in brain injury.
Collapse
Affiliation(s)
- Tomoya Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 467-8603, Japan; Department of Neurotoxicology, Institute of Brain Science, Nagoya city University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takahiro Sugie
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuji Suzuki
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, Villeneuve-d'Ascq, France
| | - Masumi Suzui
- Department of Neurotoxicology, Institute of Brain Science, Nagoya city University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Michiko Shirane
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
4
|
Dionne A, Magnuson D, Richard-Denis A, Petit Y, Barthélémy D, Bernard F, Mac-Thiong JM. Safety and Feasibility of Early Activity-Based Therapy Following Severe Traumatic Spinal Cord Injury: Results from a Single-Arm Pilot Trial. J Neurotrauma 2025; 42:242-249. [PMID: 39611653 DOI: 10.1089/neu.2024.0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Early activity-based therapy (E-ABT) has the potential to decrease complications and radically improve neurofunctional recovery following traumatic spinal cord injury (TSCI). Unfortunately, E-ABT after TSCI has never been attempted in humans due to practical obstacles and potential safety concerns. This study aims to report on the safety and feasibility outcomes of the Protocol for Rapid Onset of Mobilization in Patients with Traumatic SCI (PROMPT-SCI) trial: the first-ever trial of E-ABT in critically ill patients who suffered a severe TSCI. To do so, 45 patients with severe TSCI were recruited to participate in the PROMPT-SCI trial between April 2021 and August 2023. The intervention consisted of daily 30-min sessions of motor-assisted in-bed leg cycling for 14 days, starting within 48 h of early surgery (≈72 h from the initial trauma). Adverse events were closely monitored, and completion rates were evaluated. Out of the 45 participants, 36 (80%) completed a full and safe session within 48 h of surgery and all participants managed to achieve this outcome within 72 h of surgery. Over the full 14-day protocol, the average completion rate of sessions was 87.2 ± 22.7% (range: 7.1-100.0%). A total of three patients were mechanically ventilated during the protocol and all three had 100% completion of sessions. Frequent reasons for unattempted/incomplete sessions were scheduling conflicts with activities related to care (e.g., bronchoscopy) and fatigue/uncontrolled pain before initiating cycling. We also report no neurological deterioration caused by cycling and no major adverse event recorded during or between sessions. In conclusion, this study suggests that E-ABT can be safely initiated within 48-72 h after a severe TSCI with no major adverse event. In the form of daily passive in-bed leg cycling, E-ABT is also acceptable for target users, and feasible over the course of the first weeks after the initial trauma, as shown by our excellent rate of completed sessions (87%). The present results also suggest that improved collaboration with intensive care unit staff, including intensivists and nurses, could improve these rates even further.
Collapse
Affiliation(s)
- Antoine Dionne
- Faculty of Medicine, Department of Medicine, University of Montreal, Montreal, Canada
- Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
| | - David Magnuson
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Andréane Richard-Denis
- Faculty of Medicine, Department of Medicine, University of Montreal, Montreal, Canada
- Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
| | - Yvan Petit
- Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
- Department of Mechanical Engineering, École de technologie supérieure, Montreal, Canada
| | - Dorothy Barthélémy
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal, CRIR, Montreal, Canada
- Faculty of Medicine, School of Rehabilitation, University of Montreal, Montreal, Canada
| | - Francis Bernard
- Faculty of Medicine, Department of Medicine, University of Montreal, Montreal, Canada
- Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
| | - Jean-Marc Mac-Thiong
- Faculty of Medicine, Department of Medicine, University of Montreal, Montreal, Canada
- Research Center, Hôpital du Sacré-Cœur de Montréal, Montreal, Canada
- Sainte-Justine University Hospital Research Center, Montreal, Canada
| |
Collapse
|
5
|
Hubertus V, Meyer L, Waldmann L, Roolfs L, Taheri N, Kersting K, von Bronewski E, Nieminen-Kelhä M, Kremenetskaia I, Uhl C, Fiedler KC, Ode JE, Rex A, Prüß H, Rakhymzhan A, Hauser AE, Niesner R, Heppner FL, Fehlings MG, Vajkoczy P. Identification of a Therapeutic Window for Neurovascular Unit Repair after Experimental Spinal Cord Injury. J Neurotrauma 2025; 42:212-228. [PMID: 39585767 DOI: 10.1089/neu.2024.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition for which effective neuroregenerative and neuroreparative strategies are lacking. The post-traumatic disruption of the blood-spinal cord barrier (BSCB) as part of the neurovascular unit (NVU) is one major factor in the complex pathophysiology of SCI, which is associated with edema, inflammation, and cell death in the penumbra regions of the spinal cord adjacent to the lesion epicenter. Thus, the preservation of an intact NVU and vascular integrity to facilitate the regenerative capacity following SCI is a desirable therapeutic target. This study aims to identify a therapeutic window of opportunity for NVU repair after SCI by characterizing the timeframe of its post-traumatic disintegration and reintegration with implications for functional spinal cord recovery. Following thoracic clip-compression SCI or sham injury, adult C57BL/6J mice were followed up from one to 28 days. At one, three, seven, 14, and 28 days after SCI/sham, seven-Tesla magnetic resonance imaging (MRI), neurobehavioral analysis (Basso mouse scale, Tally subscore, CatWalk® gait analysis), and following sacrifice immunohistochemistry were performed, assessing vessel permeability via Evans blue (EVB) extravasation, (functional) vessel density, and NVU integrity. Thy1-yellow fluorescent protein+ mice were additionally implanted with a customized spinal window chamber and received longitudinal in vivo two-photon excitation imaging (2PM) with the injection of rhodamine-B-isothiocyanate-dextran for the combined imaging of axons and vasculature up to 14 days after SCI/sham injury. Post-traumatic edema formation as assessed by MRI volumetry peaked at one to three days after injury, while EVB permeability quantification revealed a thoroughly injured BSCB up to 14 days after SCI. Partial regeneration of functional vasculature via endogenous revascularization was detected after one to four weeks, however, with only 50-54% of existing vessels regaining functional perfusion. Longitudinal in vivo 2PM visualized the progressive degeneration of initially preserved spinal cord axons in the peri-traumatic zone after SCI while displaying a rarefication of functionally perfused vessels up to two weeks after injury. Neurobehavioral recovery started after one week but remained impaired over the whole observation period of four weeks after SCI. With this study, a therapeutic window to address the impaired NVU starting from the first days to two weeks after SCI is identified. A number of lines of evidence including in vivo 2PM, assessment of NVU integrity, and neurobehavioral assessments point to the critical nature of targeting the NVU to enhance axonal preservation and regeneration after SCI. Continuous multifactorial therapy applications targeting the integrity of the NVU over the identified therapeutic window of opportunity appears promising to ameliorate functional vessel perseverance and the spinal cord's regenerative capacity.
Collapse
Affiliation(s)
- Vanessa Hubertus
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lea Meyer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lilly Waldmann
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Laurens Roolfs
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nima Taheri
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Kersting
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Emily von Bronewski
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Uhl
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kim C Fiedler
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan-Erik Ode
- Scientific Workshops, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andre Rex
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Harald Prüß
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Asylkhan Rakhymzhan
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany and Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja E Hauser
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany and Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raluca Niesner
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany and Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank L Heppner
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Michael G Fehlings
- Division of Neurosurgery and Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Canada
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Entenmann CJ, von Bronewski EJ, Waldmann L, Meyer L, Kersting K, Roolfs LT, Schleker LM, Nieminen-Kelhä M, Kremenetskaia I, Heppner FL, Fehlings MG, Vajkoczy P, Hubertus V. Analysis of the spatiotemporal dynamics of vascular injury and regeneration following experimental Spinal Cord Injury. BRAIN & SPINE 2025; 5:104191. [PMID: 39935529 PMCID: PMC11810697 DOI: 10.1016/j.bas.2025.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Introduction The loss of vasculature in Spinal Cord Injury (SCI) contributes to secondary injury, expanding the injury to unharmed spinal cord (SC) regions. Understanding these mechanisms is crucial for developing therapeutic interventions. Research question Comprehensive analysis of the temporospatial dynamics of vascular injury and regeneration following SCI. Materials and methods Adult C57BL/6J mice were subjected to clip-compression SCI (Th 6/7, 5g, 60s, n = 20) or sham injury (laminectomy, n = 4), and sacrificed at 1, 3, 7, 14, and 28 days (d) post-injury following intracardial fluorescein isothiocyanate (FITC)-Lectin perfusion. Histological analysis (CD31, FITC-Lectin, Ki-67, IgG, TER-119) assessed vascular changes, permeability, and proliferation within the injury epicenter (region 0 (R0), ± 0,5 mm) and two adjacent SC regions (R1: ± 1 mm, R2: ± 2.5 mm). Results Perfusion loss (FITC-Lectin+/CD31+), was most severe in R0 and R1 at d3 (p < 0.01). Significant vascular loss in R2 started at d3 (p = 0.043). Perfusion was restored at d28 in R0 and R1, and at d7 in R2. Vessel density (CD31+) returned to baseline quicker (R0: d3, R1 and R2: d14). Vascular proliferation (CD31+/Ki-67+) manifested across all regions at d3 (p < 0.01), and most notably in R2 (p < 0.01). Vascular permeability for IgG remained disrupted until d3 in R0 and R1 and until d14 in R2. Discussion and conclusion Vascular injury is most severe initially and spreads to the surrounding SC regions. Gradual vascular regeneration occurs early and up to a considerable distance from the injury epicenter, highlighting the potential of early therapeutic interventions targeted at vascular repair and regeneration.
Collapse
Affiliation(s)
- Christian J. Entenmann
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Emily J. von Bronewski
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lilly Waldmann
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lea Meyer
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Katharina Kersting
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Laurens T. Roolfs
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lasse M. Schleker
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Frank L. Heppner
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Michael G. Fehlings
- Division of Neurosurgery and Krembil Neuroscience Center, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Canada
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH) – Charité Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
7
|
Cai Z, Sun Q, Li C, Xu J, Jiang B. Machine-learning-based prediction by stacking ensemble strategy for surgical outcomes in patients with degenerative cervical myelopathy. J Orthop Surg Res 2024; 19:539. [PMID: 39227869 PMCID: PMC11373275 DOI: 10.1186/s13018-024-05004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Machine learning (ML) is extensively employed for forecasting the outcome of various illnesses. The objective of the study was to develop ML based classifiers using a stacking ensemble strategy to predict the Japanese Orthopedic Association (JOA) recovery rate for patients with degenerative cervical myelopathy (DCM). METHODS A total of 672 patients with DCM were included in the study and labeled with JOA recovery rate by 1-year follow-up. All data were collected during 2012-2023 and were randomly divided into training and testing (8:2) sub-datasets. A total of 91 initial ML classifiers were developed, and the top 3 initial classifiers with the best performance were further stacked into an ensemble classifier with a supported vector machine (SVM) classifier. The area under the curve (AUC) was the main indicator to assess the prediction performance of all classifiers. The primary predicted outcome was the JOA recovery rate. RESULTS By applying an ensemble learning strategy (e.g., stacking), the accuracy of the ML classifier improved following combining three widely used ML models (e.g., RFE-SVM, EmbeddingLR-LR, and RFE-AdaBoost). Decision curve analysis showed the merits of the ensemble classifiers, as the curves of the top 3 initial classifiers varied a lot in predicting JOA recovery rate in DCM patients. CONCLUSIONS The ensemble classifiers successfully predict the JOA recovery rate in DCM patients, which showed a high potential for assisting physicians in managing DCM patients and making full use of medical resources.
