1
|
Alhajahjeh A, Stahl M, Kim TK, Kewan T, Stempel JM, Zeidan AM, Bewersdorf JP. Contemporary understanding of myeloid-derived suppressor cells in the acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) tumor microenvironment. Expert Rev Anticancer Ther 2025:1-22. [PMID: 40122075 DOI: 10.1080/14737140.2025.2483855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/01/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Myeloid-derived suppressor cells (MDSCs) are a key immunosuppressive component in the tumor microenvironment, contributing to immune evasion and disease progression in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). AREAS COVERED We searched PubMed for literature that evaluated the effect of MDSCs in myeloid diseases. MDSCs impact outcomes by facilitating leukemic stem cell survival, impairing immune checkpoint efficacy, and modulating the bone marrow niche. While these immunosuppressive properties can mitigate graft-versus-host disease post-transplantation, sustained MDSC-mediated immunosuppression can also increase the risk of leukemia relapse.We review MDSC development and function, including metabolic reprogramming, epigenetic modifications, and cytokine-mediated pathways. Therapeutic strategies targeting MDSCs, such as depletion, functional reprogramming, and inhibition of key metabolic and immune pathways, show promising data in preclinical models. However, clinical translation remains hindered by challenges in MDSC quantification and standardization of functional assays. This review underscores the potential of combining MDSC-targeted therapies with conventional and novel treatments to improve patient outcomes in AML and MDS. EXPERT OPINION Future studies should focus on standardizing MDSC assessment, elucidate their dynamic roles in therapy, and optimize combination approaches for clinical application.
Collapse
Affiliation(s)
- Abdulrahman Alhajahjeh
- School of Medicine, The University of Jordan, Amman, Jordan
- King Hussein Cancer Center (KHCC), Internal Medicine Department, Amman, Jordan
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tae K Kim
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tariq Kewan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jessica M Stempel
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jan Philipp Bewersdorf
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Flores-Guzman P, Torres-Caballero A, Mayani H. Further biological characterization of small molecules UM171 and SR1: In vitro effects on three hematopoietic cell populations from human cord blood. Blood Cells Mol Dis 2025; 110:102895. [PMID: 39303397 DOI: 10.1016/j.bcmd.2024.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Small molecules UM171 and SR1 have already been taken into clinically-oriented protocols for the ex vivo expansion of hematopoietic stem (HSCs) and progenitor (HPCs) cells. In order to gain further insight into their biology, in the present study we have assessed their effects, both individually and in combination, on the in vitro long-term proliferation and expansion of HSCs and HPCs contained within three different cord blood-derived cell populations: MNCs (CD34+ cells = 0.8 %), LIN- cells (CD34+ cells = 41 %), and CD34+ cells (CD34+ cells >98 %). Our results show that when added to cultures in the absence of recombinant stimulatory cytokines, neither molecule had any effect. In contrast, when added in the presence of hematopoietic cytokines, UM171 and SR1 had significant stimulatory effects on cell proliferation and expansion in cultures of LIN- and CD34+ cells. No significant effects were observed in cultures of MNCs. The effects of both molecules were more pronounced in cultures with the highest proportion of CD34+ cells, and the greatest effects were observed when both molecules were added in combination. In the absence of small molecules, cell numbers reached a peak by days 25-30, and then declined; whereas in the presence of UM171 or/and SR1 cell numbers were sustained up to day 45 of culture. Our results indicate that besides CD34+ cells, LIN- cells could also be used as input cells in clinically-oriented expansion protocols, and that using both molecules simultaneously would be a better approach than using only one of them.
Collapse
Affiliation(s)
- Patricia Flores-Guzman
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, IMSS National Medical Center, Mexico City, Mexico
| | - Aranxa Torres-Caballero
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, IMSS National Medical Center, Mexico City, Mexico
| | - Hector Mayani
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, IMSS National Medical Center, Mexico City, Mexico.
| |
Collapse
|
3
|
Watt SM, Roubelakis MG. Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. Int J Mol Sci 2025; 26:671. [PMID: 39859383 PMCID: PMC11766050 DOI: 10.3390/ijms26020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (1011-1012) of new cells generated daily in a healthy young human adult are of hematopoietic origin. Therapeutically, human HSCs have contributed to over 1.5 million hematopoietic cell transplants (HCTs) globally, making this the most successful regenerative therapy to date. We will commence this review by briefly highlighting selected key achievements (from 1868 to the end of the 20th century) that have contributed to this accomplishment. Much of our knowledge of hematopoiesis is based on small animal models that, despite their enormous importance, do not always recapitulate human hematopoiesis. Given this, we will critically review the progress and challenges faced in identifying adult human HSCs and tracing their lineage differentiation trajectories, referring to murine studies as needed. Moving forward and given that human hematopoiesis is dynamic and can readily adjust to a variety of stressors, we will then discuss recent research advances contributing to understanding (i) which HSPCs maintain daily steady state human hematopoiesis, (ii) where these are located, and (iii) which mechanisms come into play when homeostatic hematopoiesis switches to stress-induced or emergency hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece;
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| |
Collapse
|
4
|
Zhang J, Liu J, Ding J, Yu H, Li Z, Chen Y, Lin Y, Niu Y, Lu L, Jin X, Zheng Y. Tris(2-chloroethyl) Phosphate Leads to Unbalanced Circulating Erythrocyte in Mice by Activating both Medullary and Extramedullary Erythropoiesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:199-211. [PMID: 39743774 DOI: 10.1021/acs.est.4c09436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Tris(2-chloroethyl) phosphate (TCEP), a prevalent organophosphorus flame retardant, has been identified in various environmental matrices and human blood samples, provoking alarm regarding its hematological toxicity, a subject that has not been thoroughly investigated. Red blood cells (RBCs), or erythrocytes, are the predominant cell type in peripheral blood and are crucial for the maintenance of physiological health. This investigation employed oral gavage to examine the effects of TCEP exposure on erythrocyte counts in mice and to clarify the underlying mechanisms. The results demonstrated a marked increase in circulating RBC counts post-TCEP exposure, concomitantly heightening the risk of polycythemia vera (PV). TCEP exposure stimulated erythropoiesis across all stages of medullary development, including the differentiation of hematopoietic stem cells into erythroid progenitors, the progression of erythrocyte development, and the maturation of erythrocyte. Moreover, TCEP potentiated extramedullary erythropoiesis in the spleen and liver. Subsequent bioinformatics analysis implied that TCEP-induced erythropoiesis was attributed to p53 downregulation. Thus, these findings indicate that TCEP disrupts erythrocyte-mediated hematological homeostasis through the enhancement of both medullary and extramedullary erythropoiesis, leading to the alteration of hematological equilibrium.
Collapse
Affiliation(s)
- Jingxu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jian Ding
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hongyan Yu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Ziyuan Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yidi Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lin Lu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoting Jin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
6
|
Sadovskaya A, Petinati N, Shipounova I, Drize N, Smirnov I, Pobeguts O, Arapidi G, Lagarkova M, Karaseva L, Pokrovskaya O, Kuzmina L, Vasilieva A, Aleshina O, Parovichnikova E. Damage of the Bone Marrow Stromal Precursors in Patients with Acute Leukemia at the Onset of the Disease and During Treatment. Int J Mol Sci 2024; 25:13285. [PMID: 39769050 PMCID: PMC11677965 DOI: 10.3390/ijms252413285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
In patients with acute leukemia (AL), malignant cells and therapy modify the properties of multipotent mesenchymal stromal cells (MSCs) and their descendants, reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the alterations in MSCs at the onset and after therapy in patients with AL. The study included MSCs obtained from the bone marrow of 78 AL patients (42 AML and 36 ALL) and healthy donors. MSC growth characteristics, gene expression pattern, proteome and secretome were studied using appropriate methods. The concentration of MSCs in the bone marrow, proliferative potential, the expression of several genes, proteomes and secretomes were altered in AL-MSCs. Stromal progenitors had been affected differently in ALL and AML patients. In remission, MSC functions remain impaired despite the absence of tumor cells and the maintenance of benign hematopoietic cells. AL causes crucial and, to a large extent, irreversible changes in bone marrow MSCs.
Collapse
Affiliation(s)
- Aleksandra Sadovskaya
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
- Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nataliya Petinati
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Irina Shipounova
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Nina Drize
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Igor Smirnov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Olga Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Georgiy Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Maria Lagarkova
- Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Luiza Karaseva
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Olga Pokrovskaya
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Larisa Kuzmina
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Anastasia Vasilieva
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Olga Aleshina
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| | - Elena Parovichnikova
- National Medical Research Center for Hematology, Moscow 125167, Russia (N.P.); (E.P.)
| |
Collapse
|
7
|
Zhu HY, Wang HJ, Liu P. Versatile roles for neutrophil proteinase 3 in hematopoiesis and inflammation. Immunol Res 2024; 73:1. [PMID: 39658724 DOI: 10.1007/s12026-024-09578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/16/2024] [Indexed: 12/12/2024]
Abstract
Neutrophil proteinase 3 (PR3), cathepsin G, elastase, and neutrophil serine protease 4 constitute the neutrophil serine protease family. These four members share varying sequence homology and functional similarities with each other. However, PR3 stands out as a unique autoantigen, serving as a primary autoantigen in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Numerous studies have documented or reviewed the molecular pathogenesis or diagnostic utility of PR3 in ANCA-associated vasculitis. Nevertheless, the role of PR3 in other areas, particularly within the hematopoietic system, appears to have been overlooked. Indeed, beyond its involvement in vasculitis, PR3 contributes to cell apoptosis, hematopoietic abnormalities, diabetic ketoacidosis, and various other inflammatory diseases. In this study, we aim to summarize the research on the function of neutrophil PR3 in hematopoiesis and to elucidate its potential role in neutrophil aging and inflammatory diseases.
