Copyright
©2014 Baishideng Publishing Group Inc. All rights reserved.
Tbl3 encodes a WD40 nucleolar protein with regulatory roles in ribosome biogenesis
Jindong Wang, Schickwann Tsai, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
Author contributions: Wang J designed and constructed various expression vectors, performed localization and ribosome profiling, analyzed the data, prepared the figures and co-wrote the manuscript; Tsai S designed the project, performed cell culture experiments, analyzed the data, prepared the figures and co-wrote the manuscript.
Supported by In part by a grant from the St. Perres Fund, No. 11-02011
Correspondence to: Schickwann Tsai, MD, PhD, Department of Medicine, University of Utah School of Medicine, 5C402, 30 North 1900 East, Salt Lake City, UT 84132, United States. schickwann.tsai@hsc.utah.edu
Telephone: +1-801-5850495 Fax: +1-801-5850496
Received: October 27, 2013
Revised: February 15, 2014
Accepted: June 18, 2014
Published online: August 6, 2014
Processing time: 358 Days and 6.1 Hours
Revised: February 15, 2014
Accepted: June 18, 2014
Published online: August 6, 2014
Processing time: 358 Days and 6.1 Hours
Core Tip
Core tip: The mouse gene transducin β-like 3 (Tbl3) encodes a protein with thirteen WD40 protein-protein interaction motifs and is the mammalian homologue of yeast utp13. Virtually nothing is known about the function of tbl3. In this report, we provide the first direct evidence that Tbl3 is targeted to the nucleoli and plays an important role in regulating the synthesis of the 47S pre-ribosomal RNA, i.e., at very early stages of ribosome biogenesis. This activity has never been described before and sets Tbl3 apart from all other known nucleolar proteins. TBL3 may provide an attractive target for anti-neoplastic therapy.