Collapse
Affiliation(s)
- Zhiwei Cai
- Department of Orthopedics, The Forth Medical Center of Chinese PLA General Hospital, Beijing, 100142, China
| | - Quan Sun
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China
| | - Chao Li
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China
| | - Jin Xu
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China.
| | - Bo Jiang
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China.
| |
Collapse
|
8
|
Zhao W, Jia Z, Bauman WA, Qin Y, Peng Y, Chen Z, Cardozo CP, Wang D, Qin W. Targeted-delivery of nanomedicine-enabled methylprednisolone to injured spinal cord promotes neuroprotection and functional recovery after acute spinal cord injury in rats. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102761. [PMID: 38871068 PMCID: PMC11447764 DOI: 10.1016/j.nano.2024.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
To date, no therapy has been proven to be efficacious in fully restoring neurological functions after spinal cord injury (SCI). Systemic high-dose methylprednisolone (MP) improves neurological recovery after acute SCI in both animal and human. MP therapy remains controversial due to its modest effect on functional recovery and significant adverse effects. To overcome the limitation of MP therapy, we have developed a N-(2-hydroxypropyl) methacrylamide copolymer-based MP prodrug nanomedicine (Nano-MP) that can selectively deliver MP to the SCI lesion when administered systemically in a rat model of acute SCI. Our in vivo data reveal that Nano-MP is significantly more effective than free MP in attenuating secondary injuries and neuronal apoptosis. Nano-MP is superior to free MP in improving functional recovery after acute SCI in rats. These data support Nano-MP as a promising neurotherapeutic candidate, which may provide potent neuroprotection and accelerate functional recovery with improved safety for patients with acute SCI.
Collapse
Affiliation(s)
- Wei Zhao
- Spinal Cord Damage Research Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - William A Bauman
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yiwen Qin
- Spinal Cord Damage Research Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA; GCM Grosvenor, New York, USA
| | - Yuanzhen Peng
- Spinal Cord Damage Research Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| | - Zihao Chen
- Departments of Biotechnology, Brown University, Providence, RI, USA
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Weiping Qin
- Spinal Cord Damage Research Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
9
|
Kim HW, Wu KLK, Tam KW, Chan YS, Shum DKY. Pericyte derivation and transplantation for blood-CNS barrier reconstitution in CNS disorders. IBRO Neurosci Rep 2024; 16:147-154. [PMID: 39007089 PMCID: PMC11240299 DOI: 10.1016/j.ibneur.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 12/09/2023] [Accepted: 12/29/2023] [Indexed: 07/16/2024] Open
Abstract
Disruption of the blood-central nervous system barrier (BCB) is increasingly recognized as a pathological factor in diseases and trauma of the central nervous system. Despite the neuropathological impact, current treatment modalities do not target the BCB; strategies to reconstitute the impaired BCB have been restricted to nutritional and dietary remedies. As an integral cell type in the neurovascular unit, pericytes are crucial to the development, maintenance, and repair of the BCB. As such, pericytes are well poised as cellular agents for reconstitution of the impaired BCB. Here, we summarize recent revelations regarding the role of BCB disruption in diseases and trauma of the central nervous system and highlight how pericytes are harnessed to provide targeted therapeutic effect in each case. This review will also address how recent advances in pericyte derivation strategies can serve to overcome practical hurdles in the clinical use of pericytes.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Orthopedics and Traumatology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Lap Kei Wu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kin-Wai Tam
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Daisy Kwok-Yan Shum
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Overgaard Wichmann T, Hedegaard Højsager M, Hasager Damkier H. Water channels in the brain and spinal cord-overview of the role of aquaporins in traumatic brain injury and traumatic spinal cord injury. Front Cell Neurosci 2024; 18:1414662. [PMID: 38818518 PMCID: PMC11137310 DOI: 10.3389/fncel.2024.1414662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Knowledge about the mechanisms underlying the fluid flow in the brain and spinal cord is essential for discovering the mechanisms implicated in the pathophysiology of central nervous system diseases. During recent years, research has highlighted the complexity of the fluid flow movement in the brain through a glymphatic system and a lymphatic network. Less is known about these pathways in the spinal cord. An important aspect of fluid flow movement through the glymphatic pathway is the role of water channels, especially aquaporin 1 and 4. This review provides an overview of the role of these aquaporins in brain and spinal cord, and give a short introduction to the fluid flow in brain and spinal cord during in the healthy brain and spinal cord as well as during traumatic brain and spinal cord injury. Finally, this review gives an overview of the current knowledge about the role of aquaporins in traumatic brain and spinal cord injury, highlighting some of the complexities and knowledge gaps in the field.
Collapse
|
11
|
Jenkner S, Clark JM, Gronthos S, O’Hare Doig RL. Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells. Cells 2024; 13:817. [PMID: 38786039 PMCID: PMC11119219 DOI: 10.3390/cells13100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) can result in the permanent loss of mobility, sensation, and autonomic function. Secondary degeneration after SCI both initiates and propagates a hostile microenvironment that is resistant to natural repair mechanisms. Consequently, exogenous stem cells have been investigated as a potential therapy for repairing and recovering damaged cells after SCI and other CNS disorders. This focused review highlights the contributions of mesenchymal (MSCs) and dental stem cells (DSCs) in attenuating various secondary injury sequelae through paracrine and cell-to-cell communication mechanisms following SCI and other types of neurotrauma. These mechanistic events include vascular dysfunction, oxidative stress, excitotoxicity, apoptosis and cell loss, neuroinflammation, and structural deficits. The review of studies that directly compare MSC and DSC capabilities also reveals the superior capabilities of DSC in reducing the effects of secondary injury and promoting a favorable microenvironment conducive to repair and regeneration. This review concludes with a discussion of the current limitations and proposes improvements in the future assessment of stem cell therapy through the reporting of the effects of DSC viability and DSC efficacy in attenuating secondary damage after SCI.
Collapse
Affiliation(s)
- Sandra Jenkner
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
| | - Jillian Mary Clark
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Mesenchymal Stem Cell Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Ryan Louis O’Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
12
|
Lana JF, Navani A, Jeyaraman M, Santos N, Pires L, Santos GS, Rodrigues IJ, Santos D, Mosaner T, Azzini G, da Fonseca LF, de Macedo AP, Huber SC, de Moraes Ferreira Jorge D, Purita J. Sacral Bioneuromodulation: The Role of Bone Marrow Aspirate in Spinal Cord Injuries. Bioengineering (Basel) 2024; 11:461. [PMID: 38790327 PMCID: PMC11118755 DOI: 10.3390/bioengineering11050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Spinal cord injury (SCI) represents a severe trauma to the nervous system, leading to significant neurological damage, chronic inflammation, and persistent neuropathic pain. Current treatments, including pharmacotherapy, immobilization, physical therapy, and surgical interventions, often fall short in fully addressing the underlying pathophysiology and resultant disabilities. Emerging research in the field of regenerative medicine has introduced innovative approaches such as autologous orthobiologic therapies, with bone marrow aspirate (BMA) being particularly notable for its regenerative and anti-inflammatory properties. This review focuses on the potential of BMA to modulate inflammatory pathways, enhance tissue regeneration, and restore neurological function disrupted by SCI. We hypothesize that BMA's bioactive components may stimulate reparative processes at the cellular level, particularly when applied at strategic sites like the sacral hiatus to influence lumbar centers and higher neurological structures. By exploring the mechanisms through which BMA influences spinal repair, this review aims to establish a foundation for its application in clinical settings, potentially offering a transformative approach to SCI management that extends beyond symptomatic relief to promoting functional recovery.
Collapse
Affiliation(s)
- José Fábio Lana
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| | - Annu Navani
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
- Comprehensive Spine & Sports Center, Campbell, CA 95008, USA
| | - Madhan Jeyaraman
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Department of Orthopaedics, ACS Medical College and Hospital, Chennai 600077, Tamil Nadu, India
| | - Napoliane Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Izair Jefthé Rodrigues
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Douglas Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Tomas Mosaner
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Gabriel Azzini
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Medical School, Federal University of São Paulo (UNIFESP), São Paulo 04024-002, SP, Brazil
| | - Alex Pontes de Macedo
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Stephany Cares Huber
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Daniel de Moraes Ferreira Jorge
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (J.F.L.); (N.S.); (L.P.); (I.J.R.); (D.S.); (T.M.); (G.A.); (L.F.d.F.); (A.P.d.M.); (S.C.H.); (D.d.M.F.J.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
| | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (A.N.); (J.P.)
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil
| |
Collapse
|
13
|
Harmon JN, Hyde JE, Jensen DE, D'cessare EC, Odarenko AA, Bruce MF, Khaing ZZ. Quantifying injury expansion in the cervical spinal cord with intravital ultrafast contrast-enhanced ultrasound imaging. Exp Neurol 2024; 374:114681. [PMID: 38199511 PMCID: PMC10922898 DOI: 10.1016/j.expneurol.2024.114681] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury is characterized by hemodynamic disruption at the injury epicenter and hypoperfusion in the penumbra, resulting in progressive ischemia and cell death. This degenerative secondary injury process has been well-described, though mostly using ex vivo or depth-limited optical imaging techniques. Intravital contrast-enhanced ultrasound enables longitudinal, quantitative evaluation of anatomical and hemodynamic changes in vivo through the entire spinal parenchyma. Here, we used ultrasound imaging to visualize and quantify subacute injury expansion (through 72 h post-injury) in a rodent cervical contusion model. Significant intraparenchymal hematoma expansion was observed through 72 h post-injury (1.86 ± 0.17-fold change from acute, p < 0.05), while the volume of the ischemic deficit largely increased within 24 h post-injury (2.24 ± 0.27-fold, p < 0.05). Histology corroborated these findings; increased apoptosis, tissue and vessel loss, and sustained tissue hypoxia were observed at 72 h post-injury. Vascular resistance was significantly elevated in the remaining perfused tissue, likely due in part to deformation of the central sulcal artery nearest to the lesion site. In conjunction, substantial hyperemia was observed in all perilesional areas examined except the ipsilesional gray matter. This study demonstrates the utility of longitudinal ultrasound imaging as a quantitative tool for tracking injury progression in vivo.
Collapse
Affiliation(s)
- Jennifer N Harmon
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Jeffrey E Hyde
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Dylan E Jensen
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Emma C D'cessare
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Anton A Odarenko
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| | - Matthew F Bruce
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
| | - Zin Z Khaing
- Department of Neurological Surgery, University of Washington, 1959 NE Pacific St., Seattle, WA, USA.