Collapse
Affiliation(s)
- Hai-Yan Zhu
- Clinical Laboratory Center, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hai-Juan Wang
- Clinical Laboratory Center, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Peng Liu
- Clinical Laboratory Center, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.
| |
Collapse
|
8
|
Ji P, Wang P, Li Q, Gao L, Xu Y, Pan H, Zhang C, Li J, Yao J, An Q. Use of Transcriptomics to Identify Candidate Genes for Hematopoietic Differences Between Wujin and Duroc Pigs. Animals (Basel) 2024; 14:3507. [PMID: 39682471 DOI: 10.3390/ani14233507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Hematopoiesis is a complex physiological process that ensures renewal of blood cells to maintain normal blood circulation and immune function. Wujin pigs exhibit distinct characteristics such as tender meat, high fat storage, strong resistance to roughage, robust disease resistance, and oxidation resistance. Therefore, using Wujin pigs as models may offer valuable insights for hematopoietic-related studies. In this study, twelve healthy 35-day-old piglets, including six Wujin and six Duroc piglets of similar weight, were selected from each of the Wujin and Duroc pig groups and housed in single cages. After 30 days of feeding, blood and bone marrow samples were collected. Routine blood indices and hematopoietic-related serum biochemical indexes of Wujin and Duroc pigs were determined, and bone marrow gene expression levels were analyzed using transcriptomics. (1) Hemoglobin (Hb) and Mean Corpuscular Hemoglobin Concentration (MCHC) levels in Wujin pigs were significantly higher than in Duroc pigs (p < 0.05), and platelet counts and serum Hb levels in Wujin pigs were significantly lower than in Duroc pigs (p < 0.05). (2) A total of 312 significantly differentially expressed genes were identified between the pigs. Their functions were mainly related to blood systems, inflammation, and oxidation. Six differentially expressed genes may be related to hematopoietic function. (3) By combining the differential genes screened through sequencing with Weighted Gene Co-expression Network Analysis results, 16 hematopoietic function differential genes were obtained, mainly focusing on immunity, inflammation, and induction of apoptosis functions. Differences were present in the immune and inflammatory responses between Wujin pigs and Duroc pigs, suggesting that differences in hematopoietic function between the two breeds were related to antioxidant capacity and disease resistance.
Collapse
Affiliation(s)
- Peng Ji
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qihua Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Gao
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Yan Xu
- Yunnan East Hunter Agriculture and Forestry Development Co., Ltd., Shuifu 657803, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyong Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jintao Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Qingcong An
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
9
|
Bazarbachi AH, Mapara MY. Cytokines in hematopoietic cell transplantation and related cellular therapies. Best Pract Res Clin Haematol 2024; 37:101600. [PMID: 40074514 DOI: 10.1016/j.beha.2025.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Cytokines are pleiotropic molecules involved in hematopoiesis, immune responses, infections, and inflammation. They play critical roles in hematopoietic cell transplantation (HCT) and immune effector cell (IEC) therapies, mediating both therapeutic and adverse effects. Thus, cytokines contribute to the immunopathology of graft-versus-host disease (GVHD), cytokine release syndrome (CRS), and immune effector cell-associated neurotoxicity syndrome (ICANS). This review examines cytokine functions in these contexts, their influence on engraftment and immune recovery post-transplantation, and their role in mediating toxicities. We focus on current and potential uses of cytokines to enhance engraftment and potentiate IEC therapies, as well as strategies to mitigate cytokine-mediated complications using cytokine blockers (e.g., tocilizumab, anakinra) and JAK inhibitors (e.g., ruxolitinib). We discuss new insights into GVHD physiology that have led to novel treatments, such as CSF1R blockade, which is effective in refractory chronic GVHD.
Collapse
Affiliation(s)
- Abdul-Hamid Bazarbachi
- Division of Hematology/Oncology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Markus Y Mapara
- Division of Hematology/Oncology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA; Columbia Center for Translational Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA.
| |
Collapse
|
10
|
Kaewsakulthong W, Pasala AR, Hanotaux J, Hasan T, Maganti HB. Robust Expansion of Hematopoietic Stem Cells Ex Vivo Using Small Molecule Cocktails. Methods Mol Biol 2024. [PMID: 39587002 DOI: 10.1007/7651_2024_582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The insufficient number of hematopoietic stem cells (HSCs) poses a significant challenge for successful hematopoietic stem cell transplantation and gene-based therapies. To address this issue, ex vivo expansion of HSCs has been developed, improving engraftment and reducing morbidity risks in hematological disorders. Small molecules, known as stem cell agonists (SCAs), have been utilized to promote HSC expansion and have been implemented in clinical trials. While most HSC expansion protocols focus on the single use of SCAs, we describe a protocol using an optimized small molecule cocktail (SMC), X2A, to robustly enhance HSC yield. This protocol is applicable to human CD34+ hematopoietic stem and progenitor cells (HSPCs) derived from both umbilical cord blood and peripheral blood. In addition to the ex vivo HSC expansion protocol, we detail the CD34+ HSPC isolation technique and flow cytometry methods to characterize HSPC sub-populations from cell cultures. This culture protocol serves as a robust tool for pre-clinical studies in HSPCs and provides a foundation for further modifications to meet specific research needs.
Collapse
Affiliation(s)
| | - Ajay Ratan Pasala
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
- Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Justine Hanotaux
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
- Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Tanvir Hasan
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
| | - Harinad B Maganti
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada.
- Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Zhu C, Stiehl T. Modelling post-chemotherapy stem cell dynamics in the bone marrow niche of AML patients. Sci Rep 2024; 14:25060. [PMID: 39443599 PMCID: PMC11500015 DOI: 10.1038/s41598-024-75429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Acute myeloid leukemia (AML) is a stem cell-driven malignancy of the blood forming (hematopoietic) system. Despite of high dose chemotherapy with toxic side effects, many patients eventually relapse. The "7+3 regimen", which consists of 7 days of cytarabine in combination with daunorubicin during the first 3 days, is a widely used therapy protocol. Since peripheral blood cells are easily accessible to longitudinal sampling, significant research efforts have been undertaken to characterize and reduce adverse effects on circulating blood cells. However, much less is known about the impact of the 7+3 regimen on human hematopoietic stem cells and their physiological micro-environments, the so-called stem cell niches. One reason for this is the technical inability to observe human stem cells in vivo and the discomfort related to bone marrow biopsies. To better understand the treatment effects on human stem cells, we consider a mechanistic mathematical model of the stem cell niche before, during and after chemotherapy. The model accounts for different maturation stages of leukemic and hematopoietic cells and considers key processes such as cell proliferation, self-renewal, differentiation and therapy-induced cell death. In the model, hematopoietic (HSCs) and leukemic stem cells (LSCs) compete for a joint niche and respond to both systemic and niche-derived signals. We relate the model to clinical trial data from literature which longitudinally quantifies the counts of hematopoietic stem like (CD34+CD38-ALDH+) cells at diagnosis and after therapy. The proposed model can capture the clinically observed interindividual heterogeneity and reproduce the non-monotonous dynamics of the hematopoietic stem like cells observed in relapsing patients. Our model allows to simulate different scenarios proposed in literature such as therapy-related impairment of the stem cell niche or niche-mediated resistance. Model simulations suggest that during the post-therapy phase a more than 10-fold increase of hematopoietic stem-like cell proliferation rates is required to recapitulate the measured cell dynamics in patients achieving complete remission. We fit the model to data of 7 individual patients and simulate variations of the treatment protocol. These simulations are in line with the clinical finding that G-CSF priming can improve the treatment outcome. Furthermore, our model suggests that a decline of HSC counts during remission might serve as an indication for salvage therapy in patients lacking MRD (minimal residual disease) markers.
Collapse
Affiliation(s)
- Chenxu Zhu
- Institute for Computational Biomedicine-Disease Modeling, RWTH Aachen University, Aachen, Germany
| | - Thomas Stiehl
- Institute for Computational Biomedicine-Disease Modeling, RWTH Aachen University, Aachen, Germany.
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
- Centre for Mathematical Modeling-Human Health and Disease, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
12
|
Zhu Y, Gao Q, Zhang J, Cheng Y, Yang S, Xu R, Yuan J, Novakovic B, Netea MG, Cheng SC. Persistent bone marrow hemozoin accumulation confers a survival advantage against bacterial infection via cell-intrinsic Myd88 signaling. Cell Rep 2024; 43:114850. [PMID: 39392758 DOI: 10.1016/j.celrep.2024.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Malaria remains a global health challenge, affecting millions annually. Hemozoin (Hz) deposition in the bone marrow disrupts hematopoiesis and modulates immune responses, but the mechanisms are not fully understood. Here, we show that persistent hemozoin deposition induces a sustained bias toward myelopoiesis, increasing peripheral myeloid cell numbers. Hz drives this process through a cell-intrinsic, MyD88-dependent pathway, enhancing chromatin accessibility of transcription factors such as Runx1 and Etv6 in granulocyte-macrophage progenitors. These findings are confirmed by intraosseous Hz injections and bone marrow chimeras. Single-cell RNA sequencing reveals increased reactive oxygen species production in monocytes from malaria-recovered mice, correlating with enhanced bactericidal capacity. This highlights an alternative aspect of post-malarial immunity and extends our understanding of trained immunity, suggesting that pathogen by-products like Hz can induce innate immune memory. These results offer insights into therapeutic strategies that harness trained immunity to combat infectious diseases.