| |
Collapse
|
14
|
Xu Z, Liu X, Pang Y, Chen Z, Jiang Y, Liu T, Zhang J, Xiong H, Gao X, Liu J, Liu S, Ning G, Feng S, Yao X, Guo S. Long-Acting Heterodimeric Paclitaxel-Idebenone Prodrug-Based Nanomedicine Promotes Functional Recovery after Spinal Cord Injury. NANO LETTERS 2024; 24:3548-3556. [PMID: 38457277 DOI: 10.1021/acs.nanolett.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
After spinal cord injury (SCI), successive systemic administration of microtubule-stabilizing agents has been shown to promote axon regeneration. However, this approach is limited by poor drug bioavailability, especially given the rapid restoration of the blood-spinal cord barrier. There is a pressing need for long-acting formulations of microtubule-stabilizing agents in treating SCI. Here, we conjugated the antioxidant idebenone with microtubule-stabilizing paclitaxel to create a heterodimeric paclitaxel-idebenone prodrug via an acid-activatable, self-immolative ketal linker and then fabricated it into chondroitin sulfate proteoglycan-binding nanomedicine, enabling drug retention within the spinal cord for at least 2 weeks and notable enhancement in hindlimb motor function and axon regeneration after a single intraspinal administration. Additional investigations uncovered that idebenone can suppress the activation of microglia and neuronal ferroptosis, thereby amplifying the therapeutic effect of paclitaxel. This prodrug-based nanomedicine simultaneously accomplishes neuroprotection and axon regeneration, offering a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Zunkai Xu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinjie Liu
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Yilin Pang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Zhixia Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaoyao Jiang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tao Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jiawei Zhang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Haoning Xiong
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Xiang Gao
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, China
| | - Shen Liu
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Guangzhi Ning
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xue Yao
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Wang J, Ji C, Ye W, Rong Y, Ge X, Wang Z, Tang P, Zhou Z, Luo Y, Cai W. Deubiquitinase UCHL1 promotes angiogenesis and blood-spinal cord barrier function recovery after spinal cord injury by stabilizing Sox17. Cell Mol Life Sci 2024; 81:137. [PMID: 38478109 PMCID: PMC10937794 DOI: 10.1007/s00018-024-05186-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
Improving the function of the blood-spinal cord barrier (BSCB) benefits the functional recovery of mice following spinal cord injury (SCI). The death of endothelial cells and disruption of the BSCB at the injury site contribute to secondary damage, and the ubiquitin-proteasome system is involved in regulating protein function. However, little is known about the regulation of deubiquitinated enzymes in endothelial cells and their effect on BSCB function after SCI. We observed that Sox17 is predominantly localized in endothelial cells and is significantly upregulated after SCI and in LPS-treated brain microvascular endothelial cells. In vitro Sox17 knockdown attenuated endothelial cell proliferation, migration, and tube formation, while in vivo Sox17 knockdown inhibited endothelial regeneration and barrier recovery, leading to poor functional recovery after SCI. Conversely, in vivo overexpression of Sox17 promoted angiogenesis and functional recovery after injury. Additionally, immunoprecipitation-mass spectrometry revealed the interaction between the deubiquitinase UCHL1 and Sox17, which stabilized Sox17 and influenced angiogenesis and BSCB repair following injury. By generating UCHL1 conditional knockout mice and conducting rescue experiments, we further validated that the deubiquitinase UCHL1 promotes angiogenesis and restoration of BSCB function after injury by stabilizing Sox17. Collectively, our findings present a novel therapeutic target for treating SCI by revealing a potential mechanism for endothelial cell regeneration and BSCB repair after SCI.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wu Ye
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xuhui Ge
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhuanghui Wang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yongjun Luo
- Department of Orthopedics, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Weihua Cai
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
16
|
Pukale DD, Adkins-Travis K, Aryal SR, Shriver LP, Patti GJ, Leipzig ND. Investigating post-traumatic syringomyelia and local fluid osmoregulation via a rat model. Fluids Barriers CNS 2024; 21:19. [PMID: 38409031 PMCID: PMC10895764 DOI: 10.1186/s12987-024-00514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Syringomyelia (SM) is characterized by the development of fluid-filled cavities, referred to as syrinxes, within the spinal cord tissue. The molecular etiology of SM post-spinal cord injury (SCI) is not well understood and only invasive surgical based treatments are available to treat SM clinically. This study builds upon our previous omics studies and in vitro cellular investigations to further understand local fluid osmoregulation in post-traumatic SM (PTSM) to highlight important pathways for future molecular interventions. METHODS A rat PTSM model consisting of a laminectomy at the C7 to T1 level followed by a parenchymal injection of 2 μL quisqualic acid (QA) and an injection of 5 μL kaolin in the subarachnoid space was utilized 6 weeks after initial surgery, parenchymal fluid and cerebrospinal fluid (CSF) were collected, and the osmolality of fluids were analyzed. Immunohistochemistry (IHC), metabolomics analysis using LC-MS, and mass spectrometry-based imaging (MSI) were performed on injured and laminectomy-only control spinal cords. RESULTS We demonstrated that the osmolality of the local parenchymal fluid encompassing syrinxes was higher compared to control spinal cords after laminectomy, indicating a local osmotic imbalance due to SM injury. Moreover, we also found that parenchymal fluid is more hypertonic than CSF, indicating establishment of a local osmotic gradient in the PTSM injured spinal cord (syrinx site) forcing fluid into the spinal cord parenchyma to form and/or expand syrinxes. IHC results demonstrated upregulation of betaine, ions, water channels/transporters, and enzymes (BGT1, AQP1, AQP4, CHDH) at the syrinx site as compared to caudal and rostral sites to the injury, implying extensive local osmoregulation activities at the syrinx site. Further, metabolomics analysis corroborated alterations in osmolality at the syrinx site by upregulation of small molecule osmolytes including betaine, carnitine, glycerophosphocholine, arginine, creatine, guanidinoacetate, and spermidine. CONCLUSIONS In summary, PTSM results in local osmotic disturbance that propagates at 6 weeks following initial injury. This coincides with and may contribute to syrinx formation/expansion.
Collapse
Affiliation(s)
- Dipak D Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Kayla Adkins-Travis
- Departments of Chemistry and Medicine, Center for Proteomics, Metabolomics, and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Siddhartha R Aryal
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Leah P Shriver
- Departments of Chemistry and Medicine, Center for Proteomics, Metabolomics, and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Gary J Patti
- Departments of Chemistry and Medicine, Center for Proteomics, Metabolomics, and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA.
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
17
|
Song J, Li J, Zhao R, Chu X. Developing predictive models for surgical outcomes in patients with degenerative cervical myelopathy: a comparison of statistical and machine learning approaches. Spine J 2024; 24:57-67. [PMID: 37531977 DOI: 10.1016/j.spinee.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND CONTEXT Machine learning (ML) is widely used to predict the prognosis of numerous diseases. PURPOSE This retrospective analysis aimed to develop a prognostic prediction model using ML algorithms and identify predictors associated with poor surgical outcomes in patients with degenerative cervical myelopathy (DCM). STUDY DESIGN A retrospective study. PATIENT SAMPLE A total of 406 symptomatic DCM patients who underwent surgical decompression were enrolled and analyzed from three independent medical centers. OUTCOME MEASURES We calculated the area under the curve (AUC), classification accuracy, sensitivity, and specificity of each model. METHODS The Japanese Orthopedic Association (JOA) score was obtained before and 1 year following decompression surgery, and patients were grouped into good and poor outcome groups based on a cut-off value of 60% based on a previous study. Two datasets were fused for training, 1 dataset was held out as an external validation set. Optimal feature-subset and hyperparameters for each model were adjusted based on a 2,000-resample bootstrap-based internal validation via exhaustive search and grid search. The performance of each model was then tested on the external validation set. RESULTS The Support Vector Machine (SVM) model showed the highest predictive accuracy compared to other methods, with an AUC of 0.82 and an accuracy of 75.7%. Age, sex, disease duration, and preoperative JOA score were identified as the most commonly selected features by both the ML and statistical models. Grid search optimization for hyperparameters successfully enhanced the predictive performance of each ML model, and the SVM model still had the best performance with an AUC of 0.93 and an accuracy of 86.4%. CONCLUSIONS Overall, the study demonstrated that ML classifiers such as SVM can effectively predict surgical outcomes for patients with DCM while identifying associated predictors in a multivariate manner.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Li
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Rui Zhao
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xu Chu
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
18
|
Lee HY, Moon SH, Kang D, Choi E, Yang GH, Kim KN, Won JY, Yi S. A multi-channel collagen conduit with aligned Schwann cells and endothelial cells for enhanced neuronal regeneration in spinal cord injury. Biomater Sci 2023; 11:7884-7896. [PMID: 37906468 DOI: 10.1039/d3bm01152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Traumatic spinal cord injury (SCI) leads to Wallerian degeneration and the accompanying disruption of vasculature leads to ischemia, which damages motor and sensory function. Therefore, understanding the biological environment during regeneration is essential to promote neuronal regeneration and overcome this phenomenon. The band of Büngner is a structure of an aligned Schwann cell (SC) band that guides axon elongation providing a natural recovery environment. During axon elongation, SCs promote axon elongation while migrating along neovessels (endothelial cells [ECs]). To model this, we used extrusion 3D bioprinting to develop a multi-channel conduit (MCC) using collagen for the matrix region and sacrificial alginate to make the channel. The MCC was fabricated with a structure in which SCs and ECs were longitudinally aligned to mimic the sophisticated recovering SCI conditions. Also, we produced an MCC with different numbers of channels. The aligned SCs and ECs in the 9-channel conduit (9MCC-SE) were more biocompatible and led to more proliferation than the 5-channel conduit (5MCC-SE) in vitro. Also, the 9MCC-SE resulted in a greater healing effect than the 5MCC-SE with respect to neuronal regeneration, remyelination, inflammation, and angiogenesis in vivo. The above tissue recovery results led to motor function repair. Our results show that our 9MCC-SE model represents a new therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Hye Yeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Seo Hyun Moon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Donggu Kang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do, 15588, South Korea
| | - Eunjeong Choi
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do, 15588, South Korea
| | - Gi Hoon Yang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do, 15588, South Korea
| | - Keung Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Joo Yun Won
- Clinical & Translational Research Institute, Anymedi INC., Seoul, South Korea
| | - Seong Yi
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
19
|
Xie Y, Luo Z, Peng W, Liu Y, Yuan F, Xu J, Sun Y, Lu H, Wu T, Jiang L, Hu J. Inhibition of UTX/KDM6A improves recovery of spinal cord injury by attenuating BSCB permeability and macrophage infiltration through the MLCK/p-MLC pathway. J Neuroinflammation 2023; 20:259. [PMID: 37951955 PMCID: PMC10638785 DOI: 10.1186/s12974-023-02936-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Spinal cord injury (SCI) can prompt an immediate disruption to the blood-spinal cord barrier (BSCB). Restoring the integrity of this barrier is vital for the recovery of neurological function post-SCI. The UTX protein, a histone demethylase, has been shown in previous research to promote vascular regeneration and neurological recovery in mice with SCI. However, it is unclear whether UTX knockout could facilitate the recovery of the BSCB by reducing its permeability. In this study, we systematically studied BSCB disruption and permeability at different time points after SCI and found that conditional UTX deletion in endothelial cells (ECs) can reduce BSCB permeability, decrease inflammatory cell infiltration and ROS production, and improve neurological function recovery after SCI. Subsequently, we used RNA sequencing and ChIP-qPCR to confirm that conditional UTX knockout in ECs can down-regulate expression of myosin light chain kinase (MLCK), which specifically mediates myosin light chain (MLC) phosphorylation and is involved in actin contraction, cell retraction, and tight junctions (TJs) protein integrity. Moreover, we found that MLCK overexpression can increase the ratio of p-MLC/MLC, further break TJs, and exacerbate BSCB deterioration. Overall, our findings indicate that UTX knockout could inhibit the MLCK/p-MLC pathway, resulting in decreased BSCB permeability, and ultimately promoting neurological recovery in mice. These results suggest that UTX is a promising new target for treating SCI.
Collapse
Affiliation(s)
- Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixiang Luo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Peng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
20
|
You Z, Gao X, Kang X, Yang W, Xiong T, Li Y, Wei F, Zhuang Y, Zhang T, Sun Y, Shen H, Dai J. Microvascular endothelial cells derived from spinal cord promote spinal cord injury repair. Bioact Mater 2023; 29:36-49. [PMID: 37621772 PMCID: PMC10444976 DOI: 10.1016/j.bioactmat.2023.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 08/26/2023] Open
Abstract
Neural regeneration after spinal cord injury (SCI) closely relates to the microvascular endothelial cell (MEC)-mediated neurovascular unit formation. However, the effects of central nerve system-derived MECs on neovascularization and neurogenesis, and potential signaling involved therein, are unclear. Here, we established a primary spinal cord-derived MECs (SCMECs) isolation with high cell yield and purity to describe the differences with brain-derived MECs (BMECs) and their therapeutic effects on SCI. Transcriptomics and proteomics revealed differentially expressed genes and proteins in SCMECs were involved in angiogenesis, immunity, metabolism, and cell adhesion molecular signaling was the only signaling pathway enriched of top 10 in differentially expressed genes and proteins KEGG analysis. SCMECs and BMECs could be induced angiogenesis by different stiffness stimulation of PEG hydrogels with elastic modulus 50-1650 Pa for SCMECs and 50-300 Pa for BMECs, respectively. Moreover, SCMECs and BMECs promoted spinal cord or brain-derived NSC (SNSC/BNSC) proliferation, migration, and differentiation at different levels. At certain dose, SCMECs in combination with the NeuroRegen scaffold, showed higher effectiveness in the promotion of vascular reconstruction. The potential underlying mechanism of this phenomenon may through VEGF/AKT/eNOS- signaling pathway, and consequently accelerated neuronal regeneration and functional recovery of SCI rats compared to BMECs. Our findings suggested a promising role of SCMECs in restoring vascularization and neural regeneration.
Collapse
Affiliation(s)
- Zhifeng You
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xu Gao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xinyi Kang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Wen Yang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tiandi Xiong
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Li
- i-Lab, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Wei
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Ting Zhang
- i-Lab, Key Laboratory of Multifunction Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yifu Sun
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
21
|
Kong G, Xiong W, Li C, Xiao C, Wang S, Li W, Chen X, Wang J, Chen S, Zhang Y, Gu J, Fan J, Jin Z. Treg cells-derived exosomes promote blood-spinal cord barrier repair and motor function recovery after spinal cord injury by delivering miR-2861. J Nanobiotechnology 2023; 21:364. [PMID: 37794487 PMCID: PMC10552208 DOI: 10.1186/s12951-023-02089-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
The blood-spinal cord barrier (BSCB) is a physical barrier between the blood and the spinal cord parenchyma. Current evidence suggests that the disruption of BSCB integrity after spinal cord injury can lead to secondary injuries such as spinal cord edema and excessive inflammatory response. Regulatory T (Treg) cells are effective anti-inflammatory cells that can inhibit neuroinflammation after spinal cord injury, and their infiltration after spinal cord injury exhibits the same temporal and spatial characteristics as the automatic repair of BSCB. However, few studies have assessed the relationship between Treg cells and spinal cord injury, emphasizing BSCB integrity. This study explored whether Treg affects the recovery of BSCB after SCI and the underlying mechanism. We confirmed that spinal cord angiogenesis and Treg cell infiltration occurred simultaneously after SCI. Furthermore, we observed significant effects on BSCB repair and motor function in mice by Treg cell knockout and overexpression. Subsequently, we demonstrated the presence and function of exosomes in vitro. In addition, we found that Treg cell-derived exosomes encapsulated miR-2861, and miR-2861 regulated the expression of vascular tight junction (TJs) proteins. The luciferase reporter assay confirmed the negative regulation of IRAK1 by miR-2861, and a series of rescue experiments validated the biological function of IRAKI in regulating BSCB. In summary, we demonstrated that Treg cell-derived exosomes could package and deliver miR-2861 and regulate the expression of IRAK1 to affect BSCB integrity and motor function after SCI in mice, which provides novel insights for functional repair and limiting inflammation after SCI.
Collapse
Affiliation(s)
- Guang Kong
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wu Xiong
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cong Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenyu Xiao
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siming Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbo Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangjun Chen
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Wang
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Chen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yongjie Zhang
- Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jin Fan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhengshuai Jin
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Xie Y, Sun Y, Liu Y, Zhao J, Liu Q, Xu J, Qin Y, He R, Yuan F, Wu T, Duan C, Jiang L, Lu H, Hu J. Targeted Delivery of RGD-CD146 +CD271 + Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Promotes Blood-Spinal Cord Barrier Repair after Spinal Cord Injury. ACS NANO 2023; 17:18008-18024. [PMID: 37695238 DOI: 10.1021/acsnano.3c04423] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB), potentially exacerbating nerve damage and emphasizing the criticality of preserving the BSCB integrity during SCI treatment. This study explores an alternative therapeutic approach for SCI by identifying a subpopulation of exosomes with stable BSCB function and achieving a specific targeted delivery. Specific subpopulations of CD146+CD271+ umbilical cord mesenchymal stem cells (UCMSCs) were isolated, from which engineered exosomes (RGD-CD146+CD271+ UCMSC-Exos) with targeted neovascularization function were obtained through gene transfection. In vivo and in vitro experiments were performed to explore the targeting and therapeutic effects of RGD-CD146+CD271+ UCMSC-Exos and the potential mechanisms underlying BSCB stabilization and neural function recovery. The results demonstrated that RGD-CD146+CD271+ UCMSC-Exos exhibited physical and chemical properties similar to those of regular exosomes. Notably, following intranasal administration, RGD-CD146+CD271+ UCMSC-Exos exhibited enhanced aggregation at the SCI center and demonstrated the specific targeting of neovascular endothelial cells. In the SCI model, intranasal administration of RGD-CD146+CD271+ UCMSC-Exos reduced Evans blue dye leakage, increased tight junction protein expression, and improved neurological function recovery. In vitro testing revealed that RGD-CD146+CD271+ UCMSC-Exos treatment significantly reduced the permeability of bEnd.3 cells subjected to oxygen-glucose deprivation, thereby restoring the integrity of tight junctions. Moreover, further exploration of the molecular mechanism underlying BSCB stabilization by CD146+CD271+ UCMSC-Exos identified the crucial role of the miR-501-5p/MLCK axis in this process. In conclusion, targeted delivery of RGD-CD146+CD271+ UCMSC-Exos presents a promising and effective treatment option for SCI.
Collapse
Affiliation(s)
- Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Quanbo Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Yiming Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410005, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410005, China
- Hunan Engineering Research Center of Sports and Health, Changsha 410005, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410005, China
| |
Collapse
|
23
|
Peng W, Xie Y, Liu Y, Xu J, Yuan F, Li C, Qin T, Lu H, Duan C, Hu J. Targeted delivery of CD163 + macrophage-derived small extracellular vesicles via RGD peptides promote vascular regeneration and stabilization after spinal cord injury. J Control Release 2023; 361:750-765. [PMID: 37586563 DOI: 10.1016/j.jconrel.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Targeted delivery of small extracellular vesicles (sEVs) with low immunogenicity and fewer undesirable side effects are needed for spinal cord injury (SCI) therapy. Here, we show that RGD (Arg-Gly-Asp) peptide-decorated CD163+ macrophage-derived sEVs can deliver TGF-β to the neovascular endothelial cells of the injured site and improve neurological function after SCI. CD163+ macrophages are M2 macrophages that express TGF-β and are reported to promote angiogenesis and vascular stabilization in various diseases. Enriched TGF-β EVs were crucial in angiogenesis and tissue repair. However, TGF-β also boosts the formation of fibrous or glial scars, detrimental to neurological recovery. Our results found RGD-modified CD163+ sEVs accumulated in the injured region and were taken up by neovascular endothelial cells. Furthermore, RGD-CD163+ sEVs promoted vascular regeneration and stabilization in vitro and in vivo, resulting in substantial functional recovery post-SCI. These data suggest that RGD-CD163+ sEVs may be a potential strategy for treating SCI.
Collapse
Affiliation(s)
- Wei Peng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Spine Surgery, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
24
|
Hamel R, Peruzzotti-Jametti L, Ridley K, Testa V, Yu B, Rowitch D, Marioni JC, Pluchino S. Time-resolved single-cell RNAseq profiling identifies a novel Fabp5+ subpopulation of inflammatory myeloid cells with delayed cytotoxic profile in chronic spinal cord injury. Heliyon 2023; 9:e18339. [PMID: 37636454 PMCID: PMC10450865 DOI: 10.1016/j.heliyon.2023.e18339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023] Open
Abstract
Traumatic spinal cord injuries (SCI) are a group of highly debilitating pathologies affecting thousands annually, and adversely affecting quality of life. Currently, no fully restorative therapies exist, and SCI still results in significant personal, societal and financial burdens. Inflammation plays a major role in the evolution of SCI, with myeloid cells, including bone marrow derived macrophages (BMDMs) and microglia (MG) being primary drivers of both early secondary pathogenesis and delayed wound healing events. The precise role of myeloid cell subsets is unclear as upon crossing the blood-spinal cord barrier, infiltrating bone marrow derived macrophages (BMDMs) may take on the morphology of resident microglia, and upregulate canonical microglia markers, thus making the two populations difficult to distinguish. Here, we used time-resolved scRNAseq and transgenic fate-mapping to chart the transcriptional profiles of tissue-resident and -infiltrating myeloid cells in a mouse model of thoracic contusion SCI. Our work identifies a novel subpopulation of foam cell-like inflammatory myeloid cells with increased expression of Fatty Acid Binding Protein 5 (Fabp5) and comprise both tissue-resident and -infiltrating cells. Fabp5+ inflammatory myeloid cells display a delayed cytotoxic profile that is predominant at the lesion epicentre and extends into the chronic phase of SCI.
Collapse
Affiliation(s)
- Regan Hamel
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | - Veronica Testa
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Bryan Yu
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - David Rowitch
- Cambridge Stem Cell Institute, University of Cambridge, UK
| | - John C. Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Ribeiro A, Rebocho da Costa M, de Sena-Tomás C, Rodrigues EC, Quitéria R, Maçarico T, Rosa Santos SC, Saúde L. Development and repair of blood vessels in the zebrafish spinal cord. Open Biol 2023; 13:230103. [PMID: 37553073 PMCID: PMC10409570 DOI: 10.1098/rsob.230103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
The vascular system is inefficiently repaired after spinal cord injury (SCI) in mammals, resulting in secondary tissue damage and immune deregulation that contribute to the limited functional recovery. Unlike mammals, zebrafish can repair the spinal cord (SC) and restore motility, but the vascular response to injury has not been investigated. Here, we describe the zebrafish SC blood vasculature, starting in development with the initial vessel ingression in a body size-dependent manner, the acquisition of perivascular support and the establishment of ventral to dorsal blood circulation. The vascular organization grows in complexity and displays multiple barrier specializations in adulthood. After injury, vessels rapidly regrow into the lesion, preceding the glial bridge and axons. Vascular repair involves an early burst of angiogenesis that creates dysmorphic and leaky vessels. Dysfunctional vessels are later removed, as pericytes are recruited and the blood-SC barrier is re-established. This study demonstrates that zebrafish can successfully re-vascularize the spinal tissue, reinforcing the value of this organism as a regenerative model for SCI.