Collapse
Affiliation(s)
- Yanhui Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Qingxiang Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jia Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuzhen Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of Pediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Mihai G Netea
- Departments of Medicine, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| | - Shih-Chin Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China; Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China.
| |
Collapse
|
13
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
14
|
Pereira AL, Galli S, Nombela‐Arrieta C. Bone marrow niches for hematopoietic stem cells. Hemasphere 2024; 8:e133. [PMID: 39086665 PMCID: PMC11289431 DOI: 10.1002/hem3.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 08/02/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are the cornerstone of the hematopoietic system. HSCs sustain the continuous generation of mature blood derivatives while self-renewing to preserve a relatively constant pool of progenitors throughout life. Yet, long-term maintenance of functional HSCs exclusively takes place in association with their native tissue microenvironment of the bone marrow (BM). HSCs have been long proposed to reside in fixed and identifiable anatomical units found in the complex BM tissue landscape, which control their identity and fate in a deterministic manner. In the last decades, tremendous progress has been made in the dissection of the cellular and molecular fabric of the BM, the structural organization governing tissue function, and the plethora of interactions established by HSCs. Nonetheless, a holistic model of the mechanisms controlling HSC regulation in their niche is lacking to date. Here, we provide an overview of our current understanding of BM anatomy, HSC localization, and crosstalk within local cellular neighborhoods in murine and human tissues, and highlight fundamental open questions on how HSCs functionally integrate in the BM microenvironment.
Collapse
Affiliation(s)
- Ana Luísa Pereira
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| | - Serena Galli
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| | - César Nombela‐Arrieta
- Department of Medical Oncology and HematologyUniversity Hospital and University of ZurichZurichSwitzerland
| |
Collapse
|
15
|
Tangye SG, Mackie J, Pathmanandavel K, Ma CS. The trajectory of human B-cell function, immune deficiency, and allergy revealed by inborn errors of immunity. Immunol Rev 2024; 322:212-232. [PMID: 37983844 DOI: 10.1111/imr.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The essential role of B cells is to produce protective immunoglobulins (Ig) that recognize, neutralize, and clear invading pathogens. This results from the integration of signals provided by pathogens or vaccines and the stimulatory microenvironment within sites of immune activation, such as secondary lymphoid tissues, that drive mature B cells to differentiate into memory B cells and antibody (Ab)-secreting plasma cells. In this context, B cells undergo several molecular events including Ig class switching and somatic hypermutation that results in the production of high-affinity Ag-specific Abs of different classes, enabling effective pathogen neutralization and long-lived humoral immunity. However, perturbations to these key signaling pathways underpin immune dyscrasias including immune deficiency and autoimmunity or allergy. Inborn errors of immunity that disrupt critical immune pathways have identified non-redundant requirements for eliciting and maintaining humoral immune memory but concomitantly prevent immune dysregulation. Here, we will discuss our studies on human B cells, and how our investigation of cytokine signaling in B cells have identified fundamental requirements for memory B-cell formation, Ab production as well as regulating Ig class switching in the context of protective versus allergic immune responses.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Kumar L, Arora MK, Marwah S. Biologic Antiresorptive: Denosumab. Indian J Orthop 2023; 57:127-134. [PMID: 38107799 PMCID: PMC10721778 DOI: 10.1007/s43465-023-01064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Background Osteoporosis is an age-related common bone disorder characterized by low bone mineral density and increased fragility fracture risk. Various Antiresorptive medications are being used to target osteoclast mediated bone resorption to prevent bone loss and reduce fracture risk. About Denosumab Denosumab is a novel biological antiresorptive drug that belongs to the class of monoclonal antibodies. It binds to and inhibits the cytokine receptor activator of nuclear factor kappa-B ligand (RANKL), which is requisite for osteoclast differentiation, function and survival. Effectiveness Denosumab has been shown to be a potent and effective therapy for osteoporosis, with clinical trial data demonstrating significant improvement in bone mineral density (BMD) and reductions in fracture risk at various skeletal sites for more than 10 years of treatment. Safety Profile Denosumab has a favourable benefit/risk profile, with low rates of complications such as infection, atypical femoral fracture and osteonecrosis of the jawbone. Challenges However, denosumab treatment requires continuous administration, as discontinuation leads to rapid bone mineral loss and increased risk of multiple vertebral fractures due to rebound of bone turnover. Therefore, modification to another anti-osteoporosis drug therapy after denosumab discontinuation is required to maintain bone health. Conclusion Denosumab is a promising biological antiresorptive therapy for osteoporosis that offers high efficacy and safety, but also poses challenges for long-term management.
Collapse
Affiliation(s)
- Lalit Kumar
- Marengo Asia Hospital, Gurugram, Haryana India
| | | | - Sunil Marwah
- Marengo Asia Hospital, Gurugram, Haryana India
- Gurugram, India
| |
Collapse
|
17
|
Peters IJA, de Pater E, Zhang W. The role of GATA2 in adult hematopoiesis and cell fate determination. Front Cell Dev Biol 2023; 11:1250827. [PMID: 38033856 PMCID: PMC10682726 DOI: 10.3389/fcell.2023.1250827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The correct maintenance and differentiation of hematopoietic stem cells (HSC) in bone marrow is vital for the maintenance and operation of the human blood system. GATA2 plays a critical role in the maintenance of HSCs and the specification of HSCs into the different hematopoietic lineages, highlighted by the various defects observed in patients with heterozygous mutations in GATA2, resulting in cytopenias, bone marrow failure and increased chance of myeloid malignancy, termed GATA2 deficiency syndrome. Despite this, the mechanisms underlying GATA2 deficiency syndrome remain to be elucidated. The detailed description of how GATA2 regulates HSC maintenance and blood lineage determination is crucial to unravel the pathogenesis of GATA2 deficiency syndrome. In this review, we summarize current advances in elucidating the role of GATA2 in hematopoietic cell fate determination and discuss the challenges of modeling GATA2 deficiency syndrome.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- *Correspondence: Wei Zhang, ; Emma de Pater,
| |
Collapse
|
18
|
Kandalla PK, Subburayalu J, Cocita C, de Laval B, Tomasello E, Iacono J, Nitsche J, Canali MM, Cathou W, Bessou G, Mossadegh‐Keller N, Huber C, Mouchiroud G, Bourette RP, Grasset M, Bornhäuser M, Sarrazin S, Dalod M, Sieweke MH. M-CSF directs myeloid and NK cell differentiation to protect from CMV after hematopoietic cell transplantation. EMBO Mol Med 2023; 15:e17694. [PMID: 37635627 PMCID: PMC10630876 DOI: 10.15252/emmm.202317694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Therapies reconstituting autologous antiviral immunocompetence may represent an important prophylaxis and treatment for immunosuppressed individuals. Following hematopoietic cell transplantation (HCT), patients are susceptible to Herpesviridae including cytomegalovirus (CMV). We show in a murine model of HCT that macrophage colony-stimulating factor (M-CSF) promoted rapid antiviral activity and protection from viremia caused by murine CMV. M-CSF given at transplantation stimulated sequential myeloid and natural killer (NK) cell differentiation culminating in increased NK cell numbers, production of granzyme B and interferon-γ. This depended upon M-CSF-induced myelopoiesis leading to IL15Rα-mediated presentation of IL-15 on monocytes, augmented by type I interferons from plasmacytoid dendritic cells. Demonstrating relevance to human HCT, M-CSF induced myelomonocytic IL15Rα expression and numbers of functional NK cells in G-CSF-mobilized hematopoietic stem and progenitor cells. Together, M-CSF-induced myelopoiesis triggered an integrated differentiation of myeloid and NK cells to protect HCT recipients from CMV. Thus, our results identify a rationale for the therapeutic use of M-CSF to rapidly reconstitute antiviral activity in immunocompromised individuals, which may provide a general paradigm to boost innate antiviral immunocompetence using host-directed therapies.
Collapse
Affiliation(s)
- Prashanth K Kandalla
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Julien Subburayalu
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Department of Internal Medicine IUniversity Hospital Carl Gustav Carus DresdenDresdenGermany
| | - Clément Cocita
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | | | - Elena Tomasello
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | - Johanna Iacono
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Jessica Nitsche
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
| | - Maria M Canali
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | | | - Gilles Bessou
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | | | - Caroline Huber
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | | | - Roland P Bourette
- CNRS, INSERM, CHU Lille, University LilleUMR9020‐U1277 ‐ CANTHER – Cancer Heterogeneity Plasticity and Resistance to TherapiesLilleFrance
| | | | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Department of Internal Medicine IUniversity Hospital Carl Gustav Carus DresdenDresdenGermany
- National Center for Tumor Diseases (NCT), DresdenDresdenGermany
| | - Sandrine Sarrazin
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| | - Marc Dalod
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
- Aix‐Marseille University, CNRS, INSERMCIML, Turing Center for Living SystemsMarseilleFrance
| | - Michael H Sieweke
- Center for Regenerative Therapies Dresden (CRTD)Technical University DresdenDresdenGermany
- Aix Marseille University, CNRS, INSERMCIMLMarseilleFrance
| |
Collapse
|
19
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. Stem Cell Res Ther 2023; 14:319. [PMID: 37936199 PMCID: PMC10631132 DOI: 10.1186/s13287-023-03547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
- Alexander Blümke
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Orthopedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erica Ijeoma
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Jessica Simon
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Rachel Wellington
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, School of Medicine, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Medania Purwaningrum
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth Leber
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Marta Scatena
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA.
| |
Collapse
|
20
|
Zhu Y, Neelamegham S. Knockout studies using CD34+ hematopoietic cells suggest that CD44 is a physiological human neutrophil E-selectin ligand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553923. [PMID: 37645985 PMCID: PMC10462143 DOI: 10.1101/2023.08.18.553923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The recruitment of peripheral blood neutrophils at sites of inflammation involves a multistep cascade, starting with E- and P-selectin expressed on the inflamed vascular endothelium binding sialofucosylated glycans on leukocytes. As the glycoconjugate biosynthesis pathways in different cells are distinct, the precise carbohydrate ligands of selectins varies both across species, and between different immune cell populations in a given species. To study this aspect in human neutrophils, we developed a protocol to perform CRISPR/Cas9 gene-editing on CD34+ hHSCs (human hematopoietic stem/progenitor cells) as they are differentiated towards neutrophil lineage. This protocol initially uses a cocktail of SCF (stem-cell factor), IL-3 (interleukin-3) and FLT-3L (FMS-like tyrosine kinase 3 ligand) to expand the stem/progenitor cells followed by directed differentiation to neutrophils using G-CSF (granulocyte colony-stimulating factor). Microfluidics based assays were performed on a confocal microscope platform to characterize the rolling phenotype of each edited cell type in mixed populations. These studies demonstrated that CD44, but not CD43, is a major E-selectin ligand on human neutrophils. The loss of function results were validated by developing sialofucosylated recombinant CD44. This glycosylated protein supported both robust E-selectin binding in a cell-free assay, and it competitively blocked neutrophil adhesion to E-selectin on inflamed endothelial cells. Together, the study establishes important methods to study human neutrophil biology and determines that sialoflucosylated-CD44 is a physiological human E-selectin ligand.
Collapse
Affiliation(s)
- Yuqi Zhu
- Department of Chemical and Biological Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
- Department of Biomedical Engineering, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
- Department of Medicine School of Engineering and Applies Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260
| |
Collapse
|
21
|
Bastani S, Staal FJT, Canté-Barrett K. The quest for the holy grail: overcoming challenges in expanding human hematopoietic stem cells for clinical use. Stem Cell Investig 2023; 10:15. [PMID: 37457748 PMCID: PMC10345135 DOI: 10.21037/sci-2023-016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Hematopoietic stem cell (HSC) transplantation has been the golden standard for many hematological disorders. However, the number of HSCs obtained from several sources, including umbilical cord blood (UCB), often is insufficient for transplantation. For decades, maintaining or even expanding HSCs for therapeutic purposes has been a "holy grail" in stem cell biology. Different methods have been proposed to improve the efficiency of cell expansion and enhance homing potential such as co-culture with stromal cells or treatment with specific agents. Recent progress has shown that this is starting to become feasible using serum-free and well-defined media. Some of these protocols to expand HSCs along with genetic modification have been successfully applied in clinical trials and some others are studied in preclinical and clinical studies. However, the main challenges regarding ex vivo expansion of HSCs such as limited growth potential and tendency to differentiate in culture still need improvements. Understanding the biology of blood stem cells, their niche and signaling pathways has provided possibilities to regulate cell fate decisions and manipulate cells to optimize expansion of HSCs in vitro. Here, we review the plethora of HSC expansion protocols that have been proposed and indicate the current state of the art for their clinical application.
Collapse
Affiliation(s)
- Sepideh Bastani
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Kirsten Canté-Barrett
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. RESEARCH SQUARE 2023:rs.3.rs-3089289. [PMID: 37461708 PMCID: PMC10350192 DOI: 10.21203/rs.3.rs-3089289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferrable regarding the differentiation of osteoclasts. Methods In this study we compare the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. Results were validated using qRT-PCR throughout the differentiation stages. Results Embryoid-body based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. Conclusions The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
| | - Erica Ijeoma
- University of Washington Department of Bioengineering
| | - Jessica Simon
- University of Washington Department of Bioengineering
| | | | | | | | | | - Marta Scatena
- University of Washington Department of Bioengineering
| | | |
Collapse
|
23
|
Dale DC, Bolyard AA, Makaryan V. The promise of novel treatments for severe chronic neutropenia. Expert Rev Hematol 2023; 16:1025-1033. [PMID: 37978893 DOI: 10.1080/17474086.2023.2285987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Severe chronic neutropenia, i.e. absolute neutrophil count (ANC) less than 0.5 × 109/L, is a serious health problem because it predisposes patients to recurrent bacterial infections. Management radically changed with the discovery that granulocyte colony-stimulating factor (G-CSF) could be used to effectively treat most patients; therapy required regular subcutaneous injections. In the early days of G-CSF therapy, there were concerns that it might somehow overstimulate the bone marrow and cause myelodysplasia (MDS) or acute myeloid leukemia (AML). Detailed research records from the Severe Chronic Neutropenia International Registry (SCNIR) indicate that this is a relatively low-risk event. The research records suggest that certain patient groups are primarily at risk. Presently, allogeneic hematopoietic stem cell therapy serves as an alternate form of therapy. AREAS COVERED Due to these concerns and the desire for an easy-to-take oral alternative, several new treatments are under investigation. These treatments include neutrophil elastase inhibitors, SGLT-2 inhibitors, mavorixafor - an oral CXCR4 inhibitor, gene therapy, and gene editing. EXPERT OPINION All of these alternatives to G-CSF are promising. The risks, relative benefits, and costs are yet to be determined.
Collapse
Affiliation(s)
- David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
24
|
Chen YH, Yeung F, Lacey KA, Zaldana K, Lin JD, Bee GCW, McCauley C, Barre RS, Liang SH, Hansen CB, Downie AE, Tio K, Weiser JN, Torres VJ, Bennett RJ, Loke P, Graham AL, Cadwell K. Rewilding of laboratory mice enhances granulopoiesis and immunity through intestinal fungal colonization. Sci Immunol 2023; 8:eadd6910. [PMID: 37352372 PMCID: PMC10350741 DOI: 10.1126/sciimmunol.add6910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
The paucity of blood granulocyte populations such as neutrophils in laboratory mice is a notable difference between this model organism and humans, but the cause of this species-specific difference is unclear. We previously demonstrated that laboratory mice released into a seminatural environment, referred to as rewilding, display an increase in blood granulocytes that is associated with expansion of fungi in the gut microbiota. Here, we find that tonic signals from fungal colonization induce sustained granulopoiesis through a mechanism distinct from emergency granulopoiesis, leading to a prolonged expansion of circulating neutrophils that promotes immunity. Fungal colonization after either rewilding or oral inoculation of laboratory mice with Candida albicans induced persistent expansion of myeloid progenitors in the bone marrow. This increase in granulopoiesis conferred greater long-term protection from bloodstream infection by gram-positive bacteria than by the trained immune response evoked by transient exposure to the fungal cell wall component β-glucan. Consequently, introducing fungi into laboratory mice may restore aspects of leukocyte development and provide a better model for humans and free-living mammals that are constantly exposed to environmental fungi.
Collapse
Affiliation(s)
- Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Frank Yeung
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kimberly Zaldana
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Gavyn Chern Wei Bee
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Caroline McCauley
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ramya S. Barre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Christina B. Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Alexander E Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Kyle Tio
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Jeffrey N. Weiser
- Antimicrobial-Resistant Pathogens Program
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Antimicrobial-Resistant Pathogens Program
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
25
|
Zdanyte M, Borst O, Münzer P. NET-(works) in arterial and venous thrombo-occlusive diseases. Front Cardiovasc Med 2023; 10:1155512. [PMID: 37283578 PMCID: PMC10239889 DOI: 10.3389/fcvm.2023.1155512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Formation of Neutrophil Extracellular Traps (NETosis), accompanied by the release of extracellular decondensed chromatin and pro-inflammatory as well as pro-thrombotic factors, is a pivotal element in the development and progression of thrombo-occlusive diseases. While the process of NETosis is based on complex intracellular signalling mechanisms, it impacts a wide variety of cells including platelets, leukocytes and endothelial cells. Consequently, although initially mainly associated with venous thromboembolism, NETs also affect and mediate atherothrombosis and its acute complications in the coronary, cerebral and peripheral arterial vasculature. In this context, besides deep vein thrombosis and pulmonary embolism, NETs in atherosclerosis and especially its acute complications such as myocardial infarction and ischemic stroke gained a lot of attention in the cardiovascular research field in the last decade. Thus, since the effect of NETosis on platelets and thrombosis in general is extensively discussed in other review articles, this review focusses on the translational and clinical relevance of NETosis research in cardiovascular thrombo-occlusive diseases. Consequently, after a brief summary of the neutrophil physiology and the cellular and molecular mechanisms underlying NETosis are presented, the role of NETosis in atherosclerotic and venous thrombo-occlusive diseases in chronic and acute settings are discussed. Finally, potential prevention and treatment strategies of NET-associated thrombo-occlusive diseases are considered.