Collapse
Affiliation(s)
- Ana Ribeiro
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Mariana Rebocho da Costa
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Carmen de Sena-Tomás
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Elsa Charas Rodrigues
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Raquel Quitéria
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Tiago Maçarico
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Susana Constantino Rosa Santos
- Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| | - Leonor Saúde
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
- Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa 1649-028 Portugal
| |
Collapse
|
26
|
Davleeva MA, Garifulin RR, Bashirov FV, Izmailov AA, Nurullin LF, Salafutdinov II, Gatina DZ, Shcherbinin DN, Lysenko AA, Tutykhina IL, Shmarov MM, Islamov RR. Molecular and cellular changes in the post-traumatic spinal cord remodeling after autoinfusion of a genetically-enriched leucoconcentrate in a mini-pig model. Neural Regen Res 2023; 18:1505-1511. [PMID: 36571355 PMCID: PMC10075125 DOI: 10.4103/1673-5374.360241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes, which affect the potency of the functional recovery after spinal cord injury (SCI). Gene therapy for spinal cord injury is proposed as a promising therapeutic strategy to induce positive changes in remodeling of the affected neural tissue. In our previous studies for delivering the therapeutic genes at the site of spinal cord injury, we developed a new approach using an autologous leucoconcentrate transduced ex vivo with chimeric adenoviruses (Ad5/35) carrying recombinant cDNA. In the present study, the efficacy of the intravenous infusion of an autologous genetically-enriched leucoconcentrate simultaneously producing recombinant vascular endothelial growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) was evaluated with regard to the molecular and cellular changes in remodeling of the spinal cord tissue at the site of damage in a model of mini-pigs with moderate spinal cord injury. Experimental animals were randomly divided into two groups of 4 pigs each: the therapeutic (infused with the leucoconcentrate simultaneously transduced with a combination of the three chimeric adenoviral vectors Ad5/35-VEGF165, Ad5/35-GDNF, and Ad5/35-NCAM1) and control groups (infused with intact leucoconcentrate). The morphometric and immunofluorescence analysis of the spinal cord regeneration in the rostral and caudal segments according to the epicenter of the injury in the treated animals compared to the control mini-pigs showed: (1) higher sparing of the grey matter and increased survivability of the spinal cord cells (lower number of Caspase-3-positive cells and decreased expression of Hsp27); (2) recovery of synaptophysin expression; (3) prevention of astrogliosis (lower area of glial fibrillary acidic protein-positive astrocytes and ionized calcium binding adaptor molecule 1-positive microglial cells); (4) higher growth rates of regenerating βIII-tubulin-positive axons accompanied by a higher number of oligodendrocyte transcription factor 2-positive oligodendroglial cells in the lateral corticospinal tract region. These results revealed the efficacy of intravenous infusion of the autologous genetically-enriched leucoconcentrate producing recombinant VEGF, GDNF, and NCAM in the acute phase of spinal cord injury on the positive changes in the post-traumatic remodeling nervous tissue at the site of direct injury. Our data provide a solid platform for a new ex vivo gene therapy for spinal cord injury and will facilitate further translation of regenerative therapies in clinical neurology.
Collapse
Affiliation(s)
| | | | | | | | - Leniz Faritovich Nurullin
- Department of Histology, Cytology and Embryology, Kazan State Medical University; Kazan Institute of Biochemistry and Biophysics, Federal Research Center of Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Ilnur Ildusovich Salafutdinov
- Department of Histology, Cytology and Embryology, Kazan State Medical University; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Dmitrij Nikolaevich Shcherbinin
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei Aleksandrovich Lysenko
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Irina Leonidovna Tutykhina
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maksim Mikhailovich Shmarov
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | | |
Collapse
|
27
|
Garcia TA, Jonak CR, Binder DK. The Role of Aquaporins in Spinal Cord Injury. Cells 2023; 12:1701. [PMID: 37443735 PMCID: PMC10340765 DOI: 10.3390/cells12131701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Edema formation following traumatic spinal cord injury (SCI) exacerbates secondary injury, and the severity of edema correlates with worse neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water channel is found on plasma membranes of astrocytic endfeet in direct contact with blood vessels, the glia limitans in contact with the cerebrospinal fluid, and ependyma around the central canal. Local expression at these tissue-fluid interfaces allows AQP4 channels to play an important role in the bidirectional regulation of water homeostasis under normal conditions and following trauma. In this review, we consider the available evidence regarding the potential role of AQP4 in edema after SCI. Although more work remains to be carried out, the overall evidence indicates a critical role for AQP4 channels in edema formation and resolution following SCI and the therapeutic potential of AQP4 modulation in edema resolution and functional recovery. Further work to elucidate the expression and subcellular localization of AQP4 during specific phases after SCI will inform the therapeutic modulation of AQP4 for the optimization of histological and neurological outcomes.
Collapse
Affiliation(s)
- Terese A. Garcia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Carrie R. Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Center for Glial-Neuronal Interactions, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
Xie J, Herr S, Ma D, Wu S, Zhao H, Sun S, Ma Z, Chan MYL, Li K, Yang Y, Huang F, Shi R, Yuan C. Acute Transcriptomic and Epigenetic Alterations at T12 After Rat T10 Spinal Cord Contusive Injury. Mol Neurobiol 2023; 60:2937-2953. [PMID: 36750527 DOI: 10.1007/s12035-023-03250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Spinal cord injury is a severely debilitating condition affecting a significant population in the USA. Spinal cord injury patients often have increased risk of developing persistent neuropathic pain and other neurodegenerative conditions beyond the primary lesion center later in their life. The molecular mechanism conferring to the "latent" damages at distal tissues, however, remains elusive. Here, we studied molecular changes conferring abnormal functionality at distal spinal cord (T12) beyond the lesion center (T10) by combining next-generation sequencing (RNA- and bisulfite sequencing), super-resolution microscopy, and immunofluorescence staining at 7 days post injury. We observed significant transcriptomic changes primarily enriched in neuroinflammation and synaptogenesis associated pathways. Transcription factors (TFs) that regulate neurogenesis and neuron plasticity, including Egr1, Klf4, and Myc, are significantly upregulated. Along with global changes in chromatin arrangements and DNA methylation, including 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), bisulfite sequencing further reveals the involvement of DNA methylation changes in regulating cytokine, growth factor, and ion channel expression. Collectively, our results pave the way towards understanding transcriptomic and epigenomic mechanism in conferring long-term disease risks at distal tissues away from the primary lesion center and shed light on potential molecular targets that govern the regulatory mechanism at distal spinal cord tissues.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Seth Herr
- Center for Paralysis Research, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Donghan Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Siyuan Sun
- Center for Paralysis Research, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Zhixiong Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Matthew Yan-Lok Chan
- Agriculture and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Katherine Li
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Fang Huang
- Agriculture and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Center for Paralysis Research, Purdue University, West Lafayette, IN, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
29
|
Schaufler D, Manthou ME, Theotokis P, Rink-Notzon S, Angelov DN. Effects of Whole-Body Vibration and Manually Assisted Locomotor Therapy on Neurotrophin-3 Expression and Microglia/Macrophage Mobilization Following Thoracic Spinal Cord Injury in Rats. Curr Issues Mol Biol 2023; 45:3238-3254. [PMID: 37185735 PMCID: PMC10137282 DOI: 10.3390/cimb45040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Microglial cells play an important role in neuroinflammation and secondary damages after spinal cord injury (SCI). Progressive microglia/macrophage inflammation along the entire spinal axis follows SCI, and various factors may determine the microglial activation profile. Neurotrophin-3 (NT-3) is known to control the survival of neurons, the function of synapses, and the release of neurotransmitters, while also stimulating axon plasticity and growth. We examined the effects of whole-body vibration (WBV) and forms of assisted locomotor therapy, such as passive flexion-extension (PFE) therapy, at the neuronal level after SCI, with a focus on changes in NT-3 expression and on microglia/macrophage reaction, as they play a major role in the reconstitution of CNS integrity after injury and they may critically account for the observed structural and functional benefits of physical therapy. More specifically, the WBV therapy resulted in the best overall functional recovery when initiated at day 14, while inducing a decrease in Iba1 and the highest increase in NT-3. Therefore, the WBV therapy at the 14th day appeared to be superior to the PFE therapy in terms of recovery. Functional deficits and subsequent rehabilitation depend heavily upon the inflammatory processes occurring caudally to the injury site; thus, we propose that increased expression of NT-3, especially in the dorsal horn, could potentially be the mediator of this favorable outcome.
Collapse
Affiliation(s)
- Diana Schaufler
- Department I of Internal Medicine, Lung Cancer Group Cologne, University Hospital Cologne, 50931 Cologne, Germany
- Anatomical Institute II, University of Cologne, 50931 Cologne, Germany
| | - Maria Eleni Manthou
- Anatomical Institute II, University of Cologne, 50931 Cologne, Germany
- Department of Histology and Embryology, Aristotle University Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology and Embryology, Aristotle University Thessaloniki, 54124 Thessaloniki, Greece
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54124 Thessaloniki, Greece
| | - Svenja Rink-Notzon
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, 50931 Cologne, Germany
| | - Doychin N Angelov
- Anatomical Institute II, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
30
|
Martins I, Neves-Silva D, Ascensão-Ferreira M, Dias AF, Ribeiro D, Isidro AF, Quitéria R, Paramos-de-Carvalho D, Barbosa-Morais NL, Saúde L. Mouse Spinal Cord Vascular Transcriptome Analysis Identifies CD9 and MYLIP as Injury-Induced Players. Int J Mol Sci 2023; 24:6433. [PMID: 37047406 PMCID: PMC10094762 DOI: 10.3390/ijms24076433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Traumatic spinal cord injury (SCI) initiates a cascade of cellular events, culminating in irreversible tissue loss and neuroinflammation. After the trauma, the blood vessels are destroyed. The blood-spinal cord barrier (BSCB), a physical barrier between the blood and spinal cord parenchyma, is disrupted, facilitating the infiltration of immune cells, and contributing to a toxic spinal microenvironment, affecting axonal regeneration. Understanding how the vascular constituents of the BSCB respond to injury is crucial to prevent BSCB impairment and to improve spinal cord repair. Here, we focus our attention on the vascular transcriptome at 3- and 7-days post-injury (dpi), during which BSCB is abnormally leaky, to identify potential molecular players that are injury-specific. Using the mouse contusion model, we identified Cd9 and Mylip genes as differentially expressed at 3 and 7 dpi. CD9 and MYLIP expression were injury-induced on vascular cells, endothelial cells and pericytes, at the injury epicentre at 7 dpi, with a spatial expression predominantly at the caudal region of the lesion. These results establish CD9 and MYLIP as two new potential players after SCI, and future studies targeting their expression might bring promising results for spinal cord repair.
Collapse
Affiliation(s)
- Isaura Martins
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Dalila Neves-Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Mariana Ascensão-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Filipa Dias
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana Filipa Isidro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Raquel Quitéria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Diogo Paramos-de-Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nuno L. Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Saúde
- Instituto de Medicina Molecular João Lobo Antunes e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
31
|
Smith NJ, Doody NE, Štěpánková K, Fuller M, Ichiyama RM, Kwok JCF, Egginton S. Spatiotemporal microvascular changes following contusive spinal cord injury. Front Neuroanat 2023; 17:1152131. [PMID: 37025098 PMCID: PMC10070689 DOI: 10.3389/fnana.2023.1152131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Microvascular integrity is disrupted following spinal cord injury (SCI) by both primary and secondary insults. Changes to neuronal structures are well documented, but little is known about how the capillaries change and recover following injury. Spatiotemporal morphological information is required to explore potential treatments targeting the microvasculature post-SCI to improve functional recovery. Sprague-Dawley rats were given a T10 moderate/severe (200 kDyn) contusion injury and were perfuse-fixed at days 2, 5, 15, and 45 post-injury. Unbiased stereology following immunohistochemistry in four areas (ventral and dorsal grey and white matter) across seven spinal segments (n = 4 for each group) was used to calculate microvessel density, surface area, and areal density. In intact sham spinal cords, average microvessel density across the thoracic spinal cord was: ventral grey matter: 571 ± 45 mm-2, dorsal grey matter: 484 ± 33 mm-2, ventral white matter: 90 ± 8 mm-2, dorsal white matter: 88 ± 7 mm-2. Post-SCI, acute microvascular disruption was evident, particularly at the injury epicentre, and spreading three spinal segments rostrally and caudally. Damage was most severe in grey matter at the injury epicentre (T10) and T11. Reductions in all morphological parameters (95-99% at day 2 post-SCI) implied vessel regression and/or collapse acutely. Transmission electron microscopy (TEM) revealed disturbed aspects of neurovascular unit fine structure at day 2 post-SCI (n = 2 per group) at T10 and T11. TEM demonstrated a more diffuse and disrupted basement membrane and wider intercellular clefts at day 2, suggesting a more permeable blood spinal cord barrier and microvessel remodelling. Some evidence of angiogenesis was seen during recovery from days 2 to 45, indicated by increased vessel density, surface area, and areal density at day 45. These novel results show that the spinal cord microvasculature is highly adaptive following SCI, even at chronic stages and up to three spinal segments from the injury epicentre. Multiple measures of gross and fine capillary structure from acute to chronic time points provide insight into microvascular remodelling post-SCI. We have identified key vascular treatment targets, namely stabilising damaged capillaries and replacing destroyed vessels, which may be used to improve functional outcomes following SCI in the future.