Collapse
Affiliation(s)
- Monika Zdanyte
- DFG Heisenberg Group Thrombocardiology, Eberhard Karl University Tübingen, Tübingen, Germany
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Oliver Borst
- DFG Heisenberg Group Thrombocardiology, Eberhard Karl University Tübingen, Tübingen, Germany
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Münzer
- DFG Heisenberg Group Thrombocardiology, Eberhard Karl University Tübingen, Tübingen, Germany
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Wang Y, Jin X, Li M, Gao J, Zhao X, Ma J, Shi C, He B, Hu L, Shi J, Liu G, Qu G, Zheng Y, Jiang G. PM 2.5 Increases Systemic Inflammatory Cells and Associated Disease Risks by Inducing NRF2-Dependent Myeloid-Biased Hematopoiesis in Adult Male Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7924-7937. [PMID: 37184982 DOI: 10.1021/acs.est.2c09024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Although PM2.5 (fine particles with aerodynamic diameter <2.5 μm) exposure shows the potential to impact normal hematopoiesis, the detailed alterations in systemic hematopoiesis and the underlying mechanisms remain unclear. For hematopoiesis under steady-state or stress conditions, nuclear factor erythroid 2-related factor 2 (NRF2) is essential for regulating hematopoietic processes to maintain blood homeostasis. Herein, we characterized changes in the populations of hematopoietic stem progenitor cells and committed hematopoietic progenitors in the lungs and bone marrow (BM) of wild-type and Nrf2-/- C57BL/6J male mice. PM2.5-induced NRF2-dependent biased hematopoiesis toward myeloid lineage in the lungs and BM generates excessive numbers of various inflammatory immune cells, including neutrophils, monocytes, and platelets. The increased population of these immune cells in the lungs, BM, and peripheral blood has been associated with observed pulmonary fibrosis and high disease risks in an NRF2-dependent manner. Therefore, although NRF2 is a protective factor against stressors, upon PM2.5 exposure, NRF2 is involved in stress myelopoiesis and enhanced PM2.5 toxicity in pulmonary injury, even leading to systemic inflammation.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Min Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guoliang Liu
- Department of Pulmonary and Critical Care Medicine, National Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Institute of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
27
|
Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol 2023. [PMID: 37183350 DOI: 10.1002/jcp.31036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Osteoclasts, the bone-resorbing cells, are essential for the bone remodeling process and are involved in the pathophysiology of several bone-related diseases. The extensive corpus of in vitro research and crucial mouse model studies in the 1990s demonstrated the key roles of monocyte/macrophage colony-stimulating factor, receptor activator of nuclear factor kappa B ligand (RANKL) and integrin αvβ3 in osteoclast biology. Our knowledge of the molecular mechanisms by which these variables control osteoclast differentiation and function has significantly advanced in the first decade of this century. Recent developments have revealed a number of novel insights into the fundamental mechanisms governing the differentiation and functional activity of osteoclasts; however, these mechanisms have not yet been adequately documented. Thus, in the present review, we discuss various regulatory factors including local and hormonal factors, innate as well as adaptive immune cells, noncoding RNAs (ncRNAs), etc., in the molecular regulation of the intricate and tightly regulated process of osteoclastogenesis. ncRNAs have a critical role as epigenetic controllers of osteoclast physiologic activities, including differentiation and bone resorption. The primary ncRNAs, which include micro-RNAs, circular RNAs, and long noncoding RNAs, form a complex network that affects gene transcription activities associated with osteoclast biological activity. Greater knowledge of the involvement of ncRNAs in osteoclast biological activities will contribute to the treatment and management of several skeletal diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc. Moreover, we further outline potential therapies targeting these regulatory pathways of osteoclastogenesis in distinct bone pathologies.
Collapse
Affiliation(s)
- Aleena Anwar
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Navita Gupta
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, India
| | - Rudra P Ojha
- Department of Zoology, Nehru Gram Bharati University, Prayagraj, Uttar Pradesh, India
| | - Bhupendra Verma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
28
|
Jyoti K, Malik G, Chaudhary M, Madan J, Kamboj A. Hyaluronate decorated polyethylene glycol linked poly(lactide-co-glycolide) nanoparticles encapsulating MUC-1 peptide augmented mucosal immune response in Balb/c mice through inhalation route. Biochim Biophys Acta Gen Subj 2023; 1867:130317. [PMID: 36731729 DOI: 10.1016/j.bbagen.2023.130317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVES NSCLC (Non-Small Cell Lung Cancer) clutches highest mortality rate in man and women globally. The present study was conducted to target MUC-1 peptide (M-1) into antigen presenting cells by cargo the peptide into hyaluronic acid decorated polyethylene glycol linked poly (D, l-lactide-co-glycolide) nanoparticles (M-1-PL-co-GA-PEG-sHA-NPs) for generating mucosal immunity through inhalation (i.h.) route. METHODOLOGY AND RESULTS The mean particle size and surface charge of M-1-PL-co-GA-PEG-sHA-NPs was measured to be 136.2 ± 18.38-nm and - 28.34 ± 6.77-mV, respectively, prepared by non-aggregated emulsion-diffusion evaporation method. The 28.42% percentage release of M-1 peptide from M-1-PL-co-GA-PEG-NPs was observed to be at 2 h and 95.29% at 8 h while the percentage release of M-1 peptide from M-1-PL-co-GA-PEG-sHA-NPs was observed to be 26.02% at 4 h and 97.95% at 24 h that proved the prolonged release of antigen. M-1-PL-co-GA-PEG-sHA-NPs demonstrated higher (P < 0.05) cellular uptake of 86.2% in RAW 264.7 cells in comparison to 27.6% of M-1-PL-co-GA-PEG-NPs. In addition, M-1-PL-co-GA-PEG-sHA-NPs induced remarkably (P < 0.05) elevated release of 80.6-pg/ml of TNF-α in comparison to 5-pg/ml by culture medium and 57.9-pg/ml of TNF-α by M-1-PL-co-GA-PEG-NPs. Similarly, M-1-PL-co-GA-PEG-sHA-NPs persuade remarkably (P < 0.05) elevated release of 225-pg/ml of IL-1β in comparison to 47-pg/ml by culture medium and 161.9-pg/ml of IL-1β by M-1-PL-co-GA-PEG-NPs. M-1-PL-co-GA-PEG-sHA-NPs might have been endocytosed through receptor mediated pathway owing to presence of sHA. Mice immunized through i.h. route with M-1-PL-co-GA-PEG-sHA-NPs induced strong (P < 0.05) IgA antibody titre as compared to M-1-PL-co-GA-PEG-NPs and M-1 peptide in dose-dosage regimen. CONCLUSION M-1-PL-co-GA-PEG-sHA-NPs nanovaccine warrants further analysis in xenograft model of NSCLC to showcase its antitumor capability.
Collapse
Affiliation(s)
- Kiran Jyoti
- IKG Punjab Technical University, Jalandhar, Punjab, India; Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India.
| | - Garima Malik
- MM College of Pharmacy, Maharishi Markandeshwar University, Ambala, Haryana, India
| | | | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anjoo Kamboj
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| |
Collapse
|
29
|
Tangye SG, Pathmanandavel K, Ma CS. Cytokine-mediated STAT-dependent pathways underpinning human B-cell differentiation and function. Curr Opin Immunol 2023; 81:102286. [PMID: 36764056 DOI: 10.1016/j.coi.2023.102286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
B cells are fundamental to host defence against infectious diseases; indeed, the ability of humans to elicit robust antibody responses following exposure to foreign antigens underpins long-lived humoral immunity and serological memory, as well as the success of most currently administered vaccines. However, B cells also have a dark side - they can cause myriad diseases, including autoimmunity, atopy, allergy and malignancy. Thus, it is critical to understand the molecular requirements for generating effective, high-affinity, specific immune responses following natural infection or vaccination, as well as for constraining B-cell function to mitigate B-cell-mediated immune dyscrasias. In this review, we discuss recent developments that have been derived from the identification and detailed analysis of individuals with inborn errors of immunity that disrupt cytokine signalling, resulting in immune dysregulatory conditions. These studies have defined fundamental cytokine/cytokine receptor/signal transducer and activator of transcription (STAT) signalling pathways that are critical for the generation and maintenance of human memory B-cell and plasma cell subsets during host defence, as well as revealed mechanisms of disease pathogenesis causing immune deficiency, autoimmunity and atopy. More importantly, these studies have identified molecules that could be targeted to either enhance humoral immunity in the settings of infection or vaccination, or attenuate humoral immunity that contributes to antibody-mediated autoimmunity or allergy.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia.
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| |
Collapse
|
30
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
31
|
Simulated microgravity affects stroma-dependent ex vivo myelopoiesis. Tissue Cell 2023; 80:101987. [PMID: 36481580 DOI: 10.1016/j.tice.2022.101987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
Microgravity is known negatively affect physiology of living beings, including hematopoiesis. Dysregulation of hematopoietic cells and supporting stroma relationships in bone marrow niche may be in charge. We compared the efficacy of ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) in presence of native or osteocommitted MSCs under simulated microgravity (Smg) using Random Positioning Machine (RPM). In comparison with 1 g, a decrease of MSC-associated HSPCs and an increase of floating HSPCs was observed after 7 days of Smg exposure. Among floating HSPCs, primitive progenitors were presented by late CD34+/133-. Total CFUs as well as erythroid (BFU-E) and granulocytic (CFU-G) numbers were lower. MSC-associated primitive HSPCs demonstrated increased proportion of late CD34+/133- in expense of early CD34-/133+. Osteo-MSCs preferentially supported late primitive CD34+ and more committed HSPCs as followed from increase of CFUs, and CD235a+ erythroid progenitors. Under Smg, an increased VEGF, eotaxin, and GRO-a levels, and a decrease in RANTES were found in the osteo-MSC-HSPC co-cultures. IL-6,-8, -13, G-CSF, GRO-a, MCP-3, MIP-1b, VEGF increased in co-culture with osteo-MSCs vs intact MSCs. Based on the findings, the misbalance between primitive/committed HSPCs and a decrease in hematopoiesis-supportive activity of osteocommitted cells are supposed to underline hematopoietic disorders during space flights.