Collapse
Affiliation(s)
- Nicole J. Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Natalie E. Doody
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Kateřina Štěpánková
- Centre for Reconstructive Neuroscience, Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Fuller
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Jessica C. F. Kwok
- Centre for Reconstructive Neuroscience, Czech Academy of Sciences, Prague, Czechia
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
32
|
Gál L, Bellák T, Marton A, Fekécs Z, Weissman D, Török D, Biju R, Vizler C, Kristóf R, Beattie MB, Lin PJ, Pardi N, Nógrádi A, Pajer K. Restoration of Motor Function through Delayed Intraspinal Delivery of Human IL-10-Encoding Nucleoside-Modified mRNA after Spinal Cord Injury. RESEARCH (WASHINGTON, D.C.) 2023; 6:0056. [PMID: 36930811 PMCID: PMC10013810 DOI: 10.34133/research.0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Efficient in vivo delivery of anti-inflammatory proteins to modulate the microenvironment of an injured spinal cord and promote neuroprotection and functional recovery is a great challenge. Nucleoside-modified messenger RNA (mRNA) has become a promising new modality that can be utilized for the safe and efficient delivery of therapeutic proteins. Here, we used lipid nanoparticle (LNP)-encapsulated human interleukin-10 (hIL-10)-encoding nucleoside-modified mRNA to induce neuroprotection and functional recovery following rat spinal cord contusion injury. Intralesional administration of hIL-10 mRNA-LNP to rats led to a remarkable reduction of the microglia/macrophage reaction in the injured spinal segment and induced significant functional recovery compared to controls. Furthermore, hIL-10 mRNA treatment induced increased expression in tissue inhibitor of matrix metalloproteinase 1 and ciliary neurotrophic factor levels in the affected spinal segment indicating a time-delayed secondary effect of IL-10 5 d after injection. Our results suggest that treatment with nucleoside-modified mRNAs encoding neuroprotective factors is an effective strategy for spinal cord injury repair.
Collapse
Affiliation(s)
- László Gál
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Bellák
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Annamária Marton
- National Biotechnology Laboratory, Institute of Genetics, Biological Research Centre, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Zoltán Fekécs
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dénes Török
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Rachana Biju
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csaba Vizler
- National Biotechnology Laboratory, Institute of Genetics, Biological Research Centre, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Rebeka Kristóf
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | | | | | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
33
|
Zhou W, Mao Z, Wang Z, Zhu H, Zhao Y, Zhang Z, Zeng Y, Li M. Diagnostic and Predictive Value of Novel Inflammatory Markers of the Severity of Acute Traumatic Spinal Cord Injury: A Retrospective Study. World Neurosurg 2023; 171:e349-e354. [PMID: 36509325 DOI: 10.1016/j.wneu.2022.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In order to assess the relationships between the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio, and systemic immune inflammatory index (SII) and the American Spinal Injury Association Impairment Scale (AIS) grade in patients with acute traumatic spinal cord injury (TSCI). METHODS We retrospectively investigated 526 patients with acute traumatic spinal cord injury admitted to the First Affiliated Hospital of Nanchang University between January 2012 and December 2021, and for whom routine blood tests were performed within 8 hours of injury. To assess the degree of impairment in TSCI patients using the American Spinal Cord Injury Association Impairment Scale. The patients were divided into 2 groups according to AIS grade as follows: patients with an AIS grade of A-B (severe and critical TSCI, respectively) were distinguished from those with an AIS grade of C-E (minimal, mild, and moderate TSCI, respectively). The association between unfavorable outcomes and each indicator was examined separately through univariate logistic regression analysis. Correlations between variables and AIS grades were analyzed by Spearman's correlation test. The discriminative ability of predictive models was evaluated using the area under the curve. RESULTS The NLR, PLR, and SII were elevated in patients with spinal cord injury and exceeded the reference values in 95% of cases. The AIS grades were inversely correlated with the NLR, PLR, and SII. In the receiver operating characteristic curve analysis performed to confirm the utility of the NLR, PLR, and SII for predicting the AIS grade, the area under the curve values were 0.710 (95% confidence interval [CI], 0.666-0.755), 0.603 (95% CI, 0.554-0.651) and 0.638 (95% CI, 0.591-0.685), respectively. The optimal cut-off value for the NLR was 0.361 (sensitivity = 0.79, specificity = 0.57). CONCLUSIONS The analysis of changes in NLR, PLR, and SII as indicators of the novel systemic inflammatory can be an important complement to traditional methods for the assessment of severity and prognosis and the possible selection of patients for close monitoring. And, NLR showed higher diagnostic performance than PLR and SII.
Collapse
Affiliation(s)
- Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zelu Mao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huaxin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yeyu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhixiong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanyang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
34
|
Yao F, Luo Y, Chen Y, Li Y, Hu X, You X, Li Z, Yu S, Tian D, Zheng M, Cheng L, Jing J. Myelin Debris Impairs Tight Junctions and Promotes the Migration of Microvascular Endothelial Cells in the Injured Spinal Cord. Cell Mol Neurobiol 2023; 43:741-756. [PMID: 35147836 PMCID: PMC11415199 DOI: 10.1007/s10571-022-01203-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023]
Abstract
Clearance of myelin debris caused by acute demyelination is an essential process for functional restoration following spinal cord injury (SCI). Microvascular endothelial cells, acting as "amateur" phagocytes, have been confirmed to engulf and degrade myelin debris, promoting the inflammatory response, robust angiogenesis, and persistent fibrosis. However, the effect of myelin debris engulfment on the function of endothelial tight junctions (TJs) remains unclear. Here, we demonstrate that myelin debris uptake impairs TJs and gap junctions of endothelial cells in the lesion core of the injured spinal cord and in vitro, resulting in increased permeability and leakage. We further show that myelin debris acts as an inducer to regulate the endothelial-to-mesenchymal transition in a dose-dependent manner and promotes endothelial cell migration through the PI3K/AKT and ERK signaling pathways. Together, our results indicate that myelin debris engulfment impairs TJs and promotes the migration of endothelial cells. Accelerating myelin debris clearance may help maintain blood-spinal cord barrier integrity, thus facilitating restoration of motor and sensory function following SCI.
Collapse
Affiliation(s)
- Fei Yao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yiteng Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Xuyang Hu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Xingyu You
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Ziyu Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Shuisheng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Dasheng Tian
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Meige Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
35
|
Xia Y, Zhu J, Yang R, Wang H, Li Y, Fu C. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges. Front Immunol 2023; 14:1141601. [PMID: 36911700 PMCID: PMC9999104 DOI: 10.3389/fimmu.2023.1141601] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Spinal cord injury (SCI) has considerable impact on patient physical, mental, and financial health. Secondary SCI is associated with inflammation, vascular destruction, and subsequent permanent damage to the nervous system. Mesenchymal stem cells (MSCs) have anti-inflammatory properties, promoting vascular regeneration and the release neuro-nutrients, and are a promising strategy for the treatment of SCI. Preclinical studies have shown that MSCs promote sensory and motor function recovery in rats. In clinical trials, MSCs have been reported to improve the American Spinal Injury Association (ASIA) sensory and motor scores. However, the effectiveness of MSCs in treating patients with SCI remains controversial. MSCs promote tumorigenesis and ensuring the survival of MSCs in the hostile environment of SCI is challenging. In this article we examine the evidence on the pathophysiological changes occurring after SCI. We then review the underlying mechanisms of MSCs in the treatment of SCI and summarize the potential application of MSCs in clinical practice. Finally, we highlight the challenges surrounding the use of MSCs in the treatment of SCI and discuss future applications.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun,
China
| |
Collapse
|
36
|
Davis JA, Grau JW. Protecting the injured central nervous system: Do anesthesia or hypothermia ameliorate secondary injury? Exp Neurol 2023; 363:114349. [PMID: 36775099 DOI: 10.1016/j.expneurol.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Traumatic injury to the central nervous system (CNS) and stroke initiate a cascade of processes that expand the area of tissue loss. The current review considers recent studies demonstrating that the induction of an anesthetic state or cooling the affected tissue (hypothermia) soon after injury can have a therapeutic effect. We first provide an overview of the neurobiological processes that fuel tissue loss after traumatic brain injury (TBI), spinal cord injury (SCI) and stroke. We then examine the rehabilitative effectiveness of therapeutic anesthesia across a variety of drug categories through a systematic review of papers in the PubMed database. We also review the therapeutic benefits hypothermia, another treatment that quells neural activity. We conclude by considering factors related to the safety, efficacy and timing of treatment, as well as the mechanisms of action. Clinical implications are also discussed.
Collapse
Affiliation(s)
- Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
37
|
Transplantation of olfactory ensheathing cells decreases local and serological monocyte chemoattractant protein 1 level during the acute phase of rat spinal cord injury. Neuroreport 2022; 33:729-741. [PMID: 36250430 DOI: 10.1097/wnr.0000000000001839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Monocyte chemoattractant protein 1 (MCP1) is one of the most upregulated cytokines in the spinal cord and serum throughout acute spinal cord injury (SCI). Olfactory ensheathing cells (OECs) transplantation improves SCI through multiple mechanisms, including immunomodulation. Our study aimed to investigate whether OECs ameliorate acute inflammation after SCI by modulating MCP1 expression. METHODS We established a standardized clinically relevant contusion model using the NYU impactor. OECs were administered to the injured spinal cord via microinjection 30 minutes after injury. Rat locomotor functions were assessed by the Basso-Beattie-Bresnahan scale score. Time-course histopathological (H&E and IHC) analyses were performed to record rapid changes in acute inflammation at lesion epicenters. Serum MCP1 level was detected by ELISA assay. RESULTS BBB scores showed improved locomotor functional recoveries in the OECs transplantation group after SCI ( P < 0.05). Staining of H&E and CD68 illustrated that OECs transplantation attenuated inflammatory response by reducing lesion areas and infiltrating myeloid cell numbers. We further revealed significantly decreased MCP1 levels in the spinal cord and serum after OECs transplantation ( P < 0.05). Noteworthily, distinct expression levels of MCP1 were found in rats undergoing a mild injury (cord impacted from a 10-mm height) compared to the moderate injury (25-mm) group. CONCLUSION Our study reports that transplantation of OECs promotes locomotor functional recovery after SCI and alleviates acute inflammation by decreasing local and serological MCP1 levels. We provide preliminary evidence that MCP1 might serve as a potential biomarker to reflect the severity of SCI, which is of great interest in future studies.
Collapse
|
38
|
Wichmann TO, Kasch H, Dyrskog S, Høy K, Møller BK, Krog J, Hviid CVB, Hoffmann HJ, Rasmussen MM. The inflammatory response and blood-spinal cord barrier integrity in traumatic spinal cord injury: a prospective pilot study. Acta Neurochir (Wien) 2022; 164:3143-3153. [PMID: 36190569 DOI: 10.1007/s00701-022-05369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/07/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE Triggering of inflammatory responses and disruption of blood-spinal cord barrier (BSCB) integrity are considered pivotal events in the pathophysiology of traumatic spinal cord injury (TSCI). Yet, these events are poorly understood and described in humans. This study aims to describe inflammatory responses and BSCB integrity in human TSCI. METHODS Fifteen TSCI patients and fifteen non-TSCI patients were prospectively recruited from Aarhus University Hospital, Denmark. Peripheral blood (PB) and cerebrospinal fluid (CSF) were collected at median day 0 [IQR: 1], median day 9 [IQR: 2], and median day 148 [IQR: 49] after injury. PB and CSF were analyzed for immune cells by flow cytometry, cytokines by multiplex immunoassay, and BSCB integrity by IgG Index. RESULTS Eleven TSCI patients completed follow-up. Results showed alterations in innate and adaptive immune cell counts over time. TSCI patients had significantly increased cytokine concentrations in CSF at the first and second follow-up, while only concentrations of interleukin (IL)-4, IL-8, and tumor necrosis factor-α remained significantly increased at the third follow-up. In PB, TSCI patients had significantly increased IL-6, IL-8, and IL-10 concentrations and significantly decreased interferon-γ concentrations at the first follow-up. Results further showed increased IgG Index indicative of BSCB disruption in seven TSCI patients at the first follow-up, five TSCI patients at the second follow-up, and two patients at the third follow-up. CONCLUSIONS Our results suggest that TSCI mainly triggers innate inflammatory responses that resolves over time, although with some degree of non-resolving inflammation, particularly in CSF. Our results cannot confirm BSCB disruption in all TSCI patients.
Collapse
Affiliation(s)
- Thea Overgaard Wichmann
- Dept. Neurosurgery, Cense-Spine, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 165 8200 Aarhus N, Aarhus, Denmark.
| | - Helge Kasch
- Dept. Neurology, Aarhus University Hospital, Aarhus, Denmark.,Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stig Dyrskog
- Dept. Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Kristian Høy
- Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Dept. Orthopaedic Surgery - Spine section, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne Kuno Møller
- Dept. of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Krog
- Dept. Anaesthesiology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Vinter Bødker Hviid
- Dept. Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Dept. Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Hans Jürgen Hoffmann
- Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Dept. Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel Mylius Rasmussen
- Dept. Neurosurgery, Cense-Spine, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 165 8200 Aarhus N, Aarhus, Denmark.,Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
39
|
Codelivery of minocycline hydrochloride and dextran sulfate via bionic liposomes for the treatment of spinal cord injury. Int J Pharm 2022; 628:122285. [DOI: 10.1016/j.ijpharm.2022.122285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/03/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022]
|
40
|
Li J, Liu X, Wu H, Guo P, Li B, Wang J, Tian W, Chen D, Gao M, Zhou Z, Liu S. Identification of hub genes related to the innate immune response activated during spinal cord injury. FEBS Open Bio 2022; 12:1839-1856. [PMID: 36047918 PMCID: PMC9527585 DOI: 10.1002/2211-5463.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/01/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) often leads to sensory and motor dysfunction. Two major factors that hinder spinal cord repair are local inflammation and glial scar formation after SCI, and thus appropriate immunotherapy may alleviate damage. To characterize changes in gene expression that occur during SCI and thereby identify putative targets for immunotherapy, here we analyzed the dataset GSE5296 (containing one control group and six SCI groups at different timepoints) to identify differentially-expressed genes. Functional enrichment analysis was performed and a protein-protein interaction network was created to identify possible hub genes. Finally, we performed quantitative PCR to verify changes in gene expression. The CIBERSORT algorithm was used to analyze innate immune cell infiltration patterns. The dataset GSE162610 (containing one control group and three SCI groups at different timepoints) was analyzed to evaluate innate immune cell infiltration at the single-cell level. The dataset GSE151371 (containing one control group [n = 10] and an SCI group [n = 38]) was used to detect the expression of hub genes in the blood from SCI patients. Differentially-expressed innate immune-related genes at each timepoint were identified, and the functions and related signaling pathways of these genes were examined. Six hub genes were identified and verified. We then analyzed the expression characteristics of these hub genes and characteristics of innate immune infiltration in SCI; finally, we examined ligand expression in the context of the CCL signaling pathway and COMPLEMENT signaling pathway networks. This study reveals the characteristics of innate immune cell infiltration and temporal expression patterns of hub genes, and may aid in the development of immunotherapies for SCI.
Collapse
Affiliation(s)
- Jianfeng Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Huachuan Wu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Peng Guo
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Baoliang Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Jianmin Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopedics and TraumatologyBeijing Jishuitan HospitalChina
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopedics and TraumatologyBeijing Jishuitan HospitalChina
| | - Manman Gao
- Department of Sport Medicine, Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalChina,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical EngineeringShenzhen University Health Science CenterChina
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopedic Surgery, The Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopedic Research Institute/Department of Spinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
41
|
Yuan H, Zhang B, Ma J, Zhang Y, Tuo Y, Li X. Analysis of gene expression profiles in two spinal cord injury models. Eur J Med Res 2022; 27:156. [PMID: 35999613 PMCID: PMC9400253 DOI: 10.1186/s40001-022-00785-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives To analyze the changes of gene expression at different timepoints after spinal cord injury (SCI) with tenth segment thoracic injury. Methods Two SCI models, the complete paraplegia (H) and Allen’s strike (D) methods were applied to induce SCI in rats, and transcriptome sequencing was performed 1, 3, 7, 14, 56, and 70 days after SCI, respectively. Principal component analysis, differentially expressed gene analysis, and hierarchical clustering analysis were applied to analyze the differentially expressed genes (DEGs). Gene Ontology GO enrichment analysis, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and Gene Set Enrichment Analysis revealed the pathway of gene enrichment. Results There were 1,907, 3,120, 3,728, 978, 2,319, and 3,798 DEGs in the complete paraplegia group and 2,380, 878, 1,543, 6,040, 1,945, and 3,850 DEGs in the Allen’s strike method group and after SCI at 1, 3, 7, 14, 56, and 70 days, respectively. The transcriptome contours of D1, H1, D3, and H14 were clustered with C; the H56, D56, H70, and D70 transcriptome contours were similar and clustered together. H3, D7, and H7 were clustered together, and D14 was clustered separately. The transcriptome differences of the two SCI models were mainly concentrated during the first 2 weeks after SCI. The DEGs after SCI in the complete paraplegia group were more concentrated. Most of the early transcriptional regulation stabilized within 2 weeks after injury. Conclusions There were DEGs between the two SCI models. Through the gene changes and pathway enrichment of the entire time period after SCI, the molecular mechanism of SCI repair was revealed in depth, which provided a reference for SCI treatment in the future.
Collapse
Affiliation(s)
- Haifeng Yuan
- Department of Spinal Orthopedics, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Bi Zhang
- Department of Anesthesia, Ningbo Medical Center Li Huili Hospital, Ningbo, 315046, China
| | - Junchi Ma
- Department of Orthopaedics, Affiliated Hospital of Gansu College of Traditional Chinese Medicine, Lanzhou, 730099, China
| | - Yufei Zhang
- The third department of spine, Baoji Hospital of Traditional Chinese Medicine, Baoji, 721001, China
| | - Yifan Tuo
- Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Xusheng Li
- Department of Spinal Orthopedics, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China.
| |
Collapse
|
42
|
Yari H, Mikhailova MV, Mardasi M, Jafarzadehgharehziaaddin M, Shahrokh S, Thangavelu L, Ahmadi H, Shomali N, Yaghoubi Y, Zamani M, Akbari M, Alesaeidi S. Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: a groundbreaking cell-free approach. Stem Cell Res Ther 2022; 13:423. [PMID: 35986375 PMCID: PMC9389725 DOI: 10.1186/s13287-022-03122-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Accumulating proofs signify that pleiotropic effects of mesenchymal stromal cells (MSCs) are not allied to their differentiation competencies but rather are mediated mainly by the releases of soluble paracrine mediators, making them a reasonable therapeutic option to enable damaged tissue repair. Due to their unique immunomodulatory and regenerative attributes, the MSC-derived exosomes hold great potential to treat neurodegeneration-associated neurological diseases. Exosome treatment circumvents drawbacks regarding the direct administration of MSCs, such as tumor formation or reduced infiltration and migration to brain tissue. Noteworthy, MSCs-derived exosomes can cross the blood-brain barrier (BBB) and then efficiently deliver their cargo (e.g., protein, miRNAs, lipid, and mRNA) to damaged brain tissue. These biomolecules influence various biological processes (e.g., survival, proliferation, migration, etc.) in neurons, oligodendrocytes, and astrocytes. Various studies have shown that the systemic or local administration of MSCs-derived exosome could lead to the favored outcome in animals with neurodegeneration-associated disease mainly by supporting BBB integrity, eliciting pro-angiogenic effects, attenuating neuroinflammation, and promoting neurogenesis in vivo. In the present review, we will deliver an overview of the therapeutic benefits of MSCs-derived exosome therapy to ameliorate the pathological symptoms of acute and chronic neurodegenerative disease. Also, the underlying mechanism behind these favored effects has been elucidated.
Collapse
Affiliation(s)
- Hadi Yari
- Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Maria V. Mikhailova
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C, Evin, Tehran, Iran
| | - Mohsen Jafarzadehgharehziaaddin
- Translational Neuropsychology Lab, Department of Education and Psychology and William James Center for Research (WJCR), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Somayeh Shahrokh
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Hosein Ahmadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yoda Yaghoubi
- School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Alesaeidi
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Khiar-Fernández N, Zian D, Vázquez-Villa H, Martínez RF, Escobar-Peña A, Foronda-Sainz R, Ray M, Puigdomenech-Poch M, Cincilla G, Sánchez-Martínez M, Kihara Y, Chun J, López-Vales R, López-Rodríguez ML, Ortega-Gutiérrez S. Novel Antagonist of the Type 2 Lysophosphatidic Acid Receptor (LPA 2), UCM-14216, Ameliorates Spinal Cord Injury in Mice. J Med Chem 2022; 65:10956-10974. [PMID: 35948083 PMCID: PMC9421655 DOI: 10.1021/acs.jmedchem.2c00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Spinal cord injuries (SCIs) irreversibly disrupt spinal
connectivity,
leading to permanent neurological disabilities. Current medical treatments
for reducing the secondary damage that follows the initial injury
are limited to surgical decompression and anti-inflammatory drugs,
so there is a pressing need for new therapeutic strategies. Inhibition
of the type 2 lysophosphatidic acid receptor (LPA2) has
recently emerged as a new potential pharmacological approach to decrease
SCI-associated damage. Toward validating this receptor as a target
in SCI, we have developed a new series of LPA2 antagonists,
among which compound 54 (UCM-14216) stands out as a potent
and selective LPA2 receptor antagonist (Emax = 90%, IC50 = 1.9 μM, KD = 1.3 nM; inactive at LPA1,3–6 receptors).
This compound shows efficacy in an in vivo mouse model of SCI in an
LPA2-dependent manner, confirming the potential of LPA2 inhibition for providing a new alternative for treating SCI.