Collapse
|
32
|
Batool I, Bajcinca N. Stability analysis of a multiscale model of cell cycle dynamics coupled with quiescent and proliferating cell populations. PLoS One 2023; 18:e0280621. [PMID: 36662844 PMCID: PMC9858875 DOI: 10.1371/journal.pone.0280621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
In this paper, we perform a mathematical analysis of our proposed nonlinear, multiscale mathematical model of physiologically structured quiescent and proliferating cell populations at the macroscale and cell-cycle proteins at the microscale. Cell cycle dynamics (microscale) are driven by growth factors derived from the total cell population of quiescent and proliferating cells. Cell-cycle protein concentrations, on the other hand, determine the rates of transition between the two subpopulations. Our model demonstrates the underlying impact of cell cycle dynamics on the evolution of cell population in a tissue. We study the model's well-posedness, derive steady-state solutions, and find sufficient conditions for the stability of steady-state solutions using semigroup and spectral theory. Finally, we performed numerical simulations to see how the parameters affect the model's nonlinear dynamics.
Collapse
Affiliation(s)
- Iqra Batool
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Mechanical and Process Engineering, Kaiserslautern, Germany
| | - Naim Bajcinca
- Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Mechanical and Process Engineering, Kaiserslautern, Germany
| |
Collapse
|
33
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
34
|
Emerging principles of cytokine pharmacology and therapeutics. Nat Rev Drug Discov 2023; 22:21-37. [PMID: 36131080 DOI: 10.1038/s41573-022-00557-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
Cytokines are secreted signalling proteins that play essential roles in the initiation, maintenance and resolution of immune responses. Although the unique ability of cytokines to control immune function has garnered clinical interest in the context of cancer, autoimmunity and infectious disease, the use of cytokine-based therapeutics has been limited. This is due, in part, to the ability of cytokines to act on many cell types and impact diverse biological functions, resulting in dose-limiting toxicity or lack of efficacy. Recent studies combining structural biology, protein engineering and receptor pharmacology have unlocked new insights into the mechanisms of cytokine receptor activation, demonstrating that many aspects of cytokine function are highly tunable. Here, we discuss the pharmacological principles underlying these efforts to overcome cytokine pleiotropy and enhance the therapeutic potential of this important class of signalling molecules.
Collapse
|
35
|
Moggio A, Schunkert H, Kessler T, Sager HB. Quo Vadis? Immunodynamics of Myeloid Cells after Myocardial Infarction. Int J Mol Sci 2022; 23:15814. [PMID: 36555456 PMCID: PMC9779515 DOI: 10.3390/ijms232415814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI), a major contributor to worldwide morbidity and mortality, is caused by a lack of blood flow to the heart. Affected heart tissue becomes ischemic due to deficiency of blood perfusion and oxygen delivery. In case sufficient blood flow cannot be timely restored, cardiac injury with necrosis occurs. The ischemic/necrotic area induces a systemic inflammatory response and hundreds of thousands of leukocytes are recruited from the blood to the injured heart. The blood pool of leukocytes is rapidly depleted and urgent re-supply of these cells is needed. Myeloid cells are generated in the bone marrow (BM) and spleen, released into the blood, travel to sites of need, extravasate and accumulate inside tissues to accomplish various functions. In this review we focus on the "leukocyte supply chain" and will separately evaluate different myeloid cell compartments (BM, spleen, blood, heart) in steady state and after MI. Moreover, we highlight the local and systemic kinetics of extracellular factors, chemokines and danger signals involved in the regulation of production/generation, release, transportation, uptake, and activation of myeloid cells during the inflammatory phase of MI.
Collapse
Affiliation(s)
- Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
36
|
Mayani H, Chávez-González A, Vázquez-Santillan K, Contreras J, Guzman ML. Cancer Stem Cells: Biology and Therapeutic Implications. Arch Med Res 2022; 53:770-784. [PMID: 36462951 DOI: 10.1016/j.arcmed.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
It is well recognized that most cancers derive and progress from transformation and clonal expansion of a single cell that possesses stem cell properties, i.e., self-renewal and multilineage differentiation capacities. Such cancer stem cells (CSCs) are usually present at very low frequencies and possess properties that make them key players in tumor development. Indeed, besides having the ability to initiate tumor growth, CSCs drive tumor progression and metastatic dissemination, are resistant to most cancer drugs, and are responsible for cancer relapse. All of these features make CSCs attractive targets for the development of more effective oncologic treatments. In the present review article, we have summarized recent advances in the biology of CSCs, including their identification through their immunophenotype, and their physiology, both in vivo and in vitro. We have also analyzed some molecular markers that might become targets for developing new therapies aiming at hampering CSCs regeneration and cancer relapse.
Collapse
Affiliation(s)
- Hector Mayani
- Unidad de Investigaci..n en Enfermedades Oncol..gicas, Hospital de Oncolog.ía, Centro M..dico Nacional SXXI, Instituto Mexicano del Seguro Social. Ciudad de M..xico, M..xico.
| | - Antonieta Chávez-González
- Unidad de Investigaci..n en Enfermedades Oncol..gicas, Hospital de Oncolog.ía, Centro M..dico Nacional SXXI, Instituto Mexicano del Seguro Social. Ciudad de M..xico, M..xico
| | | | - Jorge Contreras
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Monica L Guzman
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
37
|
Wang Y, Li M, Wang S, Ma J, Liu Y, Guo H, Gao J, Yao L, He B, Hu L, Qu G, Jiang G. Deciphering the Effects of 2D Black Phosphorus on Disrupted Hematopoiesis and Pulmonary Immune Homeostasis Using a Developed Flow Cytometry Method. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15869-15881. [PMID: 36227752 PMCID: PMC9671123 DOI: 10.1021/acs.est.2c03675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 05/28/2023]
Abstract
As an emerging two-dimensional nanomaterial with promising prospects, mono- or few-layer black phosphorus (BP) is potentially toxic to humans. We investigated the effects of two types of BPs on adult male mice through intratracheal instillation. Using the flow cytometry method, the generation, migration, and recruitment of immune cells in different organs have been characterized on days 1, 7, 14, and 21 post-exposure. Compared with small BP (S-BP, lateral size at ∼188 nm), large BP (L-BP, lateral size at ∼326 nm) induced a stronger stress lymphopoiesis and B cell infiltration into the alveolar sac. More importantly, L-BP dramatically increased peripheral neutrophil (NE) counts up to 1.9-fold on day 21 post-exposure. Decreased expression of the CXCR4 on NEs, an important regulator of NE retention in the bone marrow, explained the increased NE release into the circulation induced by L-BP. Therefore, BP triggers systemic inflammation via the disruption of both the generation and migration of inflammatory immune cells.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Shenyang 110819, China
| | - Shunhao Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Ma
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Shenyang 110819, China
| | - Yaquan Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Guo
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
| | - Linlin Yao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Bin He
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangbo Qu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
38
|
Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 2022; 163:S79-S98. [DOI: 10.1097/j.pain.0000000000002737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
|
39
|
Tajer P, Canté-Barrett K, Naber BAE, Vloemans SA, van Eggermond MCJA, van der Hoorn ML, Pike-Overzet K, Staal FJT. IL3 Has a Detrimental Effect on Hematopoietic Stem Cell Self-Renewal in Transplantation Settings. Int J Mol Sci 2022; 23:ijms232112736. [PMID: 36361533 PMCID: PMC9655151 DOI: 10.3390/ijms232112736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The ex vivo expansion and maintenance of long-term hematopoietic stem cells (LT-HSC) is crucial for stem cell-based gene therapy. A combination of stem cell factor (SCF), thrombopoietin (TPO), FLT3 ligand (FLT3) and interleukin 3 (IL3) cytokines has been commonly used in clinical settings for the expansion of CD34+ from different sources, prior to transplantation. To assess the effect of IL3 on repopulating capacity of cultured CD34+ cells, we employed the commonly used combination of STF, TPO and FILT3 with or without IL3. Expanded cells were transplanted into NSG mice, followed by secondary transplantation. Overall, this study shows that IL3 leads to lower human cell engraftment and repopulating capacity in NSG mice, suggesting a negative effect of IL3 on HSC self-renewal. We, therefore, recommend omitting IL3 from HSC-based gene therapy protocols.
Collapse
Affiliation(s)
- Parisa Tajer
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Kirsten Canté-Barrett
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Brigitta A. E. Naber
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sandra A. Vloemans
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | | | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
40
|
Bain FM, Che JLC, Jassinskaja M, Kent DG. Lessons from early life: understanding development to expand stem cells and treat cancers. Development 2022; 149:277217. [PMID: 36217963 PMCID: PMC9724165 DOI: 10.1242/dev.201070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Haematopoietic stem cell (HSC) self-renewal is a process that is essential for the development and homeostasis of the blood system. Self-renewal expansion divisions, which create two daughter HSCs from a single parent HSC, can be harnessed to create large numbers of HSCs for a wide range of cell and gene therapies, but the same process is also a driver of the abnormal expansion of HSCs in diseases such as cancer. Although HSCs are first produced during early embryonic development, the key stage and location where they undergo maximal expansion is in the foetal liver, making this tissue a rich source of data for deciphering the molecules driving HSC self-renewal. Another equally interesting stage occurs post-birth, several weeks after HSCs have migrated to the bone marrow, when HSCs undergo a developmental switch and adopt a more dormant state. Characterising these transition points during development is key, both for understanding the evolution of haematological malignancies and for developing methods to promote HSC expansion. In this Spotlight article, we provide an overview of some of the key insights that studying HSC development have brought to the fields of HSC expansion and translational medicine, many of which set the stage for the next big breakthroughs in the field.