Collapse
Affiliation(s)
- Nora Khiar-Fernández
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Debora Zian
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - R Fernando Martínez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Andrea Escobar-Peña
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Román Foronda-Sainz
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Manisha Ray
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Maria Puigdomenech-Poch
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, BarcelonaE-08193, Spain
| | - Giovanni Cincilla
- Molomics, Barcelona Science Park, Baldiri i Reixac 4-8, Barcelona E-08028, Spain
| | - Melchor Sánchez-Martínez
- Molomics, Barcelona Science Park, Baldiri i Reixac 4-8, Barcelona E-08028, Spain.,Burua Scientific, Sant Pere de Ribes E-08810, Spain
| | - Yasuyuki Kihara
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Rubèn López-Vales
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, BarcelonaE-08193, Spain
| | - María L López-Rodríguez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid E-28040, Spain
| |
Collapse
|
44
|
Laliwala A, Daverey A, Agrawal SK, Dash AK. Alpha Tocopherol Loaded Polymeric Nanoparticles: Preparation, Characterizations, and In Vitro Assessments Against Oxidative Stress in Spinal Cord Injury Treatment. AAPS PharmSciTech 2022; 23:195. [PMID: 35831684 DOI: 10.1208/s12249-022-02345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) is characterized by mechanical injury or trauma to the spinal cord. Currently, SCI treatment requires extremely high doses of neuroprotective agents, which in turn, causes several adverse effects. To overcome these limitations, the present study focuses on delivery of a low but effective dose of a naturally occurring antioxidant, α-tocopherol (α-TP). Calcium alginate nanoparticles (CA-NP) and poly D,L-lactic-co-glycolic acid nanoparticles (PLGA-NP) prepared by ionotropic gelation and solvent evaporation technique had particle size of 21.9 ± 11.19 and 152.4 ± 10.6 nm, respectively. Surface morphology, surface charge, as well as particle size distribution of both nanoparticles were evaluated. Entrapment of α-TP into CA-NP and PLGA-NP quantified by UPLC showed entrapment efficiency of 4.00 ± 1.63% and 76.6 ± 11.4%, respectively. In vitro cytotoxicity profiles on human astrocyte-spinal cord (HA-sp) showed that blank CA-NP at high concentrations reduced the cell viability whereas blank PLGA-NP showed relatively safer cytotoxic profiles. In addition, PLGA nanoparticles encapsulated with α-TP (α-TP-PLGA-NP) in comparison to α-TP alone at high concentrations were less toxic. Pretreatment of HA-sp cells with α-TP-PLGA-NP showed two-fold higher anti-oxidative protection as compared to α-TP alone, when oxidative stress was induced by H2O2. In conclusion, CA-NP were found to be unsuitable for treatment of SCI due to their cytotoxicity. Comparatively, α-TP-PLGA-NP were safer and showed high degree of protection against oxidative stress than α-TP alone.
Collapse
Affiliation(s)
- Aayushi Laliwala
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, 68178, USA
| | - Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Alekha K Dash
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, 68178, USA.
| |
Collapse
|
45
|
Beliard B, Ahmanna C, Tiran E, Kanté K, Deffieux T, Tanter M, Nothias F, Soares S, Pezet S. Ultrafast Doppler imaging and ultrasound localization microscopy reveal the complexity of vascular rearrangement in chronic spinal lesion. Sci Rep 2022; 12:6574. [PMID: 35449222 PMCID: PMC9023600 DOI: 10.1038/s41598-022-10250-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Acute spinal cord injury (SCI) leads to severe damage to the microvascular network. The process of spontaneous repair is accompanied by formation of new blood vessels; their functionality, however, presumably very important for functional recovery, has never been clearly established, as most studies so far used fixed tissues. Here, combining ultrafast Doppler imaging and ultrasound localization microscopy (ULM) on the same animals, we proceeded at a detailed analysis of structural and functional vascular alterations associated with the establishment of chronic SCI, both at macroscopic and microscopic scales. Using a standardized animal model of SCI, our results demonstrate striking hemodynamic alterations in several subparts of the spinal cord: a reduced blood velocity in the lesion site, and an asymmetrical hypoperfusion caudal but not rostral to the lesion. In addition, the worsening of many evaluated parameters at later time points suggests that the neoformed vascular network is not yet fully operational, and reveals ULM as an efficient in vivo readout for spinal cord vascular alterations. Finally, we show statistical correlations between the diverse biomarkers of vascular dysfunction and SCI severity. The imaging modality developed here will allow evaluating recovery of vascular function over time in pre-clinical models of SCI. Also, used on SCI patients in combination with other quantitative markers of neural tissue damage, it may help classifying lesion severity and predict possible treatment outcomes in patients.
Collapse
Affiliation(s)
- Benoit Beliard
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI PSL Paris, CNRS UMR8361, PSL Research University - Paris, 17 rue Moreau, 75012, Paris, France
| | - Chaimae Ahmanna
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005, Paris, France
| | - Elodie Tiran
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI PSL Paris, CNRS UMR8361, PSL Research University - Paris, 17 rue Moreau, 75012, Paris, France
| | - Kadia Kanté
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005, Paris, France
| | - Thomas Deffieux
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI PSL Paris, CNRS UMR8361, PSL Research University - Paris, 17 rue Moreau, 75012, Paris, France
| | - Mickael Tanter
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI PSL Paris, CNRS UMR8361, PSL Research University - Paris, 17 rue Moreau, 75012, Paris, France
| | - Fatiha Nothias
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005, Paris, France
| | - Sylvia Soares
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005, Paris, France.
| | - Sophie Pezet
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI PSL Paris, CNRS UMR8361, PSL Research University - Paris, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
46
|
Yang ZL, Rao J, Lin FB, Liang ZY, Xu XJ, Lin YK, Chen XY, Wang CH, Chen CM. The Role of Exosomes and Exosomal Noncoding RNAs From Different Cell Sources in Spinal Cord Injury. Front Cell Neurosci 2022; 16:882306. [PMID: 35518647 PMCID: PMC9062236 DOI: 10.3389/fncel.2022.882306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) not only affects the quality of life of patients but also poses a heavy burden on their families. Therefore, it is essential to prevent the occurrence of SCI; for unpreventable SCI, it is critical to develop effective treatments. In recent years, various major breakthroughs have been made in cell therapy to protect and regenerate the damaged spinal cord via various mechanisms such as immune regulation, paracrine signaling, extracellular matrix (ECM) modification, and lost cell replacement. Nevertheless, many recent studies have shown that the cell therapy has many disadvantages, such as tumorigenicity, low survival rate, and immune rejection. Because of these disadvantages, the clinical application of cell therapy is limited. In recent years, the role of exosomes in various diseases and their therapeutic potential have attracted much attention. The same is true for exosomal noncoding RNAs (ncRNAs), which do not encode proteins but affect transcriptional and translational processes by targeting specific mRNAs. This review focuses on the mechanism of action of exosomes obtained from different cell sources in the treatment of SCI and the regulatory role and therapeutic potential of exosomal ncRNAs. This review also discusses the future opportunities and challenges, proposing that exosomes and exosomal ncRNAs might be promising tools for the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chun-Hua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chun-Mei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
47
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
48
|
Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NEUROSCI 2022; 3:1-27. [PMID: 39484675 PMCID: PMC11523733 DOI: 10.3390/neurosci3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2024] Open
Abstract
The blood-spinal cord barrier (BSCB) has been long thought of as a functional equivalent to the blood-brain barrier (BBB), restricting blood flow into the spinal cord. The spinal cord is supported by various disc tissues that provide agility and has different local immune responses compared to the brain. Though physiologically, structural components of the BSCB and BBB share many similarities, the clinical landscape significantly differs. Thus, it is crucial to understand the composition of BSCB and also to establish the cause-effect relationship with aberrations and spinal cord dysfunctions. Here, we provide a descriptive analysis of the anatomy, current techniques to assess the impairment of BSCB, associated risk factors and impact of spinal disorders such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), peripheral nerve injury (PNI), ischemia reperfusion injury (IRI), degenerative cervical myelopathy (DCM), multiple sclerosis (MS), spinal cavernous malformations (SCM) and cancer on BSCB dysfunction. Along with diagnostic and mechanistic analyses, we also provide an up-to-date account of available therapeutic options for BSCB repair. We emphasize the need to address BSCB as an individual entity and direct future research towards it.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Spiro Menounos
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
| | - Jaesung P Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
49
|
Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater 2022; 139:43-64. [PMID: 33326879 DOI: 10.1016/j.actbio.2020.12.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The individual approaches of regenerative medicine efforts alone and rehabilitation efforts alone have not yet fully restored function after severe spinal cord injury (SCI). Regenerative rehabilitation may be leveraged to promote regeneration of the spinal cord tissue, and promote reorganization of the regenerated neural pathways and intact spinal circuits for better functional recovery for SCI. Conductive biomaterials may be a linchpin that empowers the synergy between regenerative medicine and rehabilitation approaches, as electrical stimulation applied to the spinal cord could facilitate neural reorganization. In this review, we discuss current regenerative medicine approaches in clinical trials and the rehabilitation, or neuromodulation, approaches for SCI, along with their respective translational limitations. Furthermore, we review the translational potential, in a surgical context, of conductive biomaterials (e.g., conductive polymers, carbon-based materials, metallic nanoparticle-based materials) as they pertain to SCI. While pre-formed scaffolds may be difficult to translate to human contusion SCIs, injectable composites that contain blended conductive components and can form within the injury may be more translational. However, given that there are currently no in vivo SCI studies that evaluated conductive materials combined with rehabilitation approaches, we discuss several limitations of conductive biomaterials, including demonstrating safety and efficacy, that will need to be addressed in the future for conductive biomaterials to become SCI therapeutics. Even so, the use of conductive biomaterials creates a synergistic opportunity to merge the fields of regenerative medicine and rehabilitation and redefine what regenerative rehabilitation means for the spinal cord. STATEMENT OF SIGNIFICANCE: For spinal cord injury (SCI), the individual approaches of regenerative medicine and rehabilitation are insufficient to fully restore functional recovery; however, the goal of regenerative rehabilitation is to combine these two disparate fields to maximize the functional outcomes. Concepts similar to regenerative rehabilitation for SCI have been discussed in several reviews, but for the first time, this review considers how conductive biomaterials may synergize the two approaches. We cover current regenerative medicine and rehabilitation approaches for SCI, and the translational advantages and disadvantages, in a surgical context, of conductive biomaterials used in biomedical applications that may be additionally applied to SCI. Furthermore, we identify the current limitations and translational challenges for conductive biomaterials before they may become therapeutics for SCI.
Collapse
|
50
|
Luo Y, Yao F, Hu X, Li Y, Chen Y, Li Z, Zhu Z, Yu S, Tian D, Cheng L, Zheng M, Jing J. M1 macrophages impair tight junctions between endothelial cells after spinal cord injury. Brain Res Bull 2022; 180:59-72. [PMID: 34995751 DOI: 10.1016/j.brainresbull.2021.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/30/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
After spinal cord injury (SCI), endogenous angiogenesis occurs in the injury core, unexpectedly accompanied by continuous leakage of the blood-spinal cord barrier (BSCB), which may be caused by destruction of the tight junctions (TJs) between vascular endothelial cells-an important structure of the BSCB. Blood-derived macrophages infiltrate into the spinal cord, aggregate to the injury core and then polarize toward M1/M2 phenotypes after SCI. However, the effect of macrophages with different polarizations on the TJs between vascular endothelial cells remains unclear. Here, we demonstrated that from 7 days postinjury (dpi) to 28 dpi, accompanied by the aggregation of macrophages, the expression of claudin-5 (CLN-5) and zonula occludens-1 (ZO-1) in vascular endothelial cells in the injury core was significantly decreased in comparison to that in normal spinal cord tissue and in the penumbra. Moreover, the leakage of the BSCB was severe in the injury core, as demonstrated by FITC-dextran perfusion. Notably, our study demonstrated that depletion of macrophages facilitated the restoration of TJs between vascular endothelial cells and decreased the leakage of BSCB in the injury core after SCI. Furthermore, we confirmed that the endothelial TJs could be impaired by M1 macrophages through secreting IL-6 in vitro, leading to an increased permeability of endothelial cells, but it was not significantly affected by M0 and M2 macrophages. These results indicated that the TJs between vascular endothelial cells were impaired by M1 macrophages in the injury core, potentially resulting in continuous leakage of the BSCB after SCI. Preventing M1 polarization of macrophages or blocking IL-6 in the injury core may promote restoration of the BSCB, thus accelerating functional recovery after SCI.
Collapse
Affiliation(s)
- Yang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Fei Yao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Xuyang Hu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Yiteng Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Yihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Ziyu Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Zhenyu Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Shuisheng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Dasheng Tian
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China; School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China.
| | - Meige Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China.
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, People's Republic of China.
| |
Collapse
|