Collapse
Affiliation(s)
- Fiona M. Bain
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - James L. C. Che
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Maria Jassinskaja
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - David G. Kent
- Department of Biology, York Biomedical Research Institute, University of York, York, YO10 5DD, UK
- Author for correspondence ()
| |
Collapse
|
41
|
Mechanism of Emodin in the Treatment of Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9482570. [PMID: 36225183 PMCID: PMC9550445 DOI: 10.1155/2022/9482570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, and autoimmune disease, and its main pathological changes are inflammatory cell infiltration accompanied by the secretion and accumulation of a variety of related cytokines, which induce the destruction of cartilage and bone tissue. Therefore, the modulation of inflammatory cells and cytokines is a key therapeutic target for controlling inflammation in RA. This review details the effects of emodin on the differentiation and maturation of T lymphocytes, dendritic cells, and regulatory T cells. In addition, the systematic introduction of emodin directly or indirectly affects proinflammatory cytokines (TNF-α, IL-6, IL-1, IL-1β, IL-17, IL-19, and M-CSF) and anti-inflammatory cytokines (the secretion of IL-4, IL-10, IL-13, and TGF-β) through the coregulation of a variety of inflammatory cytokines to inhibit inflammation in RA and promote recovery. Understanding the potential mechanism of emodin in the treatment of RA in detail provides a systematic theoretical basis for the clinical application of emodin in the future.
Collapse
|
42
|
Zhou X, Zhang Y, Zhu F. The hematopoietic cytokine Astakine play a vital role in hemocyte proliferation and innate immunity in Scylla paramamosain. Int J Biol Macromol 2022; 224:396-406. [DOI: 10.1016/j.ijbiomac.2022.10.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
43
|
Boulay JL, Du Pasquier L, Cooper MD. Cytokine Receptor Diversity in the Lamprey Predicts the Minimal Essential Cytokine Networks of Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1013-1020. [PMID: 35914837 DOI: 10.4049/jimmunol.2200274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 07/28/2023]
Abstract
The vertebrate adaptive immune systems (Agnatha and Gnathostomata) use sets of T and B lymphocyte lineages that somatically generate highly diverse repertoires of Ag-specific receptors and Abs. In Gnathostomata, cytokine networks regulate the activation of lymphoid and myeloid cells, whereas little is known about these components in Agnathans. Most gnathostome cytokines are four-helix bundle cytokines with poorly conserved primary sequences. In contrast, sequence conservation across bilaterians has been observed for cognate cytokine receptor chains, allowing their structural classification into two classes, and for downstream JAK/STAT signaling mediators. With conserved numbers among Gnathostomata, human cytokine receptor chains (comprising 34 class I and 12 class II) are able to interact with 28 class I helical cytokines (including most ILs) and 16 class II cytokines (including all IFNs), respectively. Hypothesizing that the arsenal of cytokine receptors and transducers may reflect homologous cytokine networks, we analyzed the lamprey genome and transcriptome to identify genes and transcripts for 23 class I and five class II cytokine receptors alongside one JAK signal mediator and four STAT transcription factors. On the basis of deduction of their respective orthologs, we predict that these receptors may interact with 16 class I and 3 class II helical cytokines (including IL-4, IL-6, IL-7, IL-12, IL-10, IFN-γ, and thymic stromal lymphoprotein homologs). On the basis of their respective activities in mammals, this analysis suggests the existence of lamprey cytokine networks that may regulate myeloid and lymphoid cell differentiation, including potential Th1/Th2 polarization. The predicted networks thus appear remarkably homologous to those of Gnathostomata, albeit reduced to essential functions.
Collapse
Affiliation(s)
- Jean-Louis Boulay
- Laboratory of Brain Tumor Immunotherapy and Biology, Department of BioMedicine, University Hospital of Basel and University of Basel, Basel, Switzerland;
| | - Louis Du Pasquier
- Laboratory of Zoology and Evolutionary Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland; and
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA
| |
Collapse
|
44
|
Stevens J, Steinmeyer S, Bonfield M, Peterson L, Wang T, Gray J, Lewkowich I, Xu Y, Du Y, Guo M, Wynn JL, Zacharias W, Salomonis N, Miller L, Chougnet C, O’Connor DH, Deshmukh H. The balance between protective and pathogenic immune responses to pneumonia in the neonatal lung is enforced by gut microbiota. Sci Transl Med 2022; 14:eabl3981. [PMID: 35704600 PMCID: PMC10032669 DOI: 10.1126/scitranslmed.abl3981] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although modern clinical practices such as cesarean sections and perinatal antibiotics have improved infant survival, treatment with broad-spectrum antibiotics alters intestinal microbiota and causes dysbiosis. Infants exposed to perinatal antibiotics have an increased likelihood of life-threatening infections, including pneumonia. Here, we investigated how the gut microbiota sculpt pulmonary immune responses, promoting recovery and resolution of infection in newborn rhesus macaques. Early-life antibiotic exposure interrupted the maturation of intestinal commensal bacteria and disrupted the developmental trajectory of the pulmonary immune system, as assessed by single-cell proteomic and transcriptomic analyses. Early-life antibiotic exposure rendered newborn macaques more susceptible to bacterial pneumonia, concurrent with increases in neutrophil senescence and hyperinflammation, broad inflammatory cytokine signaling, and macrophage dysfunction. This pathogenic reprogramming of pulmonary immunity was further reflected by a hyperinflammatory signature in all pulmonary immune cell subsets coupled with a global loss of tissue-protective, homeostatic pathways in the lungs of dysbiotic newborns. Fecal microbiota transfer was associated with partial correction of the broad immune maladaptations and protection against severe pneumonia. These data demonstrate the importance of intestinal microbiota in programming pulmonary immunity and support the idea that gut microbiota promote the balance between pathways driving tissue repair and inflammatory responses associated with clinical recovery from infection in infants. Our results highlight a potential role for microbial transfer for immune support in these at-risk infants.
Collapse
Affiliation(s)
- Joseph Stevens
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shelby Steinmeyer
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Madeline Bonfield
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Laura Peterson
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Timothy Wang
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jerilyn Gray
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ian Lewkowich
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yan Xu
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Bioinformatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yina Du
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Minzhe Guo
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James L. Wynn
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - William Zacharias
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Bioinformatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa Miller
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
- California National Primate Research Center, Davis, CA 95616, USA
| | - Claire Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Dennis Hartigan O’Connor
- California National Primate Research Center, Davis, CA 95616, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Hitesh Deshmukh
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Corresponding author.
| |
Collapse
|
45
|
Huang DY, Wang GM, Ke ZR, Zhou Y, Yang HH, Ma TL, Guan CX. Megakaryocytes in pulmonary diseases. Life Sci 2022; 301:120602. [DOI: 10.1016/j.lfs.2022.120602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
|
46
|
Hamadi GM, Lafta SF. Immunological parameters of recurrent miscarriages among women in Thi-Qar province. J Med Life 2022; 15:635-639. [PMID: 35815084 PMCID: PMC9262261 DOI: 10.25122/jml-2021-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recurrent miscarriage (RM) is defined as the loss of pregnancy three or more consecutive times in the first and second trimester, which in some cases occurs due to immune abnormalities. This study aimed to assess some immunological parameters in women with recurrent miscarriages, including the level of antiphospholipid antibody (APA), anticardiolipin (ACA), antinuclear antibody (ANA), complement C3 and C4, and interleukine-3 (IL-3). We included 100 patients together with 100 healthy women as a control. ELIZA was used to measure some types of autoantibodies. APA and ACA significantly increased (P≤0.05) in patients compared to control. In addition, 29% of the patients were positive for antinuclear antibodies (ANA), while the control subjects had negative results for these autoantibodies. Regarding the complement, the serum levels of C3 and C4 were significantly elevated in the serum level of patients when compared to the control group, but in treated patients (heparin and low-dose aspirin), the levels of the complement (C3 and C4) showed a significant decrease in patients compared to total controls. Cytokine level (IL-3) significantly decreased in untreated patients 302.78 pg/ml compared to treated patients (741.57 pg/ml). Antiphospholipid antibodies are more prevalent among women with recurrent miscarriages and are also believed to be the result of abnormal autoimmune activation.
Collapse
Affiliation(s)
- Ghaneemah Malik Hamadi
- Department of Community Health, Nasiriyah Technical Institute, Southern Technical University, Thi-Qar, Iraq,Corresponding Author: Ghaneemah Malik Hamadi, Department of Community Health, Nasiriyah Technical Institute, Southern Technical University, Thi-Qar, Iraq. E-mail:
| | | |
Collapse
|
47
|
Dircio-Maldonado R, Castro-Oropeza R, Flores-Guzman P, Cedro-Tanda A, Beltran-Anaya FO, Hidalgo-Miranda A, Mayani H. Gene expression profiles and cytokine environments determine the in vitro proliferation and expansion capacities of human hematopoietic stem and progenitor cells. Hematology 2022; 27:476-487. [PMID: 35413231 DOI: 10.1080/16078454.2022.2061108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The interplay between intrinsic and extrinsic elements involved in the physiology of hematopoietic cells is not completely understood. In the present study, we analyzed the transcriptional profiles of human cord blood-derived hematopoietic stem cells (HSCs), as well as myeloid (MPCs) and erythroid (EPCs) progenitors, and assessed their proliferation and expansion kinetics in vitro. METHODS All cell populations were obtained by cell-sorting, and were cultured in liquid cultures supplemented with different cytokine combinations. Their gene expression profiles were determined by RNA microarrays right after cell-sorting, before culture. RESULTS HSCs showed the highest proliferation and expansion capacities in culture, and were found to be more closely related, in transcriptional terms, to MPCs than to EPCs. This correlated with the fact that after 30 days, only cultures initiated with HSCs and MPCs were sustained. Expression of cell cycle and cell division-related genes was enriched in EPCs. Such cells showed significantly higher proliferation than MPCs, however, their expansion potential was reduced, so that cultures initiated with EPCs declined after 15 days and became exhausted by day 30. Proliferation and expansion of HSCs and EPCs were higher in the presence of a cytokine combination that favors erythropoiesis, whereas the growth of MPCs was higher under a cytokine combination that favors myelopoiesis. CONCLUSION This study shows a correlation between the transcriptional profiles of HSCs, MPCs, and EPCs, and their respective in vitro growth under particular culture conditions. These results may be relevant in the development of ex vivo systems for the expansion of hematopoietic cells for clinical application.
Collapse
Affiliation(s)
- Roberto Dircio-Maldonado
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Rosario Castro-Oropeza
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Patricia Flores-Guzman
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | - Alberto Cedro-Tanda
- National Institute of Genomic Medicine, National Ministry of Health, Mexico City, Mexico
| | | | | | - Hector Mayani
- Hematopoietic Stem Cells Laboratory, IMSS National Medical Center, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| |
Collapse
|
48
|
Mann Z, Sengar M, Verma YK, Rajalingam R, Raghav PK. Hematopoietic Stem Cell Factors: Their Functional Role in Self-Renewal and Clinical Aspects. Front Cell Dev Biol 2022; 10:664261. [PMID: 35399522 PMCID: PMC8987924 DOI: 10.3389/fcell.2022.664261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess two important properties such as self-renewal and differentiation. These properties of HSCs are maintained through hematopoiesis. This process gives rise to two subpopulations, long-term and short-term HSCs, which have become a popular convention for treating various hematological disorders. The clinical application of HSCs is bone marrow transplant in patients with aplastic anemia, congenital neutropenia, sickle cell anemia, thalassemia, or replacement of damaged bone marrow in case of chemotherapy. The self-renewal attribute of HSCs ensures long-term hematopoiesis post-transplantation. However, HSCs need to be infused in large numbers to reach their target site and meet the demands since they lose their self-renewal capacity after a few passages. Therefore, a more in-depth understanding of ex vivo HSCs expansion needs to be developed to delineate ways to enhance the self-renewability of isolated HSCs. The multifaceted self-renewal process is regulated by factors, including transcription factors, miRNAs, and the bone marrow niche. A developed classical hierarchical model that outlines the hematopoiesis in a lineage-specific manner through in vivo fate mapping, barcoding, and determination of self-renewal regulatory factors are still to be explored in more detail. Thus, an in-depth study of the self-renewal property of HSCs is essentially required to be utilized for ex vivo expansion. This review primarily focuses on the Hematopoietic stem cell self-renewal pathway and evaluates the regulatory molecular factors involved in considering a targeted clinical approach in numerous malignancies and outlining gaps in the current knowledge.
Collapse
Affiliation(s)
- Zoya Mann
- Independent Researcher, New Delhi, India
| | - Manisha Sengar
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Yogesh Kumar Verma
- Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
49
|
Saggam A, Kale P, Shengule S, Patil D, Gautam M, Tillu G, Joshi K, Gairola S, Patwardhan B. Ayurveda-based Botanicals as Therapeutic Adjuvants in Paclitaxel-induced Myelosuppression. Front Pharmacol 2022; 13:835616. [PMID: 35273508 PMCID: PMC8902067 DOI: 10.3389/fphar.2022.835616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Chemotherapy-induced myelosuppression is one of the major challenges in cancer treatment. Ayurveda-based immunomodulatory botanicals Asparagus racemosus Willd (AR/Shatavari) and Withania somnifera (L.). Dunal (WS/Ashwagandha) have potential role to manage myelosuppression. We have developed a method to study the effects of AR and WS as therapeutic adjuvants to counter paclitaxel (PTX)-induced myelosuppression. Sixty female BALB/c mice were divided into six groups—vehicle control (VC), PTX alone, PTX with aqueous and hydroalcoholic extracts of AR (ARA, ARH) and WS (WSA, WSH). The myelosuppression was induced in mice by intraperitoneal administration of PTX at 25 mg/kg dose for three consecutive days. The extracts were orally administered with a dose of 100 mg/kg for 15 days prior to the induction with PTX administration. The mice were observed daily for morbidity parameters and were bled from retro-orbital plexus after 2 days of PTX dosing. The morbidity parameters simulate clinical adverse effects of PTX that include activity (extreme tiredness due to fatigue), behavior (numbness and weakness due to peripheral neuropathy), body posture (pain in muscles and joints), fur aspect and huddling (hair loss). The collected samples were used for blood cell count analysis and cytokine profiling using Bio-Plex assay. The PTX alone group showed a reduction in total leukocyte and neutrophil counts (4,800 ± 606; 893 ± 82) when compared with a VC group (9,183 ± 1,043; 1,612 ± 100) respectively. Pre-administration of ARA, ARH, WSA, and WSH extracts normalized leukocyte counts (10,000 ± 707; 9,166 ± 1,076; 10,333 ± 1,189; 9,066 ± 697) and neutrophil counts (1,482 ± 61; 1,251 ± 71; 1,467 ± 121; 1,219 ± 134) respectively. Additionally, higher morbidity score in PTX group (7.4 ± 0.7) was significantly restricted by ARA (4.8 ± 1.1), ARH (5.1 ± 0.6), WSA (4.5 ± 0.7), and WSH (5 ± 0.8). (Data represented in mean ± SD). The extracts also significantly modulated 20 cytokines to evade PTX-induced leukopenia, neutropenia, and morbidity. The AR and WS extracts significantly prevented PTX-induced myelosuppression (p < 0.0001) and morbidity signs (p < 0.05) by modulating associated cytokines. The results indicate AR and WS as therapeutic adjuvants in cancer management.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH-Center of Excellence, Center for Complementary and Integrative Health, School of Health Sciences, Savitribai Phule Pune University, Pune, India.,Serum Institute of India Pvt. Ltd., Pune, India
| | | | | | - Dada Patil
- Serum Institute of India Pvt. Ltd., Pune, India
| | | | - Girish Tillu
- AYUSH-Center of Excellence, Center for Complementary and Integrative Health, School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, Pune, India
| | | | - Bhushan Patwardhan
- AYUSH-Center of Excellence, Center for Complementary and Integrative Health, School of Health Sciences, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
50
|
Dikilitas A, Karaaslan F, Aydin EÖ, Yigit U, Ertugrul AS. Granulocyte-macrophage colony-stimulating factor (GM-CSF) in subjects with different stages of periodontitis according to the new classification. J Appl Oral Sci 2022; 30:e20210423. [PMID: 35262594 PMCID: PMC8908860 DOI: 10.1590/1678-7757-2021-0423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifunctional cytokine that regulates inflammatory responses in various autoimmune and inflammatory disorders. OBJECTIVE The purpose of this study was to analyze the gingival crevicular fluid (GCF) for GM-CSF, interleukin-1 beta (IL-1β), and macrophage inflammatory protein-1 alpha (MIP-1α) levels in patients with stage I, stage II, stage III, and stage IV periodontitis (SI-P, SII-P, SIII-P, and SIV-P). METHODOLOGY A total of 126 individuals were recruited for this study, including 21 periodontal healthy (PH), 21 gingivitis (G), 21 SI-P, 21 SII-P, 21 SIII-P, and 21 SIV-P patients. Plaque index (PI), gingival index (GI), presence of bleeding on probing (BOP), probing depth (PD), and attachment loss (AL) were used during the clinical periodontal assessment. GCF samples were obtained and analyzed by an enzyme-linked immunosorbent assay (ELISA). RESULTS GCF GM-CSF, MIP-1α, and IL-1β were significantly higher in SII-P and SIII-P groups than in PH, G, and SI-P groups (p<0.05). There was no significant difference among the PH, G, and SI-P groups in IL-1β, GM-CSF, and MIP-1α levels (p>0.05). CONCLUSIONS These results show that GM-CSF expression was increased in SII-P, SIII-P, and SIV-P. Furthermore, GM-CSF levels may have some potential to discriminate between early and advanced stages of periodontitis.
Collapse
Affiliation(s)
- Ahu Dikilitas
- Usak UniversityFaculty of DentistryDepartment of PeriodontologyUsakTurkeyUsak University, Faculty of Dentistry, Department of Periodontology, Usak, Turkey.
| | - Fatih Karaaslan
- Usak UniversityFaculty of DentistryDepartment of PeriodontologyUsakTurkeyUsak University, Faculty of Dentistry, Department of Periodontology, Usak, Turkey.
| | - Esra Özge Aydin
- Usak UniversityFaculty of DentistryDepartment of PeriodontologyUsakTurkeyUsak University, Faculty of Dentistry, Department of Periodontology, Usak, Turkey.
| | - Umut Yigit
- Usak UniversityFaculty of DentistryDepartment of PeriodontologyUsakTurkeyUsak University, Faculty of Dentistry, Department of Periodontology, Usak, Turkey.
| | - Abdullah Seckin Ertugrul
- IZMIR Katip Celebi UniversityFaculty of DentistryDepartment of PeriodontologyİzmirTurkeyIZMIR Katip Celebi University, Faculty of Dentistry, Department of Periodontology, İzmir, Turkey.
| |
Collapse
|